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Abstract: Background and Objectives: In the context of female cardiovascular risk categorization, we
aimed to assess the inter-model agreement between nine risk prediction models (RPM): the novel
Predicting Risk of cardiovascular disease EVENTs (PREVENT) equation, assessing cardiovascular
risk using SIGN, the Australian CVD risk score, the Framingham Risk Score for Hard Coronary
Heart Disease (FRS-hCHD), the Multi-Ethnic Study of Atherosclerosis risk score, the Pooled Cohort
Equation (PCE), the QRISK3 cardiovascular risk calculator, the Reynolds Risk Score, and Systematic
Coronary Risk Evaluation-2 (SCORE2). Materials and Methods: A cross-sectional study was conducted
on 6527 40–65-year-old women with diagnosed metabolic syndrome from a single tertiary university
hospital in Lithuania. Cardiovascular risk was calculated using the nine RPMs, and the results were
categorized into high-, intermediate-, and low-risk groups. Inter-model agreement was quantified
using Cohen’s Kappa coefficients. Results: The study uncovered a significant diversity in risk
categorization, with agreement on risk category by all models in only 1.98% of cases. The SCORE2
model primarily classified subjects as high-risk (68.15%), whereas the FRS-hCHD designated the
majority as low-risk (94.42%). The range of Cohen’s Kappa coefficients (−0.09–0.64) reflects the
spectrum of agreement between models. Notably, the PREVENT model demonstrated significant
agreement with QRISK3 (κ = 0.55) and PCE (κ = 0.52) but was completely at odds with the SCORE2
(κ = −0.09). Conclusions: Cardiovascular RPM selection plays a pivotal role in influencing clinical
decisions and managing patient care. The PREVENT model revealed balanced results, steering
clear of the extremes seen in both SCORE2 and FRS-hCHD. The highest concordance was observed
between the PREVENT model and both PCE and QRISK3 RPMs. Conversely, the SCORE2 model
demonstrated consistently low or negative agreement with other models, highlighting its unique
approach to risk categorization. These findings accentuate the need for additional research to assess
the predictive accuracy of these models specifically among the Lithuanian female population.

Keywords: cardiovascular diseases; risk prediction models; women’s health; inter-model agreement

1. Introduction

Cardiovascular diseases (CVDs) represent a paramount health challenge globally,
with a particularly pronounced impact on women. As the leading cause of morbidity and
mortality among women worldwide, CVD accounts for up to 36% of all deaths in this
demographic, overshadowing fatalities from all cancers combined [1,2]. This significant
health concern persists despite the overall decline in age-standardized cardiovascular mor-
tality rates over recent decades [3]. Notably, the incidence of coronary heart disease (CHD)
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in younger women exhibits a worrying uptrend [4,5], underpinning the intricate nature of
CVD in women and its ties to factors such as ovarian function and hypertension [6].

The challenge of addressing CVD in women is compounded by issues of under-
diagnosis, undertreatment, and under-representation in cardiovascular research [7]. These
obstacles underscore the need for tailored risk assessment and prevention strategies specif-
ically designed for women to mitigate the prevalence of CVD [8]. Despite the grim
statistics—highlighting CVD as responsible for 8.94 million deaths annually and affecting
275 million women globally [9]—advancements in risk prediction models offer a glimmer
of hope.

Risk prediction tools, integral for estimating the potential for fatal and non-fatal car-
diovascular events, have evolved considerably. These tools enable healthcare professionals
to formulate preemptive strategies and modify risk factors effectively [10,11]. The intro-
duction of innovative prediction models like the Predicting Risk of Cardiovascular Disease
EVENTs (PREVENT) equation, which considers novel risk factors, marks a significant
stride in personalized healthcare [12]. Further, the integration of machine learning and
deep learning techniques in cardiovascular risk prediction signifies a leap toward more
accurate and individualized risk assessments [13].

Despite these advancements, the literature reveals a paucity of studies focusing on the
agreement between risk categories among women, particularly in comparative analyses
including novel models like PREVENT. This gap in research motivates the current study,
which aims to conduct a comprehensive comparison of nine widely used cardiovascular
risk prediction models. These include the PREVENT, the Systematic Coronary Risk Evalu-
ation 2 (SCORE2), assessing cardiovascular risk using SIGN (ASSIGN), the Framingham
Risk Score for Hard Coronary Heart Disease (FRS-hCHD), the Australian CVD risk score
(AusCVDRisk), the Reynolds Risk Score (RRS), the Pooled Cohort Equation (PCE), the
Multi-Ethnic Study of Atherosclerosis risk score (MESA), and the QRISK3 cardiovascular
risk calculator (QRISK3). This study endeavors to illuminate the comparative agreement of
these models in the context of female cardiovascular risk categorization.

2. Materials and Methods
2.1. Study Population/Criteria for Inclusion and Exclusion

The dataset encompassed individuals enrolled in the LitHiR (Lithuanian High Cardio-
vascular Risk primary prevention program), a government-sponsored initiative launched
in Lithuania in 2006, aimed at the multifactorial reduction in cardiovascular (CV) risk
among middle-aged individuals to avert the early onset of atherosclerosis [14]. The pro-
gram targeted a population aged 40 to 65 years, without evident CVD, but diagnosed with
metabolic syndrome (MetS), and these subjects were assessed from 2006 to 2023 at the
tertiary care facility—Vilnius University Hospital Santaros Klinikos, located in Vilnius,
Lithuania. Metabolic Syndrome was defined according to the updated criteria of the Na-
tional Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII), which
necessitated the presence of three or more of the following criteria: systolic blood pressure
(SBP) of ≥130 mmHg or diastolic blood pressure (DBP) of ≥85 mmHg, or an existing
hypertension diagnosis; a waist circumference of ≥88 cm for females and ≥102 cm for
males; high-density lipoprotein (HDL) cholesterol levels of <1.29 mmol/L in females and
<1.03 mmol/L in males; triglyceride (TG) levels of ≥1.7 mmol/L or special treatment is
administered to reduce TG concentration; and diagnosed type 2 diabetes mellitus or fasting
plasma glucose levels of ≥5.6 mmol/L [15].

