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ABSTRACT Glaucoma is one of the diseases that can cause incurable blindness. The first noticeable
symptoms appear only when the disease has progressed but an early diagnosis of the disease prevents
the severe consequences of disease progression. In this paper, we developed a Convolutional Neural
Networks (CNNs) based ensemble for joint optic disc (OD) and optic cup (OC) segmentation using modified
Attention U-Net architecture with pre-trained ResNet34, ResNet50, MobileNet, Inceptionv3, DenseNet121
as backbones. The ensemble was trained on a mixed dataset consisting of REFUGE, Drishti-GS, and RIM-
ONE r3 (RIM-ONE) datasets of eye fundus images and tested on images of each dataset separately. The
most accurate joint OD andOC segmentation is achieved using an ensemble consisting of modified Attention
U-Net with pre-trained ResNet34, Inceptionv3, and DenseNet121 as backbones and majority voting for final
prediction. The highest Dice of 0.961 for OD and 0.894 for OC is achieved on the REFUGE test dataset,
0.974 for OD and 0.916 for OC on the Drishti-GS test dataset, and 0.978 for OD and 0.902 for OC on the
RIM-ONE test dataset. The highest Intersection over Union of 0.925 for OD and 0.808 for OC is achieved on
the REFUGE test dataset, 0.950 for OD and 0.845 for OC on the Drishti-GS test dataset, and 0.957 for OD
and 0.822 for OC on the RIM-ONE test dataset. Using the segmentation results, the cup-to-disc ratio (CDR)
has been calculated to classify eye fundus images into mild-stage, moderate-stage, severe-stage glaucoma,
and non-glaucoma cases.

INDEX TERMS Ensemble networks, glaucoma, machine learning (ML), segmentation, voting methods.

I. INTRODUCTION
Vision plays a major role in every aspect of human
life. Unfortunately, various eye diseases can cause vision
impairment and even blindness. Glaucoma is one of those
eye diseases that damages the eye’s optic nerve and it
is ranked as the second-leading cause of blindness and
the fourth-leading cause of moderate and severe vision
impairment [1]. According to the World Health Organization
(WHO), the number of people with glaucoma worldwide
will increase to 111.8 million in 2040 [2]. The diagnosis
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of glaucoma is based on three main indicators: increased
intraocular pressure, changes in the visual field, and the size
of the optic nerve disc excavation. Visual field assessment is
time-consuming and measuring intraocular pressure can be
also not enough to diagnose glaucoma, as visual impairment
may be present in the absence of an increase in intraocular
pressure [3]. Themathematical assessment of optic nerve disc
excavation is of great practical benefit to ophthalmologists,
as fundus photographs are taken for many patients. Measur-
ing the excavation would allow a more accurate evaluation
of atrophic changes in the optic nerve in the early stage of
optic nerve damage. The diagnosis of optic nerve atrophy is
important not only for those with glaucoma but also in cases

82720


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-8758-8294
https://orcid.org/0000-0002-0226-972X
https://orcid.org/0000-0001-9924-7115
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of multiple sclerosis, brain or optic nerve tumors, and other
pathologies leading to optic nerve atrophy. Early diagnosis of
optic nerve atrophy and timely treatment would help manage
the condition in its early stages and preserve better visual
functions. Therefore, early detection of glaucoma is crucial.

Clinically, glaucoma examination is based on visual field
evaluation, intraocular pressure examination, and cup-to-disc
ratio (CDR) measurement [4], [5]. CDR is one of the most
significant techniques for automated glaucoma detection.
CDR is calculated as the ratio of the vertical OC diameter
(VCD) to the vertical OD diameter (VDD). Based on the CDR
value different stages of glaucoma are distinguished [6]:

• Early or mild glaucoma: CDR in (0.3–0.4]
• Moderate glaucoma: CDR in (0.4–0.7)
• Severe glaucoma: CDR above 0.7.

