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The 12C(p,2p)11B reaction at 𝐸𝑝=98.7 MeV proton beam energy is analyzed using a rigorous three-particle 
scattering formalism extended to include the internal excitation of the nuclear core or residual nucleus. The 
excitation proceeds via the core interaction with any of the external nucleons. We assume the 11B ground and 
low-lying excited states [ 3

2

−
(0.0 MeV), 5

2

−
(4.45 MeV), 7

2
−

(6.74 MeV)] and the excited states [ 1
2

−
(2.12 MeV), 3

2

−

(5.02 MeV)] to be members of 𝐾 = 3
2

−
and 𝐾 = 1

2

−
rotational bands, respectively. The dynamical core excitation 

results in a significant cross section for the reaction leading to the 5
2

−
(4.45 MeV) excited state of 11B that cannot 

be populated through the single-particle excitation mechanism. The detailed agreement between the theoretical 
calculations and data depends on the used optical model parametrizations and the kinematical configuration of 
the detected nucleons.
1. Introduction

The one-nucleon removal reactions have been extensively used to 
study the single-particle configurations of the involved nucleus 𝐴 and 
the population of the states of its 𝐵 = (𝐴 −1) residue. At the same time, 
it is becoming widely accepted that single-particle, molecular/cluster 
and collective degrees of freedom of nuclei coexist along the nuclear 
landscape. These rich aspects of the nuclear structure are standardly de-

scribed by shell models, cluster and collective structure models, respec-

tively [1–4]. Concurrently, ab initio models that solve the Schrödinger 
equation for the many-body system of protons and neutrons have been 
developed with Hamiltonians based on the fundamental theory of the 
strong interactions [5] or effective interactions [6].

Despite tremendous advances in reaction and structure, Nuclear 
Physics has been indulging in the artificial separation between these 
two branches, notwithstanding one aims to extract nuclear properties 
from reactions. Some progress has been made recently to fully describe 
bound and scattering states or to some extent incorporate a many-body 
description of the nucleus into reactions [7–12]. Within the later ap-

proach, ab initio shell-model-like Variational Monte Carlo (VMC) wave 

* Corresponding author.

functions (WFs) [6] were recently employed to model the single-nucleon 
removal from light nuclei [9–11] under the inert-core assumption where 
the knockout/breakup operator does not change the internal structure 
of the core. As a result of this crucial assumption, the one-nucleon spec-

troscopic overlap defined as a projection of the parent nucleus 𝐴 state 
onto an antisymmetrized core + valence nucleon (𝐵 +𝑁) form [11,13]

becomes a key structure input for the reaction formalism. For a given 
state of the residual nucleus, the one-nucleon spectroscopic overlap is 
a superposition of different nucleon angular momentum channels, 𝓁𝑗, 
satisfying the appropriate triangular relations [13]. The strength of the 
overlap or the so called spectroscopic factor (SF) for a given transition is 
obtained from the integral of the one-nucleon overlap function in each 
angular momentum channel. The systematic study of p-shell nuclei via 
the single-nucleon removal reactions has shown that the VMC WFs may 
overpredict the experimental data by almost a factor of two for light sys-

tems [9]. This discrepancy raises a question on the reaction model, in 
particular, the validity of the underlying inert-core assumption. Further-

more, this reaction model is unable to predict the cross sections for the 
residue 𝐵 states absent in the initial nucleus 𝐴, i.e., those with (almost) 
vanishing overlap and SF.
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The carbon isotopes and related isotones constitute a paradigmatic 
light nuclei sample in which it is possible to study the coexistence of 
different structure aspects and its signature in reactions. Ab initio VMC 
WFs for 12C were recently employed in benchmark calculations of neu-

trinoless double beta decay [14] and for 11B in studies of nuclear charge 
radii of boron isotopes [15]. Total cross sections, angular and energy dis-

tributions, and polarization observables for 12C(𝑝, 2𝑝) were measured 
at GSI [16] and RCNP [17] in inverse and direct kinematics, respec-

tively, around 400 MeV/A energy for the ground state 32
−

and low-lying 
excited states 1

2
−

(2.12 MeV) and 3
2
−

(5.02 MeV) of 11B. The VMC 
WFs were used to model the proton-removal reaction (𝑝, 2𝑝) [10,11]

using standard few-body reaction frameworks where the final residue 
remains inert during the scattering process. It was found that the VMC 
spectroscopic strength appears to be distributed among the low lying 
states differently than the deduced experimental values, and that the 
agreement between the data and predictions using these ab initio WFs 
diminishes prominently for transitions to excited states of 11B [10,11].

