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Abstract: Our recent analysis of empirical limit order flow data in financial markets reveals a power-
law distribution in limit order cancellation times. These times are modeled using a discrete probability
mass function derived from the Tsallis q-exponential distribution, closely aligned with the second
form of the Pareto distribution. We elucidate this distinctive power-law statistical property through
the lens of agent heterogeneity in trading activity and asset possession. Our study introduces a
novel modeling approach that combines fractional Lévy stable motion for limit order inflow with
this power-law distribution for cancellation times, significantly enhancing the prediction of order
imbalances. This model not only addresses gaps in current financial market modeling but also
extends to broader contexts such as opinion dynamics in social systems, capturing the finite lifespan
of opinions. Characterized by stationary increments and a departure from self-similarity, our model
provides a unique framework for exploring long-range dependencies in time series. This work paves
the way for more precise financial market analyses and offers new insights into the dynamic nature
of opinion formation in social systems.

Keywords: time series and signal analysis; fractional Lévy stable motion; power-law statistics;
fractional opinion dynamics; financial markets

1. Introduction

The debate within the scientific community regarding power-law behavior in so-
cial and physical systems has been long-standing [1,2]. Typically, power-law behavior
is observed at the macro level of a system, prompting researchers to seek microscopic
interpretations of these phenomena. Mathematically, the power-law is unique in its sat-
isfaction of the scale-free property p(bx) = f (b)p(x) [1], establishing a close relationship
between the self-similarity of stochastic processes and power-law behavior [3]. This sta-
tistical property is a characteristic feature of both social and financial systems. Measures
of long-range memory based on self-similarity are often ambiguous, as Markov processes
with power-law statistical properties can exhibit long-range memory, including slowly
decaying auto-correlation [4–12]. Financial markets, in particular, provide empirical limit
order book (LOB) data that exhibit these power-law statistical properties [13].

From the perspective of econophysics, it is essential to provide microscopic interpreta-
tions of econometric models that typically serve as macroscopic modeling of complex social
systems. These models frequently rely on assumptions of self-similarity and long-range
dependence. Empirical data analysis is essential for verifying assumptions and using macro-
scopic modeling. The nonlinearity in Markov processes can exhibit statistical properties
usually considered as long-range dependence on physical and social systems [14].

The order-splitting behavior of financial market traders in empirical data of order
books is recovered as statistical property or long-range persistence [15,16]. Thus, we
have evidence of genuine long-range dependence in financial systems, which has to be
accounted for in comprehensive modeling. The order-splitting behavior of traders should
be evident in the sequence of submitted limit orders. In this contribution, we demonstrate
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the critical role of assumptions regarding self-similarity and illustrate how a straightforward
model of opinion dynamics based on the discrete autoregressive fractionally integrated
moving average (ARFIMA) series can challenge these assumptions. Our proposed model
is empirically grounded on the order imbalance time series from financial markets [17,18]
and can serve as a theoretical interpretation of empirical findings. This contribution is the
concluding research of order flow imbalance dynamics and generalizes previous findings
as a model of opinion dynamics. Here, we provide a natural interpretation of empirically
observable power-law of cancellation times by the heterogeneity of trading agents. We use
Kolmogorov–Smirnov (KS) statistics to quantify the self-similarity test for the investigated
time series.

Section 2 provides a brief overview of the limit order time series, serving as the
foundation for a broader interpretation of opinion dynamics. In Section 3, we present a
model of power-law waiting times arising from a system of heterogeneous agents. Section 4
offers evidence of the broken self-similarity assumption when opinion cancellation is
included in the model. Finally, we discuss our results and offer conclusions in Section 5.

2. Modeling Limit Order Flow and/or Opinion Dynamics

In our recent work [17], we analyzed the limit order flow of the market and denoted it
as XL(j):

XL(j) =
j

∑
i=1

vi =
j

∑
i=1

YL(i), (1)

where vi represents the volume of the submitted limit order. We examined XL(j) through
the lens of the ARFIMA process, as the probability density functions (PDFs) of order
volumes vi exhibit power-law tails. We documented fluctuations in the memory parameter
for various stocks, finding values in the range of d ≃ 0.19 ÷ 0.34. Despite the rough
approximation of the PDF of volumes vi by the Lévy stable distribution, the time series
XL(j) can be considered Lévy stable motion (FLSM)-like. Though we deal with discrete
time series and use event time in modeling empirical series, a more general concept of
FLSM seems appropriate here. The discrete-time ARFIMA process aggregated in the limit
converges to either fractional Brownian or Lèvy stable motion [19].