Data for the present study were derived from the LitHiR program’s prospectively
and uniformly collected dataset, which constituted the foundation for extracting the vi-
tal variables necessary for analysis. Inclusion criteria for subjects entailed having doc-
umented measures for key parameters, including low-density lipoprotein (LDL), high-
density lipoprotein (HDL), total cholesterol (TC), systolic blood pressure (SBP), diastolic
blood pressure (DBP), fasting glucose levels, creatinine, C-reactive protein (CRP), and the
urine albumin–creatinine ratio, along with detailed family and medication history. Any
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subject lacking records for these crucial indicators was omitted from the analysis, a measure
taken to maintain the integrity and accuracy of the risk assessment process.

For this investigation, the exclusion criteria encompassed individuals with a history of
silent myocardial ischemia, coronary artery disease, transient ischemic attacks, peripheral
artery disease, both ischemic and hemorrhagic strokes, oncological conditions, chronic or
persistent arrhythmias, severe renal or liver dysfunction, significant psychiatric conditions,
gout, as well as those who were pregnant, were undergoing therapy with xanthine oxidase
inhibitors, or had drug addiction issues. This approach was adopted to eliminate confound-
ing factors and ensure the study population was representative of individuals primarily at
risk for metabolic syndrome without the influence of these complex comorbid conditions.

2.2. Risk Prediction Models
2.2.1. Predicting Risk of Cardiovascular Disease EVENTs (PREVENT)

The PREVENT equation provides 10-year risk estimates for individuals of 30–79 years
of age and provides 30-year risk estimates for individuals of 30–59 years of age. The
algorithms were developed by the American Heart Association Cardiovascular-Kidney-
Metabolic Scientific Advisory Group. The risk equation was derived and validated in a
large, diverse sample of over 6 million individuals [12,16]. The calculation of the risk score
was performed using a specific calculator available at: https://professional.heart.org/en/
guidelines-and-statements/prevent-calculator (accessed on 1 March 2024). The 10-year
risk of CVD was calculated. During the computation procedure, the inclusion of the Zip
Code was not applicable.

2.2.2. Systematic Coronary Risk Evaluation 2 (SCORE2)

SCORE2 is a risk assessment tool created to estimate the 10-year risk of both fatal and
non-fatal CVD in individuals aged 40 to 69 years in Europe who have no prior history
of CVD. This score represents a refinement of the original SCORE model, updated to
include more recent data [17]. The SCORE2 model factors in various risk determinants
such as age, gender, systolic blood pressure, non-HDL cholesterol levels, and smoking
status. The calculation of the risk score was performed using a specific calculator avail-
able at: https://u-prevent.com/calculators/score2 (accessed on 2 June 2023). For this
analysis, we employed a recalibrated version of the risk score tailored for use in areas
identified as ‘very high risk’ by pertinent guidelines, without any alterations to the original
computation process.

2.2.3. Pooled Cohort Equations (PCE) Cardiovascular Risk Score

PCE was designed to estimate an individual’s likelihood of experiencing atheroscle-
rotic CVD (ASCVD) over the course of a decade, utilizing data gathered from diverse
community-based cohorts. This tool is relevant for both African American and non-
Hispanic White males and females within the age bracket of 40 to 79 years [18]. It integrates
common cardiovascular risk elements including sex, age, SBP, HDL-cholesterol, TC, the
presence of hypertension treatment, diabetes status, racial background, and smoking habits
into the risk assessment. The calculation of the risk score was performed using a specific
calculator available at: https://static.heart.org/riskcalc/app/index.html#!/baseline-risk
(accessed on 1 June 2023). No changes were made to the computation procedure.

2.2.4. QRISK3 Risk Calculator (QRISK3)

Introduced in 2017, the QRISK3 calculator serves as a revision of the QRISK2 algorithm,
first launched in 2008 and established as the primary risk assessment tool for estimating a
10-year cardiovascular event risk within the English population aged 25 to 84 years [19]. The
updated model enhances its predictive capability by incorporating an additional eight risk
factors that have been recognized in various studies as potential contributors to CVD. These
include the use of corticosteroids, migraine, treatment with atypical antipsychotic drugs,
systemic lupus erythematosus, severe mental illness, blood pressure variability, and erectile
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dysfunction. The calculation was performed using a specific calculator available at: https://
qrisk.org/ (accessed on 2 June 2023). No changes were made to the computation procedure.

2.2.5. Framingham Risk Score for Hard Coronary Heart Disease (FRS-hCHD)

The risk score was formulated to predict the risk of coronary heart disease (CHD)
events in 10 years, including coronary death and myocardial infarction. It evaluates various
risk factors such as sex, age, HDL cholesterol, TC, SBP, smoking status, and hypertension
treatment. The FRS-hCHD tool is specifically designed for non-diabetic individuals be-
tween the ages of 30 and 79 who have no previous diagnosis of intermittent claudication or
coronary heart disease [15]. The calculation was performed using a specific calculator avail-
able at: https://www.mdcalc.com/calc/38/framingham-risk-score-hard-coronary-heart-
disease (accessed on 1 June 2023). No changes were made to the computation procedure.