Furthermore, the 12C(𝑝, 2𝑝) reaction was also measured at a lower 
energy of 98.7 MeV in direct kinematics at the Indiana University Cy-

clotron Facility (IUCF), capable to separate the ground 32
−

and low-lying 
excited 12

−
(2.12 MeV), 52

−
(4.45 MeV) and 32

−
(5.02 MeV) negative-

parity states of 11B [18]. The outgoing protons were detected in a 
coplanar geometry, in two different geometries around the Quasi Free 
Scattering (QFS) or no-core-recoil condition. This experiment has shown 
a strong population of the 52

−
(4.45 MeV) state that cannot be under-

stood from the dominance of the single-particle knockout.

Meanwhile, single particle and collective aspects of nuclear struc-

ture have been incorporated in few-cluster nuclear reactions. The col-

lective mode, simulated as a dynamical excitation of the nuclear core, 
was found to play an important and characteristic role in three-cluster 
breakup reactions [19–26].

In this manuscript we aim to reanalyze the IUCF data taking into ac-

count dynamical excitation of the 11B core during the scattering process 
and get insight in the (𝑝, 2𝑝) reaction mechanisms. In particular, whether 
the core excitation mechanism can be responsible for the transitions to 
11B states with vanishing SF in the initial 12C.

2. Formalism

We use the Faddeev formalism [27] for three-particle scattering, but 
extended to include the internal excitation of the nuclear core, i.e., the 
residual nucleus (𝐴 − 1), labeled 𝐵 for the brevity. The excitation pro-

ceeds via the core interaction with any of the external nucleons. We 
work with generalized three-body transition operators of Alt, Grass-

berger, and Sandhas (AGS) [28]. Below we shortly recall the basic equa-

tions, whereas a more detailed description can be found in earlier works 
[26].

We use the usual odd-man-out notation, where, for example, the 
channel 𝛼 = 1 implies the particle 1 being a spectator while particles 
2 and 3 build a pair; Greek subscripts are used for this notation. Since 
the nuclear core 𝐵 can be excited or deexcited when interacting with 
nucleons, we introduce additional Latin superscript labels for the inter-

nal state of the core, either ground (g) or excited (x). The two-particle 
potentials 𝑣𝑏𝑎

𝛼
, the two-body transition operators

𝑇 𝑏𝑎
𝛼

= 𝑣𝑏𝑎
𝛼
+
∑
𝑐

𝑣𝑏𝑐
𝛼
𝐺𝑐0𝑇

𝑐𝑎
𝛼
, (1)

as well as the resulting three-body transition operators

𝑈𝑏𝑎
𝛽𝛼

= 𝛿𝛽𝛼 𝛿𝑏𝑎𝐺𝑎0
−1 +

∑
𝛾,𝑐

𝛿𝛽𝛾 𝑇
𝑏𝑐
𝛾
𝐺𝑐0𝑈

𝑐𝑎
𝛾𝛼
, (2)

couple those sets of states. The operators (1) and (2) include simultane-

ously both core excitation and single-particle-like excitations, making 
those contributions mutually consistent. Here 𝛿𝛽𝛼 = 1 − 𝛿𝛽𝛼 , 𝐸 is the 
2

available system energy in the c.m. frame, and 𝐺𝑎0 = (𝐸+ 𝑖0 −𝛿𝑎𝑥Δ𝑚𝐵 −
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𝐻0)−1 is the free resolvent that beside the internal-motion kinetic en-

ergy operator 𝐻0 contains also the contribution of the excitation energy 
Δ𝑚𝐵 . In this formalism the two-nucleon potential 𝑣𝑏𝑎

𝛼
and the respective 

transition matrix 𝑇 𝑏𝑎
𝛼

have only diagonal components 𝑏 = 𝑎. The breakup 
operator

𝑈𝑏𝑎0𝛼 = 𝛿𝑏𝑎𝐺
𝑎
0
−1 +

∑
𝛾,𝑐

𝑇 𝑏𝑐
𝛾
𝐺𝑐0𝑈

𝑐𝑎
𝛾𝛼
, (3)

corresponds to the case 𝛽 = 0 in Eqs. (2) and, once the coupled system 
for 𝛽 = 1, 2, 3 is solved, does not require a new solution of Eqs. (2) but 
is given by the quadrature (3) involving 𝑈𝑐𝑎

𝛾𝛼
with 𝛾 = 1, 2, 3.