The series XL(j) serves as a macroscopic measure of opinion in the order flow, ex-
hibiting long-range dependence due to the heterogeneity of the agents. However, a more
comprehensive measure of traders’ macro opinion should incorporate events of order
cancellation and execution. Therefore, we explore an alternative sequence of order flow:

X(j) = ∑
i1⩽j<i2

vi1,i2 =
j

∑
i=1

Y(i), (2)

where the first sum includes all live limit orders, encompassing all limit order volumes vi1,i2
submitted before event j and awaiting cancellation or execution. A sequence of limit order
submissions of length N generates a series of order imbalance X(j) of length 2N, as each
submission pairs with a cancellation or execution event. Notably, X(j) differs significantly
from XL(j): X(j) is bounded while XL(j) is unbounded. Additionally, our evaluation of the
memory parameter d for X(j) using ARFIMA assumptions yielded contradictory results.
Our previous work [17] concluded that the time series defined in (2) does not exhibit
FLSM-like properties. Consequently, persistent limit order submission flow or long-range
dependence is concealed from econometric methods when analyzing the time series of
order imbalance X(j).

To reinterpret the order imbalance series X(j), we introduced a q-extension of the
geometric distribution as the discrete q-exponential probability mass function (PMF) [17]:

Pλ,q(k) = SPλ,q(k − 1)− SPλ,q(k) = (1 + (q − 1)(k − 1)λ)
2−q
1−q − (1 + (q − 1)kλ)

2−q
1−q . (3)
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The connection with generalized Tsallis statistics [20] strengthens the choice of this
power-law distribution. The PMF (3) is a good choice for fitting the empirical limit order
cancellation times. Our analysis [17] showed the low sensitivity of defined parameters to
the order sizes and price levels. The fitted parameters, q = 1.5, and λ = 0.3, are consistent
across stocks and trading days analyzed.

One could consider the stochastic queuing model where tasks are executed based on a
continuous-valued priority [21,22] as an explanation of power-law waiting time distribution.
We propose an alternative reasoning and, in Section 3, derive the power-law of waiting
time distribution originating from an agent’s heterogeneity.

We propose a relatively simple limit order imbalance model based on fractional Lévy
stable limit order inflow and the discrete q-exponential lifetime distribution. This model,
derived from empirical analysis [17], has a broader perspective for the possible applications
in other social system modeling.

Extending the model’s interpretation, we consider it a version of opinion dynamics
applicable to other social systems. Originally, the model consisted of two random series:
(a) A series of submitted limit order volumes vi, which we generate as a discrete-time
process ARFIMA{0,d,0}{α, N}, where d denotes the memory parameter, α the stability index,
and N is the series length. (b) An independent series of the same length for the limit order
cancellation times generated using the PMF Pλ,q(k) defined in Equation (3).

For the extended model interpretation, vi represents the opinion weight, positive for a
buy (first one) and negative for a sell (second one). The limit order cancellation time, mea-
sured in event space k = i2 − i1, represents the opinion lifetime. While initially designed
for analyzing financial market order flow, this extended interpretation can investigate
other instances of weighted opinions in social systems. This model exemplifies a simple
time series constructed using an ARFIMA sequence, yet exhibiting properties beyond the
assumption of self-similarity.

With these independent discrete-time sequences, we calculate the model time series
X(j) = ∑

i=j
i=1 Y(i) defined by sequence vi1,i2 (see Equation (2)). Here, the opinion submission

event number i1 and its cancellation event number i2 are determined for each vi of sequence
(a) and the corresponding discrete-time interval k of sequence (b). The generated discrete-
time series represents an artificial analog of the empirical order imbalance, comparable with
order flow data in financial markets [17]. We achieved good correspondence with empirical
data by choosing the artificial model parameters: α = 1.8; λ = 0.3; q = 1.5 [17]. For other
applications, the model can be simplified by replacing the sequence vi with unit weights:

vui = Sign(vi) =


−1 if vi < 0
0 if vi = 0
1 if vi > 0

. (4)

We denote these series with an additional index S, for example, XS(j). Another
simplification involves choosing q = 1 in Equation (3), yielding a geometric distribution:

lim
q→1

P(ds)
λ,q (k) = exp−yλ(expλ −1) = (1 − p)k−1 p, (5)

where p = 1 − exp−λ. The geometric distribution, as a discrete version of the exponential
distribution, is a common choice for waiting times in many physical and social systems.

