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We consider the addition of a single SU (2) multiplet of complex scalar fields to the Stan- 
dard Model (SM). We explicitly consider the various possible values of the weak isospin 

J of that multiplet, up to and including J = 7 / 2 . We allow the multiplet to have arbitrary 

weak hypercharge. The scalar fields of the multiplet are assumed to have no vacuum expec- 
tation value; the mass differences among the components of the multiplet originate in its 
coupling, present in the scalar potential (SP), to the Higgs doublet of the SM. We deri v e 
exact bounded-from-below and unitarity conditions on the SP, thereby constraining those 
mass differences. We compare those constraints to the ones that may be deri v ed from the 
oblique parameters. 
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1. Introduction 

In this paper, we study the model of New Physics (NP), i.e. of physics beyond the Standard
Model (SM), wherein one adds to the SM one gauge- SU (2) multiplet χ with weak isospin J and
consisting of n = 2 J + 1 complex scalar fields. The multiplet has unspecified weak hypercharge

 ; ther efor e, the model enjoys an accidental U (1) symmetry wherein one rephases χ through
an arbitrary phase. The scalar fields that compose χ are assumed not to have any vacuum
expectation value (VEV), even if one of them—depending on Y and J —may happen to be
electrically neutral. There is in the scalar potential (SP) a renormalizable coupling 

λ4 

3 ∑ 

a =1 

(
H 

† τa 

2 

H 

) [ 
χ † T 

(J ) 
a χ

] 
(1) 

of χ to the Higgs doublet H of the SM. In Eq. ( 1 ), 

� λ4 is a dimensionless coefficient, 
� the τa are the Pauli matrices, 
� one concei v es of χ as a column v ector of n scalar fields, 
� the T 

(J ) 
a are the n × n matrices that r epr esent su (2) in the J -isospin r epr esentation. 

The coupling ( 1 ) generates, upon the neutral component of H acquiring VEV v , a squared-
mass difference �m 

2 ∝ v 2 between any two components of χ whose third component of isospin
differs by one unit. 
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This NP model was firstly (to our knowledge) considered 30 years ago [ 1 ] as a paradigm for
potentially large oblique parameters (OPs). It has later been studied as a model for “minimal”
dark matter [ 2 ] and, mor e r ecently [ 3 ], as an explanation for the unexpectedly high value of 
the W 

± mass measured by the CDF-II Collaboration. Twelve years ago, Logan and her col-
laborators [ 4 ] showed that n cannot e xceed eight, lest perturbati v e unitarity in the scattering of 
two scalars of χ to two SU (2) gauge bosons be violated; they also deri v ed mixed constraints
on J and Y . Logan’s work was revived and expanded very recently [ 5 ]. In another recent pa-
per [ 6 ], the specific case of the addition of an SU (2) scalar quadruplet to the SM has been
consider ed; the hyper charge of that quadruplet has been restricted to the values 1 / 2 or 3 / 2 , 1 

because in those two cases additional quartic couplings—beyond the one of Eq. ( 1 )—of the
types χH H H and/or χχχH may be present. (The accidental U (1) symmetry then does not
exist, because Y has a well-defined value.) The case studied in Ref. [ 6 ] is on the one hand more
restricted than the one in this paper, because χ has fixed J = 3 / 2 , but on the other hand it is
more complicated, because additional quartic terms are allowed in the SP. 

In this paper we want to constrain the modulus of the coefficient λ4 of the term ( 1 ) of the
SP; in so doing, we place an upper bound on �m 

2 . We do this by considering both the unitarity
(UNI) and the bounded-from-below (BFB) conditions on the quartic part of the SP. Remark-
ably, the upper bound on �m 

2 results from both the UNI and the BFB conditions, and not just
from the former ones. We firstly show this fact, in a simplified version of the SP, in Sect. 2 ; later
on, in Sect. 3 , we consider the full SP. Section 4 contains the confrontation of our NP model
with the OPs that it generates; we investigate whether the phenomenological OPs constrain �m 

2 

more or less than the UNI/BFB conditions. Section 5 contains our conclusions. The Appendix
explicitly lists the UNI conditions for all the values of n through eight. 

2. Potential without terms f our -linear on χ

In our model of NP there is the SM scalar doublet H with hypercharge 1 / 2 and an SU (2) scalar
multiplet χ with weak isospin J , which is a positi v e number, either integer or half-integer. The
multiplet χ has 

n = 2 J + 1 (2) 

components χI ( I = J, J − 1 , J − 2 , . . . , 1 − J, −J ). Its hypercharge Y remains unspecified,
i.e. arbitrary. Together with the charge-conjugate multiplets ˜ H and ˜ χ , we have the four multi-
plets 

H = 

( 

a 

b 

) 

, ˜ H = 

( 

b 

∗

−a 

∗

) 

, χ = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

χJ 

χJ−1 

χJ−2 
. . . 

χ1 −J 

χ−J 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, ˜ χ = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

χ∗
−J 

−χ∗
1 −J 
. . . 

( −1 ) 2 J χ∗
J−2 

− ( −1 ) 2 J χ∗
J−1 

( −1 ) 2 J χ∗
J 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (3) 

Here, a , b, and the χI are complex Klein–Gordon fields. Their third components of isospin are 

a : 
1 

, b : −1 

, χI : I , χ∗
I : −I . (4) 
2 2 

1 Other recent papers that consider scalar quadruplets with those specific hypercharges are Refs. [ 7–9 ]. 
They also consider models with additional scalar triplets and fiv e-plets, al ways with specific hypercharges. 
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When one multiplies χ by ˜ χ one obtains, among other SU (2) r epr esentations, the singlet 

F 2 ≡ ( χ ⊗ ˜ χ ) 1 = 

J ∑ 

I= −J 

| χI | 2 (5) 

and the triplet 

( χ ⊗ ˜ χ ) 3 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−
J ∑ 

I=1 −J 

√ 

J 

2 − I 2 + J + I 
2 

χI χ
∗
I−1 

J ∑ 

I= −J 

I | χI | 2 

J ∑ 

I=1 −J 

√ 

J 

2 − I 2 + J + I 
2 

χ∗
I χI−1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (6) 

A ppl ying the general Eq. ( 6 ) to the specific case of H (i.e. using J = 1 / 2 , χ1 / 2 = a , and χ−1 / 2 =
b), we obtain 

(
H ⊗ ˜ H 

)
3 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−ab 

∗
√ 

2 

| a 

| 2 − | b 

| 2 
2 

a 

∗b √ 

2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (7) 

The SP V has a quadratic part V 2 and a quartic part V 4 : 

V = V 2 + V 4 . (8) 

Obviously, 

V 2 = −μ2 
1 F 1 + μ2 

2 F 2 , (9) 

where 

F 1 ≡
(
H ⊗ ˜ H 

)
1 = 

| a 

| 2 + 

| b 

| 2 (10) 

and F 2 is defined in Eq. ( 5 ). We assume both coefficients μ2 
1 and μ2 

2 to be positi v e, so that H has
VEV 

〈 0 

| b 

| 0 

〉 = v but χ does not have VEV. 
The quartic part of the SP contains 

� the term 

[(
H ⊗ ˜ H 

)
1 

]2 
, with coefficient 

λ1 

2 

; 
� the term 

(
H ⊗ ˜ H 

)
1 ( χ ⊗ ˜ χ ) 1 , with coefficient λ3 ; 

� the term 

[(
H ⊗ ˜ H 

)
3 ⊗ ( χ ⊗ ˜ χ ) 3 

]
1 
, with coefficient λ4 ; 

� various terms that are four-linear in the components of χ . We keep those terms unspecified
in this section. 

Thus, 

V 4 = 

λ1 

2 

F 

2 
1 + λ3 F 1 F 2 + λ4 F 4 + terms four-linear in the χI , (11) 

where 

F 4 ≡ | a 

| 2 − | b 

| 2 
2 

J ∑ 

I= −J 

I | χI | 2 + 

z + z ∗

2 

. (12) 
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We have defined 

z ≡ ab 

∗
J ∑ 

I=1 −J 

χ∗
I χI−1 

√ 

J 

2 − I 2 + J + I . (13) 

From Eqs. ( 8 ), ( 9 ), ( 11 ), and ( 12 ) the mass-squared of the scalar χI is 

m 

2 
I = μ2 

2 + 

(
λ3 − λ4 

2 

I 
)

| v | 2 . (14) 

This implies that the difference between the masses-squared of χI and χI+1 is 

�m 

2 = 

∣∣λ4 v 2 
∣∣

2 

, (15) 

which is I -independent. An upper bound on 

| λ4 | is ther efor e equivalent to an upper bound on
�m 

2 . 
The VEV of V is 

〈 0 

| V 

| 0 

〉 = −μ2 
1 v 

2 + 

λ1 

2 

v 4 . (16) 

Ther efor e, μ2 
1 = λ1 v 2 . The mass-squared of the Higgs particle is m 

2 
H 

= 2 λ1 v 2 . Since experimen-
tally m H 

≈ 125 GeV and v ≈ 174 GeV, one has 

λ1 ≈ 0 . 258 . (17) 

From now on we shall assume Eq. ( 17 ) to hold. Contrary to λ1 , the couplings λ3 and λ4 are free,
but they are constrained by both the UNI and BFB conditions. We next derive those constraints.

