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Notations

Z – the set of all positive integers

{xn}, n = 0,1, . . . – the sequence x0, x1, x2, . . .

(a,b) or gcd(a,b) – the greatest common divisor of a and b

|z| – the absolute value of a complex number z

Fq – the Galois field of order q(a
b

)
– the Legendre symbol

Fk – the free abelian group of rank k

Sk(x0, x1, . . . ,xk−1) – the k-step Fibonacci-like sequence

Sk(N) – the set of triples (pi,mi,ri)
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1 Introduction

1.1 Linear recurrence sequence

The main objects studied in this thesis are linear recurrence sequences of
composite numbers. The linear recurrence sequence {xn}, n = 0, 1, . . . is
defined by the linear recurrence equation

xn = ad−1xn−1 +ad−2xn−2 + · · ·+a0xn−d, n> d,

where ad−1, ad−2, . . . ,a0 are some constants and d is a positive integer. If the
coefficient a0 6= 0, then the integer d > 0 is called the order of the sequence
{xn}, n = 0, 1, . . . . The initial terms x0, x1, . . . , xd−1 can be taken to be any
values, but then every successive term is determined uniquely. In this thesis
we are interested in integer sequences, so the coefficients ai and the initial
values xi are integers for i = 0, 1, . . . ,d−1.

To avoid confusion with zero and one, we call a non-negative integer n

a composite number if n 6= 0,1 and n is not a prime number.

1.2 Problems and results

This section contains a brief summary of problems examined in this doctoral
dissertation.

• In Chapter 3 we will study the second order (binary) linear recurrence
sequences. Let (a,b) ∈ Z2, where b 6= 0 and (a,b) 6= (±2,−1). We
will prove that then there exist two positive relatively prime compos-
ite integers x0,x1 such that the sequence given by xn = axn−1 +bxn−2,

n = 2, 3, . . . , consists of composite terms only, i.e., |xn| is a composite
integer for each n ∈ N. In the proof of this result we will use certain
covering systems, divisibility sequences and, for some special pairs
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(a,±1), computer calculations. It extends the result of Graham [15]
who proved this theorem in the special case of the Fibonacci-like se-
quence, where (a,b) = (1,1).

• Chapter 4 is devoted for the special case of the third order linear
recurrence sequences, i.e., tribonacci-like sequences. We find three
positive integers x0, x1, x2 satisfying gcd(x0,x1,x2) = 1 such that the
sequence {xn}, n = 0, 1, . . . given by the recurrence relation xn = xn−1+

xn−2 + xn−3 for n > 3 consists of composite numbers only. The initial
values are x0 = 99202581681909167232, x1 = 67600144946390082339,
x2 = 139344212815127987596. This is also a natural extension of a
similar result of Graham [15] for the Fibonacci-like sequence.

• In Chapter 5 we will generalize results of Chapter 4. We will prove that
for each positive integer k in the range 26 k6 10 and for each positive
integer k ≡ 79 (mod 120) there is a k-step Fibonacci-like sequence of
composite numbers and will give some examples of such sequences.

The schematic diagram of the evolution of the results:

Graham’s result
xn = xn−1+ xn−2

Chapter 3
xn = axn−1+bxn−2

Chapter 4
xn = xn−1+ xn−2+ xn−3

Chapter 5
xn = xn−1+ xn−2+ · · ·+ xn−k

10



1.3 Methods

In this thesis one of the most often used and very powerful tool is a covering
system invented by P. Erdős [11] in 1950. A covering system is a finite set
of residue classes whose union covers all the integers, i.e., every integer n

belongs to one of the residue classes.
Let {xn}, n = 0, 1, 2 . . . be a linear recurrence sequence of composite

numbers. Our goal is to find a covering system with the following property:

• if m is the element of the residue class R then xm is divisible by the
prime number pR which depends only on R.

If such covering system exists then we have that every term of the sequence
{xn} is divisible by some prime.

The investigation of recurrence sequences using covering system requires
computer algorithms. We first construct the appropriate covering system
satisfying some properties. It is a difficult task if the number of residue
classes is large. The second task is to solve the system of simultaneous
congruences using Chinese Reminder Theorem (CRT). The solution usually
is huge. These algorithms were implemented using a computer algebra
system PARI/GP [37].

In order to establish the results on binary linear recurrence sequence, we
will use the properties of divisibility sequences, some elements of the field
theory, also Dirichlet’s theorem on prime numbers in arithmetic progression.

1.4 Actuality and Applications

Prime and composite numbers play a very important role in modern cryp-
tography. Many cryptographic methods are based on composite number
problem, i.e., if for a given positive integer n there exists a nontrivial divi-
sor. The security of the system depends on how much time we have used to
factor the large composite number. Any research on prime and composite
numbers can be useful in developing cryptographic methods.

The relation of the results of this doctoral dissertation and unsolved
number theory problems is discussed in Literature review (Chapter 2).
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1.5 Originality

The results presented in this doctoral dissertation are new and original. The
main results have been published in the international journals (see Section
1.7). Since the results of Chapter 3 are based on the article [10], they were
presented in my co-author’s Novikas [26] doctoral dissertation in 2012.

The methods used in Chapter 4 and Chapter 5 for construction of com-
posite number sequences are original and can be adapted in various cases.

1.6 Dissemination of results

The results of this thesis were presented in the following conferences:

• 27th Journées Arithmétiques, June 27 – July 1, 2011, Vilnius;

• Fifteenth International Conference on Fibonacci Numbers and Their
Applications, June 25 – 30, 2012, Eger, Hungary.

They were also presented in the number theory seminar of Department of
Probability Theory and Number Theory on May 5, 2013.

1.7 Publications

1.7.1 Principal publications

The results of the doctoral dissertation can be found in three research pa-
pers. All of them were published in three foreign mathematical journals.

1. A. Dubickas, A. Novikas, and J. Šiurys, A binary linear recur-
rence sequence of composite numbers, Journal of Number Theory 130
(2010), 1737–1749.

2. J. Šiurys, A tribonacci-like sequence of composite numbers, Fibonacci
Quarterly 49 (2011), no. 4, 298–302.

3. J. Šiurys, A linear recurrence sequence of composite numbers, LMS
Journal of Computation and Mathematics 15 (2012), 360–373.
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1.7.2 Conference abstracts

1. A. Novikas, and J. Šiurys, A binary linear recurrence sequence of
composite numbers, 27th Journées Arithmétiques, June 27 – July 1,
2011, Vilnius, Lithuania: programme and abstract book. Vilnius, Vil-
niaus universitetas, 2011. Available online at http://atlas-conferences.
com/cgi-bin/abstract/cbbv-22.

2. J. Šiurys, A linear recurrence sequence of composite numbers, Fif-
teenth International Conference on Fibonacci Numbers and Their Ap-
plications, June 25 – 30, 2012, Eger, Hungary: abstract book.
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2 Literature review

2.1 Primes and composite numbers in
integer sequences

Many interesting questions about primes in integer sequences remain un-
solved. For instance, it is not known if there are infinitely many primes of
the form n2+1, n ∈N. Although almost all positive integers are composite,
for some quite natural sequences, for example, [rn], where r > 1 is a rational
non-integer number and n runs through the set of positive integers N, it is
not even known if they contain infinitely many composite numbers or not
(see Problem E19 in [16]). The latter question is only settled for r = 3/2,
r = 4/3 in [13] and for r = 5/4 in [9]. See also [1], [2] for some related
problems.

A Mersenne prime is a prime number of the form Mp = 2p−1 (p must
be a prime too). There are known only 48 Mersenne primes. The largest
known Mersenne prime M57,885,161 was found by Great Internet Mersenne
Prime Search (GIMPS) [14] on January 25, 2013. It is also the largest
known prime number. Lenstra [21], Pomerance [31], and Wagstaff [40] have
conjectured that there is an infinite number of Mersenne primes. However,
it is not even known whatever there are infinitely many composite numbers
of the form 2p−1 (with p a prime number).

2.2 Covering system

In 1934, Romanoff [32] proved that the set of positive odd integers which
can be expressed in the form 2n+ p, where p is a prime and n is nonnegative
integer, has a positive asymptotic density. So, he asked Erdős if there are
infinitely many odd integers not of the form 2n + p. This led Erdős to the
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concept of the covering system. A collection of residue classes

ri (mod mi) := {ri +mik | k ∈ Z},

where mi ∈N, ri ∈ Z, 06 ri < mi, and i = 1, . . . , t, is called a covering system
if every integer n∈Z belongs to at least one residue class ri (mod mi), where
16 i6 t. In 1950, Erdős [11] constructed an arithmetic progression of odd
integers not of the form 2n + p. Using similar methods many results were
proven. Cohen and Selfridge [7] constructed a odd integer which is neither
the sum nor the difference of two primes powers. Sun [36] extended their
work and constructed an arithmetic progression or such numbers. Luca and
Stănică [22] founded a infinite sequence of Fibonacci numbers that are not
sums of two prime powers. See [4], [5], [8], [29], [42] for other related results.

Another term closely related to the covering system is a covering set.
For the given sequence, a covering set is the finite set of prime numbers
such that every member in the sequence is divisible by at least one prime
of the set.

In 1960, Sierpiński [33] proved that there are infinitely many positive
integers k (Sierpiński numbers) such that k · 2n + 1 is composite for each
n ∈N. Sierpiński included in his paper the proof of Schinzel that a covering
set of the sequence k ·2n +1 must also be the covering set of the sequence
2n + k, where k is fixed positive integer. Two years later, Selfridge (un-
published) showed that 78557 is a Sierpiński number, i.e., 78557 ·2n +1 is
composite for each n ∈ N. The covering set for the sequence 78557 ·2n +1
is {3, 5, 7, 13, 19, 37, 73}. However, after extensive computer calculation it
has not yet been proven that 78557 is the smallest Sierpiński number. There
are six numbers which have not been eliminated as possible Sierpiński num-
bers: 10223, 21181, 22699, 24737, 55459, and 67607 (see, e.g., [16], Section
B21, [27], [28]).

2.3 Fibonacci-like sequence

The sequence of Fibonacci numbers is a well known sequence defined by the
recurrence relation

Fn = Fn−1 +Fn−2, n = 2, 3, 4 . . . ,

16



with initial values F0 = 0 and F1 = 1.
If Fibonacci number Fk is a prime then k must also be a prime. Unfor-

tunately, the converse is not always true. Moreover, it is not known if there
are infinitely many Fibonacci primes.

Graham [15] investigated the sequence defined by the same recurrence
relation as Fibonacci numbers but with different starting values, namely
the sequence

xn = xn−1 + xn−2, n = 2, 3, 4 . . . ,

with some initial values x0 and x1. This sequence is called a Fibonacci-like
sequence. If there is a prime p which divides x0 and x1 then p divides every
term of the Fibonacci-like sequence and in this case there are only finite
number of primes in the sequence {xn}, n = 0, 1, 2 . . . . In 1964, Graham
found two relatively prime positive integers x0, x1 such that the sequence

xn = xn−1 + xn−2, n = 2, 3, 4 . . . ,

contains only composite numbers, i.e., xn is composite for each n ∈N. Gra-
ham’s pair (x0,x1) was

(331635635998274737472200656430763,

1510028911088401971189590305498785).