A healthy eye has a CDR of 0.3.
An accurate measurement of CDR relies on the precise

segmentation of the optic disc (OD) and optic cup (OC),
which in most cases is obtained manually by ophthalmolo-
gists. Since manual contouring of the OD and OC borders
is a complex and time-consuming task, various methods,
especially deep neural networks, have been proposed for
automatic segmentation of OD and OC.

Although automatic segmentation methods have shown
great potential in glaucoma detection in general, the identifi-
cation of mild-stage glaucoma remains a challenging task [7].
The automated segmentation algorithms cannot distinguish
the boundaries of the optic cup due to heavy overlap andweak
contrast between the optic cup and neuroretinal rim regions.
In addition, most previous studies based on deep learning
techniques have focused on identifying the image of the eye
fundus in glaucomatous and nonglaucomatous cases [8], [9],
[10], [11] or segmentation of the optic disc and optic cup [12],
[13], [14] without going into the stage of vision impairment.
Another notable point is that most recent works still use eye
fundus images from the same dataset to train and test deep
neural networks [15], [16], [17].

To overcome the limitations above, this paper presents the
applied approach as follows:

• Amixed training data strategy by combining eye fundus
images of different datasets Drishti-GS, REFUGE, and
RIM-ONE is used to increase image diversity.

• The joint OD and OC segmentation approach is used to
optimize computational power.

• An ensemble of five deep neural networks is applied
to improve OD and OC segmentation for further CDR
calculation.

• According to the calculated CDR the eye fundus images
are classified into nonglaucoma cases and different
stages of glaucoma, namely mild glaucoma, moderate
glaucoma and severe glaucoma.

The rest of this paper is divided into the following sections:
Section II presents the related work of the applied CNNs
ensemble; Section III describes the methodology used in our
experiment; Section IV describes the experiment; Section V

provides the experimental results; Section VI concludes our
paper.

II. RELATED WORK
During the past few years, ensemble learning-based CNNs
architectures have been carried out in automatic glaucoma
assessment systems development based on fundus image
analysis.

Kim et al. [8] proposed two ensemble models based on
three Fully Convolutional Networks (FCN) with a modified
U-Net structure to segment OD and OC where a different
region of interest (ROI) was used as input for each FCN.
In each ensemble model, the final results were estimated
by merging the results of three FCNs using an averaging
operator. The raw ROIs were used as input for the OD
segmentation model and masked ROIs were used as inputs
for the OC segmentation model. The RIGA and the REFUGE
datasets were used for the training and evaluation of the
proposed method. The proposed method achieved an IoU
of 0.930 and a Dice of 0.964 in OD segmentation and an
IoU of 0.810 and a Dice of 0.892 in OC segmentation
accordingly.

Civit-Masot et al. [9] used an ensemble approach to predict
glaucoma on a combined dataset consisting of RIM-ONE and
Drishti-GS datasets in such a way that OD and OC were
segmented using a generalized U-Net to calculate the CDR,
and Random sample consensus (RANSAC) was used to find
out if the predicted shapes are similar to ellipse. The transfer
learning on MobileNet V2, pre-trained with weights from
the ImageNet 1K challenge, was used for the prediction of
glaucoma. The results were blended to provide a likelihood
score for glaucoma. The applied approach achieved the
Dice of 0.920 and 0.840 for OD and OC segmentation,
respectively, on the RIM-ONE dataset, and the Dice of
0.930 and 0.890 for OD and OC segmentation, respectively,
on the Drishti-GS dataset.

Zilly et al. [18] presented a general framework for
retinal image segmentation using CNN architectures based
on ensemble learning. A deep CNN network was trained
on numerous patches from the same Drishti-GS dataset.
An entropy sampling technique was used for information
point reduction and allowed to reduce the computational
complexity. The proposed approach achieved a Dice of
0.970 for OD segmentation and a Dice of 0.870 for OC
segmentation in the Drishti-GS dataset.