2.1. UNI conditions 
In Ref. [ 4 ], and mor e r ecently again in Ref. [ 5 ], the scattering of two scalars belonging to χ

to two gauge bosons of either gauge group SU (2) or U (1) has been consider ed; ther efrom
upper bounds on both the isospin J and the hypercharge Y of χ have been deri v ed. Here we
consider the scattering of a pair of scalars of χ to another pair of scalars, both pairs having,
of course, the same I (third component of isospin) and Y . Whereas in Refs. [ 4 , 5 ] the scattering
involves two cubic gauge couplings and the interchange of a virtual particle either in the s , t,
or u channel, here the scattering involves no interchange of any virtual particle, rather it takes
place directly through a quartic coupling in the SP. 

Firstly suppose that J is half-integer. 

� We consider the scattering of the two two-field states with hypercharge Y + 1 / 2 and null
third component of isospin, viz. of χ−1 / 2 a and χ1 / 2 b. Their scattering matrix is ( 

λ3 − λ4 / 4 ( 2 J + 1 ) λ4 / 4 

( 2 J + 1 ) λ4 / 4 λ3 − λ4 / 4 

) 

. (18) 

The eigenvalues of this matrix are 

λ3 + 

J λ4 

2 

, λ3 − ( J + 1 ) λ4 

2 

. (19) 

� We next consider the scattering of the states with hypercharge Y − 1 / 2 and null third com-
ponent of isospin, viz. of χ−1 / 2 b 

∗ and χ1 / 2 a 

∗. Their scattering matrix is ( 

λ3 + λ4 / 4 ( 2 J + 1 ) λ4 / 4 

( 2 J + 1 ) λ4 / 4 λ3 + λ4 / 4 

) 

. (20) 
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The eigenvalues of this matrix are 

λ3 + 

( J + 1 ) λ4 

2 

, λ3 − J λ4 

2 

. (21) 

Let us secondly suppose that J is an integer instead. 

� We consider the scattering of the two two-particle states with hypercharge Y + 1 / 2 and
third component of isospin 1 / 2 , viz. of χ0 a and χ1 b. Their scattering matrix is ⎛ ⎝ 

λ3 
√ 

J ( J + 1 ) λ4 

/ 

2 √ 

J ( J + 1 ) λ4 

/ 

2 λ3 − λ4 / 2 

⎞ ⎠ . (22) 

The eigenvalues of this matrix are the ones in Eq. ( 19 ). 
� We next consider the scattering of the states with hypercharge Y − 1 / 2 and third component

of isospin 1 / 2 , viz. of the states χ1 a 

∗ and χ0 b 

∗. Their scattering matrix is ⎛ ⎝ 

λ3 + λ4 / 2 

√ 

J ( J + 1 ) λ4 

/ 

2 √ 

J ( J + 1 ) λ4 

/ 

2 λ3 

⎞ ⎠ . (23) 

The eigenvalues of this matrix are in Eq. ( 21 ). 

Thus, the eigenvalues of the sca ttering ma trices are the same, no matter whether J is integer
or half-integer. 

We now impose the conditions that the moduli of all the eigenvalues in Eqs. ( 19 ) and ( 21 )
should be smaller than 

M = 8 π. (24) 

We obtain 

| λ3 | + 

J 

2 

| λ4 | < M, (25a) 

| λ3 | + 

J + 1 

2 

| λ4 | < M. (25b) 

Condition ( 25b ) is of course stronger than condition ( 25a ), ther efor e one may neglect the latter.
The dispersion of the 2 + n states that have zero third component of isospin and zero hyper-

charge, viz. of the states, 2 

| a 

| 2 , | b 

| 2 , | χJ | 2 , | χ−J | 2 , | χJ−1 | 2 , | χ1 −J | 2 , . . . , | χ1 | 2 , | χ−1 | 2 , | χ0 | 2 , (26) 

produces the scattering matrix 

S = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

A B J B J−1 · · · B 1 C 

B J 0 2 ×2 0 2 ×2 · · · 0 2 ×2 0 2 ×1 

B J−1 0 2 ×2 0 2 ×2 · · · 0 2 ×2 0 2 ×1 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
B 1 0 2 ×2 0 2 ×2 · · · 0 2 ×2 0 2 ×1 

C 

T 0 1 ×2 0 1 ×2 · · · 0 1 ×2 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (27) 

where 

A = 

( 

2 λ1 λ1 

λ1 λ1 

) 

, B I = 

( 

λ3 + I λ4 / 2 λ3 − I λ4 / 2 

λ3 − I λ4 / 2 λ3 + I λ4 / 2 

) 

, C = 

( 

λ3 

λ3 

) 

, (28) 
2 In this explicit computation we assume J to be an integer. The final result, viz. Eqs. (34), is also valid 

for half-integer J. 

5/25 
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and 0 m ×m 

′ denotes the m × m 

′ ma trix tha t has all its ma trix elements equal to zero. The ma trix
S is equivalent to ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

X A X 

T X B J X 

T X B J−1 X 

T · · · X B 1 X 

T X C 

X B J X 

T 0 2 ×2 0 2 ×2 · · · 0 2 ×2 0 2 ×1 

X B J−1 X 

T 0 2 ×2 0 2 ×2 · · · 0 2 ×2 0 2 ×1 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
X B 1 X 

T 0 2 ×2 0 2 ×2 · · · 0 2 ×2 0 2 ×1 

C 

T X 

T 0 1 ×2 0 1 ×2 · · · 0 1 ×2 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (29) 

where 

X = 

1 √ 

2 

( 

1 1 

−1 1 

) 

(30) 

and consequently 

X A X 

T = 

( 

3 λ1 0 

0 λ1 

) 

, X B I X 

T = 

( 

2 λ3 0 

0 I λ4 

) 

, X CX = 

( √ 

2 λ3 

0 

) 

. (31) 

Thus, the matrix S is equivalent to the direct sum of the two matrices S + 

and S −, where 

S + 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

3 λ1 2 λ3 2 λ3 · · · 2 λ3 
√ 

2 λ3 

2 λ3 0 0 · · · 0 0 

2 λ3 0 0 · · · 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

2 λ3 0 0 · · · 0 0 √ 

2 λ3 0 0 · · · 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (32a) 

S − = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

λ1 J λ4 ( J − 1 ) λ4 · · · λ4 

J λ4 0 0 · · · 0 

( J − 1 ) λ4 0 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
λ4 0 0 · · · 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (32b) 

Computing the eigenvalues of these two matrices and setting their moduli to be smaller than
M, we find 

3 

| λ1 | + 

√ √ √ √ 9 λ2 
1 + 4 

[ 

J ∑ 

I=1 

(
4 λ2 

3 

)+ 2 λ2 
3 

] 

< 2 M, (33a) 

| λ1 | + 

√ √ √ √ λ2 
1 + 4 λ2 

4 

J ∑ 

I=1 

I 2 < 2 M. (33b) 

Performing the sums over I , we obtain 

3 

| λ1 | + 

√ 

9 λ2 
1 + 8 ( 2 J + 1 ) λ2 

3 < 2 M, (34a) 

| λ1 | + 

√ 

λ2 
1 + 

2 

3 

J ( J + 1 ) ( 2 J + 1 ) λ2 
4 < 2 M. (34b) 

The potential V 4 produces many other scatterings of two-particle states, but they all lead to
UNI conditions that either repeat Eq. ( 25b ), or repeat Eq. ( 34b ), or repeat Eq. ( 34a ), or are
weaker than one of them. 
6/25 



PTEP 2024 , 083B06 D. Jur ̌ciukonis and L. Lavoura 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/8/083B06/7718809 by Institute of Experiem

ental and C
linical M

edicine of Vilnius U
niversity user on 06 Septem

ber 2024
2.2. BFB conditions 
In order to evaluate the BFB conditions on V 4 , it is handy to use the gauge wherein b = 0 . We
use ∣∣∣∣∣

J ∑ 

I= −J 

I | χI | 2 
∣∣∣∣∣ = 

∣∣J 

| χJ | 2 + ( J − 1 ) | χJ−1 | 2 + · · · − J 

| χ−J | 2 
∣∣ (35a) 

≤ J F 2 (35b) 

to write, in that gauge, 

V 4 ≥ λ1 

2 

| a 

| 4 + 

(
λ3 − J 

| λ4 | 
/

2 

) | a 

| 2 F 2 + terms four-linear in the χI . (36) 

Since both 

| a 

| 2 ≥ 0 and F 2 ≥ 0 , the conditions for ( λ1 / 2 ) | a 

| 4 + 

(
λ3 − J 

| λ4 | 
/

2 

) | a 

| 2 F 2 to be
nonnegati v e, whate v er the (nonnegati v e) values of | a 

| 2 and F 2 , are [ 10 ]: 

λ1 ≥ 0 , (37a) 

λ3 ≥ 0 , (37b) 

| λ4 | ≤ 2 λ3 

J 

. (37c) 

Conditions (37) are necessary and sufficient for V 4 to be nonnegati v e for arbitrary values of 
the fields a and χI . Since a gauge with b = 0 can always be obtained, those conditions also hold
for V 4 with arbitrary values of a , b, and χI . 