3. Heterogeneity of Agents and Power-Law of Waiting Time

While power-law waiting times are observed in stochastic queueing models with
continuous-valued priorities [21,22], another plausible explanation for this phenomenon
could be the heterogeneity of trading agents. In financial markets, agents manage a diverse
range of assets, leading to substantial variability in their trading activities and the lifetimes
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of their orders. To address this, we propose a model that combines agent heterogeneity to
derive a power-law distribution for limit order cancellation times.

Consider n categories of agents, each with different rates for limit order submission
and cancellation. The lowest rate is one limit order per trading day (the duration of the time
series under investigation). Let us denote this probability as 0 < p1 = η/n < 1. Agents
who submit two orders per day have a probability p2 = 2η/n, and agents submitting i limit
orders have a probability pi = iη/n. The most active traders, who submit n limit orders,
have a probability pn = η.

Under this framework, the waiting (cancellation) time for agents in the i-th category
follows a geometric distribution with the PMF given by Pi(k) = (1 − pi)

k−1 pi. To obtain
the overall PMF for the ensemble of agents, we average this distribution over all cate-
gories. According to our assumptions, the arrival probability of orders from different agent
categories is proportional to the index i, and the number of agents in each category is
inversely proportional, Zipf’s law. Thus, the PMF for the entire ensemble of agents can be
expressed as follows:

Pη,n(k) =
n

∑
i=1

(1 − ηi
n
)k−1ηi/n2 ≃ η

n2

n

∑
i=1

i exp(−η(k − 1)i
n

) (6)

=
η(n exp(−η(k − 1))− (1 + n) exp(−η(k − 1) + η(k−1)

n ) + exp( η(k−1)
n ))

n2(1 − exp( η(k−1)
n ))2

. (7)

To understand the result given by Equation (7), consider the limit as n → ∞:

lim
n→∞

Pη,n(k) =
1 − exp(−η(k − 1))(1 + η(k − 1))

η(k − 1)2 , (8)

which reveals a power-law with an exponent κ = 2. This power-law nature is illustrated in
Figure 1, alongside partial sums defined by

PGeom
η,n,m (k) =

η

n2

2m

∑
i=1

i(1 − ηi
n
)k−1 (9)

PExp
η,n,m(k) =

η

n2

2m

∑
i=1

i exp(−η(k − 1)i
n

), (10)

where m = {0, 1, 2....10} and n = 210 = 1024.

1 10 100 1000 104

10-6

0.001

1

k

P
M
F

PMF Eqs. (7,9,10)

Figure 1. Visualization of PMFs from Equations (7), (9) and (10). The black line represents the PMF
from Equation (7); the green line represents Equation (9); and the red line represents Equation (10).
The green and red lines are indistinguishable due to the overlap of Equations (9) and (10). The black
line aligns with both partial sums when m = 10.

Our assumptions, incorporating Zipf’s law, lead to a power-law of cancellation (wait-
ing) time that is exponentially stretched on both sides. This restriction arises from the
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fixed number of agent categories n or the related number of opinions (orders) submitted,
N = n(n + 1)/4. Crucially, the power-law exponent in Equation (7) is κ = 2. Given the
relationship between the q-exponential distribution and the Pareto distribution, this implies
an exponent q = 1.5, as empirically defined in [17]. Therefore, the presented description
of the PMF for waiting times in a heterogeneous agent ensemble supports the conclusion
that a power-law exponent q = 1.5 is a stylized fact in financial markets. Further empirical
studies of cancellation times using the proposed PMF in Equation (7) would be valuable.