Actually, he made a calculation mistake in the paper, but his reasoning
was correct. The other results are based on changing the covering system.

Knuth [20] (1990) corrected Graham’s mistake and found the smaller
pair

(x1,x2) = (62638280004239857,49463435743205655).

Wilf [41] (1990) slightly refined Knuth’s computation and found the pair

(x1,x2) = (20615674205555510,3794765361567513).

This was further reduced by Nicol [24] (1999) to

(x1,x2) = (407389224418,76343678551).

Currently, the "smallest" known such pair (in the sense that x1 + x2 is the
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smallest positive integer or max(x1,x2) is the smallest positive integer) is
due to Vsemirnov [38] (2004)

(x1,x2) = (106276436867,35256392432).

All these results are based on the fact that the Fibonacci sequence is
a divisibility sequence, i.e., Fn|Fm whenever n|m, and on finding a covering
system with the property that there exist distinct prime numbers pi such
that pi|Fmi for i = 1, . . . , t. However, for most linear recurrences of order
d > 3, there are no divisibility sequences satisfying them (see, e.g., the
paper of Hall [17]).

2.4 Binary linear recurrence sequences

Let k be a positive odd integer and {xn}, n = 0, 1, 2, . . . , be a sequence
defined by a recurrence relation

xn = 3xn−1−2xn−2, n = 2, 3, 4, . . . ,

with initial values x0 = k+1, x1 = 2k+1. If xn is composite for all n, then
k is a Sierpiński number.

The preceding observation and Graham’s problem lead to a more general
second order linear recurrence sequences.

Let a and b be two relatively prime integers and let {xn}, n = 0, 1, 2 . . . ,
be a sequence given by some initial values x0, x1 and the binary linear re-
currence

xn = axn−1 +bxn−2

for n = 2,3,4, . . . . Izotov [18] proved what if a and b satisfy some conditions
then there exist two relatively prime positive integers x0, x1 such that |xn|
is a composite integer. Somer [35] completed Izitov’s proof. He used deep
results of Bilu et al. [3], Choi [6], and also the theorem of Parnami and
Shorey [30] in his paper.
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2.5 Tribonacci-like recurrence sequences

Let S(x0,x1,x2) = (xn)
∞
n=0 be a sequence of integers satisfying the ternary

recurrence relation
xn+1 = xn + xn−1 + xn−2 (2.1)

for n = 2, 3, 4, . . . . The values of x0, x1 and x2 determine the sequence
S(x0,x1,x2). If x0 = 0, x1 = 0 and x2 = 1, then S(x0,x1,x2) is a classical
tribonacci sequence. This sequence has been examined by many authors.
See, for example, [19], [25], [39].

2.6 k-step Fibonacci-like sequence

For each integer k > 2 one can define a k-step Fibonacci-like sequence, i.e.,
the sequence of integers xn, n = 0, 1, 2, . . . , satisfying the following relation

xn =
k

∑
i=1

xn−i

for n = k, k+1, k+2 . . . . Since the values of x0,x1, . . . ,xk−1 determine the k-
step Fibonacci-like sequence we denote it by Sk(x0, x1, . . . ,xk−1). The terms
of the sequence Sk(0,0, . . . ,0,1) is well known Fibonacci k-step numbers.

Flores [12] developed the calculation of Fibonacci k-step numbers with-
out recursion. Noe and Post [25] showed that Fibonacci k-step numbers are
nearly devoid of primes in first 10000 terms for k 6 100.
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3 Binary linear recurrence
sequences

3.1 Introduction

In this chapter our goal is to prove the following theorem:

Theorem 3.1. Let (a,b) ∈ Z2 and let {xn}, n = 0, 1, 2 . . . , be a sequence
given by some initial values x0, x1 and the binary linear recurrence

xn = axn−1 +bxn−2 (3.1)

for n = 2,3,4, . . . . Suppose that b 6= 0 and (a,b) 6= (2,−1),(−2,−1). Then
there exist two relatively prime positive integers x0, x1 such that |xn| is a
composite integer for n = 0, 1, 2, . . . .

As it was mentioned in Section 2.4, the special case of Theorem 3.1 was
proved by Izotov [18]. He added three conditions for the coefficients a and
b of the sequence 3.1:

1) a2 +4b > 0;

2) a > 2;

3) a has an odd prime divisor p.

Izotov gave explicit initial values x0 and x1 such that |xn| is a composite
integer for each n∈N. For even n, xn had an algebraic decomposition while,
for odd n, xn had a covering set P = {p}.

Somer [35] proved Theorem 3.1 in general case. However, he proved
only the existence of such sequences. Our proof is more constructive. In
some special cases we will give exact initial values.
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Let α :=(a+
√

D)/2 and β :=(a−
√

D)/2, where
√

D is defined as i
√
−D

for D < 0, be two roots of the characteristic equation

x2−ax−b = (x−α)(x−β ) = 0 (3.2)

with discriminant
D := (α−β )2 = a2 +4b. (3.3)

By (3.2) and (3.3), we have α − β =
√

D, αβ = −b and α + β = a. It is
easily seen that the nth term of the sequence {xn}, n = 0, 1, 2, . . . , defined
in (3.1) is given by

xn =
−x0β + x1

α−β
α

n +
x0α− x1

α−β
β

n (3.4)

provided that α 6= β , i.e., D 6= 0. For α = β , i.e., D = 0 we have

xn = α
nx0 +(x1−αx0)nα

n−1 (3.5)

for each nonnegative integer n (see for instance [23, Ch. 5] for more details).
Our plan of the proof of Theorem 3.1 can be described as follows. In

Section 3.2 we shall examine the following three cases:

(i) D = 0;

(ii) a = 0;

(iii) b =−1, |a|6 2.

Also, in Section 3.2 we show that the condition of the theorem (a,b) 6=
(±2,−1) is necessary.

In case |b| > 2 we shall take x1 divisible by |b|. Then, by (3.1), x2 and
so, by induction, all xn, where n> 1, are divisible by |b|. The main difficulty
is to show that x1 can be chosen so that xn 6= 0, b,−b for each n > 2, so
that |xn| is composite. This case, |b| > 2, will be examined in Section 3.3.
Finally, in Section 3.4 we shall describe the method of covering systems and
prove the theorem for |b|= 1.
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3.2 Several simple special cases

In this section we shall consider three special cases: (i) D = 0; (ii) a = 0;
(iii) b =−1, |a|6 2.

Case (i). Since D = a2 + 4b = 0, the solution of the linear recurrence
(3.1) is given by (3.5). Note that a = 2α and b = −α2. So α is a nonzero
integer. We shall split the proof into two cases |α|> 2 and |α|= 1.

In the first case, |α| > 2, let us take two distinct primes p, q and se-
lect x0 := p2, x1 := |α|q2. Then x1, x2 are composite and gcd(x0, x1) = 1.
Furthermore, writing |α|= αε, where ε =±1, by (3.5), we obtain

xn = (p2 +n(εq2− p2))αn

for each n> 0. Clearly, |xn| is divisible by |α2|= |b|> 4 for n> 2, so |xn| is
composite for each n ∈ N, unless

p2 +n(εq2− p2) = 0

for some n. But this equality cannot hold for n ∈N. Indeed, if ε =−1, then

n =
p2

p2 +q2

is greater than 0 and smaller than 1, a contradiction. If ε = 1, then nq2 =

(n−1)p2 implies n = `p2 and n−1 = `q2 with `∈Z. Hence 1 = n−(n−1) =
`(p2−q2), which is impossible, because |p2−q2|> |32−22|= 5 > 1.

Suppose next that α =±1. Then b=−α2 =−1 and a=±2. This case is
not allowed by the condition of the theorem. Moreover, it is easy to see that
in this case the sequence {|xn|}, n = 0, 1, 2, . . . , where x0, x1 are composite
and gcd(x0, x1) = 1, contains infinitely many prime numbers. Indeed, by
(3.5),

xn = (εx0 +n(x1− εx0))ε
n−1

for each n > 1 and ε = ±1. Since x0 and x1 are relatively prime positive
composite integers, we must have u := εx0 6= 0 and v := x1− εx0 6= 0. More-
over, gcd(x0,x1) = 1 implies gcd(u,v) = 1. So, by Dirichlet’s theorem on
prime numbers in arithmetic progressions, we conclude that |xn| = |u+nv|
is a prime number for infinitely many n ∈ N. This not only completes the
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proof of Theorem 3.1 in the case D = 0, but also shows that the condition
(a,b) 6= (±2,−1) is necessary.

Case (ii). For a = 0, we have xn = bxn−2 for n> 2. Let p,q > |b| be two
distinct primes. Selecting x0 := p2 and x1 := q2, we have gcd(x0, x1) = 1.
Furthermore, x2k = p2bk and x2k+1 = q2bk for each k> 0, so |xn| is composite
for every n ∈ N.

Case (iii). The cases (a,b) = (±2,−1) and (a,b) = (0,−1) are already
covered by Case (i) and Case (ii), respectively. If (a,b) = (−1,−1) the re-
currence sequence xn =−xn−1−xn−2 satisfying the condition of the theorem
is, for example, the following periodic sequence:

9,16,−25,9,16,−25,9,16,−25, . . . .

For (a,b) = (1,−1), we have the recurrence xn = xn−1− xn−2. Now, the pe-
riodic sequence

16,25,9,−16,−25,−9,16,25,9,−16,−25,−9, . . .

satisfies the conditions of the theorem.

3.3 The case |b|> 2

Lemma 3.2. Let d and ` be two positive integers. Then there is a positive
integer c and three distinct odd prime numbers p,q,r such that pqr divides
d + c2 and gcd(pqr, `c) = 1.

Proof. Given h∈Z and a prime number p, let
(

h
p

)
be the Legendre symbol.

Take three distinct prime numbers p,q,r greater than max(d, `) such that(
−d
p

)
=

(
−d
q

)
=

(
−d
r

)
= 1.

(For example, one can take the prime numbers p,q,r in the arithmetic
progression 4kd + 1, k = 1,2, . . . .) Then there are three positive integers
c1,c2,c3 such that c2

1 ≡ −d (mod p), c2
2 ≡ −d (mod q), c2

3 ≡ −d (mod r).
By the Chinese remainder theorem, there is a positive integer c such that
c≡ c1 (mod p), c≡ c2 (mod q), c≡ c3 (mod r). Then c2 ≡−d (mod pqr).
This proves that pqr divides d + c2.
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Since p,q,r > `, none of the primes p,q,r divides `. Assume that p|c.
Then p|(d+c2) implies p|d, which is impossible, because p> d. By the same
argument, q and r do not divide c. This completes the proof of gcd(pqr, `c) =

1.

Lemma 3.3. Let ui,vi, i = 1,2, . . . , p−1, and s be the elements of the field
Fp, where p is a prime number. Assume that for each i at least one of ui,vi

is nonzero. Then there exist u,v∈ Fp such that at least one of u,v is nonzero
and uui + vvi 6= s for each i = 1, . . . , p−1.

