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Acronyms and abbreviations

Term Abbreviation
Apache Point Observatory Galactic Evolution Experiment APOGEE
Convolutional neural network CNN
(internal) data release (i)DR
European Southern Observatory ESO
Fiber Large Array Multi-Element Spectrograph FLAMES
Gaia-ESO survey GES
Gaia Radial Velocity Spectrometer Gaia-RVS
Model Atmospheres with Radiative and Convective Scheme MARCS
(non-)local thermodynamic equilibrium (N)LTE
Rectified Linear Unit ReLU
Radial velocity RV
RAdial Velocity Experiment RAVE
Signal-to-noise ratio S/N
t-distributed stochastic neighbor embedding t-SNE
Ultraviolet and Visual Echelle Spectrograph UVES
Very Large Telescope VLT
William Herschel Telescope Enhanced Area Velocity Explorer WEAVE
4-metre Multi-Object Spectrograph Telescope 4MOST
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Aims and novelty

The main aim of this work is to build and train convolutional neural networks
that can efficiently parameterize large numbers of stellar spectra. The networks
predict multiple stellar atmospheric parameters and chemical abundances si-
multaneously, accurately, and precisely. This thesis aims to show that novel
machine learning methods offer reliable tools that will aid in harnessing the
full potential of upcoming large-scale spectroscopic surveys. It will be shown
that the quality of the network predictions depends strongly on the quality of
the training spectra and the associated labels. Training labels are determined
with classical spectroscopic methods. To be able to judge the performance of
the network, it is important to know how the training set was built and what
its limitations are. The methods developed for this thesis improve on previous
similar studies in terms of network architecture complexity, training strategies,
and the assessment of the accuracy and precision of the network predictions. It
is shown that convolutional neural networks are able to identify relevant spec-
tral lines. The network predicts labels from these lines in a way that is intuitive
and consistent with how classical methods analyze stellar spectra. Relying
on existing spectral features provides important explainability of the network
predictions and is key for finding chemically peculiar stars. The publications
related to this thesis are part of the preparations for the upcoming WEAVE
and 4MOST surveys. Each of these surveys will provide spectra of several
million stars located in all parts of the Milky Way galaxy. The usefulness of
the here developed methods has been confirmed in the recent literature, where
they have been extended to investigate more than 800 000 Gaia-RVS spectra.
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Statements of this thesis

1. Stars in the globular cluster NGC 1851 can be separated into two sub-
samples, with a difference of 0.07 dex in the mean metallicity. The
subsamples also differ in their mean carbon-to-nitrogen ratios and abun-
dances of the s-processed neutron-capture elements Y, Zr, Ba, La, Ce,
and Nd. The average difference of these s-processed elements in the
two subpopulations is 0.35 dex. We found no notable distinction in the
average abundance-to-iron ratios of carbon, europium, α- and iron-peak
elements.

2. We can determine if a newly observed spectrum is similar in shape to
a set of training set spectra with the unsupervised machine-learning al-
gorithm t-SNE. The results for a training-like test set, with spectra of
similar shape and S/N ranges as the training set, are in good agreement
with the GES input values. We find that the quality of the CNN results
degrades for spectra with S/N < 30, especially for abundance predic-
tions. Observed spectra that are different from the training set spectra
are not parameterized accurately.

3. After training, convolutional neural networks can simultaneously predict
stellar atmospheric parameters Teff and log(g), and the chemical abun-
dances [Mg/Fe], [Al/Fe], and [Fe/H] from ∼ 35 000 stellar spectra in a
few minutes. The training precision is 37 K for Teff, 0.06 dex for log(g),
and < 0.08 dex for all predicted chemical abundances.

We investigated the Mg-Al anti-correlation in globular clusters, ranging
from −0.92 to −1.40 dex in metallicity. In the most metal-poor clus-
ters, where our training set contains only a few stars, our CNN mainly
recovers the Al spread in the clusters. The match between GES Mg-Al
anti-correlation and CNN anti-correlation is improving for clusters with
higher [Fe/H], where the training data is denser.

