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We consider the addition of a single SU(2) multiplet of complex scalar fields to the Stan-
dard Model (SM). We explicitly consider the various possible values of the weak isospin
J of that multiplet, up to and including J = 7/2. We allow the multiplet to have arbitrary
weak hypercharge. The scalar fields of the multiplet are assumed to have no vacuum expec-
tation value; the mass differences among the components of the multiplet originate in its
coupling, present in the scalar potential (SP), to the Higgs doublet of the SM. We derive
exact bounded-from-below and unitarity conditions on the SP, thereby constraining those
mass differences. We compare those constraints to the ones that may be derived from the
oblique parameters.

Subject Index B40, B46, B53, B57

1. Introduction

In this paper, we study the model of New Physics (NP), i.e. of physics beyond the Standard
Model (SM), wherein one adds to the SM one gauge-SU (2) multiplet y with weak isospin J and
consisting of n = 2J + 1 complex scalar fields. The multiplet has unspecified weak hypercharge
Y; therefore, the model enjoys an accidental U(1) symmetry wherein one rephases x through
an arbitrary phase. The scalar fields that compose x are assumed not to have any vacuum
expectation value (VEV), even if one of them—depending on Y and J—may happen to be
electrically neutral. There is in the scalar potential (SP) a renormalizable coupling

3
tla )
M;(H “H) [ 1] (1)
of x to the Higgs doublet H of the SM. In Eq. (1),

e )4 1S a dimensionless coefficient,

e the 7, are the Pauli matrices,

e one conceives of x as a column vector of x scalar fields,

 the Ta(‘]) are the n x n matrices that represent su(2) in the J-isospin representation.

The coupling (1) generates, upon the neutral component of H acquiring VEV v, a squared-
mass difference Am? o v?> between any two components of x whose third component of isospin
differs by one unit.
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This NP model was firstly (to our knowledge) considered 30 years ago [1] as a paradigm for
potentially large oblique parameters (OPs). It has later been studied as a model for “minimal”
dark matter [2] and, more recently [3], as an explanation for the unexpectedly high value of
the W+ mass measured by the CDF-II Collaboration. Twelve years ago, Logan and her col-
laborators [4] showed that n cannot exceed eight, lest perturbative unitarity in the scattering of
two scalars of x to two SU(2) gauge bosons be violated; they also derived mixed constraints
on J and Y. Logan’s work was revived and expanded very recently [5]. In another recent pa-
per [6], the specific case of the addition of an SU(2) scalar quadruplet to the SM has been
considered; the hypercharge of that quadruplet has been restricted to the values 1/2 or 3/2,!
because in those two cases additional quartic couplings—beyond the one of Eq. (1)—of the
types x HH H and/or x x x H may be present. (The accidental U (1) symmetry then does not
exist, because Y has a well-defined value.) The case studied in Ref. [6] is on the one hand more
restricted than the one in this paper, because x has fixed J = 3/2, but on the other hand it is
more complicated, because additional quartic terms are allowed in the SP.

In this paper we want to constrain the modulus of the coefficient A4 of the term (1) of the
SP; in so doing, we place an upper bound on Am?. We do this by considering both the unitarity
(UNI) and the bounded-from-below (BFB) conditions on the quartic part of the SP. Remark-
ably, the upper bound on Am? results from both the UNI and the BFB conditions, and not just
from the former ones. We firstly show this fact, in a simplified version of the SP, in Sect. 2; later
on, in Sect. 3, we consider the full SP. Section 4 contains the confrontation of our NP model
with the OPs that it generates; we investigate whether the phenomenological OPs constrain Am?
more or less than the UNI/BFB conditions. Section 5 contains our conclusions. The Appendix
explicitly lists the UNI conditions for all the values of n through eight.

2. Potential without terms four-linear on x

In our model of NP there is the SM scalar doublet H with hypercharge 1/2 and an SU(2) scalar
multiplet x with weak isospin J, which is a positive number, either integer or half-integer. The
multiplet x has

n=2J+1 )

components x; I =J, J—1, J—2, ..., 1 —J, —J). Its hypercharge Y remains unspecified,
i.e. arbitrary. Together with the charge-conjugate multiplets A and %, we have the four multi-
plets

XJ X:] \
XJ—1 —Xi-y
a ~ b* XJ-2 N :
H:<b>’ HZ( ) =10 = e | ®
—d 1 (=D o=
X1-J —(=D7 X7
X =¥ x;
Here, a, b, and the x; are complex Klein—Gordon fields. Their third components of isospin are
1 1
=, b:i—=, 1, oI 4
a:s 7 u X1 4)

'Other recent papers that consider scalar quadruplets with those specific hypercharges are Refs. [7-9].
They also consider models with additional scalar triplets and five-plets, always with specific hypercharges.
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When one multiplies x by x one obtains, among other SU (2) representations, the singlet

J
B=x®ii= ) lul (5)
I=—J
and the triplet
A VA
- 3 X1 Xi—1
I=1-J
J
(X ®R); = oIl : (6)
I=—J
Lo -r+i+l
Z ) X1 Xi-1
I=1-J

Applying the general Eq. (6) to the specific case of H (i.e.usingJ = 1/2, 1o =a,and x_1» =
b), we obtain

ab*
2 2 2
(H o), = | I )
a*b
V2
The SP V' has a quadratic part V> and a quartic part Vj:
V="0+V. (®)
Obviously,
Va = =ik + w3b, ©)
where
F=(H®H),=la*+ b (10)

and 5 is defined in Eq. (5). We assume both coefficients M% and ,u% to be positive, so that H has
VEV (0 15| 0) = v but x does not have VEV.
The quartic part of the SP contains

e the term [(H ® H )1]2, with coefficient %1;

o the term (H ® I:I)1 (x ® %), with coefficient A3;

e theterm [(H® H), ® (x ® %)3],» with coefficient Aq;

e various terms that are four-linear in the components of y. We keep those terms unspecified
in this section.

Thus,
A . .