2.3. Results 
Transforming all the six relevant UNI and BFB conditions into strict equalities, we have 

λ3 + 

J + 1 

2 

| λ4 | = M, (38a) 

λ1 + 

√ 

λ2 
1 + 

2 J 

(
2 J 

2 + 3 J + 1 

)
λ2 

4 

3 

= 2 M, (38b) 

3 λ1 + 

√ 

9 λ2 
1 + 8 ( 2 J + 1 ) λ2 

3 = 2 M, (38c) 

| λ4 | = 

2 

J 

λ3 , (38d) 

where we have taken into account that both λ1 and λ3 are nonnegati v e, cf. Eqs. ( 17 ) and ( 37b ),
respecti v ely. Equation ( 38b ) gi v es solution I: 

| λ4 | = 

√ 

6 M ( M − λ1 ) 

J 

(
2 J 

2 + 3 J + 1 

) . (39) 

Equations ( 38a ) and ( 38c ) together produce solution II: 

| λ4 | = 

2 M 

J + 1 

−
√ 

2 M ( M − 3 λ1 ) 

( J + 1 ) 
√ 

2 J + 1 

, (40a) 

λ3 = 

√ 

M ( M − 3 λ1 ) 
2 ( 2 J + 1 ) 

. (40b) 

Equations ( 38a ) and ( 38d ) together lead to solution III: 

| λ4 | = 

2 M 

2 J + 1 

, (41a) 
7/25 
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Fig. 1. The solutions ( 39 )–( 42 ) for | λ4 | (left) and λ3 (right) versus J. We have used M = 8 π . The black 

dashed lines display the maximum allowed values of | λ4 | and λ3 described in Sect. 3.3 . 
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λ3 = 

J 

2 J + 1 

M. (41b) 

Equations ( 38c ) and ( 38d ) together gi v e solution IV: 

| λ4 | = 

√ 

2 M ( M − 3 λ1 ) 

J 

√ 

2 J + 1 

(42) 

and Eq. ( 40b ), which is the solution of Eq. ( 38c ). 
Solutions I, II, III, and IV for | λ4 | and λ3 are plotted in Fig. 1 . Notice that solutions II, III,

and IV coincide when 

2 J + 1 = 

2 MJ 

2 

M − 3 λ1 
, (43) 

i.e. when J ≈ 1 . 37 . When J is larger than this value, i.e. when χ is either a quadruplet or a larger
multiplet of SU (2) , then solution IV—which arises from both the UNI condition ( 34a ) and the
BFB condition ( 37c )—gi v es the strongest upper bound on both λ3 and 

| λ4 | . Thus, both λ3 and
| λ4 | are bounded from above by the interplay of a UNI condition and a BFB condition, for
most possible values of J . 

We remind the reader that, according to Eq. ( 37b ), the minimum value of λ3 is 0. 

2.4. Renormalization-group equations 
In a renormalizable field theory, the values of the dimensionless coupling constants evolve with
the energy scale μ at which they ar e measur ed. That evolution is governed by differential equa-
tions named renormalization-group equations (RGEs): 3 

16 π2 μ
dg 

dμ
= βg , (44) 

where g denotes a generic dimensionless coupling and βg is a function of, in general, all the
dimensionless couplings in the theory. Formulas for the functions βg in a general gauge theory
have been presented long ago by Cheng, Eichten, and Li [ 11 ]. In the case at hand there is a
gauge theory with gauge group SU (3) × SU (2) × U (1) and gauge coupling constants g 3 for
S U (3) , g 2 for S U (2) , and g 1 for U (1) ; 4 in that gauge theory there is an SU (2) doublet with
3 Here we only consider the one-loop-le v el RGEs. 
4 We use here the normalization for g 1 usual in the S U (5) , S O (10) , and E 6 Grand Unified Theories. 

Still, we keep for the hypercharges of the multiplets the usual normalization gi v en by Q = I + Y , where 
Q is a field’s electric charge, I is the third component of isospin, and Y is the hypercharge. 
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hypercharge 1 / 2 and an SU (2) multiplet with isospin J and hypercharge Y . We consider in this
subsection the SP 

V = 

2 ∑ 

k=1 

(
μ2 

k F k + 

λk 

2 

F 

2 
k 

)
+ λ3 F 1 F 2 + λ4 F 4 , (45) 

i.e. we take into account the presence in V of a quartic term proportional to F 

2 
2 , but we dis-

card all the other terms four-linear in the χI (they are studied in some detail in Sect. 3 ). 5 The
dimensionless couplings that we take into account are , thus , g 1 , g 2 , g 3 , λ1 , λ2 , λ3 , and λ4 . Ad-
ditionally, in the full theory there are fermions with Yukawa couplings to the scalar doublet,
and one (and only one) of those Yukawa couplings, viz. y t —the Yukawa coupling of H to the
top quark—is rather large and ther efor e has a strong influence on the RGEs; so, there is one
further dimensionless coupling y t that we take into account. In order to derive the RGEs for
these eight coupling constants we have used a feature of the software SARAH [ 12 ]. (We point
out that that software only tolerates SU (2) multiplets with isospin up to 3, so we had to edit it
and make a modification in order to derive the RGEs for the case J = 7 / 2 . We moreover point
out that the running time for that software increases e xponentiall y with the size of the SU (2)
multiplets.) We have obtained 

βg 1 = 

(
41 

10 

+ 

4 

5 

Y 

2 
)

g 

3 
1 , (46a) 

βg 2 = 

[
−19 

6 

+ 

J ( J + 1 ) ( 2 J + 1 ) 
9 

]
g 

3 
2 , (46b) 

βg 3 = −7 g 

3 
3 , (46c) 

βλ1 = 

27 

100 

g 

4 
1 + 

9 

10 

g 

2 
1 g 

2 
2 + 

9 

4 

g 

4 
2 + 12 y 

2 
t λ1 + 12 λ2 

1 + 2 ( 2 J + 1 ) λ2 
3 + 

J ( J + 1 ) ( 2 J + 1 ) 
6 

λ2 
4 

−
(

9 

5 

g 

2 
1 + 9 g 

2 
2 

)
λ1 − 12 y 

4 
t , (47a) 

βλ2 = 

108 

25 

( Y g 1 ) 
4 + 

72 

5 

( Y g 1 ) 
2 ( J g 2 ) 

2 + 6 J 

2 (2 J 

2 + 1 

)
g 

4 
2 + 2 ( 2 J + 5 ) λ2 

2 + 4 λ2 
3 + J 

2 λ2 
4 

−
[

36 

5 

( Y g 1 ) 
2 + 12 J ( J + 1 ) g 

2 
2 

]
λ2 , (47b) 

βλ3 = 

27 

25 

(
Y g 

2 
1 

)2 + 3 J ( J + 1 ) g 

4 
2 + 6 y 

2 
t λ3 + 6 λ1 λ3 + 4 ( J + 1 ) λ2 λ3 + 4 λ2 

3 + J ( J + 1 ) λ2 
4 

−
(

9 

10 

+ 

18 

5 

Y 

2 
)

g 

2 
1 λ3 −

[
9 

2 

+ 6 J ( J + 1 ) 
]

g 

2 
2 λ3 , (47c) 

βλ4 = 

36 

5 

Y g 

2 
1 g 

2 
2 + 6 y 

2 
t λ4 + 2 λ1 λ4 + 8 λ3 λ4 

−
(

9 

10 

+ 

18 

5 

Y 

2 
)

g 

2 
1 λ4 −

[
9 

2 

+ 6 J ( J + 1 ) 
]

g 

2 
2 λ4 , (47d) 
5 In the numerical part of this section, though, we shall fix λ2 = 0 for the sake of simplicity. 
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Fig. 2. The maximum allowed values of | λ4 | (left) and λ3 (right) versus J for dif ferent cutof f scales μmax . 
The black dashed lines are the same as in Fig. 1 ; they display the maximum values at the electroweak 

scale. 
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βy t = 

(
9 

2 

y 

2 
t −

17 

20 

g 

2 
1 −

9 

4 

g 

2 
2 − 8 g 

2 
3 

)
y t . (48) 