The physical amplitudes for the breakup process are obtained as the 
on-shell matrix elements of 𝑈𝑏𝑎0𝛼 taken between initial and final channel 
states. We label by 𝛼 = 1 the initial two-cluster state, where the pro-

ton with the relative momentum 𝐪1 impinges on the nucleus (𝐵 +𝑁), 
i.e., |Φ1(𝐪1)⟩ = (|Φ𝑔1⟩ + |Φ𝑥1⟩)|𝐪1⟩. The spectator part |𝐪1⟩ is a free wave 
while the pair part |Φ𝑔1⟩ + |Φ𝑥1⟩ is a solution of the Schrödinger equa-

tion with a real (𝐵 + 𝑁) potential that couples ground- and excited-

state core components. In the core-valence bound-state partial-wave 
(0+ in the case of 12C) the same potential has to be used also for 
the transition operator in Eq. (1) where it generates the bound-state 
pole. This special potential (see Appendix A) is taken to have Woods-

Saxon form with central and spin-orbit terms plus Coulomb, and its 
parameters are adjusted such that the resulting two-body wave-function 
components in the 𝑟-space Φ𝑎1(𝑟) reproduce (up to a factor) the corre-

sponding VMC spectroscopic overlaps 𝑅𝑎(𝑟) defined in Ref. [13], i.e., 
Φ𝑎1(𝑟) = −1∕2𝑅𝑎(𝑟). The procedure is similar to the one proposed in 
Ref. [13] but with an important extension including the 𝑔-𝑥 chan-

nel coupling. The normalization factor  is introduced to ensure that 
|Φ𝑔1⟩ + |Φ𝑥1⟩ is normalized to unity as required by the AGS equations 
(2). Since the norm of the spectroscopic overlap 𝑅𝑎(𝑟) is by definition 
the respective spectroscopic factor SF(𝑎), we have  = SF(𝑔) + SF(𝑥). 
Using the same  for both 𝑔 and 𝑥 components ensures that their rel-

ative weight is preserved as in VMC overlaps. Thus, the spatial and mo-

mentum distributions of the initial channel wave function |Φ𝑔1⟩ + |Φ𝑥1⟩
up to a normalization factor closely resemble those of the VMC over-

laps.

We assume that in the final three-cluster channel |Φ𝑏0(𝐩′𝜂 , 𝐪′𝜂)⟩ one 
can distinguish between the ground (𝑏 = 𝑔) and excited (𝑏 = 𝑥) states of 
the core. Instead of single-particle momenta 𝐤𝜂 we use Jacobi momenta, 
where 𝐩′

𝜂
(𝐪′
𝜂
) labels the Jacobi momentum within the pair (spectator 

relative to the pair). The breakup channel states can be expressed in any 
of the three Jacobi sets 𝜂. Therefore, the amplitude for the three-cluster 
breakup reaction with the core nucleus in the final state 𝑏 has to be 
calculated as

 𝑏1 (𝐩
′
𝜂
,𝐪′
𝜂
;𝐪1) =

∑
𝑎

⟨Φ𝑏0(𝐩′𝜂,𝐪′𝜂)|𝑈𝑏𝑎01 |Φ𝑎1(𝐪1)⟩. (4)

If the two nucleons are identical, the amplitude has to be properly anti-

symmetrized as discussed in Ref. [29].

We consider a kinematically complete three-particle breakup exper-

iment where two particles, say, 𝛼 and 𝛽, are detected at solid angles Ω𝛼
and Ω𝛽 , respectively. Measuring energy of one particle, 𝐸𝛼 , in principle 
determines the final-state kinematics completely, since the remaining 
variables are constrained by the energy and momentum conservation 
(in the kinematical region of interest in the present work the rela-

tion between kinematic variables is unique, though in general it may 
have two solutions). The corresponding fivefold differential cross sec-

tion is

𝑑5𝜎

𝑑𝐸𝛼𝑑Ω𝛼𝑑Ω𝛽
= (2𝜋)4

𝑀1
𝑞1

| 𝑏1 (𝐩′𝜂 ,𝐪′𝜂 ;𝐪1)|2 fps (5)

with 𝑀1 = 𝑚1(𝑚2 +𝑚3)∕(𝑚1 +𝑚2 +𝑚3), 𝑚𝛼 being the mass of the par-
ticle 𝛼, and the phase-space factor
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Fig. 1. Differential cross section for the elastic and inelastic scattering 
11B(𝑝, 𝑝)11B∗ at 𝐸𝑝 = 30.3 MeV and 150 MeV, leading to the member states of 
the 𝐾 = 3