Vi = ?1 Fl2 + A3F B + Ay Fy + terms four-linear in the x;, (11)

where
J
la]* — |bf* 2, 247"
F=———o0 I . 12
4 7 1:2:1 Ix:1” + 7 (12)
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We have defined
J
z=ab Y xf eI =P+ + 1 (13)
I=1-J
From Eqgs. (8), (9), (11), and (12) the mass-squared of the scalar x; is
A
mi =3+ (xg - 3“1) P (14)
This implies that the difference between the masses-squared of x; and ;1 is
A 2
Am? = % (15)

which is /-independent. An upper bound on |14] is therefore equivalent to an upper bound on
Am?.
The VEV of V' is

A
0V]0) = —u>* + 31 W, (16)

Therefore, u? = A1v*. The mass-squared of the Higgs particle is m3, = 2A;v*. Since experimen-
tally mpy ~ 125GeV and v ~ 174 GeV, one has

A A 0.258. (17)

From now on we shall assume Eq. (17) to hold. Contrary to A, the couplings A3 and A4 are free,
but they are constrained by both the UNI and BFB conditions. We next derive those constraints.

2.1.  UNI conditions

In Ref. [4], and more recently again in Ref. [5], the scattering of two scalars belonging to x
to two gauge bosons of either gauge group SU(2) or U(1) has been considered; therefrom
upper bounds on both the isospin J and the hypercharge Y of x have been derived. Here we
consider the scattering of a pair of scalars of x to another pair of scalars, both pairs having,
of course, the same 7 (third component of isospin) and Y. Whereas in Refs. [4,5] the scattering
involves two cubic gauge couplings and the interchange of a virtual particle either in the s, z,
or u channel, here the scattering involves no interchange of any virtual particle, rather it takes
place directly through a quartic coupling in the SP.

Firstly suppose that J is half-integer.

» We consider the scattering of the two two-field states with hypercharge Y + 1/2 and null
third component of isospin, viz. of x_i,a and x;,2b. Their scattering matrix is

A3y — Ag/4 2J + 1) rqe/4 (18)
2J 4+ 1) ra/4 Ay —Arg/4 |
The eigenvalues of this matrix are
JA J+1x
LA AL (19)

* We next consider the scattering of the states with hypercharge ¥ — 1/2 and null third com-
ponent of isospin, viz. of x_;,»b* and xi,,a*. Their scattering matrix is

( A baa/d (2T + 1)x4/4>

J + 1) As/d A3+ Aa/d 20)
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The eigenvalues of this matrix are

J+ 1) Jo.
A3+ % Ay — 2 1)

Let us secondly suppose that J is an integer instead.

e We consider the scattering of the two two-particle states with hypercharge Y + 1/2 and
third component of isospin 1/2, viz. of xoa and yx;b. Their scattering matrix is

as ,/J(J+1)x4/2
,/J(J+1))\4/2 Ry — ha/2

The eigenvalues of this matrix are the ones in Eq. (19).
e We next consider the scattering of the states with hypercharge Y — 1/2 and third component
of isospin 1/2, viz. of the states xja* and yob*. Their scattering matrix is

2y + ha/2 VTUT+ /2
T+ )2 A

The eigenvalues of this matrix are in Eq. (21).

(22)

(23)

Thus, the eigenvalues of the scattering matrices are the same, no matter whether J is integer
or half-integer.

We now impose the conditions that the moduli of all the eigenvalues in Eqs. (19) and (21)
should be smaller than

M = 8. (24)
We obtain
J
A3l + 5 [Aa] < M, (25a)
J+1
[A3] + — |A4] < M. (25b)

Condition (25b) is of course stronger than condition (25a), therefore one may neglect the latter.
The dispersion of the 2 + 7 states that have zero third component of isospin and zero hyper-
charge, viz. of the states,’

lal* 1617 1 Dx—a P D s P balP s I xol (26)
produces the scattering matrix
A B, B, - B C
By 0ax2 0O2xa -+ 0O2xa 02y
Bri—1 022 0252 -+ 022 02y
S R 27)
Bi 02 02 --o 02x2 0oy
CT Oixa Oixa -+ Oix2 O
where
2\ A A I a/2 A3 —1)h4/2 A
A— 1 A 3+ Ihg/ 3 4/ o= (M), (28)
Al Al )»3—[)»4/2 A3 —|—I)»4/2 A3

2In this explicit computation we assume J to be an integer. The final result, viz. Egs. (34), is also valid
for half-integer J.
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and 0,,,,.,» denotes the m x m’ matrix that has all its matrix elements equal to zero. The matrix

S is equivalent to
XAxT
XB;xT
XBy X7

XBxT
CTXT

XBJXT
0242
0252

0242
O1x2

XBJ_lXT
02x2
0242

0242
01x2

XB]XT
02x2
0252

0242
01x2

XC
0241

021
, (29)

02x1
0

where

1 11
X=—
7 (_ ! 1) (30)
and consequently

3 0 2X3 0 \/z)\g
XAXT = XB X' = XCX = ) 31

Thus, the matrix S is equivalent to the direct sum of the two matrices S, and S_, where

30 2h3 203 oo 2X3 A2X3
2h3 0 0 - 0 0
23 0 0 - 0 0
Sy=1| . . . ) A (32a)
2X3 0 0 - 0 0
V2hi 0 0O -~ 0 0
Al Jha (J—=Dxs -+ A4
Iy 0 0 e 0
S.=|U—-Dirxs 0 0 e 0. (32b)
A 0 0 e 0

Computing the eigenvalues of these two matrices and setting their moduli to be smaller than
M, we find

J
3al+ |92 +4 [Z (423) + 2)%} <2M, (33a)
=1
J
l+ (A3 +43) P <2M. (33b)
I=1
Performing the sums over /, we obtain
31h] + /922 +8.27 + 1)43 < 20, (34a)
2, 2 2
(A1l + k1+§J(J+1)(2J+1)k4<2M. (34b)

The potential V4 produces many other scatterings of two-particle states, but they all lead to
UNI conditions that either repeat Eq. (25b), or repeat Eq. (34b), or repeat Eq. (34a), or are
weaker than one of them.
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2.2.  BFB conditions
In order to evaluate the BFB conditions on Vj, it is handy to use the gauge wherein 5 = 0. We
use

J
YTl =P+ =Dl + = Jlxl| (35a)

I=—J
<JB (35b)

to write, in that gauge,
V> %1 lal* + (3 — J |A4l/ 2) |al* B + terms four-linear in the x;. (36)

Since both |a|* > 0 and F > 0, the conditions for (A1/2) lal* + (A3 — J |A4]/2) la* P> to be
nonnegative, whatever the (nonnegative) values of |«|* and F, are [10]:

A >0, (37a)

A3 >0, (37b)
2A

Ihal < 73 (37¢)

Conditions (37) are necessary and sufficient for V4 to be nonnegative for arbitrary values of
the fields ¢ and x;. Since a gauge with » = 0 can always be obtained, those conditions also hold
for V4 with arbitrary values of a, b, and y;.

