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Abstract: A sample of continuous random functions with auto-regressive structures and possible
change-point of the means are considered. We present test statistics for the change-point based on a
functional of partial sums. To study their asymptotic behavior, we prove functional limit theorems
for polygonal line processes in the space of continuous functions. For some situations, we use a
block bootstrap procedure to construct the critical region and provide applications. We also study the
finite sample behavior via simulations. Eventually, we apply the statistics to a telecommunications
data sample.
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1. Introduction

A change-point in a sample is present when at least one statistical parameter changes,
which may be caused by a variation in the mean, trend, or other parameters. Change-point
detection has a broad range of applications, including financial time series analyses [1,2],
econometrics [3], and climate change [4], to name a few. Given a sample of functional
observations x1(t), . . . , xn(t), t ∈ [0, 1], our goal is to detect the existence of a change-point
such that before the change-point, samples are generated by a stationary functional auto-
regressive process of the first-order, while after the change-point, stationarity is destroyed
by the variation in the mean.

Statistical methods for functional observations were pioneered by Ramsey [5] in
1982. As the amount of high-resolution data has increased dramatically over the years,
interest in functional data analysis (FDA) has emerged. In recent decades, multiple authors
have contributed to the improvement of the theoretical FDA background—Kokoszka
and Reimherr [6] and Ramsey et al. [7], to name few—and the practical implementation
background of FDA in various fields—Ramsey et al. [8], Aneiros et al. [9], Alaya et al. [10],
and Koerner et al. [11].

The first contribution to structural breaks in functional data was made by Berkes et al. [12],
where a cumulative sum (CUSUM) test was proposed for independent functional data by us-
ing projections of the sample onto some principal components of covariance. Aue et al. [13]
analyzed the limit distribution of a change-point estimator in the same setting. Horváth et
al. [14] constructed a test for the stability of the autoregressive operator in a Hilbert-space-
valued autoregressive process. Tests that do not rely on dimension reduction were derived
by Horváth et al. [14] for general testing of stationarity and by Aue et al. [13] for functional
break detection of m-dependent innovations. Structural break detection in the context
of functional linear models was studied by Horváth and Reeder [15] and Aue et al. [13].
Smooth deviations from stationarity of functional time series in the frequency domain were
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investigated by Aue and van Delft [16]. Danielius and Račkauskas [17] suggested tests
based on p-variation of functional CUSUM processes.

Still, a limited number of papers use functional approaches for telecommunica-
tions data. Aspirot et al. [18] studied a non-parametric regression model with the ex-
planatory variable as a non-stationary dependent functional and the response variable as a
scalar. Yu and Lambert [19] analyzed records for completed international calls. Birbilas and
Račkauskas [20] modeled call data records and predicted mobile product consumption
using different approaches in a functional framework. Change-point detection plays a
crucial role in telecommunications as it can be monitored and implemented at different
levels depending on the business model, e.g., the operational level (system failures in
cell towers), the technical level (signal changes and wireless connection stability), and the
marketing level (a promotion’s effect on usage). Eventually, it has a significant effect at the
business level, as accurate and timely detection of change-points is imperative for network
operators to proactively address issues, optimize resource allocation, and ensure seamless
service delivery. In other words, a change-point might identify improvement or, worse,
system failure. System failures usually cost more than improvements. As telecommunica-
tions systems continue to evolve in complexity and scale, the application of sophisticated
change-point detection techniques becomes increasingly indispensable for maintaining the
integrity and functionality of this critical communication infrastructure.

Change-points are a relevant topic in both the scientific and telecommunications fields.
In Shields et al. [21], the authors analyze collective behavior within smart cities using time-
series-type call data record (CDR) data. The authors identify multiple change-points using
three methods: binary segmentation, segmentation neighborhoods, and pruned extract
linear time (PELT). They suggest that deviation from normal collective mobility patterns can
be explained by known significant events in the city. Loreh John [22] provides a study using
change-point analysis to detect changes in the mean for the wireless telecommunications
field. The author uses a previously known likelihood method and suggests a new maximum
distance of the running means method to identify locations of the change-points within
the 2G network. One of the latest works in this area is by Aleksiejunas and Garuolis [23]
and is devoted to traffic change-points; it utilizes machine learning methods such as long
short-term memory (LSTM) and recurrent neural networks (RNNs). The authors apply
change-point identification algorithms for synthetic data and reuse algorithms for the
spatial traffic distributions of LTE (Long Term Evolution) mobile networks.

Recall that for a separable Banach space B with a norm ∥x∥B, x ∈ B, C[0, 1], B) is a
separable Banach space of continuous functions f : [0, 1] → B endowed with the norm
∥ f ∥B,∞ = max0≤t≤1 ∥x(t)∥B, f ∈ C([0, 1], B). We abbreviate C([0, 1], R) as C[0, 1] and
∥x∥R,∞ as ∥x∥∞. For a given random sample X1(t), . . . , Xn(t), t ∈ [0, 1], with values in the
space C[0, 1], we consider the following model:

Xk − µ = β(Xk−1 − µ) + g(k/n) + Yk, (1)

where β : C[0, 1] → C[0, 1] is a linear bounded operator, µ ∈ C[0, 1], the function g : [0, 1] →
C[0, 1] is deterministic, and Yi = (Yi(t), t ∈ [0, 1]), i ∈ Z, is a sequence of independent and
identically distributed (iid) random variables with values in the space C[0, 1] and defined
on a complete probability space (Ω,F , P).

We analyze this model while keeping in mind the telecommunications data coming
from call data records (CDRs). This data set contains the usage of three mobile products:
voice calls, SMS, and mobile data. For the case study, voice consumption in minutes
and mobile data consumption in MB are used. This type of date was analyzed in [20]
using first-order auto-regressive models, and it was confirmed that models of type (1)
are appropriate.

Throughout, Y = (Y(t), t ∈ [0, 1]) denotes a generic element of the sequence (Yi, i ∈ Z)
for which the following assumption shall be used.



Mathematics 2024, 12, 1889 3 of 25

Assumption 1 (Assumption (A)). Y is a mean-zero C[0, 1]-random variable with covariance
function q, q(t, s) = EY(t)Y(s), t, s ∈ [0, 1], and satisfies the central limit theorem (denoted
Y ∈ CLT(C[0, 1]).

Recall that Y ∈ CLT(C[0, 1]) means that there exists a mean-zero Gaussian random
variable (denoted Nq) in C[0, 1] with covariance q such that the sequence (n−1/2(Y1 + · · ·+
Yn), n ≥ 1) converges in a distribution to Nq. It is well known that if there exists a random
variable M such that EM2 < ∞ and

|Y(t)− Y(s)| ≤ M|t − s|α, s, t ∈ [0, 1],

with some α ∈ (0, 1], then Y ∈ CLT(C[0, 1]).
Throughout, we assume

∥β∥ := sup
∥x∥∞<1

∥β(x)∥∞ < 1. (2)

This assumption guaranties that the inverse operator (I − β)−1 exists, where I is the identity
operator, and has the expansion

(I − β)−1 =
∞

∑
k=0

βk.

Our main aim is to test the hypothesis

H0 : g = 0 versus H1 : g ̸= 0, (3)

with emphasis on the case of change-point detection, which corresponds to a piecewise
constant function g with respect to the first argument.