2

−
rotational band. Predictions are based on two sets of optical poten-

tial parametrizations, KD and Weppner. The data is taken from Refs. [37] and 
[38].

fps =
𝑚𝛼𝑚𝛽𝑚𝛾𝑘𝛼𝑘

3
𝛽

|𝑚𝛾𝑘2𝛽 −𝑚𝛽𝐤𝛽 ⋅ (𝐐− 𝐤𝛼 − 𝐤𝛽 )|
, (6)

𝐐 being the total three-particle momentum.

We solve the scattering equations (2) and calculate the breakup am-

plitudes (3) in the momentum-space framework following Ref. [26], 
with a slight difference related to the inclusion of the Coulomb force. 
In the system of two protons and nuclear core the Coulomb force acts 
in all three pairs of particles, leading to unknown renormalization fac-

tor in the screening and renormalization procedure. We therefore in-

clude screened Coulomb potentials with respective strengths for all three 
pairs, but do not perform the renormalization of breakup amplitudes. 
Instead, we check that the cross sections to a good accuracy become 
independent of the screening radius, implying that the renormalization 
factor should be just a phase factor, and the screened Coulomb potential 
simulates well the actual Coulomb force acting in the breakup process. In 
the considered reaction the convergence is achieved with the Coulomb 
screening radius around 10 fm, but even neglecting the Coulomb force 
does not lead to significant changes, implying that the Coulomb force is 
quite irrelevant in the present case.

The nucleon-residual nucleus potentials with the core excitation are 
constructed in a standard way using the rotational model [33–35]. 
One starts with a single-channel optical potential whose radial depen-

dence is usually parametrized in terms of the Woods-Saxon function. 
In the present study, and to investigate the uncertainties of the calcu-

lated cross sections associated with the choice of the optical potential 
(OP) parametrization, we take two global OPs. They were developed by 
Weppner et al. [30] and Koning and Delaroche (KD) [31], and fitted 
to 𝐴 ≥ 12 nuclei and 𝐴 ≥ 24 nuclei, respectively. Despite this restric-

tion, the KD potential has been used for systematic studies along the 
nuclear landscape also for lighter nuclei [32], and reproduces the exper-

imental nucleon-nucleus data with a reasonable quality as will be shown 
later. For any of these OPs we assume a permanent quadrupole defor-

mation of the nucleus. This induces a coupling to the internal nuclear 
degrees of freedom 𝜉 of the residual nucleus via the Woods-Saxon radius 
𝑅𝑗 =𝑅𝑗0[1 +𝛽2𝑌20(𝜉)], 𝛽2 being the quadrupole deformation parameter, 
and 𝛿2 = 𝛽2𝑅𝑗0 called the deformation length. In the case here consid-

ered it was assumed that the ground state of spin/parity 32
−

and excited 
states 52

−
(4.45 MeV) and 72

−
(6.74 MeV) of the 11B residual nucleus 

are members of the 𝐾 = 3
2
−

rotational band, while the excited states 12
−

− −
3

(2.12 MeV) and 32 (5.02 MeV) are members of the 𝐾 = 1
2 rotational 
Physics Letters B 855 (2024) 138859

band [36,37]. We use axially symmetric rotational model and do not in-

clude coupling between states belonging to different rotational bands. 
When looking at the experimental data for the proton + 11B inelastic 
scattering [37,38] one notices that 𝐾 = 3

2
−

to 𝐾 = 1
2
−

cross sections are 
3 to 5 times lower than those within the 𝐾 = 3

2
−

band, which justifies 
our approximation.

The experimental data for the proton + 11B scattering, needed to 
fix the potential parameters, is available in the 𝐾 = 3

2
−

case only, and 
in different energy regime of 𝐸p=30.3 MeV [36], suggesting 𝛽2 ≈ 0.52, 
or 𝛿2 ≈ 1.5 fm. We find this value consistent also with the experimen-

tal data at the higher energy of 𝐸p=150 MeV [38]. Due to the lack of 
experimental information we use the same parameters also for the reac-

tions coupling the states of the 𝐾 = 1
2
−

rotational band.