2.3.  Results
Transforming all the six relevant UNI and BFB conditions into strict equalities, we have
J+1
)»3+T|)»4| =M, (38a)
2J (2J2 437 + 1) A2
Al+\/xf+ ( 3 )4 =2M, (38b)
3hi+ /922 +8 (2 + )23 = 2M, (38¢)
2
[Aa] = 7 A3, (38d)

where we have taken into account that both A; and A3 are nonnegative, cf. Egs. (17) and (37b),
respectively. Equation (38b) gives solution I:

] = \/ J6M (M — A1) (39)

(2J2+3J + 1)'
Equations (38a) and (38c¢) together produce solution II:
2M  \2M (M — 3%)
- , (40a)
J+1  (J+1DJV27+1

M (M —3i)
M= | ————=. 40b
TN 2@+ (400)
Equations (38a) and (38d) together lead to solution III:

2M
2J + 17

[Agq| =

|Agq] =

(41a)
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50 — solution I
solution IT
20 —— solution IIT
— solution IV

~
=
10
—— solution IIT
5 — solution IV
— — fit of maximum |A4] — — fit of maximum A3
1 2 3 1 2 3
J J

Fig. 1. The solutions (39)—(42) for |A4| (left) and A3 (right) versus J. We have used M = 8x. The black
dashed lines display the maximum allowed values of |A4] and A3 described in Sect. 3.3.

J
=
Equations (38c) and (38d) together give solution I'V:
V2M (M — 3)) 42)

JV2T+1
and Eq. (40b), which is the solution of Eq. (38c).
Solutions I, II, III, and IV for |A4] and A3 are plotted in Fig. 1. Notice that solutions II, 111,
and IV coincide when

A3 (41b)

|Ag| =

_2M)?
M =3)]
1.e. when J ~ 1.37. When J is larger than this value, i.e. when yx is either a quadruplet or a larger
multiplet of SU(2), then solution IV—which arises from both the UNI condition (34a) and the
BFB condition (37¢c)—gives the strongest upper bound on both A3 and |A4]. Thus, both A3 and
|A4] are bounded from above by the interplay of a UNI condition and a BFB condition, for
most possible values of J.
We remind the reader that, according to Eq. (37b), the minimum value of A3 is 0.

2J +1 (43)

2.4. Renormalization-group equations

In a renormalizable field theory, the values of the dimensionless coupling constants evolve with
the energy scale  at which they are measured. That evolution is governed by differential equa-
tions named renormalization-group equations (RGEs):?

, dg
16771 an Bg. (44)
where g denotes a generic dimensionless coupling and B, is a function of, in general, all the
dimensionless couplings in the theory. Formulas for the functions B, in a general gauge theory
have been presented long ago by Cheng, Eichten, and Li [11]. In the case at hand there is a
gauge theory with gauge group SU(3) x SU(2) x U(1) and gauge coupling constants g3 for
SU(3), g» for SU(2), and g; for U(1);* in that gauge theory there is an SU(2) doublet with

*Here we only consider the one-loop-level RGEs.

“We use here the normalization for g; usual in the SU(5), SO(10), and E¢ Grand Unified Theories.
Still, we keep for the hypercharges of the multiplets the usual normalization given by Q = I 4+ Y, where
Qs a field’s electric charge, I is the third component of isospin, and Y is the hypercharge.
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hypercharge 1/2 and an SU(2) multiplet with isospin J and hypercharge Y. We consider in this
subsection the SP

2
A
r=>_ (u,%Fk +5 F,f) + MR B+ haf, (45)
k=1

i.e. we take into account the presence in V' of a quartic term proportional to F?, but we dis-
card all the other terms four-linear in the y; (they are studied in some detail in Sect. 3).°> The
dimensionless couplings that we take into account are, thus, g, g2, g3, A1, A2, A3, and A4. Ad-
ditionally, in the full theory there are fermions with Yukawa couplings to the scalar doublet,
and one (and only one) of those Yukawa couplings, viz. y,—the Yukawa coupling of H to the
top quark—is rather large and therefore has a strong influence on the RGEs; so, there is one
further dimensionless coupling y; that we take into account. In order to derive the RGEs for
these eight coupling constants we have used a feature of the software SARAH [12]. (We point
out that that software only tolerates SU (2) multiplets with isospin up to 3, so we had to edit it
and make a modification in order to derive the RGEs for the case J = 7/2. We moreover point
out that the running time for that software increases exponentially with the size of the SU(2)
multiplets.) We have obtained

41 4
Bo = (E +3 Yz) g (462)
19 JU+1D)QI+1)

Be, = [—g + 5 }gz (46b)
Be, = —783, (46¢)

27 9 9 J(T+1)@2J+1

Bu=——gi+ s+ -G+ 120+ 120 +2Q7+1)A5 + ¢+ D( )xﬁ
100°' 7 10 4 6
9

- (g g+ 9g§) A — 127, (47a)

108 72
B =52 (Ya)* + = (Yg1)’ (Jg2)* + 6% (277 + 1) g4 + 227 + 5) 23 + 423 + J%3

— [3—56 (Yg1) +12J (J + l)g§i| A2, (47b)
B, = i_z (Y@) +3J(J+ 1) g + 6205 + 6hins +4(J + Dashs + 422+ J (J + D A2
_(19_0+§Yz) G- [g%mm] A, (70)
B, = 3—56 Y185 + 67 ks + 221hs + 823hy
(g sr)an-[3rouen]an @7d)

3In the numerical part of this section, though, we shall fix 1, = 0 for the sake of simplicity.