The model under consideration covers both abrupt as well continuous variations of a
sample mean. Test statistics and their asymptotic distributions under the null hypothesis
as well under various alternatives are established and presented in Section 2. Section 3
contains a description of the testing procedure. The main challenge here is to find critical
levels. The solution for this problem is proposed via the Monte Carlo method. Section 4
contains a simulation study. Finally, Section 5 deals with a concrete data set related to
telecommunication problems.

2. Auxiliary Results

For each n ≥ 1, consider the random sample Z0, Z1, . . . , Zn in C[0, 1] satisfying

Z0 = 0, Zi = βZi−1 + f (i/n)rn + Yi, i = 1, . . . , n,

where rn ∈ C[0, 1], and f : [0, 1] → R. Consider a polygonal line process ζn = (ζn(t), t ∈
[0, 1]) defined by

ζn(t) =
⌊nt⌋

∑
k=1

Zk + (nt − ⌊nt⌋)Z⌊nt⌋+1 =
n

∑
k=1

Zkenk(t), (4)

where

enk(t) =


0 if t < (k − 1)/n,
tn − (k − 1) if (k − 1)/n ≤ t ≤ k/n,
1 if t > k/n.

Let Wq = (Wq(t), t ∈ [0, 1]), be a C[0, 1]-valued Wiener process corresponding to
covariance q in such a way that Wq is a C[0, 1]-valued mean-zero Gaussian process with
independent increments such that Wq(s)− Wq(t) has the same distribution as Nq|t − s|1/2.
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Recall, that for a function f : [0, 1] → R,

v1( f , [a, b]) := sup
{ m

∑
k=1

| f (τk)− f (τk−1)| : a = τ0 < τ1 < · · · < τm−1 < τm = b, m ≥ 1
}

.

The function f has finite variation if v1( f ) := v1( f : [0, 1]) < ∞.

Lemma 1. Assume that Y satisfies Assumption 1, and

(a) There is a continuous function r : [0, 1] → R such that

lim
n→∞

∥
√

nrn − r∥∞ = 0; (5)

(b) The function f : [0, 1] → R is bounded and has finite variation.

Then
n−1/2(I − β)ζn

D−→ Wq + hr, f in the space C([0, 1], C[0, 1]),

where

hr, f (t) =
∫ t

0
f (s)dsr, t ∈ [0, 1].

Proof of Lemma 1. Consider a linear process (Z̃k, k ≥ 1) with values in C[0, 1] defined by

Z̃k =
∞

∑
j=0

βjYk−j =
k

∑
j=−∞

βk−jYj, k = 0, 1, 2, . . . .

Note that the series above converge a.s. in C[0, 1] so that Z̃k is correctly defined and is a
C[0, 1]-valued random variable for each k ≥ 0. Indeed,

E∥
n

∑
j=m

βjYk−j∥ ≤
n

∑
j=m

∥β∥jE∥Y∥ → 0 as m, n → ∞

yields convergence in the probability of the series ∑j βjYk−j. As (Yi) are independent, the
Ito–Nisio theorem ensures a.s.-convergence as well. Next, we consider a C[0, 1]-valued
polygonal line process ζ̃n defined by

ζ̃n(t) =
⌊nt⌋

∑
k=1

Z̃k + (nt−⌋nt⌋)Z̃⌊nt⌋+1 =
n

∑
k=1

Z̃kenk(t), t ∈ [0, 1]. (6)

We have by [24] (see Theorem 5 therein)

n−1/2(I − β)ζ̃n
D−→ Wq in the space C([0, 1], C[0, 1]), (7)

Since Zk can be expressed by

Zk =
k

∑
j=1

βk−jYj +
k

∑
j=1

βk−j f (j/n)rn =
k

∑
j=1

βk−jYj +
k−1

∑
j=0

βj f ((k − j)/n)rn,

we have

Zk − Z̃k =
k−1

∑
j=0

βj f ((k − j)/n)rn −
0

∑
j=−∞

βk−jYj.

This yields
n−1/2ζn(t) = n−1/2ζ̂n(t) + ∆n(t), t ∈ [0, 1], (8)
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where ∆n(t) = n−1/2[ζn(t)− ζ̃n(t)]. We claim that

max
0≤t≤1

∥∥∥∆n(t)− (I − β)−1r
∫ t

0
f (s)ds

∥∥∥
C[0,1]

P−−−→
n→∞

0. (9)

To prove this claim, first we decompose

∆n(t) = ∆′
n(t) + ∆′′

n(t), t ∈ [0, 1],

where

∆′
n(t) = n−1/2

n

∑
k=1

[ k−1

∑
j=0

βj f ((k − j)/n)rn

]
enk(t), ∆′′

n(t) = n−1/2
n

∑
k=1

[ 0

∑
j=−∞

βk−jYj

]
enk(t).

Since ∆′′(t) = n−1/2Z̃0 ∑n
k=1 βkenk(t), we see that max0≤t≤1 ∥∆′′

n∥C[0,1]
P−−−→

n→∞
0, and (9)

reduces to

max
0≤t≤1

∥∥∥∆′
n(t)− (I − β)−1r

∫ t

0
f (s)ds

∥∥∥
C[0,1]

P−−−→
n→∞

0. (10)

Write n−1/2∆′
n(t) = ∆n1(t) + ∆n2(t), where

∆n1(t) = n−1
n

∑
k=1

[ k−1

∑
j=0

βj f ((k − j)/n)r
]
enk(t)

and

∆n2(t) = n−1
n

∑
k=1

[ k−1

∑
j=0

βj f ((k − j)/n)(
√

nrn − r)
]
enk(t).

Next, observe that

∥∆n2(t)∥C[0,1] ≤ ∥ f ∥∞(1 − ∥β∥)−1∥
√

nrn − r∥C[0,1],

since ∑n
k=1 enk(t) = nt. By condition (5), limn→∞ max0≤t≤1 ∥∆n2(t)∥C[0,1] = 0 and (10)

reduces to

max
0≤t≤1

∥∥∥∆n1(t)− (I − β)−1r
∫ t

0
f (s)ds

∥∥∥
C[0,1]

→ 0. (11)

Consider the functions

In(h, t) = n−1
n

∑
k=1

f (k/n − h)enk(t), I(h, t) =
∫ t

0
f (s − h)ds,

We have

|In(h, t)− I(h, t)| =
∣∣∣ n

∑
k=1

∫ k/n

(k−1)/n
[ f (k/n − h)− f (s − h)]1[0,t](s)ds

∣∣∣
≤

n

∑
k=1

∫ k/n

(k−1)/n
| f (k/n − h)− f (s − h)|ds

≤ n−1
n

∑
k=1

v( f (· − h) : [(k − 1)/n, k/n]) ≤ n−1v( f : [−h, 1 − h])

≤ n−1v( f : [0, 1])

Next, we observe that

|I(h, t)− I(0, t)| ≤
∫ t

0
| f (s − h)− f (s)|ds → 0 as h → 0.
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Fix J ≥ 1. Then for each ε > 0, we find Nε ≥ 1 such that

|I(j/n, t)− I(0, t)| ≤
∫ t

0
| f (s − h)− f (s)|ds < ε if n ≥ Nε, j ≤ J.

Since f (t) = 0 for t ≤ 0,

∆n1(t) = n−1
n

∑
k=1

k

∑
j=0

βjr f ((k − j)/n)enk(t)

=
n

∑
k=1

n

∑
j=0

βjr f ((k − j)/n)enk(t) =
n

∑
j=0

βjr
n

∑
k=1

f ((k − j)/n)enk(t)

=
∞

∑
j=0

βjrIn(j/n, t).