We have used a numerical code to solve the differential Eqs. (46)–( 48 ) starting at the scale
μ = m t = 173 . 1 GeV and letting μ e volv e up to the scale μPlanck = 10 

19 GeV. We have slightly
simplified those equations by setting λ2 = 0 at all μ values—e v en though in general βλ2 is
nonzero and ther efor e a nonzero λ2 will be generated e v en if one starts with λ2 = 0 —and by
assuming the hypercharge Y of the additional multiplet to be zero too. At μ = m t we have
fixed [ 13 ]: 

g 1 = 

√ 

5 

3 

× 0 . 358545 , g 2 = 0 . 64765 , g 3 = 1 . 1618 , (49a) 

λ1 = 0 . 258 , y t = 

√ 

2 × 161 . 98 GeV 

246 GeV 

, (49b) 

and we have let λ3 and λ4 vary freely while obeying the UNI and BFB conditions. Moreover,
we have enforced the UNI and BFB conditions at e v ery intermediate scale μ; this indirectly
constrains the initial λ3 and λ4 because, if they are too large, then at some intermediate μ <

μGUT 

either the UNI or the BFB conditions will be broken. In Fig. 2 one observes the result
of this labor in the form of upper bounds on λ3 and 

| λ4 | at the scale μ = m t , depending on the
scale μmaximum 

at which either the UNI or the BFB conditions start being broken. As expected,
if one demands that the UNI and BFB conditions ar e r espected for a longer μ range, then one
obtains e v er stricter upper bounds on the initial values of λ3 and λ4 . The same upper bounds
may be also observed, now in a correlated fashion, for three values of μmax , in Fig. 3 . 

The SARAH model files and output files, and the expressions of the RGEs for all quartic
couplings (including the ones mentioned in Sect. 3 ), both in pdf and Mathematica notebook
files, are available at https://github.com/jurciukonis/RGEs- for- multiplets . 

3. Full potential 
The product χ ⊗ χ of two identical multiplets of SU (2) only has a symmetric component—the
antisymmetric component vanishes because the two multiplets are equal—which consists of: 6 

t = 

1 

ceil ( n, 2 ) (50) 

2 

6 The ceiling function ceil ( n, 2 ) maps n into the smallest multiple of 2 larger than or equal to n . 
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Fig. 3. Regions of stability for J = 1 (left), J = 2 (middle), and J = 3 (right) and for energy ranges from 

μ = m t to 10 

9 GeV (blue regions), 10 

14 GeV (red regions), and 10 

19 GeV (green regions). 
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multiplets of SU (2) 

( χ ⊗ χ ) symmetric = c ⊕ d ⊕ e ⊕ · · · ⊕ q, (51) 

where 

� c is an SU (2) multiplet with weak isospin 2 J , 
� d is an SU (2) multiplet with weak isospin 2 J − 2 , 
� e is an SU (2) multiplet with weak isospin 2 J − 4 , 

and so on; lastly, q is either a triplet of SU (2) if J is half-integer, or SU (2) -invariant if J is
integer. Thus, 

( χ ⊗ χ ) symmetric = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 2 J 
c 2 J−1 

. . . 
c −2 J 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

⊕

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

d 2 J−2 

d 2 J−3 
. . . 

d 2 −2 J 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

⊕

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

e 2 J−4 

e 2 J−5 
. . . 

e 4 −2 J 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

⊕ · · · , (52) 

where the sub-indices gi v e the thir d component of isospin. The two-field states in each multiplet
in the right-hand side of Eq. ( 52 ) are ev aluated b y using Clebsch–Gordan coefficients in the
standard fashion. Thus, 

c I = 

J ∑ 

I ′ = −J 

J ∑ 

I ′′ = −J 

δI ,I ′ + I ′′ 

[ 

J J 2 J 

I ′ I ′′ I 

] 

χI ′ χI ′′ , (53a) 

d I = 

J ∑ 

I ′ = −J 

J ∑ 

I ′′ = −J 

δI ,I ′ + I ′′ 

[ 

J J 2 J − 2 

I ′ I ′′ I 

] 

χI ′ χI ′′ , (53b) 

e I = 

J ∑ 

I ′ = −J 

J ∑ 

I ′′ = −J 

δI ,I ′ + I ′′ 

[ 

J J 2 J − 4 

I ′ I ′′ I 

] 

χI ′ χI ′′ , (53c) 

and so on. 
The “terms four-linear in the χI ” in Eq. ( 11 ) are 

� a term 

λ2 

2 

F 

2 
2 , where F 2 has been defined in Eq. ( 5 ); 

� a term λ5 F 5 , where 

F 5 ≡
2 J−2 ∑ 

I=2 −2 J 

| d I | 2 ; (54) 
11/25 
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� a term λ6 F 6 , where 

F 6 ≡
2 J−4 ∑ 

I=4 −2 J 

| e I | 2 ; (55) 

� and other analogous terms, up to λt+3 F t+3 , where 

F t+3 ≡
{ 

| q 1 | 2 + 

| q 0 | 2 + 

| q −1 | 2 ⇐ half-integer J, 
| q 0 | 2 ⇐ integer J. 

(56) 

The quartic part of the SP thus is 

V 4 = 

λ1 

2 

F 

2 
1 + 

λ2 

2 

F 

2 
2 + λ3 F 1 F 2 + λ4 F 4 + 

t+3 ∑ 

i=5 

λi F i . (57) 

A term with the invariant 

F 3 ≡
2 J ∑ 

I= −2 J 

| c I | 2 (58) 

has not been included in V 4 because F 3 linearly depends on the other invariants. Indeed, 

F 3 + 

t+3 ∑ 

i=5 

F i = F 

2 
2 . (59) 

3.1. BFB conditions 
Let us consider again ( χ ⊗ ˜ χ ) 3 gi v en in Eq. ( 6 ). The SU (2) -invariant quantity 

∣∣( χ ⊗ ˜ χ ) 3 
∣∣2 ≡ ( 

J ∑ 

I= −J 

I | χI | 2 
) 2 

+ 

∣∣∣∣∣
J ∑ 

I=1 −J 

χ∗
I χI−1 

√ 

J 

2 − I 2 + J + I 

∣∣∣∣∣
2 

(60) 

is four-linear in the χI and ther efor e it must be linearly dependent on F 

2 
2 and F i . Indeed, one

finds that ∣∣( χ ⊗ ˜ χ ) 3 
∣∣2 = J 

2 F 

2 
2 −

t+3 ∑ 

i=5 

κi F i , (61) 

where the numbers κi are gi v en by 

κi = ( i − 4 ) ( 4 J + 9 − 2 i ) . (62) 

Notice that all the κi are positiv e . We hav e e xplicitly checked, up to J = 10 , that Eqs. ( 61 )
and ( 62 ) are correct. 

From Eq. ( 61 ), 

t+3 ∑ 

i=5 

κi F i − J 

2 F 

2 
2 = −

( 

J ∑ 

I= −J 

I | χI | 2 
) 2 

−
∣∣∣ z 
ab 

∣∣∣2 , (63) 

where z has been defined in Eq. ( 13 ); hence, from the definition of F 4 in Eq. ( 12 ), 

t+3 ∑ 

i=5 

κi F i − J 

2 F 

2 
2 = −

(
2 F 4 − z − z ∗

| a 

| 2 − | b 

| 2 
)2 

−
∣∣∣ z 
ab 

∣∣∣2 . (64) 
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Ther efor e, 
t+3 ∑ 

i=5 

κi F i − J 

2 F 

2 
2 + 

4 F 

2 
4 

F 

2 
1 

= 

1 

4 

| ab 

| 2 
(
| a 

| 4 − | b 

| 4 
)2 

{ (
| a 

| 4 − | b 

| 4 
)2 

( z − z ∗) 2 

−
[

8 

| ab 

| 2 F 4 −
(
| a 

| 2 + 

| b 

| 2 
)2 

( z + z ∗) 
]2 
} 

. (65) 

Thus, 
t+3 ∑ 

i=5 

κi F i − J 

2 F 

2 
2 + 

4 F 

2 
4 

F 

2 
1 

≤ 0 . (66) 

We now define the dimensionless quantities [ 14 ]: 7 

r ≡ F 1 

F 2 
, (67a) 

γi ≡ F i 

F 

2 
2 

(i = 5 , . . . , t + 3) , (67b) 

δ ≡ 2 F 4 

J F 1 F 2 
. (67c) 

We then have, from Eq. ( 57 ), 

V 4 

F 

2 
2 

= 

λ1 

2 

r 2 + 

λ2 

2 

+ λ3 r + 

J 

2 

λ4 rδ + 

t+3 ∑ 

i=5 

λi γi (68a) 