Ali et al. [12] presented an OD segmentation system
based on an ensemble of ten deep learning-based semantic
segmentation models such as U-Net, Gated Skip Connections
(GSCs), DoubleU-Net, DeepLabV3+, CGNet, ERFNet,
SegNet, ESNet, LinkNet, and SQNet. For the aggregation
step, the Ordered Weighted Average operator has been used.
The aggregation has been applied to each pixel of the input
image. A threshold of 0.5 was applied to the result and
the class with the maximum activation has been taken as
a label. The best results for segmenting the OD in fundus
images collected from the Hospital Sant Joan de Reus have
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been obtained with the ensemble of models GSCs, DoubleU-
Net, and DeepLabV3+ achieving an IoU of 0.954, Dice of
0.951, a precision higher than 0.960, and a recall higher than
0.930.

Rehman et al. [10] proposed a two-stage glaucoma
classification scheme based on four pre-trained deep con-
volutional neural networks (deep CNNs) AlexNet, NasNet-
Large, InceptionResNetV2 and InceptionV3. The usage of
transfer learning where the weights in pre-trained networks
are used as the starting point for the training process helped to
reduce the training time. These four Deep CNNs were tested
using extracted Optic Nerve Head (ONH) from three publicly
available datasets ACRIMA, ORIGA-Light, and RIM-ONE,
and private datasets collected from local hospitals. The
classification accuracy has been improved by combining
these four Deep CNNs into one classifier where the final
decision has been made by the five voting techniques, i.e.,
Proportional Voting (PV), Majority Voting (MV), Averaging
(AV), Accuracy/Score based Weighted Averaging (ASWA),
and Accuracy based Weighted Voting (AWV). In the case of
the ACRIMA dataset, the accuracy of 0.995 of AlexNet and
NasNet-Large has been improved to 0.996 by the ensemble
with AWV. For the ORIGA-Light, the accuracy has increased
from 0.879 to 0.883 with ASWA.

Kurilová et al. [11] applied an ensemble method composed
of deep learning models VGG-16, MobileNet, and ResNet-
50 using hard voting and average voting to classify OD
using fundus images from the REFUGE dataset. The models
were monitored using binary accuracy, precision, recall,
Area Under the Curve (AUC), true positives, true negatives,
false positives, and false negatives. The best accuracy of
0.980 and AUC of 0.880 were achieved using the average
voting method.

The detail studio prepared by Elangovan and Nath [19]
presented a deep ensemblemodel based on stacking ensemble
technique implementing such Deep CNNs as Xception,
Inceptionv3, Densenet-201, Mobilenet-v2, Efficientnet-b0,
VGG-16, VGG-19, Googlenet, Alexnet, Resnet-18, Resnet-
50, Resnet-101, Squeezenet, and using support vector
machine (SVM) for the final classification of glaucoma and
normal images. With the suggested approach the classifica-
tion accuracy of 0.996, 0.995, 0.934, 0.913, 0.796 in LAG-R,
ACRIMA-R, Drishti-GS1-R, RIM-ONE2-R, ORIGA-R has
been achieved.

It is observed from the literature above that lately proposed
methods employ CNNs ensemble for various glaucoma
detection tasks. In [8] with the help of the proposed CNN
ensemble method, unexpected segmentation errors have been
removed and a post-processing to fine-tune the results was no
longer needed. In [9] an ensemble assisted in the development
of a diagnostic aid tool for glaucoma detection by analyzing
complete images of the eye fundus. The advantages of the
proposed CNN ensemble in [18] are that the computational
effort has been reduced while providing better performance
than the simple uniform sampling approach.

III. METHODOLOGY
This section presents the research methodology, applied Con-
volutional Neural Networks, voting methods, and proposed
ensemble.

CNNs and their variants have shown great performance in
various glaucoma identification tasks, namely classification
and segmentation [8], [20]. In this paper, for the development
of an ensemble, the Attention U-Net architecture [21] has
been chosen as a base for decoding layers due to the
performance results in our previous work [22]. To improve
the OD segmentation and especially OC segmentation and
to save computational resources at the same time, pre-
trained CNN models namely ResNet-34 and ResNet-50 [23],
MobileNet [24], Inception-v3 [25], and DenseNet [26] have
been chosen as encoding layers due their characteristics.
ResNet with its deep layers and residual connections excels
in learning complex images. MobilNet requires fewer param-
eters while maintaining reasonable performance. Inception-
v3 is trained to learn the visual representations and capture
both local and global features. DenseNet allows each layer
to use the features of all previous layers, so the gradient
flow is optimized during training and the network can acquire
knowledge more effectively. The efficiency of these models
was demonstrated in [19] through solving classification tasks.
The final prediction in our proposed approach is given by
the five most common [10], [27] voting techniques such
as Majority voting (MV), Averaging voting (AV), Weighted
average voting (WAV), Unanimous voting method (UV), and
Max voting. The following subsections describe each CNN
and voting method in more detail.