2.2.6. Reynolds Risk Score (RRS)

The RRS aims to predict the 10-year likelihood of a major cardiovascular event, includ-
ing stroke, myocardial infarction, or other significant heart conditions. This score integrates
conventional risk determinants like sex, age, cholesterol levels, smoking habits, and blood
pressure, along with supplementary biomarkers including high-sensitivity C-reactive pro-
tein (CRP) and a history of premature atherosclerosis in the family [20]. While initially
formulated for female populations, the model has subsequently been adjusted to apply
to male demographics as well. The calculation of the risk score was performed using a
specific calculator available at: http://www.reynoldsriskscore.org/ (accessed on 2 June
2023). No changes were made to the computation procedure.

2.2.7. Assessing Cardiovascular Risk Using SIGN (ASSIGN)

The ASSIGN model is tailored to calculate the 10-year likelihood of cardiovascular
events in individuals without pre-existing CVD, incorporating measures of social depriva-
tion (via the Scottish Index of Multiple Deprivation) and family history alongside traditional
variables [21]. This approach has demonstrated enhanced accuracy compared to other
CVD risk scores in forecasting CVD risk within the Scottish population. Moreover, the
ASSIGN score is the recommended tool for CVD risk assessment by the Scottish Gov-
ernment Health Directorates and the Scottish Intercollegiate Guidelines Network (SIGN).
The calculation of the risk model was performed using a specific calculator available at:
https://www.assign-score.com/estimate-the-risk/visitors/ (accessed on 2 June 2023). The
Scottish Index of Social Deprivation was not applicable during the computation procedure.

2.2.8. Australian CVD Risk Score (AusCVDRisk)

The AusCVDRisk model was developed to predict the 5-year probability of cardio-
vascular events, specifically for individuals aged 30 to 79 years without established CVD
and who do not fulfill criteria for high risk. This tool is based on the NZ PREDICT-
1 equation, originating from an extensive and modern primary care cohort study in
New Zealand [22]. The equation has undergone recalibration to suit the Australian de-
mographic and has been adjusted to align with the Australian healthcare framework.
The calculation of the risk score was performed using a specific calculator available at:
https://www.cvdcheck.org.au/calculator (accessed on 2 August 2023). The inclusion of a
postcode variable was not applicable during the computation procedure.

2.2.9. Multi-Ethnic Study of Atherosclerosis (MESA) Risk Score

The MESA risk score is formulated to calculate the 10-year likelihood of cardiovascular
events in individuals aged 45 to 85 years who have no diagnosed CVD [23]. This score is
derived from the extensive data collected in the MESA study, encompassing over 6800 par-
ticipants from diverse racial and ethnic backgrounds. The findings from the MESA study
confirm the score’s accuracy in assessing CVD risk across a broad spectrum of races and eth-
nic groups. The calculation of the risk score was performed using a specific calculator avail-

https://qrisk.org/
https://qrisk.org/
https://www.mdcalc.com/calc/38/framingham-risk-score-hard-coronary-heart-disease
https://www.mdcalc.com/calc/38/framingham-risk-score-hard-coronary-heart-disease
http://www.reynoldsriskscore.org/
https://www.assign-score.com/estimate-the-risk/visitors/
https://www.cvdcheck.org.au/calculator
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able at: https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx
(accessed on 2 June 2023). The coronary artery calcification index was excluded from the
computation procedure as this variable was not present in our dataset.

2.3. Definitions of Variables

Every Risk Prediction Model (RPM) features distinct risk categories and scoring ranges,
requiring the adoption of a standardized methodology to ensure analytical uniformity.
Figure 1 graphically depicts these risk categories and their corresponding intervals among
the various models. In certain RPMs, the categorization boundaries were maintained,
but the terminology was modified for consistency. For example, the ASSIGN risk score
initially classified some individuals as “non-high risk”, which was later segmented into
low- and intermediate-risk categories to achieve analytical harmony. Similarly, in scores
like PREVENT, the term “borderline risk” was redefined as “intermediate risk” to conform
to the uniform categorization scheme used in this analysis. This standardization of risk
categories enables a more detailed and nuanced comparison.

Medicina 2024, 60, x FOR PEER REVIEW 5 of 15 
 

 

and has been adjusted to align with the Australian healthcare framework. The calculation 
of the risk score was performed using a specific calculator available at: h�ps://www.cvd-
check.org.au/calculator (accessed on 2 August 2023). The inclusion of a postcode variable 
was not applicable during the computation procedure. 

2.2.9. Multi-Ethnic Study of Atherosclerosis (MESA) Risk Score 

The MESA risk score is formulated to calculate the 10-year likelihood of cardiovas-
cular events in individuals aged 45 to 85 years who have no diagnosed CVD [23]. This 
score is derived from the extensive data collected in the MESA study, encompassing over 
6800 participants from diverse racial and ethnic backgrounds. The findings from the 
MESA study confirm the score’s accuracy in assessing CVD risk across a broad spectrum 
of races and ethnic groups. The calculation of the risk score was performed using a specific 
calculator available at: h�ps://www.mesa-nhlbi.org/MESACHDRisk/Me-
saRiskScore/RiskScore.aspx (accessed on 2 June 2023). The coronary artery calcification 
index was excluded from the computation procedure as this variable was not present in 
our dataset. 