In summary, the used nucleon-residue potentials are based on 
the Weppner’s and KD parametrizations with 𝛿2 ≈ 1.5 fm rotational 
quadrupole deformation length. An exception is the core-valence inter-

action in the 0+ partial wave where real potentials (different for each 
band) are used to simulate VMC spectroscopic overlaps. As for the two-

nucleon potential we verified that results are insensitive to its choice 
provided it is a realistic high-precision potential such as AV18 [40] or 
CD Bonn [41].

3. Results

Our main goal is to study the 12C(𝑝, 2𝑝) reaction at the incident pro-

ton energy 𝐸𝑝 = 98.7 MeV, measured in direct kinematics at the Indiana 
University Cyclotron Facility (IUCF) [18]. However, we begin by testing 
the adequacy of the chosen nucleon-nucleus dynamical excitation model 
with rotational quadrupole deformation. Due to the lack of experimen-

tal information around 𝐸𝑝=100 MeV we display in Fig. 1 the angular 
distributions of the differential cross section for elastic and inelastic scat-

tering 11B(𝑝, 𝑝)11B∗ leading to the states of the 𝐾 = 3
2
−

rotational band, 
and compare them with the experimental data at 𝐸𝑝=30.3 MeV and 
𝐸𝑝=150 MeV taken from Refs. [37] and [38], respectively. While at 
the lower energy the predictions using the Weppner’s OP are some-

what closer to the data, at the higher energy the KD OP reproduces 
the data slightly better, while the Weppner OP tends to overestimate 
the cross sections. Nevertheless, the calculated proton-11B elastic and 
inelastic cross sections using both global OP parametrizations follow 
fairly well the trend of the data with the exception of the 52

−
state in the 

forward-angle region where other multipolar transitions are expected to 
contribute [38]. Moreover, the data for the excitation of the 72

−
state at 

150 MeV are well reproduced.

Next, we solve the three-body Faddeev/AGS equations including the 
core excitation (here labelled as CX) and calculate the fivefold differ-

ential cross section for the 12C(𝑝, 2𝑝)11B reaction. In order to estimate 
the CX effect we performed also the corresponding calculations without 
the core excitation, i.e., using the standard single-particle (SP) dynamic 
model [10].

The two particles detected in the Indiana experimental setup [18]

are the two protons, to be labeled 𝑝 and 𝑁 in the following, though one 
has to keep in mind that they are indistinguishable and the scattering 
amplitudes are correspondingly antisymmetrized. The emitted protons 
are measured in a coplanar geometry, with the azimuthal angle between 
them being 180◦. The plane geometry reduces the number of indepen-

dent kinematical variables to three, chosen as the energy of one proton 
and polar angles of both protons, {𝐸𝑝, 𝜃𝑝, 𝜃𝑁 ). The outgoing protons 
were detected in two different kinematic geometries around the Quasi 
Free Scattering (QFS): A symmetric one, labeled KS in [18], is charac-

terized by 𝐸𝑝 = 41.35 ± 1.25 MeV and 𝜃𝑝 = 𝜃𝑁 taking five values from 
30◦ to 65◦. An asymmetric one, labeled KA in [18], is characterized by 
𝐸𝑝 = 59.5 ± 1.8 MeV, 𝜃𝑝 = 25◦, and 𝜃𝑁 taking five values from 30◦ to 
90◦.

The bound-state wave function in the three-body AGS calculations is 
normalized to unity, but multiplied by the normalization factor  1∕2
its components reproduce the respective microscopic VMC overlaps. 
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Fig. 2. Differential cross section for the 12C(𝑝, 2𝑝)11B reaction at 𝐸𝑝 = 98.7 MeV a
asymmetric (right) kinematical settings of Ref. [18]. Predictions are based on the K
core excitation either included (CX, solid curves) or neglected (SP, dashed curves). T
The subscripts 1 and 2 distinguishe the ground and excited 3∕2− states, respectively
Therefore the spectroscopic VMC information is taken into account 
multiplying the AGS-CX cross section results by the norm factor  =
SF(𝑔) + SF(𝑥) which is the sum of SFs for the states coupled in the 
AGS calculations. The AGS-SP calculations involve only a single state, 
in that case one has to multiply the cross section by the SF of the 
considered state, which is a standard way to include the spectroscopic 
information also into the distorted-wave calculations [10]. The VMC 
SFs for the 3

2
−

(0.0 MeV), 1
2
−

(2.12 MeV), 5
2
−

(4.45 MeV), and 3
2
−

(5.02 MeV) states of 11B are 2.363, 0.819, 0.001, and 0.206, respec-

tively [39].