9/25

¥202 Jequerdags 90 uo Jasn AJISIBAIUN SNIUJIA JO BUIDIPBIA [BOIUID pue [eluswaliadx3 Jo ainisu| Aq 60881 £2/909€80/8/¥20Z/el01ue/de1d/woo dnoolwspede/:sdpy wodl papeojumo(q



PTEP 2024, 083B06 D. Jurciukonis and L. Lavoura

— Hmax = 10% GeV

Hmax = 108 GeV
— Mmax = 10° GeV
— Hmax = 10 GeV
— Hmax = 10" GeV

Fig. 2. The maximum allowed values of |14| (left) and A3 (right) versus J for different cutoff scales ptmax.
The black dashed lines are the same as in Fig. 1; they display the maximum values at the electroweak
scale.

b= (30— 358 - 1838 n. “9)

We have used a numerical code to solve the differential Eqgs. (46)—(48) starting at the scale
w = m; = 173.1 GeV and letting 1 evolve up to the scale pppanck = 10" GeV. We have slightly
simplified those equations by setting A, = 0 at all u values—even though in general §;, is
nonzero and therefore a nonzero A, will be generated even if one starts with A, = 0—and by

assuming the hypercharge Y of the additional multiplet to be zero too. At u = m, we have
fixed [13]:

5
g = \/; x 0.358545, g, = 0.64765, g3 = 1.1618, (492)

V2 x 161.98 GeV

246 GeV '
and we have let A3 and A4 vary freely while obeying the UNI and BFB conditions. Moreover,

we have enforced the UNI and BFB conditions at every intermediate scale w; this indirectly
constrains the initial A3 and A4 because, if they are too large, then at some intermediate u <
ucur either the UNI or the BFB conditions will be broken. In Fig. 2 one observes the result
of this labor in the form of upper bounds on 13 and |A4| at the scale © = m,, depending on the
scale Umaximum at Which either the UNI or the BFB conditions start being broken. As expected,
if one demands that the UNI and BFB conditions are respected for a longer u range, then one
obtains ever stricter upper bounds on the initial values of A3 and A4. The same upper bounds
may be also observed, now in a correlated fashion, for three values of pmay, in Fig. 3.

The SARAH model files and output files, and the expressions of the RGEs for al/l quartic
couplings (including the ones mentioned in Sect. 3), both in pdf and Mathematica notebook
files, are available at https://github.com/jurciukonis/RGEs-for-multiplets.

A =0.258, y, = (49b)

3. Full potential
The product x ® x of two identical multiplets of SU(2) only has a symmetric component—the
antisymmetric component vanishes because the two multiplets are equal—which consists of:°

1
(= 5 ceil (n.2) (50)

The ceiling function ceil (1, 2) maps # into the smallest multiple of 2 larger than or equal to .

10/25
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RS | [7=2 [ /=3 L5
1.0 ] : 1.0
¥
<
0.5 ] ! 0.5
0.0 0.0
00 05 10 1500 05 10 1500 05 10 15
A3 A A5

Fig. 3. Regions of stability for J = 1 (left), / = 2 (middle), and J = 3 (right) and for energy ranges from
w = m; to 10° GeV (blue regions), 10'* GeV (red regions), and 10'° GeV (green regions).

multiplets of SU(2)
(X®X)syrnmetric:Cead@e@"'@q’ (51)

where

e cisan SU(2) multiplet with weak isospin 2J,
e dis an SU(2) multiplet with weak isospin 2J — 2,
e ¢isan SU(2) multiplet with weak isospin 2J — 4,

and so on; lastly, ¢ is either a triplet of SU(2) if J is half-integer, or SU(2)-invariant if J is
integer. Thus,

Coy drj—» €4
C2J-1 dry_3 €75

(X ® X)symmetric = : @ : ©® : @, (52)
Cc_oy dr oy €427

where the sub-indices give the third component of isospin. The two-field states in each multiplet
in the right-hand side of Eq. (52) are evaluated by using Clebsch—Gordan coefficients in the
standard fashion. Thus,

o
J J 2]
cr = Z Z 81417 |:I’ I :| XrXrs (53a)
I=—J I'=—J
Ll JoJ 272
dr = Z Z Srr+r |: o It :|X1/X1~, (53b)
I'=J I"'=—J
I
J J 2J-4
er = Z Z Sr.r+1 |:I’ % I :|X1/X1'/, (53¢)
I'=—J I'=—J

and so on.
The “terms four-linear in the x;” in Eq. (11) are

A .
e aterm ?2 Ff, where F; has been defined in Eq. (5);
e aterm AsF5, where

2J-2

F= Y ldl; (54)

1=2-2J
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e aterm AgfFg, where

2J-4

Fo= ) lel; (55)

1=4-2J

 and other analogous terms, up to A,,3F 3, where

_ lg11* + g0l + |g_1]> < half-integer J,

F.;= i 56
3 |q0|2 < integer J. (56)
The quartic part of the SP thus is
Al , A , 1+3
V4=7Fl —l-?Fz +)»3Fle+)»4ﬂ+Z)»iE'- (57)
i=5
A term with the invariant
27
F= Y ol (58)
1=-2J
has not been included in V; because F; linearly depends on the other invariants. Indeed,
+3
F+Y F=F. (59)
i=5
3.1. BFB conditions
Let us consider again (x ® x )3 given in Eq. (6). The SU(2)-invariant quantity
J 2 J 2
2
(X ® 2)s] E(Z le[|2> +H Y PR =PI+ (60)
I=—J I=1-J

is four-linear in the x; and therefore it must be linearly dependent on Ff and F;. Indeed, one
finds that
1+3

2
((x ® )| =TF =) ik, (61)
i=5
where the numbers «; are given by
ki=({—4)@4J +9 —2i). (62)

Notice that all the «; are positive. We have explicitly checked, up to J = 10, that Egs. (61)
and (62) are correct.
From Eq. (61),

+3 J 2 -
ZK,-E'—JZFZZ=—<Z 1|X1|2) _‘a_b’ ; (63)

i=5 I=—J

where z has been defined in Eq. (13); hence, from the definition of F; in Eq. (12),

t+3 2
2F —z —z* z |2
N iF - SE= - —]—‘ . 64
= ’ ( ja® — b ) ab 9
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Therefore,
t+3 2
4F, 1
ZK;‘E—JZFZZ-I- 4 _
F? 2 4 4\?
= T 4gab? (ol - 1p1*)

5 2
— [8 |ab|* Fy — (|a|2 - |b|2) (z+ z*)] } : (65)
Thus,
t+3 2
4F,
> kil — JPF 4+ —% <0. (66)
par: u
We now define the dimensionless quantities [14]:”
3|
= —, 67
=4 (67a)
£ i=5 t+3) (67b)
i = —= l=2J,..., ,
Y F22
2F
§= 24 (67¢)
JR B
We then have, from Eq. (57),
3
Vi Mo, A J <
B +7+k3r+§k4r(3+§/\m (68a)
J
A A3+ 5 X406
1
= (r, 1) ; 3 (:) . (68b)

