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Notes on universality in short intervals and exponential shifts
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Abstract. We improve a recent universality theorem for the Riemann zeta-function in short intervals due to Antanas
Laurinčikas with respect to the length of these intervals. Moreover, we prove that the shifts can even have exponential
growth. This research was initiated by two questions proposed by Laurinčikas in a problem session of a recent workshop
on universality.
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1 Introduction

In 2019, Antanas Laurinčikas [8] proved that Voronin’s celebrated universality theorem holds for shifts re-
stricted to short intervals. More precisely, the real shifts for which the Riemann zeta-function
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approximates an admissible target function (from a large class of functions) can be found in any short interval
(for sufficiently large ), and the set of these shifts has positive lower density as ;

see Theorem A. Note that the case of weighted universality is related but different; the concept of weighted
universality was also introduced by Laurinčikas [7] in 1995.

Before we recall the precise statement, we introduce some language. We say that a function is universal
in an interval if for every and every admissible target function defined on some admissible
set , the inequality

holds; if here can be significantly smaller than , then is said to be universal in short intervals. We
may restrict ourselves to the case of universality for the Riemann zeta-function ; Dirichlet -functions
can be treated analogously, and for further universal zeta- or -functions, the setting can be adjusted. The
original universality theorem for was proved by Voronin [22] for intervals or, equivalently, for
in place of ; generalized and extended versions of Voronin’s theorem were established by Steven
Gonek, Bhaskar Bagchi, Axel Reich, Laurinčikas, and others (see, for example, [12]); however, the case of
universality in short intervals, that is, with is new and was introduced by Laurinčikas [8].
This concept was also studied for discrete universality with respect to arithmetic progressions and some other
sequences [9]; our reasoning applies to this setting too. Moreover, Andersson [1] has recently shown, among
other findings, that continuous universality in short intervals is equivalent to its discrete analogue in arithmetic
progressions.

For the case of note that the set is admissible if it is a compact subset of the strip with
connected complement, where, here and in the sequel, we write . Moreover, in this case a function

is admissible if is continuous, analytic, and nonvanishing in the interior of . For the logarithm
of , however, the target function does not need to be without zero; the nonvanishing restriction is related to
the Riemann hypothesis (see [12, Sect. 9]).

In this setting, Laurinčikas [8] obtained the following result.

Theorem A. The Riemann zeta-function is universal in short intervals for every satisfying

Very recently,5 Laurinčikas suggested to look for improvements of this result. In particular, he asked for
a proof with , where is a fixed constant that can be arbitrarily small. Moreover, he asked whether

(1.1)

where and are admissible, and is a universal function. This question probably originates from [14],
where a joint universality result for Dirichlet -functions is proved, and the vertical shifts are of the form

for a wide variety of values for and . This result has been generalized by Laurinčikas et al. [10]
to vertical shifts generated by a function that have a polynomial-like behavior.

In the subsequent sections of this note, we will (i) improve the exponent in Theorem A, (ii) give an
affirmative answer to the question whether is possible subject to a certain restriction of the range of
universality, resp. the yet unsolved Lindelöf hypothesis, (iii) go beyond the latter result under the assumption
of the open Riemann hypothesis, and (iv) give an affirmative answer to the second proposed question by
introducing an alternative approach and addressing a more general problem.

We use the Landau notation and the Vinogradov notation meaning that there
exists some constant such that for all admissible values of (where the meaning of
“admissible” will be clear from the context).

in a video address during a workshop on Zeta-Functions, Universality, and Chaotic Operators at CIRM, Luminy, 7–11 August
2023.
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2 Unconditional results I – Bourgain & Watt

As can be seen from [8], the only crucial point in proving the universality for short intervals is
a bounded mean-square for , that is,

(2.1)

It is worth mentioning that if we can prove (2.1) for some , then the implicit constant appearing
therein is uniform on for any sufficiently large . We describe this rigorously in
Lemma 2. Therefore our task to prove the universality of in short intervals reduces to prov-
ing (2.1) for any fixed . To that end, the method of exponent pairs is a rather useful tool (which
originates from an old work by Johannes van der Corput, starting with [21]), and we refer to the next section
for a more detailed discussion. In his paper on the universality in short intervals [8], Laurinčikas used the
following result of Aleksandar Ivić [6, Thm. 7.1].

Proposition 1. Let be an exponent pair satisfying for . Then (2.1) holds
uniformly for

Using the exponent pair due to Heath-Brown [5], it follows that estimate (2.1) holds with
. Incorporating this in [8] yields a slight improvement of Theorem A; note that

.
However, we can do better by making use of a recent result of Bourgain and Watt [4], namely

for (2.2)

We will show that this mean-square estimate on the critical line implies the desired mean-square bound (2.1)
for the same range to the right of the critical line (up to a negligible factor ). This leads to the following:

Theorem 1. The Riemann zeta-function is universal in short intervals for every satisfying

Note that .
The proof relies on the following lemmata.

Lemma 1. Let , , and . Then

Lemma 1 resembles the result of Ivić [6, Lemma 7.1], and the proofs of these results follow the same lines.
An immediate consequence of Lemma 1 is that the mean-square of in short intervals on a vertical line
implies a better mean-square estimate result to the right of this line.