A. CONVOLUTIONAL NEURAL NETWORK
Attention U-Net [21] is an extended U-Net [28] with
incorporated attention mechanisms that help the network
to learn more fine-grained features by focusing on the
important regions of the input image. The network consists
of a contraction path at the left and an expansion path at
the right as the original U-Net. A contraction path with a
series of convolution layers and max pooling is intended for
the extraction of local features. The expansion path with a
series of up-sampling and convolution layers is appointed for
global features. Also like in the original U-Net, there is the
concatenation of feature maps using a skip connection but the
Attention U-Net differs by having an attention gate at each
level of the skip connection. With the help of the attention
gate, the feature activations in irrelevant regions are repressed
which improves the accuracy and sensitivity of the model for
dense label predictions.

Resnet [23] is a deep-learning model where the weight
layers learn residual functions by the layer inputs, instead of
learning unreferenced functions. Rather than relying on each
of the multiple stacked layers to directly correspond to the
desired underlying mapping, residual networks allow these
layers to apply a residual mapping. The residual blocks are
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stacked on top of each other to form a network. ResNet-34
and ResNet-50 have thirty-four and fifty layers accordingly
using these blocks.

MobileNet [24] is based on a simplified architecture that
uses depthwise separable convolutions to create lightweight
deep neural networks. The Depth-wise separable convolution
consists of the depth-wise convolution layer which is used to
filter the input channels and the point-wise convolution layer
which is used to merge them to create a new feature. With the
usage of the depth-wise convolutions, a single filter is applied
to each input channel. Since the depthwise convolution filters
the input channel only rather than combining them to produce
new features, the pointwise convolution layer is added to
calculate a linear combination of the output of depthwise
convolution using a 1 × 1 convolution.
Inception-v3 [25] is a modification of the previous

structure of a deep neural network Inception-v1 [29] and
Inception-v2 [30]. The main idea of inception network
architecture is to process and extract the various feature
maps concurrently in parallel. Whereas the inception module
extracts a different piece of information from every convolu-
tion or pooling operation the different features are extracted
from each operation. Combining all extracted information
into a single feature map helps to increase the accuracy of
the model as it focuses on multiple features simultaneously.
Inception-v3 factorizing the larger convolutions into smaller
convolutions the number of parameters involved in a network
was reduced which helped to reduce the computational
efficiency. The added auxiliary classifiers helped to improve
the accuracy of the network. The activation dimension of
the network filters was expanded to reduce the grid size
efficiently.

DenseNet [26] is a Densely Connected Convolutional
Network whose architecture consists of transition layers and
dense blocks. Each convolutional layer is linked to each
other layer in a feed-forward fashion within the block. This
maximum information flow between layers is created by the
connection between the output of each layer and the input of
the next layer. The usage of the transition layer reduces the
spatial dimensionality of the feature maps. DenseNet-121 is
a version of DenseNet with 121 layers.

B. VOTING METHODS
Majority voting (MV) - each model makes a prediction (vote)
for each test instance and the final output prediction is the one
that receives more than half of the votes [31].
Averaging voting (AV) [32] is a method where the final

prediction is made by averaging the extracted predictions
from multiple models. Average prediction is calculated using
the arithmetic mean, which is the sum of the predictions
divided by the total number of predictions.

y∗ = argmax
i

1
m

m∑
j=1

pij. (1)

Refer to (1), m is the number of data points to be averaged,
and pij is the probability of the i class label of the j classifier.