Proof. Fix an index i in the range 1 6 i 6 p− 1. We claim that there are
exactly p pairs (u,v) ∈ F2

p for which

uui + vvi = s. (3.6)

Indeed, if ui = 0, then vi 6= 0 and (u,sv∗i ), where u ∈ Fp and v∗i is the inverse
element of vi in Fp, are the solutions of (3.6). By the same argument, (3.6)
has p solutions if vi = 0. Finally, if ui 6= 0 and vi 6= 0, then we can take any
u ∈ Fp and the linear equation (3.6) has a unique solution in v. This proves
the claim.

As i runs through 1, . . . , p− 1, we have p− 1 equations (3.6) which all
together have at most p(p−1) distinct solutions (u,v)∈ F2

p. But F2
p consists

of the pair (0,0) and p2−1 pairs (u,v) with at least one u,v nonzero. Since
p2−1 > p(p−1), there exists a pair (u,v) ∈ F2

p as required, namely, u 6= 0
or v 6= 0 and uui + vvi 6= s for each i = 1, . . . , p−1.

Lemma 3.4. Let c > 0, D < 0 and a be three integers. Suppose that p is an
odd prime number which divides −D+ c2 but does not divide c. Then the
sequence of rational integers

sn :=
(a+
√

D)n− (a−
√

D)n

2
√

D
, (3.7)

n = 0, 1, 2, . . . , is purely periodic modulo p with period p−1. Also, no two
consecutive elements of the sequence {sn}, n = 0, 1, 2, . . . , can be zeros mod-
ulo p.
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Proof. We set s0 = 0. Now, let n> 1. By (3.7), we have

sn =
[(n−1)/2]

∑
k=0

(
n

2k+1

)
an−2k−1Dk,

where 00 is defined as 1. Since D≡ c2 (mod p) and

[(n−1)/2]

∑
k=0

(
n

2k+1

)
an−2k−1c2k =

(a+ c)n− (a− c)n

2c
,

we find that
sn ≡

(a+ c)n− (a− c)n

2c
(mod p). (3.8)

Since p and 2c are relatively prime, it remains to show that, for each n> 1,
we have

(a+ c)n+p−1− (a− c)n+p−1 ≡ (a+ c)n− (a− c)n (mod p).

Indeed, by Fermat’s little theorem, p divides both the numbers (a+c)n+p−1−
(a+c)n =(a+c)n((a+c)p−1−1) and (a−c)n+p−1−(a−c)n, so p also divides
their difference. This proves the periodicity.

For the second statement of the lemma, assume that sn ≡ 0 (mod p)

and sn+1 ≡ 0 (mod p) for some n ∈ N. Then, by (3.8), (a+ c)n ≡ (a− c)n

(mod p) and (a+c)n+1 ≡ (a−c)n+1 (mod p). If a≡ c (mod p) then a≡−c

(mod p), so p divides 2c, which is not the case by the condition of the
lemma. Similarly, a and −c modulo p are distinct. Hence, from

(a− c)n+1 ≡ (a+ c)n+1 ≡ (a+ c)n(a+ c)≡ (a− c)n(a+ c) (mod p),

we find that a+ c ≡ a− c (mod p). Once again this yields p|2c, a contra-
diction.

Lemma 3.5. Let {xn}, n = 0, 1, 2, . . . , be a sequence of integers given by
(3.1), D = a2+4b 6= 0, b 6= 0, and let δ be a fixed real number. Then xn = δb

for some n> 1 if and only if

x0
sn−1

2n−2 +
x1

b
sn

2n−1 = δ ,

where sn is given by (3.7).
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Proof. The roots α and β of the characteristic equation (3.2) are distinct,
so, by (3.4) and α−β =

√
D, we have

xn
√

D = (−x0β + x1)α
n +(x0α− x1)β

n (3.9)

for each n > 0. Since 2α = a+
√

D and 2β = a−
√

D, using (3.7), we find
that αn−β n = 21−n

√
Dsn. Since αβ =−b, equality (3.9) yields

xn
√

D = x1(α
n−β

n)− x0αβ (αn−1−β
n−1) = x121−nsn

√
D+ x0b22−nsn−1

√
D.

Hence xn = x0b22−nsn−1 + x121−nsn, because D 6= 0. It follows that equality
xn = δb is equivalent to

δ = x0
sn−1

2n−2 +
x1

b
sn

2n−1 ,

as claimed.

Lemma 3.6. Let {xn}, n = 0, 1, 2, . . . , be a sequence of integers given by
(3.1), where a 6= 0 and D > 0. Then, for each K > 0 and each x0, there is
a constant λ (K, α, β , x0) > 0 such that by selecting the two first terms of
the sequence (3.1) as x0 and x1 > λ (K, α, β , x0) we have |xn| > K for each
n> 1.

Proof. Since D > 0 and a = α + β 6= 0, we have |α| 6= |β |. Suppose that
|α| > |β |. (The proof in the case |α| < |β | is the same.) From αβ = −b,

we obtain |α|>
√
|b|> 1. Hence, by (3.9), using several times the triangle

inequality, for n> 1, we obtain

|xn|
√

D> |(−x0β + x1)α
n|− |(x0α− x1)β

n|

= |bx0 + x1α||α|n−1−|−bx0− x1β ||β |n−1

> (|bx0 + x1α|− |bx0 + x1β |)|α|n−1

> (|x1α|− |bx0|− |bx0|− |x1||β |)|α|n−1

= (|x1|(|α|− |β |)−2|bx0|)|α|n−1.

Since |α|n−1> 1 for n> 1, the last expression is greater than K
√

D provided
that |x1|(|α|− |β |)> 2|bx0|+K

√
D. So the lemma holds with

λ (K, α, β , x0) :=
2|bx0|+K

√
D

|α|− |β |
(3.10)
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when |α| > |β |. Evidently, the constants b, D appearing in the right hand
side of (3.10) depend on α, β too, because b = −αβ and D = a2 + 4b =

(α−β )2, by (3.2), (3.3).

Lemma 3.7. Let a0 > 0 and b0,b1 > 1 be integers such that no prime num-
ber p divides the three numbers a0,b0,b1. Then, for each K > 0, there exists
an integer k0 > K such that b0k0+a0 is a composite integer relatively prime
to b1.

Proof. The lemma is trivial if a0 = 0. Assume that a0> 1. Set t := gcd(b0,a0).

By the condition of the lemma, t is relatively prime to b1. By Dirich-
let’s theorem about prime numbers in arithmetic progressions, there is a
t0 ∈ N such that (b0/t)t0 + a0/t is a prime number greater than b1. Then
b0t0 +a0 = t((b0/t)t0 +a0/t) is relatively prime to b1. This implies that, for
any s ∈ N, the number

b0b1s+b0t0 +a0 = b0(b1s+ t0)+a0

is relatively prime to b1. Of course, there are infinitely many s∈N for which
the number b0b1s+b0t0 +a0 is composite. It remains to take one of those
s ∈ N for which k0 := b1s+ t0 > K.

We begin the proof of the theorem for |b| > 2 from the more difficult
case when the discriminant D= a2+4b is negative. Let us apply Lemma 3.2
to d :=−D and ` := |b|. Then, by Lemma 3.2, there exist a positive integer
c and three distinct odd primes p, q, r such that pqr divides −D+ c2 and

gcd(pqr, |b|c) = 1. (3.11)

Our aim is to choose two composite relatively prime positive integers x0, x1

so that |b| divides x1 and xn /∈ {0,b,−b} for each n> 1. Then |x0|= x0 and
|x1|= x1 are composite. Also, using (3.1), by induction on n we see that |b|
divides xn for each n > 2. Since xn /∈ {0,b,−b} for n > 2 and |b| divides xn

for n> 2, we must have |xn|> |b| for each n> 2. Hence |xn| is a composite
integer for every n> 2 too.

For a contradiction, assume that, for some n > 1, xn = δb with δ ∈
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{0,1,−1}. Then, by Lemma 3.5, we have

x0
sn−1

2n−2 + x′1
sn

2n−1 = δ , (3.12)

where x′1 := x1/b and n ∈ N. Firstly, let us choose x0, x′1 modulo p so that

2x0sn−1 + x′1sn 6= 0, n ∈ N. (3.13)

This is possible by combining Lemma 3.4 with Lemma 3.3. Indeed, by
Lemma 3.4, the sequence sn (mod p), n = 0, 1, 2, . . . , is purely periodic with
period p−1. So, by Lemma 3.3 applied to the pairs (2s0, s1),(2s1, s2), . . . ,(2sp−2, sp−1)∈
F2

p and s = 0, we conclude that there are x0, x′1 ∈ Fp, not both zeros in Fp,
such that (3.13) holds.

Next, we shall choose x0, x′1 ∈ Fq so that

2x0sn−1 + x′1sn 6= 2n, n ∈ N, (3.14)

in Fq. As above, by Lemma 3.4, the sequence sn2−n (mod q), n = 0, 1, 2, . . . ,
where 2−n is the inverse of 2n in Fq, is purely periodic with period q−1. By
Lemma 3.3 applied to s = 1 and the pairs (s0, s12−1), (s12−1, s22−2), . . . ,

(sq−22−(q−2), sq−12−(q−1)) ∈ F2
q, we conclude that there are x0,x′1 ∈ Fq, not

both zeros, such that (3.14) holds. By the same argument, there are x0,x′1 ∈
Fr, not both zeros, such that

2x0sn−1 + x′1sn 6=−2n, n ∈ N, (3.15)

in Fr.
By the Chinese remainder theorem, combining (3.13), (3.14), (3.15), we

see that there exist two congruence classes a0 (mod pqr) and a1 (mod pqr)

such that for any integers x0 and x′1 that belong to the first and the second
class, respectively, equality (3.12) does not hold for n ∈N. Furthermore, by
Lemma 3.3, each prime number p,q,r divides at most one of the integers
a0, a1. It remains to select k0, k1 ∈ Z so that x0 = pqrk0+a0 and x1 = bx′1 =

b(pqrk1 + a1) are two composite relatively prime positive integers. Take
k1 ∈ Z such that |pqrk1 + a1| > 1, bk1 > 0. Then x1 > 0 is a composite
number. Furthermore, no prime number divides the three numbers pqr, a0

and x1, because the primes p, q, r do not divide |b|, by (3.11), and if, say,
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p|a0 then p does not divide pqrk1+a1. Hence, by Lemma 3.7 applied to the
triplet b0 := pqr, a0, b1 := x1, we may select k0 ∈ N so that x0 = pqrk0 +a0

is a composite integer relatively prime to x1. This proves the theorem for
|b|> 2, D < 0.

The case when D= a2+4b> 0 is easier. As above, we need to choose two
composite relatively prime positive integers x0, x1 such that |b| divides x1

and show that this choice leads to xn /∈ {0,b,−b} for each n> 2. If |α|= |β |,
then α =−β , so a = α +β = 0. This case is already settled in Section 3.2.
Assume next that |α| 6= |β |. Take x0 := p2 and x1 := b2q, where p, q > |b|
are prime numbers and q is so large that b2q is greater than the constant
λ (|b|,α,β , p2) given in (3.10). Then, by Lemma 3.6, |xn| > |b| for n > 2.
This completes the proof of Theorem 3.1 in case |b|> 2.