Lith. Math. J., 64(2):125–137, 2024.
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Lemma 2. Suppose that there exist and such that for any , and
, we have

Then, for any and any function as , we have

for all , , and .

Proof. It is sufficient to prove this for . To that end, let . By Lemma 1 we
have

In view of our assumptions, it follows that the right-hand side of the above relation is bounded by

Since as , we deduce that the right-hand side of this relation is , and the lemma
follows.

Proof of Lemma 1. Let

be a smooth truncation of the Dirichlet series of the Riemann zeta-function. By a variant of Perron’s formula
(see, for example, [6, (4.60)]) we have that

By moving the integration path to the line we pick up the residues from the
gamma function at and from the zeta-function at and obtain

(2.3)
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We now use the change of variables and divide the integral in (2.3) into parts with
and . Rearranging the terms and multiplying out a factor from the integrals, we

obtain

(2.4)

where

and

In view of Stirling’s formula [6, (A.34)]

(2.5)

and the bound

it follows that

Therefore, in view of (2.4), we obtain that

(2.6)

where

and

By the Montgomery–Vaughan inequality [13, Cor. 3] we get that

(2.7)

Lith. Math. J., 64(2):125–137, 2024.
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We now consider the integral . By we can write as

(2.8)

We change the integration order so that is the innermost variable of integration. The integral in may now be
estimated by the Cauchy–Schwarz inequality:

where the last inequality follows from . By estimating the remaining factors in (2.8)
by their absolute values and using that the innermost integral is now independent of , , we get that

(2.9)

and the first factor in this relation is bounded by in view of Stirling’s formula (2.5). Now the
conclusion of Lemma 1 follows from (2.6), (2.7), and (2.9).

Applying Lemmas 1 and 2 in combination with (2.2) implies the statement of Theorem 1. The method of
proof also shows that any mean-square bound on the critical line of the form

for

with some implies the universality for in short intervals for every satisfying .
We will return to this observation in Section 4.

3 Unconditional results II – restricted universality

There is a variation in using Ivić’s Proposition 1 that improves the exponents for a certain prize. For this
purpose, we introduce the concept of restricted universality as follows: we say that a function is -restricted
universal in an interval if it is universal for the same interval and for every admissible set
located in the restricted strip , where . Examples of -functions that are -restricted
universal in are elements of the Selberg class with large degree (see, for example, [12, Thm. 4]). Again
we shall consider only the case of the Riemann zeta-function since our methods can be adjusted to more
general -functions as well.

As we have discussed in the previous section, in order to show that is -restricted universal in
, it suffices to obtain (2.1) for . If is “far” from (the prize we have to pay) then we

can prove (2.1) for even shorter intervals.
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For a better understanding we first recall some theory of exponent pairs (see [6, Sect. 2.3]). A pair of
nonnegative real numbers is said to be an exponent pair if and

where , , , and is a differentiable function satisfying

for

For some advanced exponent pairs, we may have to assume similar bounds for higher derivatives, but this is
not relevant for our application. More essential in our context is the question of how to find exponent pairs.

It is not difficult to verify that and are exponent pairs. In addition, if is an expo-
nent pair, then the so-called - and -processes (or else Weyl’s differencing method, resp., van der Corput’s
method) produce further exponent pairs,

and

respectively. Iteration of these processes leads to an infinitude of new exponent pairs. For the exponent in the
restricted universality due to Laurinčikas [8], the exponent pair has been used in Ivić’s
Proposition 1 with . Note that is not applicable since it does not meet the condition

. Actually, does not result from the - or -process but from convexity. If
and are exponent pairs, then also

(3.1)

is an exponent pair for any . We observe that then arises from applying and
to to get in combination with and the parameter . Note that all
three exponent pairs here give the exponent at but the latter exponent pair , chosen by
Laurinčikas [8], gives a smaller exponent for the -term than .

There are further exponent pairs known that do not arise by one of the processes above; for example, the pair
found by Bourgain [3] led him to the so far best bound for the Riemann zeta-function

on the critical line. In our case, however, this exponent pair does not produce a -exponent below . This is
another example showing that one exponent pair may be good for one application but less good for another.

Recently, Trudgian andYang [20] came up with an update of Rankin’s approach for finding the best possible
exponent pair to a given problem [15]. We found the exponent pair by checking the boundary of
the convex set of all known exponent pairs considered in their paper (see Fig. 1). The gray area is the set
of all known exponent pairs; the straight line passing through consists of the set of exponent pairs that yield
the -exponent , including Laurinčikas’ exponent pair represented as a thick dot.
All points in the gray-colored set below the line yield a -exponent . The best choice, however, follows
from the exponent pair represented by another thick dot a little below this line. To see
that, we observe, by calculating the directional derivatives of , that the minimum for
the -exponent is taken on the lower boundary of ; since this part of the boundary consists of line segments,
verifying that given our choice is optimal is only a matter of a straightforward computation.

We consider the condition in Ivić’s Proposition 1, which, for the exponent pair
implies as necessary the inequality

Lith. Math. J., 64(2):125–137, 2024.
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Figure 1. The set of all known exponent pairs.