At S hab A +2;Am
It follows from the definitions of / and F in Egs. (5) and (10), respectively, that » > 0. There-
fore, the conditions for V} / F22 in Eq. (68b) to be nonnegative are [10]:

>0, (69)
t+3
Ay +2 Z)»fj/i >0, (69b)
i=5
J 143
Az + 5 b > — | A ()\.2 +2 ;)\i%’)- (69¢)

Conditions (69b) and (69¢) must hold for all possible values of § and of ;. It follows from the
definitions of the F;, cf. Egs. (54) and (55), that the 3; > 0. From Eq. (66),

t+3
> k= J*(1-8%) <. (70)
i=5
Thus, since all the «; and the y; are positive,
+3
0= Ky =T (1-8%), (71)

i=5

"The Klein-Gordon fields a, b, and x; have mass dimension, hence [F] = [F] = M? and [F] = [F] =
M* fori=>5,..., t+ 3.
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and therefore —1 < § < +1.3 It is advantageous to define
1+6

x=——¢€[0,1]. (72)
Then Eq. (71) reads
t+3
0<> ki <47x(1-x). (73)

i=5
This condition determines the domain of the y;, which has corners at the points [14]:

R (74a)
J2
y5:...:yt+2:0, )/t+3:—, (74b)
Kt+3
JZ
'y5:...:)/t+1:yt+3:0’ Vl+2:_v (74C)
K42
J2
Mo=o=ma=0 p= (74d)

Since A, + 2 Zgg A;y; 1s a linear function of the y;, condition (69b) just has to hold at the
corners of the domain of the y; in order to hold in the whole domain. We thus obtain necessary
BFB conditions:

Ay >0, (75a)
/Xi >0, (75b)
where
N= 2+ (76a)
2J?
qgi=— A (76b)

Furthermore, condition (69¢) must certainly hold at the point (74a) and for both § = 0 and
8 = =£1. Therefore,

A3 = —y/AAg, (77a)

2
hal <5 (3 +Vai2). (77b)

The necessary BFB conditions (77a) and (77b) generalize conditions (37b) and (37¢), respec-
tively, when A, is nonzero.
Condition (69¢) must also hold at all the other corners (74) of the y; domain. Therefore,

J
A3 — 5 A+ Jhax > —/A1 [ha + 4gix (1 — x)] (78)

$We shall implicitly assume that the conditions |[§| < 1 and (71) completely determine the parameter
space, i.e. that no further conditions restrict the parameters § and y;. Equivalently, we assume that, for
any parameters /5 > 0,r > 0,8 € [—1, +1], and y; obeying condition (71), it is possible to find fields a, b,
and y; satisfying Egs. (5), (10), (12)—(13), (54)—(56), and (67). We thank Renato Fonseca for calling our
attention to this implicit assumption of our work.
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must hold foralli = 5, ..., ¢ + 3 and for all x = [0, 1]. Thus, the functions

J
() =33 = JhatJhax+ i ot dagr (v = x)] (=5,...043) (79)

must be nonnegative Vx € [0, 1]. Clearly [14],

dfi _ T+ 2y qi (1 = 2x) ’ (80a)
dx \/Ag +4q; (x — x2)
df _ —Agh/l (80b)

) 3"
dx [\/Az +4q; (x — xz)}
Because of Eq. (75b), the second derivative of f; has the sign opposite to that of ¢;, i.e. opposite
to that of A,. Since we have already ascertained—through condition (77b)—that both f; (0) > 0
and f; (1) > 0, the condition f; (x) > 0, Vx € [0, 1] is equivalent to the following:

e ecither d*f; /dx* <0,

e or there is no real number x, such that " (xy) = 0,
 or such a x exists, but it is outside the interval [0, 1],
e orf(xg)>0.

This is equivalent to

either A; > 0, (81a)
or )»,'Al' < 0, (81b)
i 2
or _— > , (81c)
qi Al J |)\4|
N
or Ay > — ——, (81d)
qi
respectively, where
JZ

Conditions (69a), (75), (77), and (81) (i =5, ...,t + 3) are necessary and sufficient for the
boundedness-from-below of V, [14].

3.2. UNI conditions

The condition (25b) stays unchanged when there are in V4 terms four-linear in the x;.
The eigenvalues of the scattering matrix of the two-field states with null 73 and hypercharge

2Y, viz. the states xsx_7, XJj-1X1—J> XJ—2X2—J, - -, produce the conditions
Al < M, (83a)
A +20 <M (i=5,...,t+3). (83b)
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The scattering matrix for the two-field states with null hypercharge and null third component
of isospin—i.e. for the states |a|?, |b|?, and the n states | x11>—generalizes the matrix of Eq. (27):

2)\.1 A 2
S=|rxn 24 (84)
s =T A
where the 1 x n submatrices ¥ and ¥, are given by
A
(EDy=n+5 U +1-k), (85a)
A4
(Z)ie = A3 — > J+1-k), (85b)
fork =1,...,n The n x n matrix A is given by
A =22 (1 +8k7) (86a)

t+3  4J+17-4i

+4 Z)\‘i Z 3m, k+1+7-2i
i=5

m=1

2
J J 27 +8—2i
X<|:J+1—k J+1—1 2J+9—2i—m:|) ’ (86b)

for k, ! € [1, n]. For all the values of J that we have investigated (i.e. for all integer and half-
integer J up to and including 5), the matrix S of Eq. (84) is equivalent to the direct sum of

e 2J —1 1 x 1 matrices, i.e. numbers that are linear combinations of A, and the A; (i =
S5,...,t+ 3), the coefficient of A, in those linear combinations being 1;
e one 2 x 2 symmetric matrix with
* (1, I) matrix element Aj,
e (2,2) matrix element which is a linear combination of A, and the A;, the coefficient of A,
in that linear combination being 1,
e (1,2) matrix element proportional to A4;
 another 2 x 2 symmetric matrix with
* (1, 1) matrix element 34,
e (2, 2) matrix element which is a linear combination of A, and the A;, the coefficient of A,
in that linear combination being 2J + 2,
* (1, 2) matrix element proportional to A3.