= 

1 

2 

(
r, 1 

)⎛ ⎜ ⎜ ⎜ ⎝ 

λ1 λ3 + 

J 

2 

λ4 δ

λ3 + 

J 

2 

λ4 δ λ2 + 2 

t+3 ∑ 

i=5 

λi γi 

⎞ ⎟ ⎟ ⎟ ⎠ 

( 

r 
1 

) 

. (68b) 

It follows from the definitions of F 2 and F 1 in Eqs. ( 5 ) and ( 10 ), respecti v ely, that r ≥ 0 . There-
fore, the conditions for V 4 

/
F 

2 
2 in Eq. ( 68b ) to be nonnegati v e are [ 10 ]: 

λ1 ≥ 0 , (69a) 

λ2 + 2 

t+3 ∑ 

i=5 

λi γi ≥ 0 , (69b) 

λ3 + 

J 

2 

λ4 δ ≥ −
√ √ √ √ λ1 

( 

λ2 + 2 

t+3 ∑ 

i=5 

λi γi 

) 

. (69c) 

Conditions ( 69b ) and ( 69c ) must hold for all possible values of δ and of γi . It follows from the
definitions of the F i , cf. Eqs. ( 54 ) and ( 55 ), that the γi ≥ 0 . From Eq. ( 66 ), 

t+3 ∑ 

i=5 

κi γi − J 

2 (1 − δ2 ) ≤ 0 . (70) 

Thus, since all the κi and the γi are positi v e, 

0 ≤
t+3 ∑ 

i=5 

κi γi ≤ J 

2 (1 − δ2 ) , (71) 
7 The Klein–Gordon fields a , b, and χI have mass dimension, hence [ F 1 ] = [ F 2 ] = M 

2 and [ F 4 ] = [ F i ] = 

M 

4 , for i = 5 , . . . , t + 3 . 
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x = 

1 + δ

2 

∈ [ 0 , 1 ] . (72) 

Then Eq. ( 71 ) reads 

0 ≤
t+3 ∑ 

i=5 

κi γi ≤ 4 J 

2 x ( 1 − x ) . (73) 

This condition determines the domain of the γi , which has corners at the points [ 14 ]: 

γ5 = · · · = γt+3 = 0 , (74a) 

γ5 = · · · = γt+2 = 0 , γt+3 = 

J 

2 

κt+3 
, (74b) 

γ5 = · · · = γt+1 = γt+3 = 0 , γt+2 = 

J 

2 

κt+2 
, (74c) 

. . . 
. . . 

γ6 = · · · = γt+3 = 0 , γ5 = 

J 

2 

κ5 
. (74d) 

Since λ2 + 2 

∑ t+3 
i=5 λi γi is a linear function of the γi , condition ( 69b ) just has to hold at the

corners of the domain of the γi in order to hold in the whole domain. We thus obtain necessary
BFB conditions: 

λ2 ≥ 0 , (75a) 

̂ λi ≥ 0 , (75b) 

where ̂ λi ≡ λ2 + q i , (76a) 

q i ≡ 2 J 

2 

κi 
λi . (76b) 

Furthermore, condition ( 69c ) must certainly hold at the point ( 74a ) and for both δ = 0 and
δ = ±1 . Ther efor e, 

λ3 ≥ −
√ 

λ1 λ2 , (77a) 

| λ4 | ≤ 2 

J 

(
λ3 + 

√ 

λ1 λ2 

)
. (77b) 

The necessary BFB conditions ( 77a ) and ( 77b ) generalize conditions ( 37b ) and ( 37c ), respec-
ti v el y, w hen λ2 is nonzero. 

Condition ( 69c ) must also hold at all the other corners (74) of the γi domain. Ther efor e, 

λ3 − J 

2 

λ4 + J λ4 x ≥ −
√ 

λ1 [ λ2 + 4 q i x ( 1 − x ) ] (78) 
8 We shall implicitly assume that the conditions | δ| ≤ 1 and ( 71 ) completely determine the parameter 
space, i.e. that no further conditions restrict the parameters δ and γi . Equivalently, we assume that, for 
any parameters F 2 ≥ 0 , r ≥ 0 , δ ∈ [ −1 , +1 ] , and γi obeying condition ( 71 ), it is possible to find fields a , b, 
and χI satisfying Eqs. ( 5 ), ( 10 ), ( 12 )–( 13 ), ( 54 )–( 56 ), and (67). We thank Renato Fonseca for calling our 
attention to this implicit assumption of our work. 
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must hold for all i = 5 , . . . , t + 3 and for all x ≡ [ 0 , 1 ] . Thus, the functions 

f i ( x ) ≡ λ3 − J 

2 

λ4 + J λ4 x + 

√ 

λ1 
[
λ2 + 4 q i 

(
x − x 

2 
)]

(i = 5 , . . . , t + 3) (79) 

must be nonnegati v e ∀ x ∈ [ 0 , 1 ] . Clearly [ 14 ], 

df i 
dx 

= J λ4 + 

2 

√ 

λ1 q i ( 1 − 2 x ) √ 

λ2 + 4 q i 
(
x − x 

2 
), (80a) 

d 

2 f i 
dx 

2 
= 

−4 q i ̂  λi 
√ 

λ1 [ √ 

λ2 + 4 q i 
(
x − x 

2 
)] 3 . (80b) 

Because of Eq. ( 75b ), the second deri vati v e of f i has the sign opposite to that of q i , i.e. opposite
to that of λi . Since we have already ascertained—through condition ( 77b )—that both f i ( 0 ) ≥ 0
and f i ( 1 ) ≥ 0 , the condition f i ( x ) ≥ 0 , ∀ x ∈ [ 0 , 1 ] is equivalent to the following: 

� either d 

2 f i 
/

dx 

2 < 0 , 
� or there is no real number x 0 such that f ′ ( x 0 ) = 0 , 
� or such a x 0 exists, but it is outside the interval [ 0 , 1 ] , 
� or f ( x 0 ) ≥ 0 . 

This is equivalent to 

either λi > 0 , (81a) 

or λi �i < 0 , (81b) 

or 

√ ̂ λi 

q i �i 
> 

2 

J 

| λ4 | , (81c) 

or λ3 ≥ −
√ ̂ λi �i 

q i 
, (81d) 

respecti v el y, w here 

�i ≡ J 

2 

4 

λ2 
4 + q i λ1 . (82) 

Conditions ( 69a ), (75), (77), and (81) ( i = 5 , . . . , t + 3 ) are necessary and sufficient for the
boundedness-from-below of V 4 [ 14 ]. 

3.2. UNI conditions 
The condition ( 25b ) stays unchanged when there are in V 4 terms four-linear in the χI . 

The eigenvalues of the scattering matrix of the two-field states with null T 3 and hypercharge
2 Y , viz. the states χJ χ−J , χJ−1 χ1 −J , χJ−2 χ2 −J , . . . , produce the conditions 

| λ2 | < M, (83a) 

| λ2 + 2 λi | < M (i = 5 , . . . , t + 3) . (83b) 
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The sca ttering ma trix for the two-field sta tes with null hypercharge and null third component
of isospin—i.e. for the states | a 

| 2 , | b 

| 2 , and the n states | χI | 2 —generalizes the matrix of Eq. ( 27 ): 

S = 

⎛ ⎜ ⎝ 

2 λ1 λ1 �1 

λ1 2 λ1 �2 

�T 
1 �T 

2 �

⎞ ⎟ ⎠ 

(84) 

where the 1 × n submatrices �1 and �2 are gi v en by 

( �1 ) 1 k = λ3 + 

λ4 

2 

( J + 1 − k ) , (85a) 

( �2 ) 1 k = λ3 − λ4 

2 

( J + 1 − k ) , (85b) 

for k = 1 , . . . , n . The n × n matrix � is gi v en by 

�kl = λ2 ( 1 + δkl ) (86a) 

+ 4 

t+3 ∑ 

i=5 

λi 

4 J+17 −4 i ∑ 

m =1 

δm, k+ l+7 −2 i 

×
( [ 

J J 2 J + 8 − 2 i 
J + 1 − k J + 1 − l 2 J + 9 − 2 i − m 

] ) 2 

, (86b) 

for k, l ∈ [ 1 , n ] . For all the values of J that we hav e inv estigated (i.e. for all integer and half-
integer J up to and including 5), the matrix S of Eq. ( 84 ) is equivalent to the direct sum of 

� 2 J − 1 1 × 1 ma trices, i.e. numbers tha t are linear combina tions of λ2 and the λi ( i =
5 , . . . , t + 3 ), the coefficient of λ2 in those linear combinations being 1; 

� one 2 × 2 symmetric matrix with 

� ( 1 , 1 ) matrix element λ1 , 
� ( 2 , 2 ) matrix element which is a linear combination of λ2 and the λi , the coefficient of λ2 

in that linear combination being 1, 
� ( 1 , 2 ) matrix element proportional to λ4 ; 

� another 2 × 2 symmetric matrix with 

� ( 1 , 1 ) matrix element 3 λ1 , 
� ( 2 , 2 ) matrix element which is a linear combination of λ2 and the λi , the coefficient of λ2 

in that linear combination being 2 J + 2 , 
� ( 1 , 2 ) matrix element proportional to λ3 . 