In combination with Lemma 1, this gives the existence of the mean-square (2.1) in the half-plane
for short intervals with . We arrive, therefore, at the following:
Theorem 2. The Riemann zeta-function is -restricted universal in short intervals for every
satisfying

Moreover, for every fixed , the Riemann zeta-function is -restricted universal in short intervals
for every satisfying

Note that and . The second statement follows by ap-
plying (3.1) to the trivial exponent pairs and to derive an exponent pair satisfying

and .

4 Conditional results – Lindelöf & Riemann hypotheses

It is a folklore conjecture that every is an exponent pair. If so, then the reasoning from the previous
section would imply the unrestricted universality for the Riemann zeta-function in short intervals
with and the -restricted universality with . This conjecture also implies the Lindelöf
hypothesis (which states that as for every fixed ). Assuming the latter open
conjecture, however, we can show a stronger result:

Theorem 3. If the Lindelöf hypothesis is true, then the Riemann zeta-function is universal in short intervals
for every satisfying

Proof. Once more, it suffices to prove (2.1) for every fixed and as in the theorem. Observe that
in view of Lemma 1,

However, the Lindelöf hypothesis implies that [19, Thm. 13.2]
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Thus, for we obtain

and the theorem follows.

It is remarkable, however, that even shorter intervals are possible, at least if we want to assume another
unproven conjecture. Assuming the Riemann hypothesis (that is, the nonvanishing of for ),
Sankaranarayanan and Srinivas [17] proved for

and with sufficiently large that

where the implicit constant depends on and depends on . Since the lower bound
decreases to , we obtain the following:

Theorem 4. If the Riemann hypothesis is true, then the Riemann zeta-function is universal in short intervals
for every satisfying

Note that for every .
It is worth mentioning that Lee [11] replaced the role of the mean-square in his proof of universality for

Hecke -functions by a density theorem or a density hypothesis. More precisely, he proved (see [11, Thm. 3])
that the logarithm of a given Hecke -function can be well approximated in the mean on the vertical segment

with by a suitable Dirichlet polynomial, provided that , and

uniformly for (4.1)

here counts the number of zeros of in the region , .
Then, using a straightforward modification of Voronin’s proof of universality, he succeeded in showing that
(4.1) with implies the universality for in the entire strip . By the same argument
we can show that (4.1) implies also the universality for in short intervals . In particular, we
can prove unconditionally that the Riemann zeta-function is universal in short intervals , since
(4.1) with is known due to Selberg [18]. Thus improving Selberg’s zero density estimate is
an alternative strategy to prove the universality in short intervals. The best result in this direction seems to be
due to Balasubramanian [2, Thm. 6], who proved that for every satisfying ,

uniformly for (4.2)

Note that the only reason why Theorem 3 in [11] holds only for with is the presence of
the factor in the density hypothesis (4.1). Hence we can adopt Lee’s argument, essentially replacing

Lith. Math. J., 64(2):125–137, 2024.
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(4.1) by (4.2), to improve Theorem 3 from [11] and, in consequence, show the universality of the Riemann
zeta-function in short intervals with for every . Moreover, if we extend (4.2)
to with , then we will immediately be able to prove the universality in short intervals
for the same .

5 Exponential shifts

We conclude this note by answering positively the second question of Laurinčikas regarding (1.1). To that
end, we define the class of functions with satisfying for any
sufficiently large and any the following properties:

(i) is an increasing function with ,
(ii) is an increasing function with for some absolute

constant or a decreasing function with for some absolute constant .

This definition is tailor-made for

(1) polynomials of degree ,
(2) functions for some polynomial and ,
(3) functions for some polynomial and

and so on. More examples can be generated from these cases by multiplying the terms of polynomials with
powers of logarithms.

Having introduced the class , we will establish some basic properties of its elements. The mean-value
theorem and axiom (i) imply that for any

and hence

(5.1)

In the case where is an increasing function, we set, for any integer

and

It then follows by induction from axiom (ii) that , . Therefore the series
diverges to and each of its terms contributes at most . Hence there is

such that

and (5.2)

In conclusion, if is an increasing function, then we can find points that form, up to an
error, a partition of the interval .

Theorem 5. Let and be admissible, and let . If , then
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Proof. We will mainly need Voronin’s universality theorem in the following form:

(5.3)

for a fixed and any sufficiently large . We will also employ a classic result from measure
theory [16, Thm. 7.26 or p. 156]:

Proposition 2. Let be absolutely continuous and monotonic with and ,
and let be a Lebesgue-measurable function. Then

We set

and let be the characteristic function of .
If is a decreasing function, then axiom (i) and Proposition 2 imply

Observe that by (5.1). Therefore by (5.3) with we
obtain that

If is an increasing function, then we construct the partition of as described above
Theorem 5, and we see that

Once more, from axiom (i) and Proposition 2 it follows that

Lith. Math. J., 64(2):125–137, 2024.
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Observe that by (5.1). Therefore by (5.3) with , axiom (i), and relation (5.2) we
obtain that

which concludes the proof of the theorem.
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