Weighted average voting (WAV) [33] is a method where
the initial learners are given different weights to indicate the
importance of each model in the prediction. The weighted
average for each class 0 or class 1 is calculated by applying
multiplication for each prediction by the weight of the
classifiers to provide a weighted sum and then dividing the
result by the sum of the weights of the classifier. Class
0 represents a background and class 1 represents the area
of the OD or OC in case of segmentation of the OD or OC
accordingly.

y∗ =

∑m
j=1 wjxj∑m
j=1 wj

. (2)

Refer to (2), w is the weighted average and m is the number
of data points to be averaged.

Unanimous voting method (UV) [34] is similar to majority
voting but in a unanimous voting case is no requirement of
half the votes. Here, all segmentation models are required to
predict the same value, otherwise, no prediction is made.

Max voting is one of the simplest ways of combining
predictions from multiple machine learning algorithms.
In max voting, each base model makes a prediction and votes
for each sample. Only the sample with the highest votes is
included in the final prediction.

C. PROPOSED ENSEMBLE
Ensemble learning is a meta-approach aiming to improve
predictive performance by combining the predictions from
multiple models instead of using a single model. In this
paper, we developed five deep-learning models for joint
OD and OC segmentation based on a modified Attention
U-Net. The schema of the proposed method, including
mixed training data of different datasets preparation by
applying data preprocessing, data augmentation, training of
different CNNs modifications, applied ensemble methods,
and evaluation strategies are illustrated in Fig. 1. The pre-
trained networks, namely ResNet34, ResNet50, MobileNet,
Inceptionv3, and DenseNet121 have been used instead of
the original encoder of the Attention U-Net as backbones
separately. All backbones have weights trained on the 2012
ILSVRC ImageNet dataset for better and faster convergence.
For clarity, each modification of the Attention U-Net with the
different pre-trained network, namely ResNet34, ResNet50,
MobileNet, Inceptionv3, and DenseNet121 as a backbone
has been named Model-1, Model-2, Model-3, Model-4, and
Model-5 accordingly. The top 3 models that achieved the
highest value of the Dice coefficient have been chosen to
compile an ensemble model. We applied five different voting
methods, namely majority voting, weighted average voting,
unanimous voting,max voting, and averaging voting to obtain
the final OD and OC segmentation prediction provided by the
ensemble model.

IV. EXPERIMENT
The three publicly available retinal fundus image datasets
REFUGE [35], RIM-ONE [36], and Drishti-GS [37] have
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FIGURE 1. The schema of the proposed method.

been preprocessed and used to construct the mixed training
dataset to train the original Attention U-NET and five
different modifications of Attention U-Net with a differ-
ent pre-trained networks ResNet34, ResNet50, MobileNet,
Inceptionv3, and DenseNet121 as a backbone for joint OD
and OC segmentation. Each modification has been tested
on three separate test datasets REFUGE, RIM-ONE, and
Drishti-GS by evaluating the Dice and IoU. The obtained
outputs of segmented OD and OC have been used to calculate
the CDR for eye fundus image classification into non-
glaucoma, mild glaucoma, moderate glaucoma, and severe
glaucoma cases. The CDR was calculated for the output of
segmented OD and OC obtained using the ensemble method
and compared with the calculated CDR of ground truth
test images according to glaucoma stages and non-glaucoma
cases.

A. DATASET DESCRIPTION AND PREPROCESSING
The high-quality retinal fundus images used for this work
were collected from different publicly available datasets such
as REFUGE [35], RIM-ONE [36], and Drishti-GS [37].

REFUGE [35] is a publicly available dataset that was
created as part of the Retinal Fundus Glaucoma Challenge
by releasing 1200 color fundus photographs stored in JPEG
format of female Chinese patients with no information
about their age. These images were obtained from clinical
studies and several hospitals by selecting only high-quality
pictures and anonymization of any personal data. The OD
and the OC were manually annotated by seven independent
glaucoma specialists with expertise from 5 to 10 years
in the field. The dataset is split equally into training,
validation, and testing subsets. The training dataset consists
of 40 glaucomatous and 360 nonglaucomatous images.
The validation and testing datasets have no labeling of
glaucomatous and nonglaucomatous images. The eye fundus
images of the training set have been captured by a Zeiss
Visucam 500 fundus camera of resolution 2124 × 2056 px.
The 400 images of the testing dataset and 400 images of
the validation dataset have been captured by a Canon CR-2
camera of size 1634 × 1634 px.