4. Self-Similarity Analysis of Proposed Model

Building upon previous efforts to unravel long-range dependence in social sys-
tems [14], it is crucial to juxtapose macroscopic descriptions with empirical data and
agent-based modeling. Extensive empirical studies of volatility, trading activity, and or-
der flow in financial markets have solidified the foundation for examining long-range
memory properties [15,16,23–27]. Various econometric models based on fractional noise
have been proposed to represent time series of financial variables [23,28–33]. Yet, from an
econophysics perspective, these models often serve merely as macroscopic interpretations
of complex social phenomena, frequently relying on ad hoc assumptions of long-range
memory. Despite advancements in trading algorithms and machine learning, predicting
stock price movements remains a formidable challenge for researchers [34–36].

In this section, we address the requirement of self-similarity, a cornerstone in modeling
long-range dependence, within our proposed opinion dynamics model. Econometric
methods commonly accept the assumption of self-similarity without scrutiny; however,
a deeper examination is crucial [37].

Stochastic time series are often assumed to be self-similar if they satisfy certain scaling
relations. For instance, a series X(t) is self-similar if it holds that X(τt) ∼ τHX(t), where
∼ indicates identical distributions for any τ > 0 and t > 0. Moreover, these series
should exhibit stationary increments: X(t + τ) − X(t) ∼ X(τ) − X(0) for any τ > 0
and t > 0. These processes, characterized by self-affine increments, follow the rule that
X(t+ cτ)− X(t) ∼ τH(X(t+ c)− X(t)) for any c > 0 [38]. All these properties are defined
through equality in distributions; thus, the simplest estimation of H should also be based
on distributional equality. By analyzing these distributions, we can identify deviations
from the self-similarity requirement.

Our model of limit order flow XL(j) and opinion imbalance X(j) assume stationary
increments as they stem from a Lévy stable distribution. We express the self-similarity
condition as follows:

|X(t + τ)− X(t)| ∼ τH |X(1)− X(0)|. (11)

To compare distributions, we employ the KS two-sample test [39] and compute the KS
distance D:

D = supx|Fτ1(x)− Fτk (x)|, (12)

where Fτi (x) represents the cumulative empirical distribution functions for an integer
sequence i = 0, 1, 2, ... and a corresponding sequence of τi,H = 2i:

Fτi,H (x) = P[|X(t + τ)− X(t)
τH | ≤ x]. (13)

From the definition of self-similarity (11), we expect consistent values of H that
minimize D for any τ. Diverse values of H across different τ suggest a failure to meet the
self-similarity criterion.

Our opinion dynamics model provides a useful case study to illustrate how introduc-
ing opinion cancellation disrupts a self-similar series of opinion inflow XL(t). We simulate
the ARFIMA series XL(j) with the following parameters: α = 1.8, d = 0.3, N = 200,000,
alongside a series of opinion durations (waiting times) k(j) using parameters q = 1.5 and
λ = 0.3. We then generate the series X(j) of opinion imbalance (2) with a length of 2N.
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In Figure 2, we compare numerically calculated KS distances D(H), Equation (12),
as functions of H for various series, demonstrating that, while the series XL(t) maintains
self-similarity, the series X(j) does not, as evidenced by the range of H values obtained for
different τi = 2 ∗ 2i. Even when simplifying the model to only consider signs of volumes,
the KS distance D(H) is less sensitive to H, supporting the conclusion that, while XS,L(j)
can be considered self-similar, XS(j) is not. From our point of view, this procedure to
control self-similarity should apply to any observed time series.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

H

D

(a)- Opinion Inflow D(H)
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D

(b)- Disbalance D(H)
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Figure 2. Numerical KS distances as functions of H: (a) for ARFIMA inflow of opinions XL(j); (b) for
opinion imbalance X(j) including opinion cancellation events; (c) for the simplified inflow of signs
XS,L(j); (d) for the imbalance with simplified inflow of signs XS(j). Model series generated using
parameters d = 0.3, α = 1.8, λ = 0.3, N = 200,000. The different colors of lines denote the different
values of τi.

While researchers employ various methodologies to estimate the self-similarity param-
eter H of observed time series, there often lies a gap in validating the self-similarity assump-
tion itself [37]. It is imperative that we devote greater attention to developing and refining
methods that rigorously test these self-similarity assumptions. Particularly, the method
we propose here, while robust for complex models, shows limitations in accuracy when
applied to simplified series such as XS,L(j) and XS(j), where the numerically calculated
functions D(H) display a fractured structure indicative of potential method inadequacies.