3.4 Divisibility sequences, covering systems
and the case |b|= 1

We remind the reader once again that a sequence of rational integers {vn}, n=

0, 1, 2, . . . , is called a divisibility sequence if vr divides vs whenever r divides
s. Assume that the roots α, β of the characteristic equation (3.2) are distinct
α 6= β . Then

un :=
αn−β n

α−β
∈ Z, (3.16)

n = 0, 1, 2, . . . , is a divisibility sequence. Indeed, if r|s then, setting l :=
s/r ∈ N, we see that

us

ur
=

αrl−β rl

αr−β r = α
r(l−1)+α

r(l−2)
β

r + · · ·+β
r(l−1)

is a symmetric function in α,β . Hence us/ur ∈ Z, giving ur|us. If {xn}, n =

0, 1, 2, . . . , is a sequence given by the linear recurrence (3.1) then one can
consider a corresponding divisibility sequence, by selecting u0 := 0, u1 := 1.
This sequence is called the Lucas sequence of the first kind.

From (3.1) and (3.16) one can calculate the terms of the Lucas sequence
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as follows:

u2 = au1 +bu0 = a,

u3 = au2 +bu1 = a2 +b,

u4 = au3 +bu2 = a(a2 +b)+ba = a(a2 +2b),

u6 = u3(α
3 +β

3) = u3((α +β )3−3αβ (α +β )) = a(a2 +b)(a2 +3b),

u12 = u6(α
6 +β

6) = u6((α
3 +β

3)2−2(αβ )3)

= a(a2 +b)(a2 +2b)(a2 +3b)(a4 +4a2b+b2).

To obtain the last equality we used the identity

(a(a2 +3b))2 +2b3 = (a2 +2b)(a4 +4a2b+b2).

Lemma 3.8. If b = −1 and |a| > 4 then there exist five distinct prime
numbers pi, i = 1, . . . ,5, such that p1|u2, p2|u3, p3|u4, p4|u6 and p5|u12.

Proof. Let p1 be any prime divisor of u2 = a, and let p2 6= 2 be any prime
divisor of u3 = a2−1=(a−1)(a+1). Such p2 exists, because |a|> 4. Clearly,
p2 6= p1. Since a2−2 is either 2 or 3 modulo 4, it is not divisible by 4. So
a2− 2 must have an odd prime divisor p3. Clearly, p3 6= p1. Furthermore,
p3 6= p2, because gcd(a2−1,a2−2) = 1. We select this p3 as a divisor of u4.

Observing that 9 does not divide a2−3, we get that there is prime number
p4 6= 3 that divides a2− 3. Since gcd(a,a2− 3) is either 1 or 3, this yields
p4 6= p1. Also, since gcd(a2−1,a2−3) is either 1 or 2, we may have p4 = p2

only if p2 = 2, which is not the case. So p4 6= p2. The fact that p4 6= p3

follows from gcd(a2−2,a2−3) = 1. We select this p4 as a divisor of u6.

It remains to show that there is a prime divisor p5 of a4−4a2+1 distinct
from pi, i = 1, . . . ,4. Note that a4−4a2+1 is not zero modulo 4 and modulo
3. Hence there is a prime number p5 6= 2,3 that divides a4− 4a2 + 1 >
44−43 +1 = 193. Evidently, p5 6= p1. Writing

a4−4a2 +1 = (a2−1)(a2−3)−2

and using p5 6= 2, we may conclude that p5 6= p2, p4. Similarly, from a4−
4a2 +1 = (a2−2)2−3 and p5 6= 3, we see that p5 6= p3.

One can easily check that Lemma 3.8 does not hold for |a|= 3. The next
lemma is very similar to that above.
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Lemma 3.9. If b= 1 and |a|> 2 then there exist five distinct prime numbers
pi, i = 1, . . . ,5, such that p1|u2, p2|u3, p3|u4, p4|u6 and p5|u12.

Proof. Take any prime divisor p1 of u2 = a. Let p2 6= 2 be any prime divisor
of u3 = a2+1. Such p2 exists, because a2+1 is not divisible by 4. Evidently,
p2 6= p1. Similarly, let p3 6= 2 be any prime divisor of a2+2. Clearly, p3 6= p2.

Since gcd(a,a2+2) is either 1 or 2, p3 = p1 only if they both are equal to 2,
which is not the case. So we may select this p3 as a divisor of u4. Observing
next that 9 does not divide a2 + 3, we deduce that there is prime number
p4 6= 3 that divides a2 + 3. Since gcd(a,a2 + 3) is either 1 or 3, this yields
p4 6= p1. Also, since gcd(a2+1,a2+3) is either 1 or 2, we may have p4 = p2

only if p2 = 2, which is not the case. Hence p4 6= p2. As above, the fact that
p4 6= p3 follows from gcd(a2 + 2,a2 + 3) = 1. We select this p4 as a divisor
of u6.

It remains to show that there is a prime divisor p5 of a4+4a2+1 which
is distinct from pi, i = 1, . . . ,4. Note that a4+4a2+1 > 6 is not zero modulo
4 and modulo 9. Hence there is a prime p5 6= 2,3 that divides a4 +4a2 +1.
Evidently, p5 6= p1. Writing

a4 +4a2 +1 = (a2 +1)(a2 +3)−2

and using p5 6= 2, we may conclude that p5 6= p2, p4. Finally, from a4+4a2+

1 = (a2 +2)2−3 and p5 6= 3, it follows that p5 6= p3.

To illustrate Lemma 3.9, let us take (a,b) = (±2,1). Then u2 =±2, u3 =

5, u4 =±22 ·3, u6 =±2 ·5 ·7 and u12 =±22 ·32 ·5 ·7 ·11. Hence Lemma 3.9
holds with p1 = 2, p2 = 5, p3 = 3, p4 = 7, p5 = 11.

The next lemma uses the concept of covering systems introduced by
Erdős. In the proof of the theorem for |b| = 1 we shall use the following
well-known covering system

0 (mod 2), 0 (mod 3), 1 (mod 4),
5 (mod 6), 7 (mod 12).

(3.17)

Lemma 3.10. Let ri (mod mi), i = 1, . . . , t, be a covering system, and let
{un},
n = 0, 1, 2, . . . , be a divisibility sequence given by u0 := 0, u1 := 1 and un =

aun−1 + bun−2 for n = 2, 3, . . . , where a ∈ Z, b = ±1 and D = a2 + 4b > 0.
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Suppose that there exist t distinct prime numbers p1, . . . , pt such that pi|umi

for each i = 1, . . . , t. Then there are two relatively prime composite positive
integers x0,x1 such that each |xn|, n = 0, 1, 2, . . . , where xn is a sequence
defined in (3.1), is a composite number.

Proof. By the Chinese remainder theorem, there exist s, l ∈ Z satisfying

s≡ umi−ri (mod pi),

l ≡ umi−ri+1 (mod pi)

for i = 1, . . . , t. Note that two consecutive terms of the sequence {un}, n =

0, 1, 2, . . . , cannot be divisible by the same prime number p. Indeed, if p|un−1

and p|un then using b = ±1 from un = aun−1 + bun−2 we find that p|un−2.

By the same argument, p|un−3 and so on. Hence p|u1, a contradiction.
So, for every x0 in the residue class s (mod P), where P = p1 . . . pt , and

for every x1 in the residue class l (mod P), we have x0 ≡ umi−ri (mod pi)

and x1 ≡ umi−ri+1 (mod pi) for i = 1, . . . , t. By induction on n, this implies

xn ≡ umi−ri+n (mod pi) (3.18)

for each n > 0 and each i = 1, . . . , t. Since ri (mod mi), i = 1, . . . , t, is a
covering system, every non-negative integer n belongs to certain residue
class ri (mod mi), where i is some of the numbers 1, . . . , t. Fix one of those
i and write n = ri + kmi, where k > 0. Note that pi|umi(k+1), because pi|umi

and umi|umi(k+1). Thus (3.18) yields

xn ≡ umi(k+1) (mod pi)≡ 0 (mod pi),

giving pi|xn.

It remains to choose two composite relatively prime positive integers
x0 ≡ s (mod P) and x1 ≡ l (mod P) so that |xn| > max(p1, . . . , pt) for every
non-negative integer n. Then each |xn| is divisible by some pi and greater
than pi, so it is a composite number. To do this let us choose a composite
integer x0 > max(p1, . . . , pt) satisfying x0 ≡ s (mod P). Then we can select
x1 ≡ l (mod P) as required, by Lemma 3.6 and Lemma 3.7, where a0 := l,

b0 := P, b1 := x0, because no prime number p1, . . . , pt divides both s and
l.
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Now, we shall prove the theorem for |b|= 1. Suppose first that b =−1
and |a| > 4. Then, by Lemma 3.8, there are five distinct primes p1, . . . , p5

dividing u2,u3,u4,u6,u12, respectively. Since D = a2− 4 > 0, the theorem
follows from Lemma 3.10 applied to the covering system (3.17). Similarly,
if b = 1 and |a| > 2 we also have D = a2 +4b = a2 +4 > 0, so the theorem
follows by Lemmas 3.9 and 3.10.

Recall that the cases b = −1, |a| 6 2 and b = 1, a = 0 have been con-
sidered in Section 3.2. In Section 2.3 we already described the literature
concerning the case (a,b) = (1,1) (Graham’s result). So three cases that re-
main to be considered are (a,b) = (−1,1), (a,b) = (−3,−1), (a,b) = (3,−1).

We begin with the case (a,b) = (−1,1). Vsemirnov’s pair of two com-
posite relatively prime integers

V0 := 106276436867, V1 := 35256392432

shows that the numbers

Vn =Vn−1 +Vn−2 = FnV1 +Fn−1V0, n> 2, (3.19)

are all composite. Here, Fn is the nth Fibonacci number. For the sequence
xn =−xn−1 + xn−2, we clearly have

xn = (−1)n+1Fnx1 +(−1)nFn−1x0, n> 2. (3.20)

Selecting x0 := −V1 +V0 = 71020044435 and x1 := V0 = 106276436867, one
can easily check that x0 and x1 are relatively prime composite integers.
Moreover, by (3.19) and (3.20),

xn = (−1)n+1FnV0 +(−1)nFn−1(−V1 +V0) = (−1)n+1Fn−1V1 +(−1)n+1Fn−2V0

= (−1)n+1(Fn−1V1 +Fn−2V0) = (−1)n+1Vn−1

for n> 2. Thus |xn|=Vn−1 is also composite integer for each n> 2.
For (a,b) = (−3,−1), we use the covering system

1 (mod 2), 1 (mod 3) 0 (mod 4),
6 (mod 8), 6 (mod 12) 2 (mod 24).

The divisibility sequence {un}, n = 0, 1, 2, . . . , is given by u0 := 0, u1 := 1
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and un =−3un−1−un−2, n = 2, 3, . . . . We select the following primes divid-
ing u2, u3, u4, u8, u12, u24, respectively: 3, 2, 7, 47, 23, 1103. By the method
described in Lemma 3.10, we calculated the pair

(x0, x1) = (13271293, 219498)

satisfying the conditions of the theorem.
For (a,b) = (3,−1), we use the covering system

0 (mod 2), 0 (mod 3), 3 (mod 4),
5 (mod 8), 5 (mod 12), 1 (mod 24).