This yields

max
0≤t≤1

∥∥∥∆n1(t)− (I − β)−1r
∫ t

0
f (s)ds

∥∥∥
C[0,1]

=
∥∥∥ ∞

∑
j=0

βjrIn(j/n, t)−
∞

∑
j=0

βjrI(0, t)
∥∥∥

C[0,1]

≤
J

∑
j=0

∥βj∥rε + 2∥ f ∥∞

∞

∑
j=J

∥β∥j∥r∥

Letting J → ∞ gives

max
0≤t≤1

∥∥∥∆n1(t)− (I − β)−1r
∫ t

0
f (s)ds

∥∥∥
C[0,1]

≤ ∥r∥
1 − ∥β∥ ε.

Since ε > 0 is arbitrary, this yields (11) and completes the proof.

Consider an operator L : C([0, 1], C[0, 1]) → C([0, 1], C[0, 1]) defined by Lx(t) =
x(t) − tx(1), t ∈ [0, 1], x ∈ C([0, 1], C[0, 1]). Define a C[0, 1]-valued Brownian bridge
Bq = (Bq(t), t ∈ [0, 1]), by

Bq(t) = Wq(t)− tWq(1) = LWq(t).

Lemma 2. Under the conditions of Lemma 1,

n−1/2(I − β)Lζn
D−→ Bq + Lhr, f in the space C([0, 1], C[0, 1]),

where

Lhr, f (t) = hr, f (t)− th f (1) =
[ ∫ t

0
f (s)ds − t

∫ 1

0
f (s)ds

]
r, t ∈ [0, 1]).

Proof of Lemma 2. Since L is a continuous operator, the result follows from Lemma 1 and
the continuous mapping theorem (Billingsley [25] Theorem 2.7).

3. Test Statistics and Their Asymptoticity

Define

Mn,β := max
1≤k≤n

max
0≤t≤1

∣∣∣(I − β)
k

∑
j=1

Xj(t)
∣∣∣, (12)

and

Tn,β = max
1≤k≤n

max
0≤t≤1

∣∣∣(I − β)
k

∑
j=1

(Xj(t)− Xn(t))
∣∣∣, (13)
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where Xn = n−1(X1 + · · ·+ Xn). Statistic Mn,β is adopted for testing (3) if µ = 0, whereas
Tn,β can be used for testing (3) in the case where we have µ ̸= 0.

Theorem 1. For the model (1), assume that Y satisfies Assumption 1 and µ = 0, g = 0. Then

n−1/2Mn,β
D−→ Mq := max

0≤t≤1
∥Wq(t)∥C[0,1]. (14)

Proof of Theorem 1. By Lemma 1 and the continuous mapping theorem,

n−1/2∥(I − β)ζn∥C[0,1],∞
D−→ ∥Wq∥C[0,1],∞. (15)

Observing that Mn,β = ∥(I − β)ζn∥C[0,1],∞ and Mq = ∥Wq∥C[0,1],∞ completes the proof.

Theorem 2. For the model (1), assume that Y satisfies Assumption 1 and g = 0. Then

n−1/2Tn,β
D−→ Tq := max

0≤t≤1
∥Bq(t)∥C[0,1]. (16)

Proof of Theorem 2. Since substituting Xk with Xk − µ does not change the statistic Tn,β,
we assume µ = 0. The function L : C([0, 1], C[0, 1]) is continuous; hence, by the continuous

mapping theorem, n−1/2Lζn
D−→ LWq. Applying the continuous mapping theorem once

more yields

n−1/2 max
0≤t≤n

∥(I − β)Lζn(t)∥C[0,1]
D−→ max

0≤t≤1
∥LWq(t)∥C[0,1].

Next, we notice that max0≤t≤n ∥(I − β)Lζn(t)∥C[0,1] = Tn,β, whereas LWq = Bq. This
completes the proof.

Theorem 3. Assume for the model (1) that Y satisfies Assumption 1, g(s, t) = gn(s, t) =
f (s)rn(t) satisfies

√
nrn → r in C[0, 1], and the function f : [0, 1] → R is bounded and has finite

variation. Then

n−1/2Tn,β
D−→ Tq,r := max

0≤t≤1

∥∥∥Bq(t) +
[ ∫ t

0
f (s)ds − t

∫ 1

0
f (s)ds

]
r
∥∥∥

C[0,1]
, (17)

Particularly, if limn→∞
√

n max0≤t≤1 |rn(t)| = ∞, then

n−1/2Tn,β
P−−−→

n→∞
∞. (18)

Proof of Theorem 3. The proof follows from Lemma 2 and the continuous mapping theo-
rem.

Theorem 4. Assume for model (1) that Y satisfies Assumption 1, g = 0, and µ = µn satisfies√
nµn → r in C[0, 1]. Then

n−1/2Mn,β
D−→ Mq,r := max

0≤t≤1
∥Wq(t) + r∥C[0,1]. (19)

Particularly, if limn→∞
√

n max0≤t≤1 |µn(t)| = ∞, then

n−1/2Mn,β
P−−−→

n→∞
∞. (20)

Proof of Theorem 4. The proof follows from Lemma 1 and the continuous mapping theo-
rem.
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Remark 1. In practice, the auto-regression operator β is unknown and has to be substituted with
its consistent estimator β̂. This substitution can be controlled through the following convergence:∣∣∣n−1/2Mn,β − n−1/2Mn,β̂

∣∣∣ ≤ ∥β − β̂∥ · ∥(I − β)−1∥n−1/2Mn,β
P−−−→

n→∞
0

provided ∥β − β̂∥ P−−−→
n→∞

0.

The simulations below (Figures 16 and 17) confirm this remark.

4. Testing Procedure

Assume that the functional sample X1, . . . , Xn follows model (1). Consider the null
hypothesis H0 : g = 0. For a fixed 0 ≤ α < 1, let Cα and C′

α be solutions of equations

P(Mq > Cα) = α and P(Tq > C′
α) = α (21)

respectively. According to Theorems 1 and 2, the tests

n−1/2Mn,β > Cα and n−1/2Tn,β > C′
α (22)

have an asymptotic significance level of α.
If q is known, then by the Kuelbs [26] invariance principle, as N → ∞,

Fq,N(x) := P
(

N−1/2 max
1≤k≤N

max
0≤s≤1

∣∣∣ k

∑
j=1

ξqj(s)
∣∣∣ ≤ x

)
→ P(Mq ≤ x), x ≥ 0,

where ξgj, j = 1, . . . , N are iid Gaussian random variables in C[0, 1] with mean zero and
covariance q. Hence, an approximate solution of the first equation in (21) can be found
from

1 − Fq,N(Cα) = α (23)

by the Monte Carlo method. Similarly, as N → ∞,

F̃q,N(x) := P
(

N−1/2 max
1≤k≤N

max
0≤s≤1

∣∣∣ k

∑
j=1

ξqj(s)− M−1
n

∑
j=1

ξqj(s)
∣∣∣ ≤ x) → P(Tq ≤ x), x ≥ 0,

and an approximate solution of the second equation in (21) can be found by the Monte
Carlo method from

1 − F̃q,N(Cα) = α. (24)

Particularly, if (Yk, k ≥ 1) are iid standard Wiener processes, then q(s, t) = min{s, t},
s, t ∈ [0, 1], and again, denoting

FM,N(x) = P
(

N−1/2M−1/2 max
1≤k≤N

max
1≤m≤M

∣∣∣ k

∑
j=1

m

∑
i=1

γij

∣∣∣ ≤ x
)

,

where (γij, i = 1, . . . , N, j = 1, . . . , M) are iid standard normal random variables, and using
the Donsker invariance principle, the solution of (23) can be approximated by the solution
of the following equation:

1 − FM,N(Cα) = α. (25)

Similarly, (24) can be approximated by

1 − F̃M,N(C′
α) = α, (26)
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where

F̃M,N(x) = P
(

N−1/2M−1/2 max
1≤k≤N

max
1≤m≤M

∣∣∣ k

∑
j=1

m

∑
i=1

[
γij − M−1

M

∑
i=1

γij

]∣∣∣ ≤ x
)

, x > 0.