2.3. Definitions of Variables 

Every Risk Prediction Model (RPM) features distinct risk categories and scoring 
ranges, requiring the adoption of a standardized methodology to ensure analytical uni-
formity. Figure 1 graphically depicts these risk categories and their corresponding inter-
vals among the various models. In certain RPMs, the categorization boundaries were 
maintained, but the terminology was modified for consistency. For example, the ASSIGN 
risk score initially classified some individuals as “non-high risk”, which was later seg-
mented into low- and intermediate-risk categories to achieve analytical harmony. Simi-
larly, in scores like PREVENT, the term “borderline risk” was redefined as “intermediate 
risk” to conform to the uniform categorization scheme used in this analysis. This stand-
ardization of risk categories enables a more detailed and nuanced comparison. 

 
Figure 1. Comparative presentation of native and harmonized cardiovascular risk categorizations 
after adjustment. 

Figure 1. Comparative presentation of native and harmonized cardiovascular risk categorizations
after adjustment.

2.4. Statistical Analysis

In the quantitative evaluation, agreement among nine cardiovascular risk predic-
tion models was rigorously examined utilizing a multifaceted methodology. An initial
analysis employing descriptive statistics mapped out the frequency distributions of risk
categories across each algorithm, establishing a baseline for comprehending the segmen-
tation of patient populations into distinct risk levels. Concordance among model pairs
was quantitatively ascertained using Cohen’s Kappa statistics, a robust measure for eval-
uating categorical agreement, offering a scale from −1 to 1, with higher values denoting
greater agreement.

A heatmap was created to enhance the interpretability of the Kappa coefficients.
Additional analysis of the model interrelations was facilitated by hierarchical clustering.
Utilizing the pairwise Kappa coefficients, a dendrogram was synthesized via the Ward

https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx
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method, aimed at reducing within-cluster variance, thereby categorizing models with
similar risk differentiation patterns.

An overarching analysis of score agreement was conducted via Collective Model
Agreement Analysis, calculating the frequency of patients categorized consistently across
models, thus offering comprehensive insights into agreement levels in a clinical setting.

Statistical analyses were conducted using IBM SPSS software version 25.0 (SPSS,
Chicago, IL, USA) or Python, employing libraries such as Pandas for data management,
scikit-learn for statistical analysis, and Matplotlib and Seaborn for graphical visualizations.
The significance threshold for statistical inferences was established at 0.05.

2.5. Ethical Considerations

The study received approval from the Vilnius Regional Biomedical Research Ethics
Committee (permission no. 2019/3-1104-603, approval date 26 March 2019).

3. Results
3.1. Descriptive Statistics

In the current study, within the LitHiR cohort, a total of 6527 participants were assessed,
all of whom were female (100%). The mean age of these subjects was 57.62 ± 4.21 years.
Noteworthy cardiovascular risk factors were identified; the average body mass index (BMI)
was recorded at 31.76 ± 4.68 kg/m2, with the TC level averaging 6.33 ± 1.40 mmol/L. The
detailed lipid profiles indicated an average LDL cholesterol of 4.13 ± 1.23 mmol/L and
an HDL cholesterol of 1.33 ± 0.31 mmol/L. Further, the study population demonstrated a
mean SBP of 137.15 ± 15.96 mmHg and a mean DBP of 80.99 ± 10.38 mmHg. The prevalence
of comorbidities included 20.3% (n = 1325) of the participants diagnosed with diabetes
mellitus, 28.5% (n = 1861) receiving treatment for hypertension, and 11.7% (n = 764) on
dyslipidemia management with statins. Additionally, the cohort featured current smokers
(n = 841, 12.9%) and ex-smokers (n = 189, 2.9%), underscoring the multifaceted nature of
cardiovascular risk within this cohort. This thorough baseline characterization lays the
foundation for subsequent comparative analyses of cardiovascular RPMs (Table 1).

Table 1. Baseline characteristics of the study cohort (n = 6527).

Characteristics

Gender: n (%) Female 6527 (100)

Age, years: mean (SD) 57.62 (4.21)

Body mass index, kg/m2: mean (SD) 31.76 (4.68)

Systolic blood pressure, mmHg: mean (SD) 137.15 (15.96)

Diastolic blood pressure, mmHg: mean (SD) 80.99 (10.38)

Total cholesterol, mmol/L: mean (SD) 6.33 (1.40)

Triglycerides, mmol/L: mean (SD) 1.88 (1.15)

Low-density lipoprotein cholesterol, mmol/L: mean (SD) 4.13 (1.23)

High-density lipoprotein cholesterol, mmol/L: mean (SD) 1.33 (0.31)

Estimated glomerular filtration rate, mL/min/1.73 m2: mean (SD) 88.97 (10.74)

Urine Albumin–Creatinine Ratio, mg/g: mean (SD) 12.79 (100.21)

C-reactive protein, mg/L: mean (SD) 3.09 (3.98)

Creatinine, µmol/L: mean (SD) 65.60 (8.93)

Fasting glucose, mmol/L: mean (SD) 6.30 (1.51)

Diabetes mellitus: n (%) 1325 (20.3%)

Dyslipidemia treatment (statins): n (%) 764 (11.7%)
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Table 1. Cont.

Characteristics

Hypertension treatment: n (%) 1861 (28.5%)

Antiplatelet treatment: n (%) 19 (0.29%)

Current smoker: n (%) 841 (12.9)

Ex-smoker: n (%) 189 (2.9)
SD—standard deviation.