As above, the primes dividing u2, u3, u4, u8, u12, u24 are 3, 2, 7, 47, 23, 1103,
respectively. This time, using the method described in Lemma 3.10, we
found the pair

(x0, x1) = (7373556, 2006357)

satisfying the conditions of the theorem. The proof of Theorem 3.1 is thus
completed. �

3.5 Other examples

Below, we shall find smaller solutions for (a, b) = (±3,−1). Instead of
using Lemma 3.10, we may directly search for a pair of relatively prime
positive integers x0, x1 such that each of the first 24 elements of the sequence
(3.1) is divisible by at least one of the primes 3, 2, 7, 47, 23, 1103. Then we
may choose a covering system ri (mod mi), where m1 = 2, m2 = 3, m3 = 4,
m4 = 8, m5 = 12, m6 = 24, and i = 1, . . . ,6, such that, for each n in the range
06 n6 23 and each i in the range 16 i6 6, n≡ ri (mod mi) implies pi|xn.
This would be enough for pi|xn to hold for any n, n > 0, belonging to the
residue class ri (mod mi). Using this direct method, we found smaller pairs
(x0, x1) producing sequences consisting of composite numbers.

For (a, b) = (−3,−1), by selecting the residues of the covering system
as

(r1, r2, r3, r4, r5, r6) = (1, 1, 0, 2, 6, 14)

and searching over x0 divisible by 7 and x1 divisible by 2 and 3, we found
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the pair
(x0, x1) = (35, 3294).

One can easily check that

1 (mod 2), 1 (mod 3), 0 (mod 4),
2 (mod 8), 6 (mod 12), 14 (mod 24)

is indeed a covering system. Also, if n, where n> 0, belongs to the residue
class ri (mod mi) we use the fact that pi|xn. This explains why we take x0 di-
visible by 7 and x1 divisible by 6. It is clear that gcd(x0, x1)= gcd(35, 3294)=
1. Also, |xn|> max(p1, . . . , p6) = 1103 for n> 2, so |xn| is composite for each
non-negative integer n.

Selecting (r1, r2, r3, r4, r5, r6) = (0, 0, 1, 7, 7, 11), we found the symmet-
ric pair (x0, x1) = (3294, 35). Similarly, taking (r1, r2, r3, r4, r5, r6) =

(0, 2, 1, 3, 3, 7), we established that

(x0, x1) = (2367, 3031)

is also such a pair. Note that 3294+35 < 2367+3031. On the other hand,
max(3294,35)>max(2367,3031). In the same way, using (r1, r2, r3, r4, r5, r6)

= (1, 2, 0, 6, 10, 18), we found the symmetric pair (x0, x1) = (3031, 2367).
For (a, b) = (3,−1), selecting (r1, r2, r3, r4, r5, r6) = (0, 2, 1, 3, 7, 15), we

found the pair
(x0, x1) = (3399, 35).

Choosing the residues (r1, r2, r3, r4, r5, r6) = (1, 2, 0, 6, 6, 10), we arrived to
the symmetric pair (x0, x1) = (35, 3399).
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4 A tribonacci-like sequence

4.1 Introduction

In this chapter we will study tribonacci-like sequences. Let {xn} be an
infinite sequence of integers satisfying the ternary recurrence relation

xn = xn−1 + xn−2 + xn−3, (4.1)

for n = 3, 4, . . . Since values of x0, x1 and x2 determine the sequence {xn}
we denote S(x0, x1, x2) := {xn}, where S(x0, x1, x2)n := xn, n = 0, 1, 2, . . . . If
x0 = 0, x1 = 0 and x2 = 1, then S(x0,x1,x2) is a classical tribonacci sequence.

The aim of this chapter is to find three positive integers A, B and C sat-
isfying gcd(A,B,C) = 1 such that the sequence S(A,B,C) contains no prime
numbers.

As it was pointed out in Section 2.3, Graham’s result is based on the
fact that the Fibonacci sequence is a regular divisibility sequence, i.e., F0 = 0
and Fn | Fm if n | m. However, by a result of Hall [17], there are no regular
divisibility sequences in case S(0,x1,x2) for any x1,x2 ∈ Z.

In this chapter we shall overcome this difficulty and prove the following
result:

Theorem 4.1. If

x0 = 99202581681909167232,

x1 = 67600144946390082339,

x2 = 139344212815127987596,

then gcd(x0,x1,x2) = 1 and the sequence S(x0,x1,x2) contains no prime num-
bers.

As the proof of this theorem is quite long, we will first prove two auxil-
iary lemmas. In Lemma 4.3, we give a sufficient condition for the sequence
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{yn} ≡ S(0,a,b) (mod p) under which ykm ≡ 0 (mod p), where p is a prime
number, m> 2 and a,b ∈ Z. The notation {yn} ≡ S(0,a,b) (mod p) means
“for every integer n > 0, yn ≡ S(0,a,b)n (mod p)". In Lemma 4.4 we dis-
cuss how to choose y1 and y2 so that the condition of Lemma 4.3 would be
satisfied. In Section 4.3 our main result will be proved.

4.2 Auxiliary lemmas

We first observe one elementary property of the tribonacci-like sequence.

Lemma 4.2. If {un}= S(a,b,c), {vn}= S(a′,b′,c′), and {zn}= S(a+a′,b+

b′,c+ c′), then zn = un + vn for all n> 0.

The proof of this fact is by a trivial induction.
Define two sequences {sn} = S(0, 1, 0) and {tn} = S(0, 0, 1). Let p be

a prime number and let {yn} ≡ S(0, a, b) (mod p) for a,b ∈ Z. Lemma 4.2
implies

yn ≡ sna+ tnb (mod p). (4.2)

Lemma 4.3. Let p be a prime number and let {yn} ≡ S(0, a, b) (mod p)

with some a,b ∈ Z. Suppose that m > 2 is an integer. If ym ≡ y2m ≡ 0
(mod p) then ykm ≡ 0 (mod p) for k = 0,1,2, . . . .

Proof. Let

A =

 1 1 0
1 0 1
1 0 0

 and Yn = (yn+2, yn+1, yn).

Then the recurrence relation yn+3 = yn+2+yn+1+yn can be rewritten in the
matrix form Yn+1 = YnA, for n = 0,1,2 . . . . In particular, Yn = Y0An and

Ykm = (ykm+2, ykm+1, ykm) = (y2, y1, y0)(Am)k. (4.3)

Assume, that y0 ≡ ym ≡ y2m ≡ 0 (mod p). If the vector Y0 (mod p) is an
eigenvector of Am (mod p), then ykm ≡ 0 (mod p) by (4.3). If not, then Ym

(mod p) and Y0 (mod p) (considered as vectors over the finite field Z/pZ)
are linearly independent, hence form a basis for the vector space V =
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{(u,v,0)} ⊂ (Z/pZ)3. Since Y2m = YmAm modulo p is also in V by assump-
tion, we have that VAm ⊂V . Therefore, by induction, Ykm (mod p) is in V

for k = 0,1,2, . . . . Hence ykm ≡ 0 (mod p).

Lemma 4.4. Let p be a prime number. Suppose that m > 2 and smt2m−
s2mtm ≡ 0 (mod p). Then there exist a, b ∈ Z such that at least one of a,b

is not divisible by p and

skma+ tkmb≡ 0 (mod p)

for k = 0,1,2, . . . .

Proof. Set yn = sna+ tnb. Since y0 = s0a+ t0b = 0, by Lemma 4.3, it suffices
to show that there exist a, b such that ym≡ 0 (mod p) and y2m≡ 0 (mod p).
Our aim is to solve the following system of linear equations:sma+ tmb≡ 0 (mod p),

s2ma+ t2mb≡ 0 (mod p).
(4.4)

If sm ≡ tm ≡ s2m ≡ t2m ≡ 0 (mod p), then we can choose a = b = 1. Suppose
that tm 6≡ 0 (mod p) (the proof in the other cases, when p does not divide
sm,s2m or t2m, is the same). Set a = 1, b = −t−1

m sm where t−1
m denote an

integer for which tmt−1
m ≡ 1 (mod p). It follows easily that the first equation

of (4.4) is satisfied. Then the second equation is equivalent to

−s2mtm + smt2m ≡ 0 (mod p). (4.5)

Hence, by the condition of the lemma, (4.5) is true, which completes the
proof of the lemma.

4.3 Proof of Theorem 4.1

Consider the following table:
One can verify that every integer belongs to at least one of the arithmetic

progressions
Pi = {mik+ ri,k ∈ Z}, i = 1,2, . . .11. (4.6)

In other words, the integers mi,ri are chosen so that P1,P2, . . . ,P11 is a cov-
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i 1 2 3 4 5 6 7 8 9 10 11
mi 2 5 6 8 10 12 15 20 24 30 40
ri 0 0 5 7 9 9 13 17 3 1 27

Table 4.1: Covering system

ering system of Z, i.e.,

Z=
11⋃

i=1

Pi. (4.7)

To prove (4.7) it is enough to check that any number between 1 and
gcd(m1,m2, . . . ,m11) = 120 is covered by at least one progression (4.6).

We are interested in the differences smit2mi− s2mitmi (i = 1,2, . . . ,11).

i pi mi |smit2mi− s2mitmi|
1 2 2 2
2 29 5 29
3 17 6 2 ·17
4 7 8 26 ·7
5 11 10 2 ·11 ·29
6 107 12 23 ·17 ·107
7 8819 15 29 ·8819
8 19 20 23 ·11 ·19 ·29 ·239
9 1151 24 26 ·7 ·17 ·107 ·1151

10 1621 30 2 ·11 ·17 ·29 ·1621 ·8819
11 79 40 26 ·7 ·11 ·19 ·29 ·79 ·239 ·35281

Table 4.2: Primes and modulus

Let us fix i∈{1,2, . . . ,11}. As we can see from Table 4.2, each prime number
pi divides the corresponding difference smit2mi− s2mitmi. By Lemma 4.4, for
every pair (pi,mi) we can choose ai,bi ∈ Z so that at least one of ai,bi is not
divisible by pi and

skmiai + tkmibi ≡ 0 (mod pi) (4.8)

for k = 0,1,2, . . . .
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Next, we shall construct the sequence {xn}= S(x0,x1,x2) satisfying

xn ≡ smi−ri+n ai + tmi−ri+n bi (mod pi) i = 1,2, . . .11 (4.9)

for n = 0,1,2, . . . . Set

Ai = smi−ri ai + tmi−ri bi,

Bi = smi−ri+1 ai + tmi−ri+1 bi,

Ci = smi−ri+2 ai + tmi−ri+2 bi,

for i = 1,2, . . . ,11. Since the sequence {xn} is defined by its first three terms,
it suffices to solve the following equations:

x0 ≡ Ai (mod pi),

x1 ≡ Bi (mod pi),

x2 ≡Ci (mod pi),

(4.10)

for i = 1,2, . . . ,11. The values of ai,bi, and Ai (mod pi), Bi (mod pi),

Ci (mod pi) for i = 1,2, . . .11 are given in Table 4.3.

i 1 2 3 4 5 6 7 8 9 10 11
ai 1 1 1 1 1 1 1 1 1 1 1
bi 0 21 4 5 5 14 2994 7 858 623 61
Ai 0 0 1 1 1 15 2994 8 43 95 41
Bi 1 8 4 5 5 30 2995 16 1127 0 50
Ci 0 23 5 6 6 59 5990 12 1132 1556 50

Table 4.3: Coefficients

By the Chinese reminder theorem (see, e.g., Theorem 1.6.21 in [43]), we
find that the system of congruences (4.10) has the following solution

x0 = 99202581681909167232,

x1 = 67600144946390082339,

x2 = 139344212815127987596.
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Moreover, we have gcd(x0,x1,x2) = 1.
By (4.8) and (4.9), pi divides xn if n≡ ri (mod mi), where i∈{1,2, . . . ,11}.