Density functions of the distribution functions FN,M and F̃M,N (with M = N = 1000) were
generated using kernel (Epanechnikov) density estimates and MC ∈ {100, 400, 500, 800, 1000}
replications of the corresponding random variables (see Figure 1). We see that the effect of
the number of MC replications is minimal.
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Figure 1. Kernel (Epanechnikov) density functions of FM,N obtained with different numbers of
Monte Carlo simulations: MC = (400, 600, 1000), and N = 1000, M = 1000.

Equations (25) and (26) can be solved by the Monte Carlo method. The obtained
quantile values of Cα and C′

α are presented in Tables 1 and 2 .

Table 1. α quantiles of FM,N , M = N = 1000.

α 0.005 0.01 0.025 0.05 0.25 0.5 0.75 0.95 0.975 0.99 0.995

MC = 400 0.8082 0.8266 0.8606 0.8982 1.1622 1.4163 1.7689 2.5414 2.6921 2.9071 2.9927
MC = 600 0.8062 0.8562 0.8965 0.9412 1.1957 1.4358 1.8070 2.5188 2.7242 3.2369 3.3202
MC = 800 0.7636 0.8120 0.8779 0.9413 1.1853 1.4317 1.7576 2.4568 2.6881 2.9427 3.1688

MC = 1000 0.7897 0.8176 0.8857 0.9322 1.1690 1.4240 1.7919 2.4478 2.7043 2.9565 3.1000

Table 2. α quantiles of F̃M,N , M = N = 1000.

α 0.005 0.01 0.025 0.05 0.25 0.5 0.75 0.95 0.975 0.99 0.995

MC = 400 0.7489 0.7682 0.7988 0.8313 1.0401 1.2276 1.4700 1.9317 2.0333 2.1389 2.2285
MC = 600 0.7509 0.7809 0.8214 0.8649 1.0425 1.2301 1.4860 1.9290 2.1213 2.3126 2.6485
MC = 800 0.7514 0.7745 0.8266 0.8751 1.0401 1.2257 1.4606 1.9188 2.0661 2.2002 2.4172

MC = 1000 0.7313 0.7520 0.8111 0.8606 1.0397 1.2230 1.4336 1.8510 2.0777 2.2900 2.3669

The true critical value Cn(α) for the test statistic Mn,β corresponding to the pre-
designated significance level α ∈ (0, 1) is defined as a solution of the following equation:

P(Mn,β > Cn(α)|H0) = α (27)

the exact solution of which can be obtained only in some very special cases. Therefore,
critical values obtained from asymptotic distribution theory are widely used in applications.
However, this usually requires a very large sample size since first-order asymptotic theory
often gives poor approximations of the distributions of test statistics.

Another way to solve Equation (27) is the block bootstrap procedure, as it can assist
us with the approximation of critical values. In the works of Härdle et al. [27], Kunsch [28],
and Liu and Singh [29], we find multiple algorithms on how to construct the block bootstrap
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for time series data. There exist numerous variants of the block bootstrap method that can
mainly be distinguished by whether the blocks are overlapping or not and whether the
block length is fixed or increasing. The overall block bootstrap idea, however, involves
partitioning of the sample into sub-blocks and then independently drawing these sub-
blocks until the sample size is attained. Adapted to our case, a block bootstrap method with
fixed length l and overlapping blocks is performed based on the work of Nyarige [30]. We
take the algorithm from Nyarige [30] and adapt it to the overlapping case: see Algorithm 1.
The application of the procedure will be presented in the simulation study.

Algorithm 1 Block bootstrap procedure

1. Given the sample { X1,..., Xn }, using a suitable rule, choose the fixed block length, l,
and partition the sample into B overlapping blocks, each with the given length l. As
blocks can overlap, B = n − l + 1.

2. Draw randomly for a replacement from the resulting blocks and order the drawn
blocks from end-to-end to form a new bootstrap sample { X∗

1 ,..., X∗
n }.

3. Compute the statistic of interest in the same way as for the original sample.

We discuss asymptotic critical value adjustments afterwards. In the case where (Yk)
are iid standard Brownian motions and the operator β is multiplied by a function, we
generate 500 Monte Carlo simulations Mn,β under H0 to have a test statistics sample {M1

n,β,

. . . , M500
n,β }. Epanechnikov kernel density plots of the sample {M1

n,β, . . . , M500
n,β } and of Mq

are shown in Figure 2. The Monte Carlo experiment provides evidence that the true and
nominal probabilities that the test makes a Type I error can be notably dissimilar when an
asymptotic critical value is used. Critical value adjustments can be made with the help of a
Bonferroni correction: see Haynes [31] for more details and Sedgwick [32] for an application
example. One can see that the Monte Carlo experiment density (blue density) is pushed
to the left in comparison to the asymptotic critical density (yellow density). The graph
provides a suggestion that quantiles can be adjusted to have the Type I (false-positive) error
rejection rate improved. Adjustment of the asymptotic critical value means finding a Cα∗

that satisfies
P(Mq > Cα∗) = α∗ < α (28)

such that P(Mn,β > n−1/2C∗
α |H0) is as close as possible to α.

This can be done by solving the following equation:

P(Mq > Cα∗) ≈ P(Mn,β > n−1/2Cα∗ |H0). (29)

The actual adjusted asymptotic critical values and applications will be presented in the
simulation study.
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Figure 2. Mn,β under H0 kernel (Epanechnikov) density versus Mq kernel (Epanechnikov) density.
Grey dotted line indicates α = 0.01 one-sided quantile, while grey dotted line provides adjusted
quantile for α = 0.01.
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In the case where the operator β is unknown, the critical values can be adjusted
also. Considering the case where the operator β in (1) is a multiplication by a function
β(t), t ∈ [0, 1], we define the following Algorithm 2.

Algorithm 2 Adjusted quantiles procedure

1. Calculate β̂(t) from the functional auto-regressive model defined in Equation (1)
2. Calculate Ŷk(t) by equation Ŷk(t) = Xk+1(t) − β̂(t) Xk(t), k = 1, . . . , n. Afterwards,

center the residuals Ỹk(t) = Ŷk(t) − 1
n ∑k

n=1 Ŷk(t) , k = 1, . . . , n.
3. Draw randomly (with repetition) and with probability P(Ỹn = Y∗

k ) = 1
n , k = 1, . . . , n,

from {Ỹ1, Ỹ2, . . . , Ỹn} to generate {Y∗
1 , Y∗

2 , . . . , Y∗
n}.