The moduli of all the eigenvalues of these 2 J + 1 matrices should be smaller than M. Since
the matrices are either 1 × 1 or 2 × 2 , ther e ar e simple analytic expressions for their 2 J + 3
eigenvalues. In particular, from the last two matrices mentioned above one obtains the unitarity
conditions 

| λ1 + A 1 | + 

√ 

( λ1 − A 1 ) 
2 + 

2 

3 

J ( J + 1 ) ( 2 J + 1 ) λ2 
4 < 2 M, (87a) 

| 3 λ1 + A 2 | + 

√ 

( 3 λ1 − A 2 ) 
2 + 8 ( 2 J + 1 ) λ2 

3 < 2 M, (87b) 

where 

A 1 ≡ λ2 + 4 

t+3 ∑ 

i=5 

J 

2 + 16 J + 36 + i ( 2 i − 4 J − 17 ) 
J ( J + 1 ) 

4 J − 4 i + 17 

2 J + 1 

λi , (88a) 
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Table 1. The maximum allowed value of | λ4 | , and the maximum and minimum allowed values of λ3 , for 
v arious v alues of J. 

J 1 / 2 1 3 / 2 2 5 / 2 3 7 / 2 

maximum 

| λ4 | 26.46 17.49 11.96 8 .10 5.97 4 .65 3.76 

maximum λ3 12.37 10.10 8.75 7 .82 7.14 6 .61 6.19 

minimum λ3 −1.46 −1.26 −1.13 − 1 .03 −0.95 − 0 .89 −0.84 
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A 2 ≡ 2 ( J + 1 ) λ2 + 4 

t+3 ∑ 

i=5 

4 J − 4 i + 17 

2 J + 1 

λi . (88b) 

We have explicitly checked that Eqs. (87) are correct up to J = 11 / 2 . 
The unitarity conditions that one obtains from the other 2 J matrices are e xplicitly gi v en in

the Appendix for all J through 7 / 2 . We point out that our unitarity conditions for the case
J = 3 / 2 do not perfectly coincide with the ones gi v en in Ref. [ 6 ]. 

So, the full UNI conditions are: 9 

| λ1 | < M, (89) 

condition ( 25b ), conditions (83), conditions (87), and the conditions in the Appendix . 

3.3. Results 
We have gener ated r andom sets of values for all the coefficients of V 4 except λ1 , viz. for λ2 ,
λ3 , λ4 , and the λi ( i = 5 , . . . , t + 3 ). The coefficient λ1 was kept fixed at the value in Eq. ( 17 ).
We have then imposed on the generated sets both the BFB and the UNI conditions, thereby
discarding most of them. We have made scatter plots of the sets of values that respected both
the BFB and the UNI conditions. By carefully scrutinizing those plots, we have arrived at the
maximum and minimum allowed values of λ3 , and at the maximum allowed value of | λ4 | , 10 

which are displayed in Table 1 . These values were also checked through a fitting procedure, by
using both the UNI and BFB conditions. 

It turns out that the maximum value of | λ4 | , when λ2 and the λi are allowed to be nonzero, is
slightly larger than Eq. ( 41a ) when J is 1 / 2 or 1, and slightly larger than Eq. ( 42 ) for all larger
values of J . This is illustrated in the left panel of Fig. 1 . 

In Fig. 4 we depict the maximum possible mass of a multiplet of scalars as a function of its
minimum mass m . This is simply gi v en by the expression 

m max = 

√ 

m 

2 + J v 2 | λ4 | maximal , (90) 

where J is the isospin of the multiplet, 

v 2 = 

1 

2 

√ 

2 G F 

≈ ( 174 GeV ) 2 , (91) 

and 

| λ4 | maximal is the maximum allowed value of | λ4 | for each J . One sees that heavy scalar multi-
plets tend to be almost degenerate; for m � 2 TeV, m max − m ∼ 100 GeV. Notice that m max − m
is maximal for J = 3 / 2 , i.e. when χ is a quadruplet; if χ is a larger multiplet, then it has more
components but, as | λ4 | maximal is smaller, those components are packed into an e v er smaller
mass range. 
9 Condition ( 89 ) is unimportant in practice, because we already know that λ1 = 0 . 258 is quite small. 
10 The coefficient λ4 can always be zero, i.e. the minimum allowed value of | λ4 | is zero. 
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Fig. 4. The maximal mass m max of a scalar multiplet χversus its lowest mass m , for three different values 
of the isospin J of χ . 
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The maximum allowed value of λ3 is always attained when λ2 and all the λi vanish, and exactly
coincides with Eq. ( 40b ), as is illustrated in the right panel of Fig. 1 . 11 

The minimum allowed value of λ3 is always attained when both λ4 and all the λi are zero, but
λ2 is nonzero. Indeed, the minimum value of λ3 is determined by the BFB condition ( 77b )—
with λ4 taken to zero—together with the UNI condition 

| 3 λ1 + 2 ( 1 + J ) λ2 | + 

√ 

[ 3 λ1 − 2 ( 1 + J ) λ2 ] 
2 + 8 ( 1 + 2 J ) λ2 

3 ≤ 2 M, (92) 

w hich holds w hen all the λi are taken to zero . Thus , when conditions ( 77b ) and ( 92 ) are trans-
formed into equations, they produce the solution 

λ2 = 

1 

2 

M ( M − 3 λ1 ) 
( 1 + J ) M − ( 2 + J ) λ1 

, (93a) 

λ3 = −
√ 

λ1 

2 

M ( M − 3 λ1 ) 
( 1 + J ) M − ( 2 + J ) λ1 

. (93b) 

Equation ( 93b ) gi v es the minimum value of λ3 in the fourth row of Table 1 . 

4. OPs 
In our NP model it is possible—depending on the values of J and Y —that the new scalars do
not couple to the light fermions at all. If that is so and if, moreover, the new scalars are very
heavy, so that they cannot be produced at the LHC—e.g. through the Drell–Yan process—then
they will make themselves felt onl y indirectl y through their oblique corrections, i.e. through
their contributions to the self-energies of the gauge bosons. Following Maksymyk et al. [ 15 ], we
parameterize those corrections through six OPs S, T , U , V , W , and X . We use as input of the
renormalization process the quantities α (the fine-structure constant), G F (the Fermi coupling 

constant), and m Z 

(the Z 

0 boson mass). Following Ref. [ 16 ], we use α
(
m 

2 
Z 

) = 1 

/
127 . 951 , G F =

1 . 1663788 × 10 

−5 GeV 

−2 , and m Z 

= 91 . 1876 GeV. We then define the weak mixing angle θW 

through 

c 2 W 

s 2 W 

= 

πα√ 

2 G F m 

2 
, (94) 
Z 

11 W hen the coef ficient λ3 a ttains its maximum allowed value displayed in the third row of Table 1 , λ4 

may have various values, including zero. 
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where c W 

≡ cos θW 

and s W 

≡ sin θW 

. This results in s 2 W 

= 0 . 23356 . We then use S, . . . , X to
parameterize, for each electroweak observable O , the ratio between the prediction of the NP
model and the prediction of the SM, by using expressions of the general form 

O NP 

O SM 

= 1 + c O 

S S + c O 

T T + c O 

U 

U + c O 

V 

V + c O 

W 

W + c O 

X 

X , (95) 

where the coefficients c O 

S , . . . , c 
O 

X 

—gi v en, e.g. in Ref. [ 17 ]—are known functions of the input
quantities. 

