Title A directed evolution design of target specificity and kinetic analysis of conformational transitions in the HhaI methyltransferase /
Translation of Title DNR metiltransferazės HhaI atpažįstamos sekos inžinerija ir konformacinių virsmų kinetikos tyrimas.
Authors Gerasimaitė, Rūta
Full Text Download
Pages 55
Keywords [eng] DNA methyltransferase ; specificity ; base flipping
Abstract [eng] DNA cytosine-5 methyltransferases (MTases) recognize short DNA sequences and catalyze the transfer of the methyl group from the cofactor AdoMet to the C5-position of a target cytosine. In this work both these aspects of the MTase mechanism have been addressed. First, using rational protein design and directed evolution approaches the specificity of the HhaI MTase, GCGC, has been changed to GCG by functional elimination of one of the two target recognition elements. In addition, the introduced structural changes endowed the MTase with the ability to transfer extended groups from synthetic cofactor analogs, providing the first example of a dual specificity change in a DNA MTase. Second, the kinetics of fast pre-catalytic conformational transitions in the MTase and DNA has been investigated. A new method to follow the target cytosine flipping and its subsequent covalent activation has been proposed, which allows a direct real-time observation of these processes by monitoring associated UV absorbance changes in a chemically unperturbed DNA. These studies for the first time demonstrate that the flipping of the target cytosine and the closure of the catalytic loop in the enzyme occur simultaneously, whereas the covalent activation of the target cytosine and the transfer of the methyl group are temporally distinct steps in the catalytic cycle of M.HhaI. Since the new method is based on the general phenomenon of hyperchromicity, it is thus applicable for studies of other systems involving base-flipping.
Type Summaries of doctoral thesis
Language English
Publication date 2011