In Table 1, we list the Hurst parameter evaluation results using diverse methodologies
for the model series XL(j), X(j), XS,L(j), and XS(j). Further details on the estimation
of mean square displacement (MSD) and H using different methods, such as the Abso-
lute Value Estimator (AVE) or Higuchi’s method, are elaborated in [17,18]. These results
underscore that formally evaluated Hurst parameters can sometimes yield misleading
conclusions regarding persistence and long-range dependence. Although all series were
generated with the same memory parameter d, a correct interpretation of self-similarity is
essential for accurately understanding memory effects in these time series.

In conclusion, the model of artificial order imbalance and opinion dynamics discrete-
time series provides valuable insights into the statistical properties of financial market
limit order flow and imbalance. The comparison with empirical data underscores the
utility of the model. The power-law nature of limit order cancellation time distribution
is a statistical property contributing significantly to the correct interpretation of order
imbalance time series.
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Table 1. Parameters of time series XL(j), X(j), XS,L(j), and XS(j) calculated using various estimators:
MSD, AVE(H), Hig(H), and D(H). Model series generated using parameters d = 0.3, α = 1.8, λ = 0.3,
N = 200,000.

Series d MSD AVE(H) Hig(H) D(H)

XL(j) 0.3 1.61 0.84 0.84 0.82 ÷ 0.84
X(j) 0.3 1.03 0.25 0.27 0.6 ÷ 0.25

XS,L(j) 0.3 1.53 0.81 0.82 0.75 ÷ 0.81
XS(j) 0.3 1.02 0.22 0.24 0.34 ÷ 0.16

5. Discussion and Conclusions

In our previous work [17], we introduced a discrete q-exponential distribution, as out-
lined in Equation (3). This q-extension of the geometric distribution has a direct relation
to the theoretical foundations of generalized Tsallis statistics [20]. Empirical validation
of this model on limit order cancellation times across ten different stocks and trading
days demonstrated its robustness, with the fitted q-exponential PMF parameter q = 1.5
independent of the other order properties. This model aligns with the second-class Pareto
distribution, which is known to exhibit a power-law tail with an exponent κ = 1

q−1 = 2 [40].
In this contribution, we utilize a heterogeneous agent model to elucidate this distinctive
power-law characteristic.

Our approach categorizes trading agents based on their activity within selected inter-
vals, such as one trading day, leading to n categories where i = {1, 2, ..., i, .., n} represents
the number of limit orders submitted per agent of category. Given that each order is
canceled or executed, it is natural to model the lifetime k of orders from each agent group
i with a geometric PMF Pi(k) = (1 − ηi/n)(k−1)ηi/n. Assuming the number of agents in
each group i is inversely proportional to the group’s index, in consistence with Zipf’s law,
the probabilities Pi(k) contribute equally when averaging waiting times across all agent
categories. This leads to the explicit form of the PMF of cancellation (waiting) times as
defined in (7), effectively capturing the empirically observed power-law behavior of limit
order cancellation times [17].

We further expand and generalize this model by integrating two independent random
sequences, the ARFIMA{0,d,0}{a, N} and Pλ,q(k) from Equation (3), to form the imbalance
series X(j), portraying opinion dynamics. This model not only elucidates the properties of
limit order imbalance in financial markets but also offers insights into the complexity of
long-range dependence observed in various social systems [14,18,41].

The proposed model serves as an example of a time series with hidden long-range
dependence. Thus, we propose the method of self-similarity tests and demonstrate that
series X(j) and XS(j) are not self-similar. Though the result is predictable, the proposed
method may be useful in analyzing other empirical time series before using widely accepted
methods of self-similar series analysis.

This study significantly advances our understanding of order imbalance and memory
in the financial markets. By integrating the ARFIMA series with the q-exponential distri-
bution waiting time, we provide a framework for modeling complex behaviors in social
systems. Our findings not only bridge the gap between theoretical constructs and empirical
observations but also pave the way for future research aimed at developing more precise
models and gaining deeper insights into financial market dynamics and beyond.
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Abbreviations
The following abbreviations are used in this manuscript:

ARFIMA Auto-regressive fractionally integrated moving average
AVE Absolute value estimator
FBM Fractional Brownian motion
FGN Fractional Gaussian noise
FLSM Fractional Lèvy stable motion
MSD Mean squared displacement
PDF Probability density function
PMF Probability mass function
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