4. Generate new sample data {X∗
1 , X∗

2 , . . . , X∗
n} with the first moment by equation

X∗
1 (t) = X1(t) = Y∗

1 (t) and the following moments by equation X∗
k (t) = β̂(t)X∗

k−1
+ Y∗

k , k = 1, . . . , n.
5. Use block bootstrap procedure, see Algorithm 1, with the length of the block l to draw

from {X∗
1 , X∗

2 , . . . , X∗
n} new values { X′

1, X′
2, . . . , X′

n }. Then, calculate M′
n,β̂

from { X′
1,

X′
2, . . . , X′

k } , k = 1, ..., n, using Equation (12).
6. Repeat previous step as Monte Carlo simulations for MC times to construct {M′1

n,β̂
,

M′2
n,β̂

, . . . , M′MC
n,β̂

}.

7. Adjust Mq quantile values with { M′1
n,β̂

, M′2
n,β̂

, . . . , M′MC
n,β̂

} to have Type I error mini-

mized.

Algorithm 2 is built to solve the following equation:

P(Mn,β > Cα) ≈ P(M′
n,β > Cα | X′

1, X′
2, . . . , X′

n) ≈ P(Mq > Cα). (30)

A graphical interpretation of Algorithm 2 is presented in Figure 3. One can see that the
initial Mn,β̂ density generated using the evaluated β̂(t) is positioned with notable dispersion
and a heavy tail to the right. Density improves with the following steps generating M∗

n,β̂
.

Eventually, we have M′
n,β̂

density, which is close to Mq. An application of this algorithm
will be presented in the case study.
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Figure 3. Algorithm 2 kernel (Epanechnikov) densities Mn,β̂, M∗
n,β̂

, and M′
n,β̂

versus Mq kernel

(Epanechnikov) density.

5. Simulation Study

In this section, we consider the random functional sample Xi, i = 1, . . . , n, generated
by the model

Xk(t)− µ(t) = β(t)(Xk−1(t)− µ(t)) + g(k/n, t) + Yk(t), k = 1, . . . , n, (31)
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where the functions Yk, k = 1, . . . , n are iid standard Wiener processes, and β = (β(t), t ∈
[0, 1]) is a continuous function. We analyze test (22) in a Monte Carlo simulation study,
distinguishing two cases:

• Case 1: g = 0, with the aim to test

H0 : µ = 0 versus H1 : µ ̸= 0.

• Case 2: µ = 0, with the aim to test

H0 : g = 0 versus H1 : g ̸= 0.

In both cases, the following β functions are used:

β1(t) = 0.7
√

t, β2(t) = −0.7
√

t, β3(t) = 0.7
√

1 − t, β4(t) = −0.7
√

1 − t, t ∈ [0, 1]. (32)

First we analyze the test statistic Mn,β for the model (31) under assumptions g = 0
and µ = 0. Figure 4 shows that coefficient b in β(t) = b

√
t, t ∈ [0, 1] has a minor effect on

distribution of Mn,β if b < 0.7. If b exceeds 0.7 and approaches one, the Mn,β density is
flattened and forced to the right. Moreover, Figure 5 indicates minor differences between
the densities if different βi(t), i = 1, . . . , 4, from Equation (32) are used. Therefore, in the
following analysis, model (31) with β1(t) = 0.7

√
t t ∈ [0, 1] will be used. Simulations are

performed with various n values: 100, 200, 500, 1000. These simulations are done for the
null hypothesis with functions µ(t) = 0 and g(k/n, t) = 0; β1(t) is used in the following
graphical analysis, and summary values are provided in a table for β1(t), β2(t), β3(t), and β4(t).
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Figure 4. Mn,β kernel (Epanechnikov) densities under null hypothesis with β1(t) = b
√
(t), where

b = 0.1, b = 0.3, b = 0.5, b = 0.7, b = 0.9.
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Figure 5. Mn,β kernel (Epanechnikov) densities under null hypothesis with β1(t), β1(t), β3(t), β4(t)
and n = 1000.

5.1. False-Positive Rate

In this subsection, we are analyzing the false-positive or Type I error rate. We start
with a comparison of the kernel density plots for Mn,β under H0 versus Mq. Figure 6a
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shows that a higher n indicates that the density of the null hypothesis is moving towards
the Mq density while n < 1000. This identifies a false-positive issue that can be seen from
the graph—the test will conduct a significant number of false-positive errors if n ≤ 1000.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

D
en

si
ty

Mq generated with MC=500, N=1000, M=1000

Null hypothesis with β1 n=100

Null hypothesis with β1 n=200

Null hypothesis with β1 n=500

Null hypothesis with β1 n=1000

Mq generated with MC=500, N=1000, M=1000

M nβ1 n=100

Null hypothesis with β1 n=200

Null hypothesis with β1 n=500

Null hypothesis with β1 n=1000

Mq generated with MC=500, N=1000, M=1000

M nβ n=100

Null hypothesis with β1 n=200

Null hypothesis with β1 n=500

Null hypothesis with β1 n=1000

Mq generated with MC=500, N=1000, M=1000

M nβ1
 n=100

Null hypothesis with β1 n=200

Null hypothesis with β1 n=500

Null hypothesis with β1 n=1000

Mq generated with MC=500, N=1000, M=1000

M nβ1
 n=100

Null hypothesis with β1 n=200

Null hypothesis with β1 n=500

Null hypothesis with β1 n=1000

Mq generated with MC=500, N=1000, M=1000

M nβ1
 with n=100

Null hypothesis with β1 n=200

Null hypothesis with β1 n=500

Null hypothesis with β1 n=1000

Mq generated with MC=500, N=1000, M=1000

M nβ1
 with n=100

M nβ1
 with n=200

M nβ1
 with n=500

M nβ1
 with n=1000

Mq generated with MC=500, N=1000, M=1000

M n β1
 with n=100

M nβ1
 with n=200

M nβ1
 with n=500

M nβ1
 with n=1000

Mq generated with MC=500, N=1000, M=1000

M n β1
 with n=100

M n β1
 with n=200

M n β1
 with n=500

M n β1
 with n=1000

Mq generated with MC=500, N=1000, M=1000

M n β1
 with no jump and n=100

M n β1
 with no jump and  n=200

M n β1
 with no jump and  n=500

M n β1
 with no jump and  n=1000

Mq generated with MC=500, N=1000, M=1000

M n β1
 with no jump and n=100

M n β1
 with no jump and n=200

M n β1
 with no jump and n=500

M n β1
 with no jump and n=1000

(a)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

D
en

si
ty

BS M n β1
 with no jump and n=100

M n β1
 with no jump and n=100

M n β1
 with no jump and n=200

M n β1
 with no jump and n=500

M n β1
 with no jump and n=1000

BS M n β1
 with no jump and n=500

M n β1
 with no jump and n=100

M n β1
 with no jump and n=200

M n β1
 with no jump and n=500

M n β1
 with no jump and n=1000

(b)
Figure 6. Mn,β under H0 densities with n = 100, n = 200, n = 100, n = 1000 versus Mq (a) or block
bootstrap Mn,β (b) densities. All densities estimated using Epanechnikov kernels.

Figure 7a implies that the Type I error rate decreases dramatically once n ≥ 1000. We adjust
asymptotic critical values by solving Equation (29) in order to minimize the Type I error rate.
The adjusted asymptotic critical values corresponding to β1(t), β2(t), β3(t), β4(t) are given in
Table 3. Indeed, the adjusted asymptotic critical values provide better results for false-positive
cases: see Figure 7. This defines our upcoming steps: for further testing in simulations, adjusted
one-sided asymptotic critical values will be used for n ≥ 1000.