The moduli of all the eigenvalues of these 2J 4+ 1 matrices should be smaller than M. Since
the matrices are either 1 x 1 or 2 x 2, there are simple analytic expressions for their 2J + 3
eigenvalues. In particular, from the last two matrices mentioned above one obtains the unitarity
conditions

2
|,\1+A1|+\/(x1—A1)2+§J(J+1)(21+1),\§<2M, (87a)

300 + Aal +/ (31 — A2)* +8(2) + 1)22 < 2M, (87b)
where

+3 . . .
T2 16J +36 40 (2 —4J —17) 4J —4i + 17
A = +4 . 88
1= ; JU+1) 27+ 1 (882)
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Table 1. The maximum allowed value of |14|, and the maximum and minimum allowed values of A3, for
various values of J.

J 1/2 1 3/2 2 5/2 3 7/2
maximum |A4| 26.46 17.49 11.96 8.10 5.97 4.65 3.76
maximum A3 12.37 10.10 8.75 7.82 7.14 6.61 6.19
minimum A3 —1.46 —1.26 —1.13 —1.03 -0.95 —0.89 -0.84

t+3 .
4J —4i+ 17
Ay =2+ +4 ) ——
— 2J+1

We have explicitly checked that Egs. (87) are correct up to J = 11/2.

The unitarity conditions that one obtains from the other 2J matrices are explicitly given in
the Appendix for all J through 7/2. We point out that our unitarity conditions for the case
J = 3/2 do not perfectly coincide with the ones given in Ref. [6].

So, the full UNI conditions are:’

(88b)

Al < M, (89)
condition (25b), conditions (83), conditions (87), and the conditions in the Appendix.

3.3.  Results

We have generated random sets of values for all the coefficients of Vj except A;, viz. for A,
A3, g, and the A; (i =5, ..., 1 + 3). The coefficient A; was kept fixed at the value in Eq. (17).
We have then imposed on the generated sets both the BFB and the UNI conditions, thereby
discarding most of them. We have made scatter plots of the sets of values that respected both
the BFB and the UNI conditions. By carefully scrutinizing those plots, we have arrived at the
maximum and minimum allowed values of A3, and at the maximum allowed value of |A4l,'”
which are displayed in Table 1. These values were also checked through a fitting procedure, by
using both the UNI and BFB conditions.

It turns out that the maximum value of |14, when A, and the A; are allowed to be nonzero, is
slightly larger than Eq. (41a) when J is 1/2 or 1, and slightly larger than Eq. (42) for all larger
values of J. This is illustrated in the left panel of Fig. 1.

In Fig. 4 we depict the maximum possible mass of a multiplet of scalars as a function of its
minimum mass 7. This is simply given by the expression

Mmax = \/mZ + Jv? |)"4|maximala (90)
where J is the isospin of the multiplet,

1
2 2
V= ~ (174 GeV)~, 91

and |A4]maximal 1S the maximum allowed value of |A4| for each J. One sees that heavy scalar multi-
plets tend to be almost degenerate; for m = 2 TeV, mpy.x — m ~ 100 GeV. Notice that my,x — m
is maximal for J = 3/2, i.e. when yx is a quadruplet; if x is a larger multiplet, then it has more
components but, as |d4|nmaximal 15 SMaller, those components are packed into an ever smaller
mass range.

Condition (89) is unimportant in practice, because we already know that A; = 0.258 is quite small.
0The coefficient A4 can always be zero, i.e. the minimum allowed value of |4] is zero.
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Mpax [TeV]

Fig. 4. The maximal mass ny,,, of a scalar multiplet x versus its lowest mass m, for three different values
of the isospin J of .

The maximum allowed value of A3 is always attained when A, and all the A; vanish, and exactly
coincides with Eq. (40b), as is illustrated in the right panel of Fig. 1.1

The minimum allowed value of A3 is always attained when both A4 and all the A; are zero, but
Az is nonzero. Indeed, the minimum value of A3 is determined by the BFB condition (77b)—
with A4 taken to zero—together with the UNI condition

Br1+2(1+J) x| + \/[3A1 —2(14+NHrMP+801+ 2J)A3 < 2M, (92)
which holds when all the %; are taken to zero. Thus, when conditions (77b) and (92) are trans-

formed into equations, they produce the solution
1 M (M —3)

2T U+ DM = Q2+ Dy (32)
M3
’\3‘_\/2 T+DHM—Q2+ ) (©3b)

Equation (93b) gives the minimum value of X3 in the fourth row of Table 1.

4. OPs

In our NP model it is possible—depending on the values of J and Y —that the new scalars do
not couple to the light fermions at all. If that is so and if, moreover, the new scalars are very
heavy, so that they cannot be produced at the LHC—e.g. through the Drell-Yan process—then
they will make themselves felt only indirectly through their oblique corrections, i.e. through
their contributions to the self-energies of the gauge bosons. Following Maksymyk et al. [15], we
parameterize those corrections through six OPs S, T, U, V', W, and X. We use as input of the
renormalization process the quantities « (the fine-structure constant), G (the Fermi coupling
constant), and my (the Z° boson mass). Following Ref. [16], we use o (m%) = 1/127.951, Gp =
1.1663788 x 10> GeV~2, and m, = 91.1876 GeV. We then define the weak mixing angle 0y

through
o

2 2

T (94)
ZGFleZ

""When the coefficient A3 attains its maximum allowed value displayed in the third row of Table 1, A4
may have various values, including zero.
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where ¢y = cos0Oy and sy = sin0y. This results in s%,V = 0.23356. We then use S, ..., X to
parameterize, for each electroweak observable O, the ratio between the prediction of the NP
model and the prediction of the SM, by using expressions of the general form

0
O—NP=1+C§S+C?~T+CIOJU+c,9V+cVOVW+c§X, (95)
M
where the coefficients cg, ..., cQ—given, e.g. in Ref. [17]—are known functions of the input

quantities.