3.2. Risk Category Distribution

The comparative analysis revealed distinct disparities in cardiovascular risk cate-
gorization across models (Figure 2). The SCORE2 model had stood out by classifying
a majority (n = 4448, 68.15%) as high-risk, whereas PCE (n = 4665, 71.47%) and AusCV-
DRisk (n = 5393, 82.63%) predominantly identified individuals as low-risk, reflecting a
conservative approach in risk stratification. In contrast, ASSIGN displayed a balanced
distribution, with a notable presence across all risk categories, suggesting a middle ground
in risk assessment. Notably, models such as RRS (n = 99, 1.52%) and FRS-hCHD (n = 34,
0.52%) allocated a considerably smaller fraction to high-risk compared to SCORE2, MESA
(n = 1323, 20.27%), and ASSIGN. The PREVENT model, central to the analysis, categorized
patients with a discerning balance, with a significant number identified as intermediate
(n = 3015, 46.19%) and low risk (n = 3328, 50.99%), avoiding the extremities observed in
SCORE2 and FRS-hCHD.
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Figure 2. Distribution of cardiovascular risk categories among nine cardiovascular risk predic-
tion models.

3.3. Pairwise Agreement Analysis

The heatmap of Cohen’s Kappa statistics had revealed the degree of agreement among
the cardiovascular risk prediction models (Figure 3). The range of values extends from −1
to 1, with higher values indicative of stronger concordance. A significant observation was
the moderate agreement between PREVENT and QRISK3 (κ = 0.55) as well as PREVENT
and PCE (κ = 0.52), indicating a similar pattern in patient categorization between these
models, suggesting that they may have shared underlying risk assessment methodologies.
In contrast, PREVENT demonstrated minimal to no agreement with SCORE2 (κ = −0.09),
highlighting a starkly different approach in risk stratification between these models.
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Figure 3. Heatmap illustrating pairwise agreement across nine cardiovascular risk prediction models.

Other notable agreements included PCE and AusCVDRisk (κ = 0.64), showcasing a
high concordance and potential interchangeability for risk assessment purposes. Addi-
tionally, moderate agreements were observed between MESA and ASSIGN (κ = 0.39) and
QRISK3 and AusCVDRisk (κ = 0.38), suggesting these pairs of models had similarities in
risk categorization but retained distinct methodologies.

3.4. Cluster Analysis: Hierarchical Clustering

The hierarchical clustering dendrogram, based on the pairwise Cohen’s Kappa statis-
tics, delineates distinct clusters among the CVD RPMs, illustrating the underlying simi-
larities and differences in their risk stratification approaches. Specifically, three principal
clusters can be discerned (Figure 4). The first encompasses the PREVENT model alongside
ASSIGN and PCE, underscoring a noteworthy congruence in their approaches to evaluating
CVD risk. This clustering suggests that, despite their methodological differences, these
models share a common ground in their assessment criteria, pointing towards a nuanced
approach in evaluating CVD risk.

A second, broader cluster includes the MESA and AusCVDRisk models, along with
RRS and FRS-hCHD as well as QRISK3. Despite the diversity within this group, the models
exhibit sufficient commonality in risk categorization, suggesting a generally cohesive yet
varied approach to cardiovascular risk prediction across these models.

Distinctively, the SCORE2 model forms an isolated cluster, markedly separate from the
others. This segregation accentuates SCORE2’s divergent risk stratification methodology,
starkly contrasting with the more congruent approaches observed among the other models,
including PREVENT.
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risk prediction models.

3.5. Collective Model Agreement Analysis

Finally, we quantified the frequency of agreement among all models in classifying
the same patient into a specific risk category, offering an overall perspective on model
concordance. Table 2 displays the frequency of occurrences where a designated count of
scores concur regarding the risk category for a particular patient. The highest concordance
was observed when eight models agree, covering 23.76% of the patient population, followed
closely by instances where six models agree, accounting for 20.07% of patients. This analysis
highlights the variability in cardiovascular risk assessment across different models, with
a substantial portion of cases showing agreement among a majority of the models, yet
a complete consensus (all nine models agreeing) is relatively rare, affecting only 1.98%
of patients.

Table 2. The frequency and percentage of occurrences where a designated count of models agree
regarding the risk category for a particular patient.

Number of Models Agreeing Number of Patients Percentage of Patients (%)

3 177 2.71

4 1214 18.6

5 1039 15.92

6 1310 20.07

7 1107 16.96

8 1551 23.76

9 129 1.98
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4. Discussion

This study provides an in-depth comparison of the performance of nine prevalent
cardiovascular risk prediction models within a Lithuanian high-risk cohort among women.
The analysis reveals a significant variation in how these models classify cardiovascular risk,
highlighting the importance of careful application in clinical settings and showcasing the
attributes of the newly introduced PREVENT model.

In assessing the categorization of risk, the PREVENT model demonstrated a balanced
approach in the context of the various risk stratification methods employed by the analyzed
models, offering a unique viewpoint relative to its counterparts. Notably, QRISK3 and
MESA presented diverse risk distributions, with QRISK3 identifying a lower risk in a man-
ner akin to PREVENT, while SCORE2 allocated a significant portion (68%) of participants
to the high-risk category, and FRS-hCHD predominantly (94%) assigned subjects to the
low-risk group, illustrating the broad spectrum of risk assessment practices.