Table 3. Adjusted Cα significance level α values for β1(t), β2(t), β3(t), β4(t).

Cα for β1 Cα for β2 Cα for β3 Cα for β4

α = 0.01 3.51 3.51 3.54 3.51
α = 0.02 3.41 3.41 3.42 3.41
α = 0.05 3.10 3.15 3.12 3.1
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Figure 7. False-positive rate calculations conducted using different values for n, n ≥ 200 for adjusted
(b) and non-adjusted (a) critical values. Colors stands for significance level α; hypothesis rejected
using Mq.

If n < 1000, then we perform a block bootstrap by Algorithm 1. The great question
is which block length is optimal. The question is answered by using generated bootstrap
data with different block lengths l = {2, 3, . . . , 10, 20, 50, 100, 200}. The decision is reached
by two criteria for errors (mean square error and mean absolute error): the most notable
change in error by the elbow rule and the lowest error value. Eventually, this indicated that
the best block length is equal to 4. After ascertaining all the parameters for Algorithm 1,
we perform it MC = 500 times to calculate the sample of the test statistics Z = { M1

n,β, M2
n,β,

. . . , M500
n,β }. We calculate quantile values from Z and decide by the Z1−α value: we reject

the null hypothesis with a significance level α if Mn,β is higher than Z1−α.
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The density plots in Figure 6b provide evidence that the block bootstrap is a good
choice for the n = 100 situation. The density plot for Mn,β generated with n = 100 is observed
in both Figure 6a,b in green color. If one compares this density with the Mq density graph
in Figure 6a, it becomes evident that the densities corresponding to n = 100 exhibit a sub-
optimal degree of overlap with their associated Mq density values (dotted blue color). In
Figure 6b, comparing the density in the relation between the n = 100 density and the block
bootstrap values (dotted black color), a noteworthy enhancement in the degree of overlap
is observed. We ask how the block bootstrap procedure can help to avoid false-positive
errors. Figure 8 implies that the procedure decreases the false positive rate by a notable
amount. Figure 8a adds that the Type I error rate tested with block bootstrap critical values
is stable when n ≤ 100, and the false-positive rate stays under 0.4. Improved outcomes are
evident for lower values of n if we apply the block bootstrap procedure.
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Figure 8. False-positive rate using Mq critical values (a) and Mn,β (b) block bootstrap for different
significance levels α.

To conclude the Mn,β under H0 graphical analysis, for cases with n ≥ 1000, it is advised
to use Mq, and for n < 100, use block bootstrap critical values of Mn,β. For n ∈ (100;1000), we
suggest using the block bootstrap procedure to generate quantile values or using adjusted
asymptotic critical values.

5.2. Power Analysis

Yk (t) are iid standard Wiener processes. In this section, we have H1 : g ̸= 0 or
H1 : µ ̸= 0 depending on the case:

• Case 1
g = 0 and µ(a; t) = a

√
t. (33)

• Case 2
µ = 0 and ga(k/n; t) = a

√
t 1[k∗ ,n](k). (34)

Simulation example graphs are provided in Figure 9 for deeper understanding. One
can see that we might encounter issues as the grey curves (simulations with jumps) and the
black curves (simulations with no jumps) overlap.

By testing different a values from the interval, we observe the test power, which is
defined by the following probability:

P(Mn,β > Cα |H1) = β. (35)

Power calculations in the following paragraph will be provided for two situations:
n = 100 and n = 1000. Moreover, calculations are done using block bootstrap critical values,
see Algorithm 1, for n = 100 and adjusted asymptotic critical values, see Algorithm 2, for
n = 1000.
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Figure 9. Simulations generated using Equation (31) with n = 200 for both Case 1 and Case 2 jumps:
(a) Case 1: µ(a; t) = a

√
t; (b) Case 2: ga(k/n; t) = a

√
t1[k∗ ,n](k). Jump parameters for both cases are

a = 0 and a = 0.5.

Simulations commenced with the Case 1 scenario for different n values. Prior to
delving into a comprehensive power analysis, we conduct an initial examination of the
density plots. The examination is started with the simulated density plots in Figure 10,
where the Mn,β density is simulated using jump parameter a = 0.5. Although the density
graph in Figure 10a identifies that Mq quantiles can be used to test the change-point, the
results are dissatisfying with n = 100. If the Mn,β block bootstrap is used, see Figure 10b,
the results are better and the density plots have a higher degree of overlap than in the Mq
case. The problem is solved when the jump parameter is higher, a = 1, and both Mq and the
Mn,β block bootstrap can be used to identify the jump. Density plots as proof are provided
in Figure 11a,b.
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Figure 10. Case 1: H1:a = 0.5 densities with n = 100, n = 200, n = 500, n = 1000 versus Mq (a) or block
bootstrap Mn,β (b) densities. All densities estimated using Epanechnikov kernels.
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Figure 11. Case 1: H1:a = 1 densities with n = 100, n = 200, n = 500, n = 1000 versus Mq (a) or block
bootstrap Mn,β (b) densities. All densities estimated using Epanechnikov kernels.
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Simulations were extended to the Case 2 scenario. The jump, k∗, is monitored af-
ter 25% of the sample size, n, is simulated. In other words, k∗ = 0.25n. For example,
if the simulation contains X1(t), X2(t), . . . , X100(t), then ga(k/n, t) ̸= 0 in X25(t), . . . ,
X100(t), and ga(k/n, t) = 0 elsewhere. We present density plots for the test statistics: see
Figures 12 and 13. As before, two different jump parameter values are used for simulations:
a = 0.5 and a = 1. The density plots are compared between asymptotic critical values Mq
and block bootstrap from Mn,β critical values. One can instantly identify that the density
plots for the test statistics with both jump parameters (a = 0.5 and a = 1) in the Case 2
scenario tend to have increased dispersion in comparison to the Case 1 scenario. Wider
dispersion and flat density plots identify a challenge to recognize the change-point for
n ≤ 500 simulations using the critical values Mq: see Figure 12a. However, the density plots
suggest that change-point identification can be improved if the block bootstrap values from
Mn,β are used: see Figure 12b. If the jump value is increased to 1, the situation improves as
the density plot tweaks to the right side: see Figure 13.
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Figure 12. Case 2: H1:a = 0.5 densities with n = 100, n = 200, n = 500, n = 1000 versus Mq (a) or block
bootstrap Mn,β (b) densities. All densities estimated using Epanechnikov kernels.
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Figure 13. Case 2: H1:a = 1 densities with n = 100, n = 200, n = 500, n = 1000 versus Mq (a) or block
bootstrap Mn,β (b) densities. All densities estimated using Epanechnikov kernels.

A power analysis is started for the Case 1 scenario. Figure 14 provides power changes
for different a values. As before, n = 100 and n = 1000 cases are provided and tested with
the block bootstrap critical values from Mn,β and the adjusted asymptotic critical values
from Mq, respectively. As one can see from Figure 14a, parameter a needs to reach 1.2 in
order to gain power almost equal to 1 in the n = 100 situation. As for n = 1000, the test can
have a lower a value, 0.5, to gain power equal to 1. We continue with the power analysis
for Case 2: see Figure 15. The results are similar to those for Case 1 for both n = 100 and
n = 1000. The main difference can be seen in Figure 15b, where the desired power value,
0.95, is reached faster when the jump parameter value a is equal to 0.3.
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Figure 14. Case 1: Power change with H1 simulated using different jump parameters a. Power
calculated using Mq (b) or block bootstrap Mn,β (a).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

P
ow

er

α=0.01  

α=0.02  

α=0.05  

(a) n = 100

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

P
ow

er

alpha= 0.01

alpha= 0.02

alpha= 0.05

(b) n = 1000

Figure 15. Case 2: Power change with H1 simulated using different jump parameters a. Power
calculated using Mq (b) or block bootstrap Mn,β (a).