4.1. Formulas for the OPs
According to Ref. [18], when in the NP model there is only one SU(2) multiplet of new scalars
with weak isospin J and weak hypercharge Y, the parameter 7" produced by those scalars is
given by

J
ST (PPHT =P +1)6, (my.mp ), (96)
=1-J

r—_9r
RN ;

where m; denotes the mass of the scalar with third component of isospin /. The function
0+ (x, p) is defined as

X+ 2xy lnx<:x7é
o =" x=y "y » 97)
0<=x=y.
The parameters V', W, and X are given by
Grmy ! 2 22 <m§ m%)
V = Icy, — Ys ol—,— ], 98a
V2rm2a I=7J( v ") my mg; o8
1 ! m2 m?
= (J2+J—12+1)p<—’, "‘), (98b)
4713%,, 1_21_:1 m%V m%,V
RS 2 2 mj
X:_Z Z I+Y)(Icy —Ysy) ¢ (m—zzm—z) (98¢)
I=—J
respectively. In Egs. (98),
11 5(x+y) xy (x—p)
(xy)=x— + +
36 12 3(x—y)* 6
x> —y? —x) X2 4)y? X+ Xy (x + X
n y+(y)+ y_ . y ) ( y3)1n_
z 2 4p-x) Rx-p  6p-x’]| ¥
A (x,
LA by, (99a)
12
1 34y (x—y)7 -xy xX*4+12 =3y x
- - _ In=
p(x,) S 1 + 7 + 2 +4(y—x)+ 3 ny
2
X—y)y —x—
4! y)4 Lf(xy). (99b)
for x # y, while
4 4x  A(x,Xx)
{(x,x)_§—?+ B f(x, x), (100a)
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p(x,x):é—Zx—gf(x,x). (100b)
In Egs. (99) and (100),

— 1+ JA(x,
VA (x,) In Xt 1+ AEX y; < A(x,y) =0,
x+ - - x’
f(x,y) = Y v 1y (101)
=2y —=A(x,y) |:arctan XoyHl + (x < y):| <= A(x,y) <0,
—A(x, )
where
A, p)=1=2(x~+y)+ (x—p)’. (102)
For S and U one has
S=S5+S", U=U+U". (103)
where
J
) 5 me m?
S =-= I¢, — Ys? 1,-’), 104
”,:7(CW SW);‘<2Zmzz ( a)
1 J mz mz
U'=-8"-= > (J2+J—12+1);<—2’, ’2‘1>, (104b)
m
I=1-J w w
and
J
Y 2
S=—— Y I, (105a)
3 = nw
1 J m> R m?
U = — (P+I-P+Degl 5= )+—= > (JP+7-3F)In—L  (105b)
127 & m;_, o —, I
In Eq. (105b),
x3—3x2—3x+llnx 5x2—22x+5 v 1
g(x) = (x—1) 3(x—1)° ’ (106)

0 x=1
is a function that obeys g (x) = g(1/x).

We note that the expressions for the OPs are invariant under the transformation I —
—1I1, Y — —Y. This allows one to choose the scalar with I = —J to be the lightest one, pro-
vided one keeps Y free, i.e. provided one considers both negative and positive values of Y'; that
is the procedure that we adopt.

4.2.  Numerical results
In our numerical work we utilize the set of electroweak observables given in Table 2. For each
set of OPs and for each observable O, we have computed Onp / Osm by using Eq. (95). We
have then computed the residuals, defined as Onp / Osm minus the values in the last column
of Table 2. The x? function for each set of OPs was defined as x> = RC~'R”, where R is the
row-vector of the residuals and C is the covariance matrix; the latter is evaluated according to
the correlations among the observables [16, 19, 20].

For each set of OPs, the pull is evaluated as /8=, where r is the residual defined above and
8% is the error given in the fourth column of Table 2.
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Table 2. First column: the electroweak observables used in our work. Second column: their experimen-
tal values, taken from Ref. [16]. Third column: the SM predictions for them. Fourth column: the ratio
between the experimental value and the SM prediction.

Observable Measurement (Opeas) SM prediction (Osy) Omeas/ Osm

a}?ad [nb] 41.481 +0.033 41.482 4+ 0.008 0.999976 4+ 0.0008186
Ry 20.767 £ 0.025 20.736 £ 0.010 1.00149 + 0.001299
Ry 0.21629 + 0.00066 0.21582 + 0.00002 1.00218 + 0.003060
R, 0.1721 4+ 0.0030 0.17221 £ 0.00003 0.999361 £+ 0.01742
A%) 0.0171 £0.001 0.01617 £ 0.00007 1.05751 + 0.06201
A 0.0996 + 0.0016 0.1029 =+ 0.0002 0.967930 =+ 0.01566
AL 0.0707 & 0.0035 0.0735 =+ 0.0002 0.961905 + 0.04769
Ay 0.1513 +0.0021 0.1468 4+ 0.0003 1.03065 + 0.01446
Ap 0.923 £ 0.020 0.9347 0.987483 £+ 0.02140
A, 0.670 £+ 0.027 0.6677 £+ 0.0001 1.00344 + 0.04044
E% (LEP-1) 0.2324 4+ 0.0012 0.23155 £ 0.00004 1.00367 + 0.005185
s'% (Tevt.) 0.23148 + 0.00033 0.23155 £ 0.00004 0.999698 + 0.001436
5% (LHC) 0.23129 4+ 0.00033 0.23155 £ 0.00004 0.998877 £ 0.001436
myy [GeV] 80.377 £0.012 80.360 +£ 0.006 1.00021 £ 0.0001670
Iy [GeV] 2.046 £ 0.049 2.089 £ 0.001 0.979416 £ 0.02346
'z [GeV] 2.4955 4+ 0.0023 2.4941 £+ 0.0009 1.00056 + 0.0009903
gy —0.040 £ 0.015 —0.0397 £+ 0.0001 1.00756 + 0.37784
gy —0.507 £ 0.014 —0.5064 1.00118 + 0.02765
Ow (Cs) —72.82 +0.42 —73.24 £ 0.01 0.994265 + 0.005736
Ow (T —1164 + 3.6 —116.90 £ 0.02 0.995723 £+ 0.03080

Firstly, setting V' = W = X = 0 and freely adjusting S, 7', and U we have accomplished our
best fit of the electroweak observables in Table 2. We have obtained x> = 14.201 for § = —1.2 x
1072, T =28x 102, and U = 2.0 x 1073,

In our NP model, for each value of the isospin J of the multiplet, there are just three free
parameters:

* |A4], which determines the mass-squared difference Am? = |i4]v*/ 2 between any two suc-
cessive components of the multiplet.

e The mass m of the lightest component of the multiplet; without loss of generality we take
that component to be the one with the smallest third projection of isospin. Thus, m? =
m> + I +J)AmP for I = —J,...,.