The analysis of model agreement highlights the PREVENT model’s distinctive align-
ment within the array of cardiovascular risk predictors, showing substantial concordance
with models such as QRISK3 (κ = 0.55) and PCE (κ = 0.52), while it shows complete dis-
cordance with SCORE2 (κ = –0.09). In addition, the study identifies a notably high degree
of agreement between the PCE and AusCVDRisk scores (κ = 0.64), as well as between
QRISK3 and PCE (κ = 0.58) and MESA and QRISK3 (κ = 0.51), suggesting these models
similarly classify patients. Conversely, SCORE2’s agreement with other models ranged
from negative to low (κ from –0.09 to 0.07), pointing to a distinct approach to risk classifi-
cation. Not to mention, a complete consensus, where all nine models agree is especially
rare, affecting only 1.98% of cases. These findings emphasize the diverse tendencies of
the models to assign individuals to various risk levels, underlining the critical need for
nuanced interpretation of their predictive power within the LitHiR cohort. Moreover,
cluster analysis via the dendrogram further highlights the compatibility of the PREVENT
model with QRISK3 and PCE, indicating that in certain clinical contexts, these models
could be used interchangeably with minimal impact on risk categorization. The clustering
of these models suggests that they share a common foundation of traditional cardiovascular
risk factors—such as age, cholesterol levels, and blood pressure—while also incorporating
novel risk factors like socioeconomic status (in the case of QRISK3) or kidney function
(in the case of PREVENT). These additional parameters enhance the model’s ability to
capture nuanced risk profiles, particularly in populations with complex socio-economic
or metabolic backgrounds, such as the cohort studied here. In contrast, models such as
SCORE2 and AusCVDRisk, which form separate clusters, reflect more region-specific ap-
proaches to cardiovascular risk assessment. SCORE2 is tailored to European populations,
placing a stronger emphasis on high-risk classification and fatal cardiovascular events,
whereas AusCVDRisk, calibrated for the Australian population, tends to categorize more
individuals as low-risk. This divergence highlights how regional guidelines and baseline
population risks significantly influence the performance of these models.

Unsurprisingly, the agreement outcomes align closely with our prior findings from the
same study population, which encompassed both male and female participants. Specifically,
the subpopulation of women exhibited stronger agreements, with notably higher concor-
dance between MESA and QRISK3. Conversely, there was a reduced level of agreement
between the AusCVDRisk and QRISK3 RPMs [24].

Several factors may account for the observed discrepancies in concordance across the
CVD RPMs in our investigation. Primarily, the differences in risk classification thresholds
each model employs are a prominent contributor. Additionally, variations in model end-
points, arising from their focus on either specific or more general cardiovascular events,
different predictive intervals (5 or 10 years), and the unique risk factors each model consid-
ers, result in personalized risk assessments for various population segments and clinical
contexts across the models [6]. However, the basis of agreement on risk categories rather
than absolute risk values may render this point less relevant. Differences in CVD risk
categorization may also arise from the varied source cohorts underpinning each risk as-
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sessment tool, including those with specific gender focuses, such as the RRS, which was
originally developed for female populations [20].

The SCORE2 model, derived from multiple European cohorts [17], and the ASSIGN
score, which uses Scottish data and incorporates social deprivation factors [21], exemplify
the geographic diversity in cardiovascular risk prediction tools. The AusCVDRisk, based
on Australian populations, and the FRS-hCHD, originating from the Framingham Heart
Study cohort in the United States [15], further highlight this diversity. Similarly, the MESA
tool addresses diverse ethnic groups within the United States [23], while both the PCE and
PREVENT models integrate data from multiple cohorts to provide race- and sex-specific
risk estimations with the PREVENT model extending its assessment to include factors such
as social deprivation, urine albumin–creatinine ratio, and HbA1C, thereby broadening
its analytical scope [12,18]. The QRISK3 calculator, developed from a comprehensive
UK-based cohort, integrates a broad spectrum of risk factors [19]. Lastly, the US-based
RRS incorporates biochemical variables and a family history of premature coronary heart
disease with traditional risk factors, reflecting its unique formulation [20].

In the synthesis of findings, it is imperative to address the multifaceted nature of
cardiovascular risk assessment and its inherent challenges. The evidence gleaned from
the literature underscores a persistent underestimation of cardiovascular risk in women, a
demographic traditionally marginalized in cardiovascular research. This underestimation
is particularly pronounced in the context of conditions like non-alcoholic fatty liver disease
and amid common risk factors such as hypertension and dyslipidemia, which are often
overlooked or underestimated in women [25–27]. Such findings illuminate the gender-
specific disparities in cardiovascular risk assessment and highlight the necessity for refined
risk prediction models that accurately reflect the cardiovascular risk profiles of women.

The incorporation of age as a determinant of risk underestimation, particularly in
urban women, alongside the analysis of the Framingham score’s inadequacy in accurately
assessing risk in women compared to men [28], further accentuates the complexity of
cardiovascular risk assessment in women. The evaluation of the SCORE model in the
context of postmenopausal women and the examination of the PCE model across diverse
populations, including the Women’s Health Initiative, signal an ongoing effort to enhance
the precision of risk prediction in women [29,30].

However, the QRISK3 calculator’s superior performance in discriminating ASCVD
risk among women, as compared to other assessment tools, underscores the evolving
landscape of risk prediction methodologies and their variable applicability across different
demographic segments [31]. The findings relating to the underestimation of true aortic SBP
by noninvasive blood pressure measurements in women further compound the challenges
in achieving accurate cardiovascular risk assessment in this group [32].