The fivefold differential cross sections, scaled by the SF’s in an ap-

propriate way, are shown in Fig. 2 as functions of the core momentum 
𝑝𝐵 . Results using both Weppner and KD OP parametrizations, with and 
without CX, for both KS (left) and KA (right) geometries are compared 
with the experimental data [18].

The general trend is that the CX effect increases the differential cross 
section for the ground state in most parts of the considered kinematic 
region, CX predictions being higher than those of SP. In the case of the 
5
2
−

state the SP results are almost vanishing and are not shown. An-

other trend is that KD OP parametrization leads to higher differential 
cros section than Weppner OP, though in the two-body case the situa-

tion is reversed as shown in Fig. 1. This sensitivity is slightly enhanced 
in the CX case. All these features possibly indicate that the CX is a com-

plicated phenomenon resulting from interplay and partial cancellations 
of various terms in the dynamic equations, or, equivalently, in the multi-

ple scattering series. In fact, if the multiple scattering series are replaced 
by the first-order terms only, the so-called single-scattering approxima-

tions (SSA), the resulting cross section is heavily enhanced. We illustrate 
this finding in Fig. 3 by comparing full results and SSA for transitions 
to the ground and 52

−
state in the asymmetric kinematics. Despite that 

SSA cross sections are much higher, the CX effect for g.s. is qualita-

tively similar in both full and SSA cases. For curiosity we show also the 
4

SSA(pN) including only the proton-valence term. It excludes the proton-
Physics Letters B 855 (2024) 138859

s function of the residual nucleus momentum 𝑝𝐵 in the symmetric (left) and 
D and Weppner (Wep) optical potential parametrizations, with the dynamical 

he spectroscopic VMC information is taken into account as described in the text. 
. The data is taken from Ref. [18].

Fig. 3. Differential cross section for the 12C(𝑝, 2𝑝)11B reaction at 𝐸𝑝 = 98.7
MeV as function of the residual nucleus momentum 𝑝𝐵 in the asymmetric kine-

matical setting of Ref. [18]. Predictions are based on the KD optical potential 
parametrization with the dynamical core excitation (CX, thick curves). For the 
11B ground state results neglecting CX are also shown (SP, thin curves). In both 
cases full results are given by solid curves while SSA results with proton-core and 
proton-valence (only proton-valence) terms are given by dashed-dotted (dashed) 
curves. The spectroscopic VMC information is taken into account as described 

in the text. The data is taken from Ref. [18].
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core interaction and thereby also the dynamic CX, leading to a vanishing 
CX effect. In the case of the 52

−
state the SSA(pN) cross section is very 

small as a consequence of very small SF. Thus, it is indeed the dynamic 
CX that is responsible for an appreciable cross section for the final 52

−

state.

With respect to reproducing the experimental data [18] the situa-

tion is quite contradictory. The differential cross section for the 11B in 
its ground state 32

−
is well described by the CX KD calculation in the 

KS kinematics and by SP and CX Weppner calculation in the KA kine-

matics. For the other member of the 𝐾 = 3
2
−

rotational band, the 52
−

state, the differential cros section is significantly underestimated in the 
KS kinematics but only slightly underestimated in the KA kinematics 
by the CX KD calculation. For the 𝐾 = 1

2
−

rotational band the transi-

tion to the excited state 12
−

is quite well reproduced by all calculations 
in the KS kinematics but overpredicted in the KA kinematics. On the 
contrary, the transition to the excited state 32

−
(5.02 MeV) is underes-

timated in the KS kinematics but, except for one point, described well 
by the KD calculations (both with and without CX) in the KA kinemat-

ics.

Thus, while in average the CX KD calculations appear to be more 
successful than the others, no single calculation provides a reasonable 
reproduction of all the experimental data [18]. The quality of the de-

scription depends on the kinematics, in the KS being better for the 32
−

(0.0 MeV) and 12
−

(2.12 MeV) states, while in KA being better for the 
5
2
−

(4.45 MeV) and 32
−

(5.02 MeV) states. The reason remains unex-

plained.