4.1. Formulas for the OPs 
According to Ref. [ 18 ], when in the NP model there is only one SU (2) multiplet of new scalars
with weak isospin J and weak hypercharge Y , the parameter T produced by those scalars is
gi v en by 

T = 

G F 

8 

√ 

2 π2 α

J ∑ 

I=1 −J 

(
J 

2 + J − I 2 + I 
)
θ+ 

(
m 

2 
I , m 

2 
I−1 

)
, (96) 

where m I denotes the mass of the scalar with third component of isospin I . The function
θ+ 

( x, y ) is defined as 

θ+ 

( x, y ) ≡
⎧ ⎨ ⎩ 

x + y − 2 xy 

x − y 

ln 

x 

y 

⇐ x � = y, 

0 ⇐ x = y. 
(97) 

The parameters V , W , and X are gi v en by 

V = 

G F m 

2 
Z √ 

2 π2 α

J ∑ 

I= −J 

(
I c 2 W 

− Y s 2 W 

)2 
ρ

(
m 

2 
I 

m 

2 
Z 

, 
m 

2 
I 

m 

2 
Z 

)
, (98a) 

W = 

1 

4 πs 2 W 

J ∑ 

I=1 −J 

(
J 

2 + J − I 2 + I 
)
ρ

( 

m 

2 
I 

m 

2 
W 

, 
m 

2 
I−1 

m 

2 
W 

) 

, (98b) 

X = − 1 

2 π

J ∑ 

I= −J 

( I + Y ) 
(
I c 2 W 

− Y s 2 W 

)
ζ

(
m 

2 
I 

m 

2 
Z 

, 
m 

2 
I 

m 

2 
Z 

)
, (98c) 

respecti v ely. In Eqs. (98), 

ζ ( x, y ) = 

11 

36 

− 5 ( x + y ) 
12 

+ 

xy 

3 ( x − y ) 2 
+ 

( x − y ) 2 

6 

+ 

[ 

x 

2 − y 

2 

4 

+ 

( y − x ) 3 

12 

+ 

x 

2 + y 

2 

4 ( y − x ) 
+ 

x + y 

12 ( x − y ) 
+ 

xy ( x + y ) 

6 ( y − x ) 3 

] 

ln 

x 

y 

+ 

� ( x, y ) 
12 

f ( x, y ) , (99a) 

ρ ( x, y ) = 

1 

6 

− 3 ( x + y ) 
4 

+ 

( x − y ) 2 

2 

+ 

[ 

( y − x ) 3 

4 

+ 

x 

2 + y 

2 

4 ( y − x ) 
+ 

x 

2 − y 

2 

2 

] 

ln 

x 

y 

+ 

( x − y ) 2 − x − y 

4 

f ( x, y ) , (99b) 

for x � = y , while 

ζ ( x, x ) = 

4 − 4 x + 

� ( x, x ) 
f ( x, x ) , (100a) 
9 3 12 
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ρ ( x, x ) = 

1 

6 

− 2 x − x 

2 

f ( x, x ) . (100b) 

In Eqs. (99) and (100), 

f ( x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

√ 

� ( x, y ) ln 

x + y − 1 + 

√ 

� ( x, y ) 

x + y − 1 −√ 

� ( x, y ) 
⇐ � ( x, y ) ≥ 0 , 

−2 

√ 

−� ( x, y ) 

[ 

arctan 

x − y + 1 √ −� ( x, y ) 
+ ( x ↔ y ) 

] 

⇐ � ( x, y ) < 0 , 

(101) 

where 

� ( x, y ) = 1 − 2 ( x + y ) + ( x − y ) 2 . (102) 

For S and U one has 

S = S 

′ + S 

′′ , U = U 

′ + U 

′′ . (103) 

where 

S 

′′ = − 2 

π

J ∑ 

I= −J 

(
I c 2 W 

− Y s 2 W 

)2 
ζ

(
m 

2 
I 

m 

2 
Z 

, 
m 

2 
I 

m 

2 
Z 

)
, (104a) 

U 

′′ = −S 

′′ − 1 

π

J ∑ 

I=1 −J 

(
J 

2 + J − I 2 + I 
)
ζ

( 

m 

2 
I 

m 

2 
W 

, 
m 

2 
I−1 

m 

2 
W 

) 

, (104b) 

and 

S 

′ = − Y 

3 π

J ∑ 

I= −J 

I ln 

m 

2 
I 

μ2 
, (105a) 

U 

′ = 

1 

12 π

J ∑ 

I=1 −J 

(
J 

2 + J − I 2 + I 
)

g 

( 

m 

2 
I 

m 

2 
I−1 

) 

+ 

1 

6 π

J ∑ 

I= −J 

(
J 

2 + J − 3 I 2 
)

ln 

m 

2 
I 

μ2 
. (105b) 

In Eq. ( 105b ), 

g ( x ) = 

⎧ ⎨ ⎩ 

x 

3 − 3 x 

2 − 3 x + 1 

( x − 1 ) 3 
ln x − 5 x 

2 − 22 x + 5 

3 ( x − 1 ) 2 
⇐ x � = 1 , 

0 ⇐ x = 1 

(106) 

is a function that obeys g ( x ) = g ( 1 /x ) . 
We note that the expressions for the OPs are invariant under the transformation I →

−I , Y → −Y . This allows one to choose the scalar with I = −J to be the lightest one, pro-
vided one keeps Y free, i.e. provided one considers both negati v e and positi v e values of Y ; that
is the procedure that we adopt. 

4.2. Numerical results 
In our numerical work we utilize the set of electroweak observables given in Table 2 . For each
set of OPs and for each observable O , we have computed O NP 

/
O SM 

by using Eq. ( 95 ). We
have then computed the residuals, defined as O NP 

/
O SM 

minus the values in the last column
of Table 2 . The χ2 function for each set of OPs was defined as χ2 = R C 

−1 R 

T , w here R is the
row-vector of the residuals and C is the covariance ma trix; the la tter is e valuated accor ding to
the correlations among the observables [ 16, 19, 20 ]. 

For each set of OPs, the pull is evaluated as r / δ±, where r is the residual defined above and
δ± is the error gi v en in the fourth column of Table 2 . 
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Table 2. First column: the electroweak observables used in our wor k. Second column: their e xperimen- 
tal values, taken from Ref. [ 16 ]. Third column: the SM predictions for them. Fourth column: the ratio 

between the experimental value and the SM prediction. 

Observable Measurement ( O meas ) SM prediction ( O SM 

) O meas /O SM 

σ 0 
had [nb] 41.481 ± 0.033 41.482 ± 0.008 0.999976 ± 0.0008186 

R � 20.767 ± 0.025 20.736 ± 0.010 1.00149 ± 0.001299 

R b 0.21629 ± 0.00066 0.21582 ± 0.00002 1.00218 ± 0.003060 

R c 0.1721 ± 0.0030 0.17221 ± 0.00003 0.999361 ± 0.01742 

A 

(0 ,� ) 
F B 

0.0171 ± 0.001 0.01617 ± 0.00007 1.05751 ± 0.06201 

A 

(0 ,b) 
F B 

0.0996 ± 0.0016 0.1029 ± 0.0002 0.967930 ± 0.01566 

A 

(0 ,c ) 
F B 

0.0707 ± 0.0035 0.0735 ± 0.0002 0.961905 ± 0.04769 

A � 0.1513 ± 0.0021 0.1468 ± 0.0003 1.03065 ± 0.01446 

A b 0.923 ± 0.020 0.9347 0.987483 ± 0.02140 

A c 0.670 ± 0.027 0.6677 ± 0.0001 1.00344 ± 0.04044 

s̄ 2 � ( LEP-1 ) 0.2324 ± 0.0012 0.23155 ± 0.00004 1.00367 ± 0.005185 

s̄ 2 � ( Tevt. ) 0.23148 ± 0.00033 0.23155 ± 0.00004 0.999698 ± 0.001436 

s̄ 2 � ( LHC ) 0.23129 ± 0.00033 0.23155 ± 0.00004 0.998877 ± 0.001436 

m W 

[GeV] 80.377 ± 0.012 80.360 ± 0.006 1.00021 ± 0.0001670 

�W 

[GeV] 2.046 ± 0.049 2.089 ± 0.001 0.979416 ± 0.02346 

�Z 

[GeV] 2.4955 ± 0.0023 2.4941 ± 0.0009 1.00056 ± 0.0009903 

g 

νe 
V 

−0.040 ± 0.015 −0.0397 ± 0.0001 1.00756 ± 0.37784 

g 

νe 
A 

−0.507 ± 0.014 −0.5064 1.00118 ± 0.02765 

Q W 

( Cs ) −72.82 ± 0.42 −73.24 ± 0.01 0.994265 ± 0.005736 

Q W 

( Tl ) −116.4 ± 3.6 −116.90 ± 0.02 0.995723 ± 0.03080 
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Firstly, setting V = W = X = 0 and freely adjusting S, T , and U we have accomplished our
best fit of the electroweak observables in Table 2 . We have obtained χ2 = 14 . 201 for S = −1 . 2 ×
10 

−2 , T = 2 . 8 × 10 

−2 , and U = 2 . 0 × 10 

−3 . 
In our NP model, for each value of the isospin J of the multiplet, there are just three free

parameters: 

� | λ4 | , which determines the mass-squar ed differ ence �m 

2 = 

| λ4 | v 2 
/

2 between any two suc-
cessi v e components of the multiplet. 

� The mass m of the lightest component of the multiplet; without loss of generality we take
that component to be the one with the smallest third projection of isospin. Thus, m 

2 
I =

m 

2 + ( I + J ) �m 

2 for I = −J, . . . , . 
� The hypercharge Y of the multiplet. 