While the FRS exhibits tendencies to overestimate risk in populations outside the
USA, recalibration efforts have yielded mixed outcomes, with variations in risk estimation
accuracy between genders and across ethnic groups [33,34]. The RRS, on the other hand,
has demonstrated improved accuracy in classifying intermediate-risk women and has been
validated in predicting long-term cardiovascular risk in specific cohorts, including those
with inflammatory joint diseases [35,36].

The overarching narrative emerging from a systematic review of various risk predic-
tion algorithms reveals a landscape marked by inconsistency and variability in performance
metrics such as discrimination, calibration, and reclassification [37]. This inconsistency is
further exemplified by the discordance in risk estimation across different populations, as
highlighted by the underestimation and overestimation tendencies of the SCORE, PCE, and
other models in various demographic settings [34,38,39]. While the models analyzed in
this study offer valuable tools for estimating cardiovascular risk, their predictive capacity
is inherently limited by the exclusion of psychosocial determinants such as social support,
mental health, and socioeconomic status. These factors are increasingly recognized for
their role in shaping cardiovascular outcomes yet remain underrepresented in most current
prediction models. The ASSIGN, AusCVDRisk, and PREVENT scores are among the few
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that incorporate such factors, yet even these models do not capture the full spectrum of
influences on health.

The disparity in eligibility criteria for lipid-lowering therapy across distinct risk pre-
diction models, as illustrated by Mortensen et al. [40], encapsulates the broader issue
of model agreement and the implications for clinical decision-making. The low level of
concordance between different risk models, compounded by methodological variations
and demographic specificities, underscores a critical gap in our ability to uniformly as-
sess cardiovascular risk, particularly among women, since in our study, we observed
that SCORE2 classified the majority (68.15%) of the cohort as high-risk, while FRS-hCHD
(94.42%) and AusCVDRisk (82.63%) predominantly identified individuals as low-risk. This
significant variation in risk categorization is critical, as it directly influences treatment
decisions, such as the initiation of statin therapy. For example, under SCORE2, a patient
classified as high-risk may be recommended for more aggressive preventive measures,
such as high-intensity statin therapy or even consideration for additional treatments like
ezetimibe or PCSK9 inhibitors. On the other hand, the same patient might be categorized
as low-risk by PCE or AusCVDRisk, potentially leading to a recommendation for lifestyle
modification alone, without pharmacological intervention. This could result in under-
treatment or overtreatment depending on the model used, with profound implications for
long-term cardiovascular outcomes. Furthermore, these discrepancies in risk classification
could lead to patient confusion or non-compliance if different healthcare providers use
different models to assess risk. The variability in categorization underscores the need for
clinicians to carefully choose the most appropriate model based on the population being
treated and the clinical context. In particular, models such as SCORE2, which are calibrated
for high-risk European populations, may prioritize more aggressive prevention strategies,
while PCE and AusCVDRisk, which are more conservative in their risk estimates, may be
more suitable for populations with lower baseline cardiovascular risk.

Given these insights, it becomes apparent that the journey towards optimizing car-
diovascular risk prediction in women necessitates a multifaceted approach. This includes
the refinement of existing models to better capture the unique risk profiles of women, the
development of gender-specific risk assessment tools, and an overarching commitment to
integrating gender-specific considerations into cardiovascular research and clinical practice.
Only through such dedicated efforts can we hope to bridge the gap in cardiovascular risk
assessment and ensure equitable, precise, and personalized care for women.

Study Strengths and Limitations

This study distinguishes itself through an extensive comparison of nine distinct car-
diovascular risk prediction models, a breadth of analysis that is rare in existing literature.
The robustness of this evaluation is further enhanced by the inclusion of a large cohort
of 6527 subjects, providing substantial statistical power and bolstering the reliability and
applicability of the results. Notably, the study’s cohort comprised exclusively female
participants, offering a detailed insight into cardiovascular risk prediction within this
demographic. The diversity of the cohort in terms of cardiovascular risk factors—such
as hypertension, diabetes, and dyslipidemia—offers a realistic snapshot of the patient
demographics typically seen in clinical settings. The analytical rigor of the study is also
heightened through the use of advanced statistical methods, including Cohen’s Kappa
coefficients to gauge the concordance between models. This study is novel in its inclusion of
the latest PREVENT equation model along with other recent RPMs like SCORE2, QRISK3,
the updated AusCVDRisk score, and the latest version of PCE, thereby enhancing the
timeliness and comprehensiveness of our analysis.

Although the reliance on data from a single large tertiary hospital might be perceived
as a limitation due to potential concerns over external validity, it also serves as a strength
by ensuring consistency in data collection methods and reducing variations across facilities
that might lead to confounding factors. Nonetheless, the single-center approach constitutes
a primary limitation, potentially affecting the representativeness of the findings for a
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wider population. The exclusive focus on a female cohort introduces another limitation,
as it may not fully capture the gender-specific nuances in cardiovascular risk prediction,
underscoring the need for future studies to include both male and female participants to
enhance the generalizability of the findings. Furthermore, the study examines a cohort
exclusively composed of individuals diagnosed with metabolic syndrome. This specific
focus may restrict the broader applicability of the results, highlighting the necessity for
future research to encompass a more varied participant pool. The exclusive selection of
participants with metabolic syndrome narrows the study’s relevance, suggesting that these
findings should be extrapolated with caution to a more diverse and general population.
Additionally, the cross-sectional design of the study limits the ability to determine causality
or track changes in risk assessments over time. The lack of data on actual cardiovascular
events constrains our capacity to validate the predictive accuracy of the scores examined.
Although the absence of longitudinal follow-up is a noted shortcoming, this aspect is slated
for exploration in subsequent studies aimed at evaluating the predictive performance
of the models discussed. While the large cohort size and the array of cardiovascular
risk profiles examined are strengths, the possibility of unaccounted confounding factors
remains. Furthermore, the tendency of different models to categorize individuals into
specific risk tiers necessitates careful consideration when interpreting and applying these
models interchangeably.