» The hypercharge Y of the multiplet.

For instance, by choosing J = 2, m = 3 TeV, A4 = 3.65, and Y = 1.65 we have obtained x> =
14.2015, which is not very far from our best fit. We thus see that our model is able to fit the
electroweak observables just as perfectly as a free fit.

For each value of J up to 7/2—the upper bound on J found in Ref. [4]—we let Y vary from
— Yax t0 Yimax, Where Yo« is the J-dependent upper bound on | Y| determined in Refs. [4,5].
We let m vary from 50 GeV to 3 TeV, and we let [A4] vary from zero to its maximum allowed
value given in Table 1. We keep only the points that either

(1) have x? smaller than 30 and all the pulls smaller (in modulus) than three, or
(2) have x? smaller than 17 and a/l the pulls smaller than one, except, possibly, the pulls of
AP 4y, Ry, and Qp (Cs).
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Fig. 5. The maximum allowed value of |A4|versus the lightest mass m, for various values of J and for
fits with x? < 30 (left) or x> < 17 (right). The hypercharge Y was left free. The horizontal dashed lines
correspond to the bounds on |A4] from the UNI and BFB conditions.
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Y

Fig. 6. The upper bound on |A4|versus the hypercharge Y, for various values of J, for m = 3 TeV, and for
fits with x2 < 30 (left) or x? < 17 (right). The horizontal dashed lines indicate the upper bounds from
the UNI and BFB conditions, and the curved lines indicate the upper bounds from the OPs. The gray
bands indicate the J-dependent restrictions on Y derived in Refs. [4,5].

In this way we obtain two sets of points, which we use to construct Figs. 5 and 6. Most pulls of
the observables are always very small; only a few observables have large pulls. As a consequence,
in practice, points with 2 < 30 mostly have all the pulls between —3 and +3, and points with
x? < 17 almost always have all the pulls between —1 and +1, except for the observables Ag)bb)A A
Ry, and Oy (Cs)."?

One sees in Fig. 5 that, unless m is very large and, therefore, the OPs are very small, the
restrictions on |A4| from the OPs are usually stronger than the UNI and BFB conditions that
we have derived in this paper. Indeed, for x?> < 30 and m < 2 TeV the restrictions from the OPs
are stronger, and the same happens for x> < 17 and m < 3 TeV.

The relation between the upper bound on |A4] and the hypercharge Y is quite complex and
very much depends on m (because, if m gets larger, then the OPs get smaller and therefore the
OPs do not constrain |14]). In Fig. 6, which was made for m = 3 TeV, one observes that, as ¥
increases, the upper bound on |4 slightly decreases. If one requires a smaller x in the fit of

12We make the exception of Qy (Cs) because, if one forces its pulls to be smaller than one, that notice-
ably restricts the parameter space, by practically eliminating all the negative values of Y.
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the OPs, then the constraint on |A4| derived therefrom becomes stronger and eventually, as one
sees in the right panel of Fig. 6, the UNI4+BFB bound becomes completely ineffective.

5. Conclusions and outlook

In this paper we have studied the extension of the SM through a scalar multiplet y with ar-
bitrary isospin J and hypercharge Y. For every value of J, we have included in the SP just
those terms that are present there for any value of Y. We have especially concentrated on the
term (1) which fixes the squared-mass difference Am? between the successive components of yx,
cf. Eq. (15). We have derived an upper bound on |14|, hence on Am?, from both the UNI and
BFB conditions on the SP. We have found that, remarkably, that upper bound depends crucially
not just on the UNI conditions, but also on the BFB ones. For instance, the upper bound that
we have found is quite a lot more stringent than the one utilized in the recent Ref. [21], which
used only UNI conditions.

Remarkably, we have been able to derive necessary and sufficient BFB conditions on this
model, even when we allowed the presence in the SP of the most general terms four-linear
in the components of y. It so happens that those terms, even if they are quite complicated to
account for, end up relaxing only a little bit the upper bound on |14], cf. Fig. 1.

Phenomenologically, the model that we have studied is, by itself alone, of little value, because,
since we have left Y arbitrary, the multiplet ¥ does not have Yukawa couplings to any fermions.
Moreover, its lightest component is, for arbitrary Y, electrically charged and, moreover, abso-
lutely stable, which is of course incompatible with observation. Therefore, our study can only be
understood as a step towards the understanding of more specific models, that will have precise
values of J and Y, and probably also extra terms in the SP, viz. higher-dimensional terms.
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Appendix. Explicit UNI conditions

For J through 7/2, the unitarity conditions that originate in the matrix S of Eq. (84) are, besides
Eqgs. (87), the following:

e ForJ =1,
4
)\2+§)Ls < M. (A.1)
e ForJ =3/2,
3
A+ g)xs <M, (A.2a)

23/25

¥202 Jequerdags 90 uo Jasn AJISIBAIUN SNIUJIA JO BUIDIPBIA [BOIUID pue [eluswaliadx3 Jo ainisu| Aq 60881 £2/909€80/8/¥20Z/el01ue/de1d/woo dnoolwspede/:sdpy wodl papeojumo(q



PTEP 2024, 083B06

D. Jurciukonis and L. Lavoura

e ForJ =2,
e ForJ =5/2,
e ForJ =3,
e ForJ =7/2,

9

)\.2+§)\.5 < M.

16 4
M+ —As — = Ag

< M,
7 5

8 4
M+ =i+ =A¢

< M,
7 5

A 6A+4k
27 AST 5 A

< M.

79 22
At - As — o7 A¢

M
45 3570 =

19 2
)»2+—X5—§)»6

M,
i <

18 25 4
M+ oAs+ - het+ 5 A7

M,
77 21 747 =

6 10 4
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M
7Tt T g =

18 19 4
M ——As+ 7 A+ 5 A7

M
7 STyt g =

)\+194)» 10)» +4)» M
— A5 — — = <M.
2T o AT AT S AT

A 1A+31k 13)\ M
_— e —_ — <
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k+53)» +119)» lk M
— — Xl — = <
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A2+%A5—$A6—%/\7 <M, (A.6¢)
x2+%xs+gx6+%x7 <M, (A.6d)
Az—%xs+éx6+%x7 <M, (A.6e)
A2+%A5—%A6+%A7 < M. (A.6f)
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