Retinal Image Database for Optic Nerve Evaluation
(RIM-ONE) [36] is a public dataset consisting of color
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stereo retinal fundus images stored in JPG format with
correspondingOD andOC ground truth stored in PNG format
of 85 nonglaucomatous and 74 glaucomatous eyes. Manual
segmentation of the OD and OC has been done by 2 experts
in ophthalmology. The pictures were taken by HUC with a
non-mydriatic Kowa WX 3D stereo fundus camera with a
resolution of 2144 × 1424 px in various Spanish hospitals
but there is no information about the age and gender of the
patients. For our experiments, the left part of a stereo eye
fundus image has been used as it contains the ground truth
label.

Drishti-GS [37] is a publicly available dataset containing
101 color images stored in PNG format dividing them into
50 training and 51 testing images. The training dataset
contains 32 glaucomatous images and 18 nonglaucomatous
images. The test dataset contains 38 glaucomatous images
and 13 nonglaucomatous images. The images were collected
at Aravind Eye Hospital of females and males 40-80 years
of age. All the images were segmented manually by 4 eye
experts with clinical experience of 3, 5, 9, and 20 years. All
images were taken centered on the OD with a Field-Of-View
(FOV) of 30 degrees with a resolution of 2045 × 1752 px.
Analyzing these datasets, it was observed that they have

been created by different institutions using different fundus
cameras and labeled glaucomatous / nonglaucomatous by
experts with clinical experience in this field from 3 to 10, and
20 years. The number of experts involved in the preparation of
REFUGE, Drishti-GS, and RIM-ONE datasets are 7, 4, and
2 respectively.

There are various image preprocessing techniques such
as Gaussian noise or salt-and-pepper noise used more for
low-contrast images [3], variational histogram equalization
that helps to improve the quality of image [38], image
normalization [4], [20], the region of interest (ROI) extraction
to reduce the impact of non-relevant regions [16], [39], image
resizing to reduce the computation time [22], [40].
In the image preprocessing stage of this paper, the image

normalization between 0 and 1, the region of interest (ROI)
extraction, and image resizing have been applied but in
future work, the other preprocessing techniques will be
investigated and their impact on segmentation results will
be evaluated. The region of interest (ROI) was extracted by
cropping the central area of the OD. The size of cropped
ROIs differed depending on the sizes of the original fundus
image, including from 408 × 408 to 616 × 616 px in the
REFUGE dataset, from 674 × 674 to 1060 × 1060 px in
the Drishti-GS dataset, from 456 × 456 to 890 × 890 px
in RIM-ONE dataset. The images have been resized to sizes
of 512 × 512 px by applying the bicubic interpolation [22].
The preprocessed eye fundus images have been used to train,
validate, and test the different CNNs.

B. IMPLEMENTATION
Combining preprocessed eye fundus images of three different
datasets REFUGE, Drishti-GS, and RIM-ONE into mixed
dataset the original Attention U-Net and each modification

of the Attention U-Net with a different pre-trained network,
namely ResNet34, ResNet50, MobileNet, Inceptionv3, and
DenseNet121 as a backbone named Model-1, Model-2,
Model-3, Model-4, and Model-5 accordingly was trained
and validated on a single GPU machine [45] with 1 TB of
RAM in the Keras and TensorFlow frameworks by using
the Adam optimizer and Dice loss, and applying an early
stopping technique to reduce unnecessary training time.
Applying the KerasTuner framework, the parameters, i.e.
batch size, dropout rate and learning rate for each CNN
modification have been searched separately. Various image
augmentation techniques, such as image rotation by an angle
of rotation from 0◦ to 45◦, zooming by 20%, and horizontal
and vertical flipping have been performed during the training
by dedicating 20% of images for validation to increase the
diversity and prevent overfitting. All trained CNNs have been
tested on separate test datasets of REFUGE, Drishti-GS, and
RIM-ONE consisting of 50 eye fundus images with different
glaucoma stages and non-glaucoma.