For instance, by choosing J = 2 , m = 3 TeV, λ4 = 3 . 65 , and Y = 1 . 65 we have obtained χ2 =
14 . 2015 , which is not very far from our best fit. We thus see that our model is able to fit the
electroweak observables just as perfectly as a free fit. 

For each value of J up to 7 / 2 —the upper bound on J found in Ref. [ 4 ]—we let Y vary from
−Y max to Y max , where Y max is the J -dependent upper bound on 

| Y 

| determined in Refs. [ 4 , 5 ].
We let m vary from 50 GeV to 3 TeV, and we let | λ4 | vary fr om zer o to its maximum allowed
value gi v en in Tab le 1 . We keep only the points that either 

(1) have χ2 smaller than 30 and all the pulls smaller (in modulus) than three, or 
(2) have χ2 smaller than 17 and all the pulls smaller than one, except, possibly , the pulls of 

A 

( 0 ,b ) 
F B 

, A � , R � , and Q W 

( Cs ) . 
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Fig. 5. The maximum allowed value of | λ4 | versus the lightest mass m , for various values of J and for 
fits with χ2 ≤ 30 (left) or χ2 ≤ 17 (right). The hypercharge Y was left free. The horizontal dashed lines 
correspond to the bounds on 

| λ4 | from the UNI and BFB conditions. 

Fig. 6. The upper bound on 

| λ4 | versus the hypercharge Y , for v arious v alues of J, for m = 3 TeV, and for 
fits with χ2 ≤ 30 (left) or χ2 ≤ 17 (right). The horizontal dashed lines indicate the upper bounds from 

the UNI and BFB conditions, and the curved lines indicate the upper bounds from the OPs. The gray 

bands indicate the J-dependent restrictions on Y deri v ed in Refs. [ 4 , 5 ]. 
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In this way we obtain two sets of points, which we use to construct Figs. 5 and 6 . Most pulls of 
the observables are always very small; only a few observables have large pulls. As a consequence,
in practice, points with χ2 < 30 mostly have all the pulls between −3 and +3 , and points with
χ2 < 17 almost always have all the pulls between −1 and +1 , except for the observables A 

( 0 ,b ) 
F B 

A � ,
R � , and Q W 

( Cs ) . 12 

One sees in Fig. 5 that, unless m is very large and, ther efor e, the OPs are very small, the
restrictions on 

| λ4 | from the OPs are usually stronger than the UNI and BFB conditions that
we hav e deri v ed in this paper. Indeed, for χ2 ≤ 30 and m � 2 TeV the restrictions from the OPs
are stronger, and the same happens for χ2 ≤ 17 and m � 3 TeV. 

The relation between the upper bound on 

| λ4 | and the hypercharge Y is quite complex and
very much depends on m (because, if m gets larger, then the OPs get smaller and ther efor e the
OPs do not constrain 

| λ4 | ). In Fig. 6 , which was made for m = 3 TeV, one observes that, as Y 

increases, the upper bound on 

| λ4 | slightly decreases. If one requires a smaller χ2 in the fit of 
12 We make the exception of Q W 

( Cs ) because, if one forces its pulls to be smaller than one, that notice- 
ably restricts the parameter space, by practically eliminating all the negati v e values of Y . 
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the OPs, then the constraint on 

| λ4 | deri v ed therefrom becomes stronger and e v entually, as one
sees in the right panel of Fig. 6 , the UNI + BFB bound becomes completely ineffecti v e. 

5. Conclusions and outlook 

In this paper we have studied the extension of the SM through a scalar multiplet χ with ar-
bitrary isospin J and hypercharge Y . For e v ery value of J , we have included in the SP just
those terms that are present there for any value of Y . We have especially concentrated on the
term ( 1 ) which fixes the squared-mass difference �m 

2 between the successi v e components of χ ,
cf. Eq. ( 15 ). We hav e deri v ed an upper bound on 

| λ4 | , hence on �m 

2 , from both the UNI and
BFB conditions on the SP. We have found that, remar kab ly, that upper bound depends crucially
not just on the UNI conditions, but also on the BFB ones. For instance, the upper bound that
we have found is quite a lot more stringent than the one utilized in the recent Ref. [ 21 ], which
used only UNI conditions. 

Remar kab ly, we hav e been able to derive necessary and sufficient BFB conditions on this
model, e v en when we allowed the presence in the SP of the most general terms four-linear
in the components of χ . It so happens that those terms, e v en if they are quite complicated to
account for, end up relaxing only a little bit the upper bound on 

| λ4 | , cf. Fig. 1 . 
Phenomenolo gicall y, the model that we have studied is, by itself alone, of little value, because,

since we have left Y arbitrary, the multiplet χ does not have Yukawa couplings to any fermions.
Moreover, its lightest component is, for arbitrary Y , electrically charged and, moreover, abso-
lutel y stable, w hich is of course incompa tible with observa tion. Ther efor e, our study can only be
understood as a step towards the understanding of more specific models, that will have precise
values of J and Y , and probably also extra terms in the SP, viz. higher-dimensional terms. 
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Appendix. Explicit UNI conditions 
For J through 7 / 2 , the unitarity conditions tha t origina te in the matrix S of Eq. ( 84 ) are, besides
Eqs. (87), the following: 

� For J = 1 , ∣∣∣∣λ2 + 

4 

3 

λ5 

∣∣∣∣ < M. (A.1) 

� For J = 3 / 2 , ∣∣∣∣λ2 + 

3 

5 

λ5 

∣∣∣∣ < M, (A.2a) 
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∣∣∣∣λ2 + 

9 

5 

λ5 

∣∣∣∣ < M. (A.2b) 

� For J = 2 , ∣∣∣∣λ2 + 

16 

7 

λ5 − 4 

5 

λ6 

∣∣∣∣ < M, (A.3a) 

∣∣∣∣λ2 + 

8 

7 

λ5 + 

4 

5 

λ6 

∣∣∣∣ < M, (A.3b) 

∣∣∣∣λ2 − 6 

7 

λ5 + 

4 

5 

λ6 

∣∣∣∣ < M. (A.3c) 

� For J = 5 / 2 , ∣∣∣∣λ2 + 

79 

45 

λ5 − 22 

35 

λ6 

∣∣∣∣ < M, (A.4a) 

∣∣∣∣λ2 + 

19 

9 

λ5 − 2 

7 

λ6 

∣∣∣∣ < M, (A.4b) 

∣∣∣∣λ2 + 

5 

9 

λ5 + 

10 

7 

λ6 

∣∣∣∣ < M, (A.4c) 

∣∣∣∣λ2 − 29 

15 

λ5 + 

46 

35 

λ6 

∣∣∣∣ < M. (A.4d) 

� For J = 3 , ∣∣∣∣λ2 + 

102 

77 

λ5 + 

25 

21 

λ6 − 4 

7 

λ7 

∣∣∣∣ < M, (A.5a) 

∣∣∣∣λ2 + 

18 

77 

λ5 + 

25 

21 

λ6 + 

4 

7 

λ7 

∣∣∣∣ < M, (A.5b) 

∣∣∣∣λ2 + 

6 

7 

λ5 + 

10 

21 

λ6 − 4 

7 

λ7 

∣∣∣∣ < M, (A.5c) 

∣∣∣∣λ2 − 18 

7 

λ5 + 

19 

21 

λ6 + 

4 

7 

λ7 

∣∣∣∣ < M, (A.5d) 

∣∣∣∣λ2 + 

194 

77 

λ5 − 10 

7 

λ6 + 

4 

7 

λ7 

∣∣∣∣ < M. (A.5e) 

� For J = 7 / 2 , ∣∣∣∣λ2 − 1 

14 

λ5 + 

31 

22 

λ6 − 13 

14 

λ7 

∣∣∣∣ < M, (A.6a) 

∣∣∣∣λ2 + 

53 

78 

λ5 + 

119 

66 

λ6 − 1 

2 

λ7 

∣∣∣∣ < M, (A.6b) 
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∣∣∣∣λ2 + 

363 

182 

λ5 − 1 

22 

λ6 − 1 

14 

λ7 

∣∣∣∣ < M, (A.6c) 

∣∣∣∣λ2 + 

7 

78 

λ5 + 

49 

66 

λ6 + 

7 

6 

λ7 

∣∣∣∣ < M, (A.6d) 

∣∣∣∣λ2 − 121 

42 

λ5 + 

1 

6 

λ6 + 

17 

14 

λ7 

∣∣∣∣ < M, (A.6e) 

∣∣∣∣λ2 + 

103 

66 

λ5 − 101 

66 

λ6 + 

23 

42 

λ7 

∣∣∣∣ < M. (A.6f) 
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