As we mentioned in the previous section, β(t) is usually unknown for Mn,β. The
solution for such a problem requires β(t) to be replaced by β̂(t), and eventually Mn,β̂ needs
to be used for the testing procedure. First, let us examine if we have significant fluctuations
between the theoretical and evaluated β(t). In Figure 16, one can find the theoretical β(t)
provided in green color. Moreover, β̂MC(t) is provided for every Monte Carlo simulation
in grey color, and the averaged value from all Monte Carlo simulations is provided in black
color. The plot indicates that, on average, the difference between theoretical and evaluated
coefficients is minor. However, some β̂MC(t) variations from the average can be noted. To
conclude, in situations where β(t) is unknown, one needs to use β̂(t) and calculate Mn,β̂
and compare it against Mq when n = 1000.
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Figure 16. β̂MC(t) in grey color provides evaluated β(t) function from every simulation, while the
average of all evaluated β̂MC(t) is in black color. Theoretical β(t) in black.
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We might encounter a problem when data are n = 100 as we need to calculate block
bootstrap values from test statistics under the null hypothesis. In other words, for hypothe-
sis testing the Mn,β̂ value needs to be compared against quantile values to compute M′

n,β̂
,

which we define as Mn,β̂ under H0: see Algorithm 2. For the M′
n,β̂

calculation, we use the
block bootstrap procedure defined in Algorithm 1 with l = 4. Eventually, Mn,β̂ is compared
with quantile values from M′

n,β̂
to either reject or accept H0 in any case scenario for n = 100.

Afterwards, we analyze how the test power is affected if we take β̂(t) instead of β(t).
Figure 17 can answer this question. When the jump parameter value was elevated from 0
to 2, power, calculated with Mn,β, achieved a value equal to 1 with a = 1.2. For the power
generated with Mn,β̂, desired power level is gained with a = 1.7. To conclude, the test
power faces minor drawbacks while moving from Mn,β to Mn,β̂. However, Mn,β̂ manages
to provide stable and desired power results.
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Figure 17. Simulations performed to understand how jump parameter affects power with α = 0.01.
Green color stands for power calculated with theoretical FAR(1) coefficient, Mn,β; black color stands
for power evaluated with FAR(1) coefficient Mn,β̂. Jump parameter, a, advanced from 0 to 2.

Size-adjusted power graphs are provided for every scenario: see Figures 18 and 19.
Size-adjusted power is the rate at which the null hypothesis is correctly rejected when the
used critical value is stable with various n values. What we want to ensure here is that the
test power is not affected by size distortions. Again, different a values, a = 0.1, a = 0.5 and
a = 1, are used to understand how fast the desired power is reached using the predefined
size of simulations when the jump is known and located proportionally to the sample size.
For example, 0.2n is 20% of the simulated sample data for the sample size n, and the jump
is located at position k∗ = 0.2n × 0.25. The power is calculated empirically by using Monte
Carlo simulations. Moreover, a significance level α = 0.01 is used for power calculation as it
manages to provide the desired results.

Figure 18a identifies the Case 1, see Equation (34), scenario for n = 100. The graph
implies that a = 0.5 faces power instability until 20% of the sample and increases afterwards.
The power reached a value of 0.4, with fluctuations during the increase. The results are
better with a = 1: see Figure 18b. In the plot, fluctuations can be seen until 15% of the
sample. Later increases are stable, without high fluctuations, and the plot eventually
reaches power equal to 0.8 with 100% of the data. The size-adjusted power is calculated for
the n = 1000 situation: see the results in Figure 19. Figure 19a provides the size-adjusted
power with a jump parameter equal to 0.1. The empirical power reaches a 0.76 power
value after 60% of the sample size. The figure also indicates higher fluctuations than for
the n = 100 case. The results improve with a = 0.5, where the empirical power increases to
0.99 after reaching 20% of the sample size. Moreover, the rise of the curve faces only minor
fluctuations, as can be seen in Figure 19b.
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Figure 18. Case 1: Size-adjusted power calculated using using block bootstrap from Mn,β with α = 0.01,
n = 100. Power with a = 0.5 (a), and power with a = 1 (b). Calculations are done for MC = 500.
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Figure 19. Case 1: Size-adjusted power calculated using using critical values from Mq with α = 0.01,
n = 1000. Power with a = 0.1 (a), and power with a = 0.5 (b). Calculations are done for MC = 200.

We continue with the Case 2 scenario and the jump defined by Equation (34). Empirical
power results are presented in Figures 20 and 21 for n = 100 and n = 1000, respectively. As
before, for n = 100, block bootstrap critical values from Mn,β are used for power calculation.
The experimental findings indicate that the sample characterized by the jump parameter a = 0.5
yields outcomes with statistical power achieving a value of 0.5 when the entire sample size
is employed: see Figure 20b. In contrast, the sample featuring the jump parameter equal to
1 overcomes this power threshold, achieving a power value equal to 0.97 at the end of the
sample: see Figure 20a. We resume with the n = 1000 situation, where power was tested using
adjusted asymptotic critical values from Mq. Figure 21a, simulated using a = 0.1, implies that
the empirical power gain value of 0.6 using 40% of the sample size. However, the variation is
notable in the graph. For a = 0.5, the results are significantly better: an empirical power of 0.98
is achieved with 25% of the sample size with minor variation.

We perform several additional analyses for Case 2. To begin with, a border analysis is
conducted in order to understand overall test capabilities for the presented simulations at
the borders of the sample with full period information. Simulations are run with jumps
conducted at starting points (0.02n, 0.04n, . . . , 0.1n) and endpoints (0.9n, 0.92n, . . . , 0.98n).
In these simulations, we use n = 100 for the block bootstrap critical values and n = 1000 for
the adjusted asymptotic critical values. The jump parameter, a, is equal to 1 for the n = 100
situation and 0.5 for the n = 1000 situation. For better visual understanding, simulated
FAR(1) curves with defined n and a values are presented in Figure 22. A jump is conducted
on the k∗ = 0.02n observation. We can see that although the jump moves the curves upward,
most of the grey curves (simulations with jump) overlap with the black curves (simulations
with no jump). This means we might encounter issues if conducting an eye test. The jump
test is conducted, and the results are presented in Figure 23. What needs to be emphasized
is that the test is conducted with full information n. As one can notice, both situations
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suggest that the test is not sensitive to the jump location. Figure 23a indicates that the
desired power is reached from 0.02n with no issues at the end of the interval. Figure 23b
implies that power close to 1 is reached from 0.02n to 0.98n with slightly lower power if the
jump is monitored at the end.
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Figure 20. Case 2: Size-adjusted power calculated using block bootstrap from Mn,β with α = 0.01,
n = 100. Power with a = 0.5 (a), and power with a = 1 (b). Calculations are done for MC = 500.
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Figure 21. Case 2: Size-adjusted power calculated using using critical values from Mq with α = 0.01,
n = 1000. Power with a = 0.1 (a), and power with a = 0.5 (b). Calculations are done for MC = 200.
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Figure 22. Simulation curves generated using Equation (31) with defined n and a values and jump on
0.02n. (a) n = 100 and a = 1; (b) n = 1000 and a = 0.5.
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Figure 23. Simulations performed with jumps at the start and end of the interval in order to
understand the location effect on power using significance level α = 0.01. (a) n = 100 and a = 1;
(b) n = 1000 and a = 0.5.