C. EVALUATING METRICS
The performance of OD and OC segmentation was evaluated
by the Dice coefficient (Dice) and Intersection over Union
(IoU). Dice is used in most cases [13], [14], [41], [46] to
describe the similarity between the two images.

Dice =
2

∣∣S ⋂
L
∣∣∣∣S∣∣ +

∣∣L∣∣ . (3)

Refer to (3), S – the result based on segmentation, L – the
ground truth label.

IoU represents the overlapping ratio between the segmen-
tation results and the ground truth mask [8], [12], [42].

IoU =

∣∣S ⋂
L
∣∣∣∣S ⋃

L
∣∣ . (4)

Refer to (4), S – the result based on segmentation, L – the
ground truth label.

The CDR is calculated as the ratio of the vertical cup
diameter (VCD) to the vertical disc diameter (VDD) [7].

CDR =
vertical cup diameter
vertical disc diameter

. (5)

V. RESULTS
Original Attention U-NET and five modifications of Atten-
tion U-Net with different pre-trained networks ResNet34,
ResNet50, MobileNet, Inceptionv3, and DenseNet121 as a
backbone named Model-1, Model-2, Model-3, Model-4, and
Model-5 accordingly have been trained on a mixed dataset
and tested on testing data of REFUGE, Drishti-GS, and RIM-
ONE separately. The results of OD and OC segmentation
obtained by Dice and IOU are presented in Table 1. The three
models Model-1, Model-4, and Model-5 that achieved the
highest OD and OC segmentation results by Dice and IoU
have been chosen to compile an ensemble model.

The five different voting methods such as majority voting,
weighted average voting, unanimous voting, and averaging
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TABLE 1. OD and OC segmentation results obtained by different models.

FIGURE 2. The results of the best ensemble method. Dashed circles indicate ground truths of OD and OC. The green circle
indicates segmented OD, and the red circle - segmented OC. From the left: non-glaucoma, mild-stage glaucoma,
moderate-stage glaucoma, and severe-stage glaucoma.

TABLE 2. Results of five voting methods with test instance.

voting have been applied to obtain the final OD and OC
segmentation prediction provided by the ensemble model
on each test dataset REFUGE, Drishti-GS, and RIM-ONE
separately. The results are presented in Table 2 which
indicates that the majority voting method for the predictions
of the model was performed with the highest values of Dice
and IoU to conclude the final prediction.

Table 3 presents the summary of OD and OC segmentation
results by Dice and IoU of trained models, namely original

TABLE 3. Summary of OD and OC segmentation.

Attention U-Net, modified Attention U-Net with pre-trained
DenseNet121 as a backbone, and proposed ensemble with
a majority voting method. In comparison with the single
original Attention U-Net, the proposed ensemble method has
increased the OD segmentation by Dice by 2%, 2%, and 7%
on REFUGE, Drishti-GS, and RIM-ONE respectively. The
OC segmentation results by Dice have been increased by
3%, 2%, and 9% on REFUGE, Drishti-GS, and RIM-ONE
respectively. In comparison with the single best Attention
U-Net modification holding pre-trained DenseNet121 as a
backbone, the proposed ensemble method has increased the
OD segmentation by Dice by 0.3%, 0.1%, and 0.4% on
REFUGE, Drishti-GS, and RIM-ONE accordingly. The OC
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TABLE 4. Comparison of the proposed method and different existing methods in OD and OC segmentation.

TABLE 5. % of truth CDR and CDR calculated using segmented OD and OC
by ensemble on each test dataset separately.

segmentation results by Dice have been increased by 0.5%,
0.4%, and 0.7% on REFUGE, Drishti-GS, and RIM-ONE
respectively.