Since {Pi, i = 1,2, . . . ,11} cover the integers, we see that for every nonneg-
ative integer n there is some i, 1 6 i 6 11, such that pi divides xn. All
prime divisors pi are relatively small (smaller than mini>0 xi = x1), so pi | xn,
where i= 1,2, . . .11, implies that xn is composite for each n= 0,1,2, . . . . This
completes the proof of the theorem.

Another interesting problem is to determine how far from the optimal
(i.e., the smallest) solution we are. If (a,b) is a solution of (4.4), then
(ka,kb), where k ∈ Z, is also a solution of (4.4). So we can vary (ai,bi) in
Table 4.3. Also, we can choose a different covering system based on another
set of primes.
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5 Linear higher-order
recurrences

5.1 Introduction

In this chapter we will extend the methods used in Chapter 4. For each inte-
ger k> 2 one can define a k-step Fibonacci-like sequence, i.e., the sequence
of integers {xn}, n = 0, 1, 2, . . . , satisfying the following relation

xn =
k

∑
i=1

xn−i

for n = k, k+1, k+2 . . . . Since the values of x0, x1, . . . ,xk−1 determine the k-
step Fibonacci-like sequence we denote it by Sk(x0, x1, . . . ,xk−1). The terms
of the sequence Sk(0,0, . . . ,0,1) is well known Fibonacci k-step numbers.

The aim of this chapter is to prove the following theorem:

Theorem 5.1. For each positive integer k in the range 26 k 6 10 and for
each positive integer k≡ 79 (mod 120) there are positive integers a0,a1, . . . ,ak−1

such that gcd(a0,a1, . . . ,ak−1) = 1 and the sequence Sk(a0,a1, . . . ,ak−1) con-
sists of composite numbers only.

Section 5.3 is devoted to the generalisation of the proof developed in
Chapter 4. We will describe the set of triples of positive integers and
show how to prove Theorem 5.1 if this set is given. In Section 5.4 we
will prove Theorem 5.1 for all k≡ 79 (mod 120) and construct correspond-
ing sequences for these cases. Finally, we will give an algorithm for the
construction of the set of positive integer triples and list examples of k-step
Fibonacci-like sequences for k in the range 46 k 6 10.
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5.2 Auxiliary lemmas

We start with the following elementary property of the k-step Fibonacci-like
sequence.

Let a = (a0,a1, . . . ,ak−1) ∈ Zk. Define Sk(a) = Sk(a0,a1, . . . ,ak−1). We
will denote by Fk the set of all k-step Fibonacci-like sequences.

Lemma 5.2. Fk is a free abelian group of rank k, and the map

Zk→Fk, a→ Sk(a)

is an isomorphism of abelian groups.

The proof of this fact is straightforward.
Define

{s(i)n }= Sk
(
δ

i
0,δ

i
1, . . . ,δ

i
k−1
)

for i = 1,2, . . . ,k−1, where δ i
j is Kronecker’s delta symbol. Let p be a prime

number and let {yn} ≡ Sk(0,a1,a2, . . . ,ak−1) (mod p) for a1,a2, . . . ,ak−1 ∈ Z.
Lemma 5.2 implies

yn ≡
k−1

∑
i=1

ais
(i)
n (mod p). (5.1)

Lemma 5.3. Fix k > 3. Let p be a prime number and let {yn} ≡
Sk(0,a1,a2, . . . ,ak−1) (mod p) with some ai ∈ Z for i in the range 1 6 i 6

k−1. Suppose that m> 2 is an integer. If yim ≡ 0 (mod p) for i satisfying
16 i6 k−1, then ylm ≡ 0 (mod p) for l = 0,1,2, . . . .

Proof. Let

A =



1 1 0 · · · 0 0 0
1 0 1 · · · 0 0 0
1 0 0 · · · 0 0 0
... ... ... . . . ...
1 0 0 · · · 0 1 0
1 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0


be a k× k matrix and

Yn = (yn+k−1,yn+k−2, . . . ,yn+1,yn).
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Then the recurrence relation yn+k = yn+k−1 + yn+k−2 + · · ·+ yn+1 + yn can be
rewritten in the matrix form Yn+1 = YnA, for n = 0,1,2 . . . . In particular,
Yn = Y0An and

Ylm = (ylm+k−1,ylm+k−2, . . . ,ylm+1,ylm) = (yk−1,yk−2, . . . ,y1,y0)(Am)l. (5.2)

Let B = Am. This is a k× k matrix with integer coefficients. By the
Cayley-Hamilton Theorem,

Bk = b0I +b1B+b2B2 + · · ·+bk−1Bk−1,

for some integers b0,b1, . . . ,bk−1. Since Ylm = Y0Bl we find that

Ylm = b0Y(l−k)m +b1Y(l−k+1)m + · · ·+bk−1Y(l−1)m

for l > k. Considering the last entries for these vectors,

ylm = b0y(l−k)m +b1y(l−k+1)m + · · ·+bk−1y(l−1)m.

The lemma follows by induction.

Define the matrix

Bk,m =


s(1)m s(1)2m · · · s(1)

(k−1)m

s(2)m s(2)2m · · · s(2)
(k−1)m

... ... . . . ...
s(k−1)

m s(k−1)
2m · · · s(k−1)

(k−1)m

 (5.3)

for each positive integer m. Let
∣∣Bk,m

∣∣ be the determinant of the matrix
(5.3).

Lemma 5.4. Let m> 2 be an integer. If p is prime number and

∣∣Bk,m
∣∣≡ 0 (mod p).

then there exist a1, a2, . . . ,ak−1 ∈ Z such that ai is not divisible by p for at
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least one i = 1,2, . . .k−1, and

k−1

∑
i=1

ais
(i)
lm ≡ 0 (mod p)

for l = 0,1,2, . . . .

Proof. Set yn = ∑
k−1
i=1 ais

(i)
n . Since y0 = ∑

k−1
i=1 ais

(i)
0 = 0, by Lemma 5.3, it

suffices to show that there exist suitable a1, a2, . . . ,ak−1 ∈Z such that ylm≡ 0
(mod p) for l = 1,2, . . . ,k− 1. Our aim is to solve the following system of
linear equations:

(a1,a2, . . . ,ak−1)Bk,m ≡ (0,0, . . . ,0) (mod p). (5.4)

Let us consider system (5.4) as a homogeneous linear system over the finite
field Z/pZ. The assumption |Bk,m| ≡ 0 (mod p) implies that the rank of the
system (5.4) is at most k−2. Therefore, the system has non-trivial solution
in Z/pZ. In other words, there exist a1, a2, . . . ,ak−1 ∈ Z such that ai is not
divisible by p for at least one i = 1,2, . . .k−1.

5.3 General case

Let I be a positive integer (to be defined later). Our goal is to find a
finite set Sk(N) of positive integer triples (pi,mi,ri) (i = 1,2, . . . , I) with the
following properties:

1. each pi is a prime number and pi 6= p j if i 6= j;

2. pi divides the determinant |Bk,mi|, where Bk,mi is the matrix (5.3);

3. the congruences
x≡ ri (mod mi) (5.5)

cover the integers, i.e., for any integer x there is some index i, 16 i6 I,
such that x≡ ri (mod mi).

Now, suppose that we already found the set Sk(N) and I is a fixed positive
integer. Choose i, where 16 i6 I. Since Bk,mi ≡ 0 (mod pi), by Lemma 5.4,
there exist ai,1, ai,2, . . . ,ai,k−1 ∈ Z such that ai, j is not divisible by pi for at
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least one j = 1,2, . . .k−1, and

k−1

∑
j=1

ai, js
( j)
lmi
≡ 0 (mod pi) (5.6)

for l = 0,1,2, . . . .
We shall construct the sequence {xn}= Sk(x0,x1, . . . ,xk−1) satisfying

xn ≡
k−1

∑
j=1

s( j)
mi−ri+n ai, j (mod pi) i = 1,2, . . . I (5.7)

for n = 0,1,2, . . . . Set

Ai,0 =
k−1

∑
j=1

s( j)
mi−ri

ai, j,

Ai,1 =
k−1

∑
j=1

s( j)
mi−ri+1 ai, j,

...

Ai,k−1 =
k−1

∑
j=1

s( j)
mi−ri+k−1 ai, j

(5.8)

for i = 1,2, . . . , I. Since the sequence {xn} is defined by its first k terms, it
suffices to solve the following equations:

x0 ≡ Ai,0 (mod pi),

x1 ≡ Ai,1 (mod pi),

...

xk−1 ≡ Ai,k−1 (mod pi)

(5.9)

for i = 1,2, . . . , I. By the Chinese reminder theorem, the system of congru-
ences (5.9) has the positive integer solution x0 =X0, x1 =X1, . . . ,xk−1 =Xk−1.
It is assumed that gcd(X0,X1, . . . ,Xk−1) = 1.

By (5.6) and (5.7), pi divides xn if n≡ ri (mod mi), where i∈ {1,2, . . . , I}.
Since congruences (5.5) cover the integers, we see that for every nonnegative
integer n there is some i, 1 6 i 6 I, such that pi divides xn. The sequence
{xn}, n= I, I+1, . . . , is strictly increasing, so xn must be composite for n> I.
In this way, we can construct the k-step Fibonacci-like sequence of composite
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numbers {xn}, n = I, I +1, . . . , if the set Sk(N) is given.
Note that the assumption gcd(X0,X1, . . . ,Xk−1) = 1 is unnecessarily re-

strictive. We can always construct the solution of (5.9) with this property.
Indeed, let gcd(X1, . . . ,Xk−1) = d1, gcd(X0,d1) = d0 > 1, and P = ∏

I
i=1 pi.

Suppose that p is a prime number and p | d0. If p | P, then, by (5.9),

Ai,0 ≡ 0 (mod p),

Ai,1 ≡ 0 (mod p),
...

Ai,k−1 ≡ 0 (mod p).