5. Conclusions

The selection of a RPM plays a pivotal role in influencing clinical decisions and
managing patient care. In the comparison of cardiovascular risk categorization methods,
the PREVENT model emerged as a balanced option, steering clear of the extremes seen
in both SCORE2 and FRS-hCHD. Notably, the highest level of concordance was observed
between the PREVENT model and both the PCE and QRISK3 RPMs. Conversely, the
SCORE2 model demonstrated consistently low or negative agreement with other scores,
highlighting its unique approach to risk estimation. Remarkably, agreement across all nine
models on the same risk category for a patient was rare, occurring in only 1.98% of cases.
These findings accentuate the critical need for additional research to assess the predictive
accuracy of these models specifically among the Lithuanian female population.
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O.; Šlapikas, R. Lithuanian High Cardiovascular Risk (LitHiR) primary prevention programme—Rationale and design. Semin.
Cardiovasc. Med. 2012, 18, 1–6. [CrossRef]

15. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of
High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [CrossRef]

16. Khan, S.S.; Coresh, J.; Pencina, M.J.; Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Palaniappan, L.P.; Sperling, L.S.; Virani,
S.S.; Ho, J.E.; et al. Novel Prediction Equations for Absolute Risk Assessment of Total Cardiovascular Disease Incorporating
Cardiovascular-Kidney-Metabolic Health: A Scientific Statement From the American Heart Association. Circulation 2023, 148,
1982–2004. [CrossRef]

17. CORE2 Working Group; ESC Cardiovascular Risk Collaboration. SCORE2 risk prediction algorithms: New models to estimate
10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [CrossRef]

18. Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino,
J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on
the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force
on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [CrossRef]

19. Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future
risk of cardiovascular disease: Prospective cohort study. BMJ 2017, 357, j2099. [CrossRef]

20. Ridker, P.M.; Buring, J.E.; Rifai, N.; Cook, N.R. Development and validation of improved algorithms for the assessment of global
cardiovascular risk in women: The Reynolds Risk Score. JAMA 2007, 297, 611–619. [CrossRef]

21. Woodward, M.; Brindle, P.; Tunstall-Pedoe, H. Adding social deprivation and family history to cardiovascular risk assessment:
The ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2007, 93, 172–176. [CrossRef] [PubMed]

22. Pylypchuk, R.; Wells, S.; Kerr, A.; Poppe, K.; Riddell, T.; Harwood, M.; Exeter, D.; Mehta, S.; Grey, C.; Wu, B.P.; et al. Cardiovascular
disease risk prediction equations in 400,000 primary care patients in New Zealand: A derivation and validation study. Lancet
2018, 391, 1897–1907. [CrossRef] [PubMed]

https://doi.org/10.1161/CIR.0000000000000152
https://www.ncbi.nlm.nih.gov/pubmed/25520374
https://doi.org/10.1161/CIR.0000000000000485
https://www.ncbi.nlm.nih.gov/pubmed/28122885
https://doi.org/10.1016/j.jacc.2017.04.052
https://www.ncbi.nlm.nih.gov/pubmed/28527533
https://doi.org/10.1007/s11883-015-0518-5
https://www.ncbi.nlm.nih.gov/pubmed/26004921
https://doi.org/10.1016/j.jacc.2007.05.056
https://doi.org/10.2147/IJWH.S38084
https://doi.org/10.1161/CIR.0000000000000351
https://doi.org/10.21542/gcsp.2017.1
https://doi.org/10.1016/S0140-6736(20)30925-9
https://doi.org/10.1093/eurheartj/ehad192
https://doi.org/10.1161/CIR.0000000000000678
https://www.ncbi.nlm.nih.gov/pubmed/30879355
https://doi.org/10.1161/CIRCULATIONAHA.123.067626
https://www.ncbi.nlm.nih.gov/pubmed/37947085
https://doi.org/10.1155/2023/9418666
https://doi.org/10.2478/v10287-012-0003-3
https://doi.org/10.1161/circ.106.25.3143
https://doi.org/10.1161/CIR.0000000000001191
https://doi.org/10.1093/eurheartj/ehab309
https://doi.org/10.1161/cir.0000000000000625
https://doi.org/10.1136/bmj.j2099
https://doi.org/10.1001/jama.297.6.611
https://doi.org/10.1136/hrt.2006.108167
https://www.ncbi.nlm.nih.gov/pubmed/17090561
https://doi.org/10.1016/S0140-6736(18)30664-0
https://www.ncbi.nlm.nih.gov/pubmed/29735391


Medicina 2024, 60, 1511 15 of 15

23. McClelland, R.L.; Jorgensen, N.W.; Budoff, M.; Blaha, M.J.; Post, W.S.; Kronmal, R.A.; Bild, D.E.; Shea, S.; Liu, K.; Watson, K.E.;
et al. 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors. J. Am. Coll.
Cardiol. 2015, 66, 1643–1653. [CrossRef]
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