We compared the obtained OD and OC segmentation
results by our proposed ensemble approach with the results
obtained by the other authors (Table 4). The proposed
ensemble approach when a mixed dataset was used to train
different deep learning models outperformed the results of
other authors whenmodels were trained and tested on a single
dataset.

Table 5 presents the percentage of correctly classified
outputs obtained using the ensemble method of segmented
OD and OC for test images into four different glaucoma
stages and non-glaucoma cases according to calculated CDR
in comparison with their ground truth CDR.

The visual samples obtained using the proposed ensemble
method are presented in Fig. 2. From the left, it visualizes
non-glaucoma, mild glaucoma, moderate glaucoma, and

severe glaucoma cases. The green and red circles indicate the
segmented OD and OC accordingly, the white circles indicate
their ground truths.

VI. CONCLUSION AND DISCUSSION
In this paper, we have proposed an ensemble based
on a modified Attention U-Net with pre-trained CNNs
ResNet34, ResNet50, MobileNet, Inceptionv3, DenseNet121
as a backbone for mild glaucoma, moderate glaucoma, severe
glaucoma and non-glaucoma classification using eye fundus
images. The proposed method was trained on a mixed
dataset consisting of images from REFUGE, Drishti-GS,
and RIM-ONE and tested on test images of each dataset
separately. The five voting techniques, namely weighted
average voting, majority voting, unanimous voting, average
voting, and max voting have been applied to obtain the final
joint OD and OC segmentation results. The performance of
the proposed ensemble method has been evaluated by Dice
and IoU, and the calculated CDR has been used for eye
image classification into different glaucoma stages and non-
glaucoma cases. Our experimental results conclude that:

• OD and OC segmentation results are more accurate
when applying an ensemble of CNNs than a single
model. Applying the proposed CNNs ensemble method
the OD segmentation by Dice has been increased by
2%, 2%, and 7% on REFUGE, Drishti-GS, and RIM-
ONE respectively. The OC segmentation results by Dice
have been increased by 3%, 2%, and 9% on REFUGE,
Drishti-GS, and RIM-ONE accordingly.

• Comparing the applied five voting methods, the most
accurate OD and OC segmentation results are obtained
when the majority voting method is applied to combine
the predictions of three different models.
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• Severe-stage glaucoma cases are classified at 92%, 95%,
and 100% in the RIM-ONE, Drishti-GS, and REFUGE
datasets.

• Moderate-stage glaucoma cases are classified at 87%,
90%, and 92% in the RIM-ONE, Drishti-GS, and
REFUGE datasets.

• Mild-stage glaucoma cases are classified at 86%, and
57% in the RIM-ONE, and REFUGE datasets. In cases
where there is a mistake in classifying cases of mild-
stage glaucoma, these are classified as moderate-stage
glaucoma.

• Non-glaucoma cases are classified at 86%, and 50% in
the RIM-ONE, and REFUGE datasets. In cases where
there is a mistake in classifying cases of non-glaucoma,
these are classified as mild-stage glaucoma.

The mathematical assessment of the optic nerve head and
disc excavation will have significant practical importance for
ophthalmologists not only in the early diagnosis of glaucoma
but also for the diagnosis of optic nerve atrophy due to other
reasons.

The proposed approach was applied to publicly available
high-contrast images but in future work, it will be applied
to private datasets, once its preparation is done, containing
low-contrast images taken by different handheld eye fundus
cameras and in the development of the tools for various stages
of glaucoma detection.

Analyzing datasets it was noticed that in some datasets the
fundus images were labeled by seven experts, and in others
by two or four experts, therefore future investigationwould be
needed to evaluate the impact of CNN’s segmentation results
when the images are labeled by different experts.

Analyzing the obtained results and discussing the ensem-
ble error cases with the independent ophthalmologists and
the ophthalmologist from our research team, it was noticed,
that image labeling quality highly impacts the segmentation
results of CNNs. According to experts, Dice and IoU metrics
are not sufficient for the quality of results evaluation and the
ophthalmologist should be involved in the evaluation process
of the OD and OC segmentation results obtained by the
CNNs.
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