(5.10)

Let

C =


s(1)mi−ri

s(1)mi−ri+1 · · · s(1)mi−ri+k−1

s(2)mi−ri
s(2)mi−ri+1 · · · s(2)mi−ri+k−1

... ... . . . ...
s(k−1)

mi−ri
s(k−1)

mi−ri+1 · · · s(k−1)
mi−ri+k−1


be a (k−1)× k matrix over the finite field Z/pZ. By (5.8) and (5.10), we
get

(ai,1,ai,2, . . . ,ai,k−1)C ≡ (0,0, . . . ,0) (mod p). (5.11)

The system of equations (5.11) has nontrivial solution if rank(C) 6 k− 2.
But

rank(C) = rank


s(1)mi−ri−1 s(1)mi−ri

· · · s(1)mi−ri+k−2

s(2)mi−ri−1 s(2)mi−ri
· · · s(2)mi−ri+k−2

... ... . . . ...
s(k−1)

mi−ri−1 s(k−1)
mi−ri

· · · s(k−1)
mi−ri+k−2

=

rank


s(1)0 s(1)1 · · · s(1)k−1

s(2)0 s(2)1 · · · s(2)k−1... ... . . . ...
s(k−1)

0 s(k−1)
1 · · · s(k−1)

k−1

= rank



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
... ... ... . . . ...
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1


= k−1,
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a contradiction. From this if follows that

gcd(X0,d1,P) = 1. (5.12)

It is easy to check that if (X0,X1, . . . ,Xk−1) is a solution of (5.9) then
(X0+ lP,X1, . . . ,Xk−1) is also a solution for all integers l. Let gcd(X0,P) = d,
then, by Dirichlet’s theorem on prime numbers in arithmetic progression, we
conclude that X0/d + lP/d is a prime number for infinitely many integers
l. So, gcd(X0/d + lP/d,d1) = 1 for some l. It follows from (5.12) that
gcd(X0 + lP,d1) = 1 for some l, which is the desired conclusion.

5.4 Proof of Theorem 5.1 for k ≡ 79 (mod 120)

In this section we will show that if k ≡ 79 (mod 120), then there exist a
k-step Fibonacci-like sequence of composite numbers. We will need the
following lemma:

Lemma 5.5. Suppose that the numbers k, p and the sequence {yn} are
defined as in Lemma 5.3. If there is a positive integer l such that

l−1

∑
n=0

yn ≡ 0 (mod p) (5.13)

and
yn ≡ yn−l (mod p) for n = l, l +1, l +2, . . . , (5.14)

then for every nonnegative integer t the sequence

{y(t)n } ≡ Stl+k(y0,y1, . . . ,ytl+k−1) (mod p)

has the following property:

y(t)n ≡ yn (mod p) (5.15)

for n = 0,1,2, . . . .

Proof. If t = 0, then the statement of the lemma is trivial. Let t > 1. By the
definition of the sequence y(t)n , n= 0,1,2, . . . , (5.15) is true for n= 0,1, . . . , tl+
k−1. Let r > k be an integer and suppose (5.15) is true for n = 0,1, . . . tl +
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r−1. By (5.13) and (5.14), ∑
r+l−1
n=r yn ≡ 0 (mod p) for any positive integer

r. Thus we have

y(t)tl+r ≡
tl+r−1

∑
i=r−k

yi ≡
r−1

∑
i=r−k

yi ≡ yr ≡ ytl+r (mod p).

By a induction, (5.15) is true for n = 0,1,2, . . . .

Assume that k = 4 and B4,3 is the matrix defined in (5.3). It is easy to
check that

|B4,3|=

∣∣∣∣∣∣∣
0 3 23
0 4 27
1 4 29

∣∣∣∣∣∣∣=−11,

and
(1, 2, 0)B4,3 = (0, 0, 0) (mod 11).

By Lemma 5.4, the sequence {yn} ≡ S4(0,1,2,0) (mod 11) has the following
property:

11 | y3n (5.16)

for n= 0,1,2, . . . . We calculate the first elements of sequence {yn} (mod 11):

0, 1, 2, 0, 3, 6, 0, 9, 7, 0, 5, 10, 0, 4, 8, 0, 1, 2, 0, . . .

By a simple induction, one can prove that the sequence {yn} (mod 11) is
periodic. The length of the period is 15 and ∑

14
i=0 yi ≡ 0 (mod 11). By

Lemma 5.5 applied to k = 4, l = 15, p = 11 and to the sequence {yn}, we
conclude that the sequence

{y(t)n } ≡ S15t+4(y0,y1, . . . ,y15t+3) (mod 11)

satisfies the property (5.15) for t = 0,1,2, . . . . It follows that {y(t)n } satisfies
the property (5.16) for t = 0,1,2, . . . .
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Now, let k = 7. It is easy to check that

|B7,3|=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 3 24 191 1508
0 0 4 28 223 1761
1 0 4 30 239 1888
0 0 4 31 247 1952
0 0 4 32 251 1984
0 1 4 32 253 2000

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=−5 ·17

and

(1,2,0,2,4,0)B7,3 = (0,0,0,0,0,0) (mod 5),

(1,2,0,9,1,0)B7,3 = (0,0,0,0,0,0) (mod 17).

Lemma 5.4 implies that the sequence

{un} ≡ S7(0,1,2,0,2,4,0) (mod 5)

has the property
5 | u3n (5.17)

for n = 0,1,2, . . . . and the sequence

{vn} ≡ S7(0,1,2,0,9,1,0) (mod 17)

has the property
17 | v3n (5.18)

for n = 0,1,2, . . . . The first members of the sequence {un} (mod 5) are

0, 1, 2, 0, 2, 4, 0, 4, 3, 0, 3, 1, 0, 1, 2, 0, 2, 4, 0, . . . ,

and those of the sequence {vn} (mod 17) are

0, 1, 2, 0, 9, 1, 0, 13, 9, 0, 15, 13, 0, 16, 15, 0, 8, 16, 0, 4, 8, 0, 2, 4,

0, 1, 2, 0, 9, 1, 0 . . . .

By induction, one can prove that the sequences {un} and {vn} are periodic
with the length of the period 12 and 24, respectively. Since ∑

11
i=0 ui ≡ 0
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(mod 5) and ∑
23
i=0 vi ≡ 0 (mod 17), by Lemma 5.5 applied to {un} and {vn},

we derive that the sequences

{u(t)n } ≡ S12t+7(u0,u1, . . . ,u12t+6)

and
{v(t)n } ≡ S24t+7(v0,v1, . . . ,v24t+6)

satisfy the property (5.15) for t = 0,1,2, . . . . Hence, the sequence u(t)n for n=

0,1,2, . . . satisfies the property (5.17) and the sequence v(t)n for n = 0,1,2, . . .
- the property (5.18) for t = 0,1,2, . . . .

Set t1 = 8t +5, t2 = 10t +6, t3 = 5t +3 for some positive integer t. Our
goal is to find a sequence x(t)n for n = 0,1,2, . . . satisfying the following con-
ditions for every positive integer n:

x(t)n ≡ y(t1)n (mod 11),

x(t)n ≡ u(t2)n+1 (mod 5),

x(t)n ≡ v(t3)n+2 (mod 17).

(5.19)

Using the definition of the sequences y(t)n , u(t)n , and v(t)n for n = 0,1,2, . . . we
can rewrite (5.19) as

{x(t)n } ≡ S120t+79(y0,y1, . . . ,y120t+78) (mod 11),

{x(t)n } ≡ S120t+79(u1,u2, . . . ,u120t+78,u7) (mod 5),

{x(t)n } ≡ S120t+79(v2,v3, . . . ,v120t+78,v7,v8) (mod 17).

By the Chinese Reminder Theorem, the system of equations (5.19) has a
solution for every nonnegative integer t. For t = 0 we find that

{x(0)n }= S79(121,782,145,902,289,710,264,493,865,693,731,560,66,697,195,

407,34,310,484,663,325,803,306,205,121,357,230,902,884,30,

264,408,695,693,476,50,66,867,535,407,544,395,484,323,580,

803,221,35,121,102,655,902,119,370,264,918,780,693,136,305,

66,782,365,407,289,820,484,493,920,803,731,120,121,697,

910,902,34,200,264),
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and for t > 0 define

{x(t)n }= S120t+79(x
(0)
0 ,x(0)1 , . . . ,x(0)120t+78).

By (5.15), (5.19) and by the properties (5.16), (5.17), (5.18), it follows
immediately that

• if n≡ 0 (mod 3) then x(t)n ≡ 0 (mod 11),

• if n≡ 1 (mod 3) then x(t)n ≡ 0 (mod 17),

• if n≡ 2 (mod 3) then x(t)n ≡ 0 (mod 5).

Since x(0)n > 17 for n = 0,1,2, . . . , we conclude that x(t)n for n = 0,1,2, . . . is a
k-step Fibonacci-like sequence of composite numbers for k = 120t +79 and
t = 0,1,2, . . . .

5.5 An algorithm for the construction of the
set Sk(N)

The construction of the set Sk(N) splits into two parts. We first generate
the finite set sk(N) = {(p1,m1),(p2,m2), . . . ,(pI,mI),}, where pi is a prime
number and mi is a positive integer (Algorithm 1). Then we try to construct
the covering system {r1 (mod m1),r2 (mod m2), . . . ,rI′ (mod mI′)} for I′ 6

I. Algorithm 2 gives the answer “I can’t construct a covering system”
or returns a covering system. In the second case, we construct the set
Sk(N)= {(pi,mi,ri)}. These algorithms were implemented using a computer
algebra system PARI/GP [37].

The only thing we can control in the construction of the set Sk(N) is
the integer N. If Algorithm 2 gives an answer “I can’t construct a cover-
ing system” then we can choose different N and try again. We can have
different sets Sk(N) for different values of N. The implementation of these
algorithms takes less than one minute to give an answer on a modestly pow-
ered computer (Athlon XP 2100+) for 3 6 k 6 10 and for good choice of
N.
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Algorithm 1 Construct the set sk(N)

Require: k > 2, N > 2.
Ensure: The set sk(N).

1: primes_list ← {}
2: sk(N) ← {}
3: divisors_list ← list of N divisors
4: for d ∈ divisors_list do
5: Construct the matrix Bk,d {see Section 5.2}
6: determinant ← |Bk,d|
7: factors_list ← prime factors of determinant
8: for factor ∈ factors_list do
9: if factor 6∈ primes_list then

10: Put factor in primes_list
11: Put ( f actor,divisor) in sk(N)
12: end if
13: end for
14: end for
15: return sk(N)

Define AN = {1,2, . . . ,N} for some positive integer N and let AN(m,r) =

{a|a ∈ AN,a≡ r (mod m)}.
Empirical results suggest that we can choose suitable N for any positive

integer k > 2 so we state a following conjecture:

Conjecture 1. Let k > 2 be some fixed positive integer. Then there exist
positive integers a0,a1, . . . ,ak−1 such that gcd(a0,a1, . . . ,ak−1) = 1 and the
sequence Sk(a0,a1, . . . ,ak−1) contains no prime numbers.

5.6 Examples of sequences for k = 4,5, . . . ,10

Since the case k = 2 is proved in [15] and the case k = 3 in [34], in this
section we will prove Theorem 5.1 for k = 4,5, . . . ,10. As it was noticed in
Section 5.3, we only need to construct the set Sk(N). Below we list some
examples of sequences {xn}, n = 0, 1, 2 . . . for each k in the range 46 k6 10.