We continued additional analyses with the offline method. The method retrospectively
detects changes when all samples are received. In other words, in this situation, testing
is conducted on the partial information k ≤ n. For both situations, n = 100 and n = 1000,
simulations are fixed with the jump, Equation (34), at X25(t) and X250(t), respectively.
Graphical results are presented in Figure 24. For n = 100, one can notice that the first Mn,β
values reach the red line, the Cα value, at n = 30, while after n>50, a significant number
of curves reaches the same red line: see Figure 24a. For n = 1000, the results indicate a
similar trend: the Mn,β values reach the Cα value moments after the jump, at n > 250, and
the number of curves over the red line gradually increases while n increases. This implies
that for both n = 100 and n = 1000 in the Case 2 scenario, the test provides H0 rejections
for some number of simulations moments after the jump. The number of curves over Cα

increases faster in relation to k with n = 1000 than with n = 100.
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Figure 24. Total of 500 Monte Carlo simulations performed with jumps 0.25n with significance level
α = 0.01. (a) n = 100, a = 1, and (b) n = 1000, a = 0.5.

To sum up, the test performed for situations where FAR(1), Equation (31), is generated
using Yk(t) was a standard normal Wiener process. Two types of scenarios, Case 1 and
Case 2, helped to evaluate the test power. Multiple additional analyses were performed for
Case 2. Moreover, two types of situations, n = 100 and n = 1000, were used for calculating
different test statistics. For the jumps defined in Equation (33) and Equation (34) for various
a values, we indicated where the test performed well and where the test encountered issues.
Overall, the test provided a positive outcome.

6. Case Study

In order to perform the test on real data, we employed a telecommunications data set.
The data set was used by Birbilas and Račkauskas [20], who showed that the FAR(1) model
is appropriate for prediction purposes. In this work, we continue the analysis of this data
set by proposing a test for the detection of structural changes. The data are taken from a
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telecommunications company that is operating in southern Europe. The data set contains
voice and mobile data daily consumption for approximately 13k subscribers. The total
monitored period was 31 months, starting December 2019. Consumption is aggregated by
a summation procedure on a monthly basis. In order to move data to a functional space,
consumption is converted to functions using b-spline functions with a basis equal to 10.
Moreover, consumption is encapsulated to the interval t = [0,1] in order to have the same
length during all months.

In order to have better understanding of how smoothing is performed, Figure 25a,b
are provided as example cases for 20 randomly selected subscribers. As an example for
better understanding of the data, Figure 26a has a whole year’s voice calls in minutes
for 20 randomly selected subscribers. The same graph with mobile data consumption is
provided in Figure 26b.

Indeed, the graphs identify that subscribers have various consumption patterns. One
might notice that a number of jumps can be seen with an eye test despite which metric,
voice consumption or mobile data consumption, is used. For further analysis, we will use
voice consumption in minutes as a metric. Moreover, we do not find value in testing each
of the 13k subscriber for jump patterns, and for further analyses, subscribers had to be
clustered. Clustering is done by following these steps:

• A functional first-order auto-regression, FAR(1), is created for every subscriber. The
total number of subscribers is z = 13,862.

• β̂z
s(t) are taken from every FAR(1).

• β̂z
s(t) are clustered into four groups using the Fisher-EM algorithm with k-means

initialization. The best cluster is chosen by AIC criteria.
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Figure 25. Raw (a) versus smoothed (b) data for 20 randomly selected subscribers. Colors represent
different subscribers.
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Figure 26. Voice call consumption in minutes (a) and mobile data consumption in MB (b) for
20 randomly selected subscribers. Colors represent different subscribers.

Additional filtering β̂z
s(t) ∈ (−1,1) is done in order to discard β̂z

s(t) from spurious
auto-regressions. After filtering, we created four clusters using the Fisher-EM method. The
results with the averaged β̂s(t) for clusters are provided in Figure 27.
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Figure 27. Clustering results with cluster centers. Legend provides cluster number with total
subscribers within the cluster.

Analyses conducted on the clusters provided insights. In the first cluster, the majority
of subscribers are old subscribers with stable consumption patterns. Most of them do not
change their bundle plans, nor do they have their telecommunication services suspended.
Figure 28a provides a better understanding of the average consumption within the first
cluster. The second cluster contains subscribers who are frequent add-on users. We con-
clude that these subscribers tend to exhaust their bundle and purchase add-ons afterwards.
This increases usage and creates average fluctuations: see Figure 28b. The third cluster
contains more-or-less stable users. The only difference between this group and the first one
is that subscribers in the third group tended to change their plans for the better. Telecommu-
nications operators provided attractive offers during some months. This can be identified
by increased average consumption in Figure 28c. In the last, fourth, cluster, we find that
most of the subscribers are unstable users. For subscribers in this cluster, a stable activity
period for several months is accompanied by no activity afterwards. Moreover, a significant
number of subscribers within this cluster face service suspension due to insufficient funds
during bundle renewal. Figure 28d provides averaged consumption for this cluster.
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Figure 28. Averaged monthly consumption by cluster. (a) First cluster; (b) Second cluster; (c) Third
cluster; (d) Fourth cluster.

The jump test is conducted on the created clusters. As one can see, only the first cluster
(after excluding the last three months as outliers) is a candidate for no jump, while the
second, third, and fourth clusters may even contain several jumps. A point-wise Box–Ljung
test suggests (p-value > 0.05) that all residuals of the model are not auto-correlated, as we
cannot reject the null hypothesis of independence for model residuals. Moreover, the KPSS
test suggests that residual increments are stationary, as we cannot reject the null hypothesis
with confidence level α = 0.01. Finally, visual interpretation and the Shapiro–Wilk test
suggest that residual increments follow a normal distribution, as we cannot reject the null
hypothesis of normality with the same confidence level. By completing the previous steps,
we can state that our residual increments follow a Wiener (Brownian motion) process.

The jump test is performed for all four clusters. To have the Case 2 scenario have
Equation (34) with µ = 0 and g(k/n; a; t) ̸= 0, we centered our case study data. As n = 31, we
used the blocked bootstrap critical values calculated using Algorithm 1 with the presented
data. Although the strategy to identify jumps is the same between clusters, β̂t(s) differed
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between the clusters: see Figure 27. This led to different block bootstrap quantile values
from Mn,β̂ statistics and different H0 rejection critical values. Moreover, for the real-data

situation, we used an estimated FAR(1) parameter: β̂t(s). Eventually, the test implied no
jump in the first cluster, see Figure 29a, and jumps in the other clusters, see Figure 29b–d,
with the significance levels α = 0.01. The results did match the eye test—the first cluster
contains few outliers at the end of the interval and no jump, while the other clusters contain
one or several jumps.
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Figure 29. Test statistics versus calculated statistics by cluster. (a) First cluster; (b) Second cluster; (c)
Third cluster; (d) Fourth cluster.

To conclude, eye-test assumptions were confirmed by the jump test. The first cluster
had no proof to reject H0 with the defined significance level. All the other clusters had H0
rejected. The jump test performed well for the case study data.
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