Additionally, our models including dynamical core excitation predict 
differential cross section for the transition to the excited state 72

−
to be 

smaller than the one for the 52
−

but still of the same order of magnitude. 
We do not show it here since the experimental data is not available for 
a pure state, only as a mixture with the 12

+
state. In the same way as 

5
2
−

, the transition to 72
−

cannot be described by the SP model due to the 
associated negligible SF.

4. Summary and conclusions

We have reinterpreted the experimental data for the 12C(p,2p)11B 
reaction at 𝐸𝑝 = 98.7 MeV, in which the emitted protons are measured 
in a coplanar geometry, with the azimuthal angle between them being 
180◦. Two kinematical settings have been considered.

We used an extended three-particle reaction formalism that includes 
the internal excitation of the nuclear core. The excitation proceeds via 
the core interaction with any of the external nucleons. We assume the 
11B ground and low-lying excited states [ 3

2
−

, 52
−

(4.45 MeV), 72
−

(6.74 
MeV)] and the excited states [ 1

2
−

(2.12 MeV), 32
−

(5.02 MeV)] to be 
the members of the 𝐾 = 3

2
−

and 𝐾 = 1
2
−

rotational bands, respec-

tively.

A detailed agreement between the theoretical calculations and data 
is somehow contradictory and depends on the used optical potential 
parametrization and the final-state kinematical situation. This possibly 
indicates that the core excitation is a complicated phenomenon resulting 
from interplay and partial cancellations of various terms in the dynamic 
equations but also calls for a new data. Most importantly, the dynamical 
excitation of the core included in the reaction model predicts insufficient 
but nevertheless quite significant cross sections for transitions to the 52

−

and 72
−

excited states that cannot be populated via the single-particle 
excitation mechanism.

Thus, we have shown the ability to predict at least qualitatively the 
cross sections for states with residual nucleus components that are neg-

ligible in the initial nucleus. This will surely contribute also to analysis 
of upcoming data from 12C(p,2p)11B measurements detecting 52

−
(4.45 

MeV) and 72
−

(6.74 MeV) states of 11B, currently under study at GSI and 
5

other laboratories.
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Appendix A. Nuclear binding potential

We start with an undeformed valence-core potential for the 0+ state

𝑣1(𝑟) = − 𝑉𝑐 𝑓 (𝑟,𝑅𝑐 , 𝑎𝑐) − 𝐬𝑁 ⋅ 𝐬𝐵 𝑉𝑠𝑠 𝑓 (𝑟,𝑅𝑐 , 𝑎𝑐)

+ 𝐬𝑁 ⋅𝐋 𝑉𝑙𝑠
4
𝑟

𝑑

𝑑𝑟
𝑓 (𝑟,𝑅𝑙𝑠, 𝑎𝑙𝑠),

(A.1)

where 𝑓 (𝑟, 𝑅, 𝑎) = [1 + exp((𝑟 − 𝑅)∕𝑎)]−1 is Woods-Saxon form factor, 
𝐬𝑁 and 𝐬𝐵 are spins of the nucleon and nucleus, respectively, and 𝐋
is the orbital angular momentum. For the 𝐾 = 1

2
−

rotational band we 
found that appending the central term by a phenomenological spin-spin 
contribution suggested in Ref. [42] improves the fit significantly. To 
include excitation of the core, the central term is deformed in a standard 
way using 𝛿2 = 1.5 fm. The parameters determined from the fit and the 
resulting weights 𝑃𝑎 of the wave-function components are collected in 
Table A.1.
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Table A.1

Binding potential parameters for 𝐾 = 3
2

−
and 1

2

−
rotational bands with quadrupole de-

formation length 𝛿2 = 1.5 fm. The radii 𝑅𝑖 and diffuseness 𝑎𝑖 are in units of fm, central 
strength 𝑉𝑐 is in units of MeV and spin-orbit strength 𝑉𝑙𝑠 is in units of MeV fm2. The re-

sulting weights of the ground- and excited state wave-function components are listed as 
well.

𝐾 𝑅𝑐 𝑎𝑐 𝑉𝑐 𝑅𝑙𝑠 𝑎𝑙𝑠 𝑉𝑙𝑠 𝑉𝑠𝑠∕𝑉𝑐 𝑃𝑔 𝑃𝑥

3
2

−
3.011 0.692 63.068 3.169 0.253 7.555 0.0 0.997 0.003

1
2

−
2.636 0.784 76.274 2.005 0.608 8.622 0.248 0.795 0.205
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