{xn}=S4(6965341197997216603441345255549082199598,

10958188570324452297588339728720332112233,

3338506596043156696233507996784908854102,

11794350400878505028751078386520701499400).
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Algorithm 2 Construct a covering system
Require: A finite set of positive integers {m1,m2, . . . ,mI}.
Ensure: The covering system {r1 (mod m1),r2 (mod m2), . . . ,rI′

(mod mI′)}.
1: N← lcm(m1,m2, . . . ,mI)
2: Covering_set ←{}
3: B← AN
4: for i from 1 to I do
5: MAX← 0
6: for r from 0 to mi−1 do
7: if MAX < |AN(mi,r)∩B| then
8: ri← r
9: end if

10: Put ri (mod mi) in Covering_set
11: B← B\AN(mi,ri)
12: if B = {} then
13: return Covering_set
14: end if
15: end for
16: end for
17: print “I can’t construct a covering system"

{xn}=S5(1670030,2329659,907322,2009158,580558).

{xn}=S6(14646825659441969908161645620,17528323654959029482507167866,

34890970296357954582882737564,26873338145021062044773578613,

51550231534183425910033499205,42628449155999760197422601556).

{xn}=S7(49540,32691,13932,18650,9962,31004,21990).
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{xn}=S8(4540180821663595548672,4698078862727331233761,

6155103797589406562086,6372283045103453008950,

2279826085324947150546,1997011623084108165756,

2558082925488023201996,1574529020466071641536).

{xn}=S9(56233156963124,2686035354591,59483968596828,

9266206975260,5763383142928,2968317519550,

56580150371822,38270799500006,16687306893378).

{xn}=S10(2757357,684913,197119,5440883,4628571,

6208094,871487,2421952,1064430,5329024).

Since the set Sk(N) is essential in the construction of k-step Fibonacci-
like sequence Sk(x0,x1, . . . ,xk−1) we give this set for each k in the range
46 k 6 10.
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Table 5.1: The set S4(360)
i pi mi ri |B4,mi|
1 11 3 0 11
2 2 5 0 26

3 41 6 1 11 ·41
4 1511 8 0 1511
5 521 9 2 11 ·521
6 29 10 2 212 ·29
7 167 12 10 112 ·41 ·167
8 33391 15 8 26 ·11 ·33391
9 73 18 5 11 ·41 ·73 ·251 ·521

10 251 18 17 11 ·41 ·73 ·251 ·521
11 10399 20 4 218 ·29 ·10399
12 13177 24 4 112 ·41 ·167 ·1511 ·13177
13 6781 30 26 212 ·11 ·29 ·41 ·6781 ·33391
14 37 36 14 112 ·37 ·41 ·73 ·167 ·251 ·521 ·195407
15 195407 36 26 112 ·37 ·41 ·73 ·167 ·251 ·521 ·195407

Table 5.2: The set S5(16)

i pi mi ri |B5,mi|
1 2 2 0 22

2 3 4 1 24 ·32

3 71 8 3 26 ·32 ·71
4 47 16 7 28 ·32 ·47 ·71 ·193
5 193 16 15 28 ·32 ·47 ·71 ·193

Table 5.3: The set S6(32)

i pi mi ri |B6,mi|
1 5 4 0 5 ·41
2 41 4 1 5 ·41
3 31 8 2 5 ·31 ·41 ·239
4 239 8 3 5 ·31 ·41 ·239
5 79 16 6 5 ·31 ·41 ·79 ·239 ·271 ·1777
6 271 16 7 5 ·31 ·41 ·79 ·239 ·271 ·1777
7 1777 16 14 5 ·31 ·41 ·79 ·239 ·271 ·1777
8 257 32 15 B6,m16 ·257 ·3827975948383
9 3827975948383 32 31 B6,m16 ·257 ·3827975948383
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Table 5.4: The set S7(6)

i pi mi ri |B7,mi|
1 2 2 0 23

2 5 3 0 5 ·17
3 17 3 1 5 ·17
4 337 6 5 23 ·5 ·17 ·337

Table 5.5: The set S8(30)

i pi mi ri |B8,mi|
1 2 3 0 27

2 3 5 0 32 ·72 ·59
3 7 5 1 32 ·72 ·59
4 59 5 2 32 ·72 ·59
5 41 6 1 215 ·41
6 586919 10 4 34 ·72 ·59 ·586919
7 151 15 8 27 ·34 ·72 ·59 ·151 ·25025941
8 25025941 15 13 27 ·34 ·72 ·59 ·151 ·25025941
9 31 30 29 B8,m15 ·28 ·34 ·31 ·41 ·586919 ·38457989

Table 5.6: The set S9(12)

i pi mi ri |B9,mi|
1 2 2 0 24

2 31 4 1 28 ·31
3 74933 6 1 24 ·74933
4 2927 12 3 28 ·31 ·2927 ·4957 ·74933
5 4957 12 11 28 ·31 ·2927 ·4957 ·74933

Table 5.7: The set S10(8)

i pi mi ri |B10,mi|
1 3 4 0 3 ·17 ·257
2 17 4 1 3 ·17 ·257
3 257 4 2 3 ·17 ·257
4 7 8 3 33 ·7 ·17 ·71 ·257 ·3391
5 71 8 7 33 ·7 ·17 ·71 ·257 ·3391
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Finally, we give the coefficients of the system of equations (5.9). It is
necessary because in Lemma 5.4 we prove only existence of these coefficients,
i.e., with the same set Sk(N) we can find the different k-step Fibonacci-like
sequence Sk(x0,x1, . . . ,xk−1).

Table 5.8: Coefficients of (5.9) for k = 4

i 1 2 3 4 5 6 7
Ai,0 0 0 21 0 421 7 124
Ai,1 1 1 0 1 128 7 64
Ai,2 2 0 35 4 0 0 22
Ai,3 0 0 5 1305 9 2 44

Table 5.9: Coefficients of (5.9) for k = 4

i 8 9 10 11 12 13 14 15
Ai,0 19247 1 1 10164 12571 151 22 75748
Ai,1 25767 46 11 752 7342 302 5 105421
Ai,2 2901 66 52 3340 5671 603 25 65611
Ai,3 8709 70 64 6542 770 5420 11 100766
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Table 5.10: Coefficients of (5.9) for k = 5

i 1 2 3 4 5
Ai,0 0 2 39 26 1
Ai,1 1 0 7 10 149
Ai,2 0 2 13 34 29
Ai,3 0 1 0 2 28
Ai,4 0 1 62 14 14

Table 5.11: Coefficients of (5.9) for k = 6

i 1 2 3 4 5 6 7 8 9
Ai,0 0 8 8 51 25 3 1147 44 1
Ai,1 1 0 16 60 43 62 1159 123 1671520683283
Ai,2 4 18 0 120 35 126 353 123 1187982745969
Ai,3 3 31 11 0 49 93 940 187 2373684950413
Ai,4 0 21 3 37 56 45 46 116 1575934864371
Ai,5 1 0 23 65 29 79 92 206 2981147295654

Table 5.12: Coefficients of (5.9) for k = 7

i 1 2 3 4
Ai,0 0 0 2 1
Ai,1 1 1 0 2
Ai,2 0 2 9 115
Ai,3 0 0 1 115
Ai,4 0 2 0 189
Ai,5 0 4 13 0
Ai,6 0 0 9 85
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Table 5.13: Coefficients of (5.9) for k = 8

i 1 2 3 4 5 6 7 8 9
Ai,0 0 0 1 35 9 506111 92 14176025 1
Ai,1 1 1 0 11 0 249334 80 6652214 12
Ai,2 0 1 2 0 14 146730 9 1932056 17
Ai,3 0 0 6 51 1 293460 17 15861862 13
Ai,4 0 0 2 40 2 0 18 16528118 12
Ai,5 0 0 4 15 3 8526 127 23725749 12
Ai,6 0 2 0 30 3 85280 14 3798202 15
Ai,7 0 0 5 0 0 511720 96 7596404 20

Table 5.14: Coefficients of (5.9) for k = 9

i 1 2 3 4 5
Ai,0 0 2 33332 143 1
Ai,1 1 0 0 286 1095
Ai,2 0 27 72006 571 4380
Ai,3 0 23 63225 0 3835
Ai,4 0 23 18734 1286 405
Ai,5 0 0 37468 2185 1364
Ai,6 0 16 2 2886 3240
Ai,7 0 1 0 92 2547
Ai,8 0 1 24967 20 1996

Table 5.15: Coefficients of (5.9) for k = 10

i 1 2 3 4 5
Ai,0 0 8 4 1 1
Ai,1 1 0 8 5 47
Ai,2 1 4 0 6 23
Ai,3 2 16 193 0 11
Ai,4 0 15 1 3 10
Ai,5 2 0 2 4 67
Ai,6 2 16 0 1 33
Ai,7 1 13 241 1 0
Ai,8 0 9 193 3 69
Ai,9 1 0 129 1 48
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6 Conclusions

All the results of this thesis were achieved during the doctoral studies in
Vilnius University. The main attention was devoted to linear recurrence
sequences of composite numbers. We will briefly overview the results pre-
sented in the previous chapters.

• We studied the second order linear recurrence sequences of composite
numbers. Let (a,b)∈Z2, where b 6= 0 and (a,b) 6= (±2,−1). We proved
that then there exist two positive relatively prime composite integers
x0,x1 such that the sequence given by xn = axn−1 +bxn−2, n = 2, 3, . . . ,
consists of composite terms only, i.e., |xn| is a composite integer for
each n ∈ N. In the exceptional case (a,b) = (±2,−1) we showed that
such initial values x0, x1 do not exist. It extends a result of Graham
[15] who proved this statement in the special case of the Fibonacci-like
sequence, where (a,b) = (1,1).

• We investigated the special case of the third order linear recurrence
sequences, i.e., tribonacci-like sequences. We found three positive in-
tegers x0, x1, x2 satisfying gcd(x0,x1,x2) = 1 such that the sequence
{xn}, n = 0, 1, . . . given by xn = xn−1 + xn−2 + xn−3 for n> 3 consists of
composite numbers only. The initial values are
x0 = 99202581681909167232, x1 = 67600144946390082339,
x2 = 139344212815127987596. This is also a natural extension of a
similar result of Graham [15] for the Fibonacci-like sequence.

• Finally, we generalized the previous result. We proved that for each
positive integer k in the range 2 6 k 6 10 and for each positive in-
teger k ≡ 79 (mod 120) there is a k-step Fibonacci-like sequence of
composite numbers and gave examples of such sequences.

The thesis has raised significant questions, which have been left unan-
swered and could be analyzed in further research. It would be of great
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interest to extend our results to linear recurrence sequences of order d,

where d > 3. For which (a0, . . . ,ad−1) ∈ Zd, where ad 6= 0, one can choose d

integers x0, . . . ,xd−1 satisfying gcd(x0, . . . ,xd−1) = 1 such that the sequence

xn+d = ad−1xn+d−1 +ad−2xn+d−2 + · · ·+a0xn, n = 0, 1, 2, . . . ,

contains only composite numbers, i.e., |xn| is a composite integer for each
n> 1?

It seems likely that the complete answer to this question is out of reach.
There are no methods that would allow us to show that the cases, where
the characteristic polynomial

xd−a1xd−1−a2xd−2−·· ·−ad

is (x+1)d or (x−1)d, are exceptional. Already for d = 3 and, say, (a1,a2,a3)=

(3,−3,1) one gets a problem on prime values of a quadratic polynomial
Z 7→ Z at non-negative integer points which is completely out of reach.

We hope that the results of this thesis will be useful for further research.
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