Based on the CNN label predictions for [Mg/Fe] and [Fe/H], we sepa-
rated our sample stars into a thin- and a thick-disk population. We find
that the thick disk stars are on average 1 Gyr older than the thin disk
stars. The orbit eccentricities of the thick disk stars show a negative
trend with [Fe/H] (∆e/∆[Fe/H] = −0.26). These CNN-based results are
consistent with similar studies in the literature.
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4. We found 31 previously unidentified lithium-rich giants in the Gaia-
ESO iDR6 data set by training a convolutional neural network to pre-
dict Li abundances. The predicted A(Li) of all of these giants exceeds
2 dex, their log(g) is lower than 3.5 dex. The precision of the network
label predictions for these 31 stars is high, with eTeff < 50 K and elog(g),
e[M/H], and eA(Li) < 0.1 dex. None of these 31 Li-rich giants have pre-
viously been reported in any Gaia-ESO paper, and they do not appear in
the GALAH survey catalog of Li-rich giants in the southern hemisphere.
Lithium-rich giants are rare. Machine learning methods will play a cru-
cial role in finding these objects in the observations of the upcoming
large-scale spectroscopic surveys.

5. Network gradients can be used to demonstrate the sensitivity of our net-
work to various parts of the input spectra. These gradients show that
the network is able to identify absorption features that are relevant for
the predicted stellar parameters and abundances. Our CNN associates
the strengths of the found features to the values of these stellar labels.
Caution must be applied when choosing input labels, because strongly
correlated input labels lead to strongly correlated network gradients. The
network then predicts labels based on unrelated spectral features (for ex-
ample, absolute Al abundance from Mg absorption lines). Inferring stel-
lar parameters from correlations like these can lead to satisfying results
for some spectra. However, stars with exotic chemical compositions will
not be parameterized well.

6. Our training, validation, and test sets have in common that the differ-
ences between CNN predictions and GES values increase at the edges
of the parameter space. At the edges, the number of available training
spectra is small. Increasing the number of training spectra in these pa-
rameter regimes would allow increasing the accuracy (mean bias) of the
CNN predictions, as well as precision as the number of sample observa-
tions increases.

The scatter between predictions from the multiple different CNN mod-
els can be used to assess the internal precision of our network. This
scatter is small: On average 27 K for Teff, 0.04 for log(g), and 0.03 dex
for [Mg/Fe], [Al/Fe], and [Fe/H] alike. We find that the uncertainties
increase at the edges of the parameter space. The uncertainties also in-
crease as the spectra S/N decreases. Therefore, the spectra S/N and the
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position of the predicted labels in the parameter space should also be
considered when estimating the label precision for individual spectra.
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brosch, M. ; Bagdonas, V.; Chorniy, Y.; Sanna, N.; Franciosini, E.;
Smiljanic, R.; Randich, S.; Gilmore, G.; Bensby, T.; Bergemann, M.;
Gonneau, A.; Guiglion, G.; Carraro, G.; Heiter, U.; Korn, A.; Magrini,
L.; Morbidelli, L.; Zaggia, S. (2022).
Astronomy & Astrophysics, Volume 658, A80
https://doi.org/10.1051/0004-6361/202142234

• The Gaia-ESO Survey: Preparing the ground for 4MOST and WEAVE
galactic surveys. Chemical evolution of lithium with machine learn-
ing
Nepal, S.; Guiglion, G.; de Jong, R. S.; Valentini, M.; Chiappini, C.;
Steinmetz, M.; Ambrosch, M.; Pancino, E.; Jeffries, R. D.; Bensby, T.;
Romano, D.; Smiljanic, R.; Dantas, M. L. L.; Gilmore, G.; Randich, S.;
Bayo, A.; Bergemann, M.; Franciosini, E.; Jiménez-Esteban, F.; Jofré,
P.; Morbidelli, L.; Sacco, G. G.; Tautvaišienė, G.; Zaggia, S. (2023)
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1 Introduction

The use of machine–learning for the exploration of big data sets in as-
tronomy was predicted over three decades ago (Rosenthal 1988). Yet,
the high computational costs of this method have long delayed its ad-
vance. Some of the first applications of neural networks, a sub-field of
machine–learning, include the automatic detection of sources in astro-
nomical images (SExtractor, Bertin & Arnouts 1996), the morphologi-
cal classification of galaxies (Lahav et al. 1996) and the classification of
stellar spectra (Bailer-Jones 1997). In recent years, the increasing power
of modern computer systems and the possibilities of cloud computing
have led to a growing popularity of machine–learning methods. Pow-
erful open-source libraries such as TensorFlow (Abadi et al. 2015) and
PyTorch (Paszke et al. 2019) for Python programming offer easy-to-use
frameworks for building and training several types of neural networks.

1.1 Analysis of stellar spectra with machine-learning methods

Convolutional Neural-Networks (CNNs) have recently been used to si-
multaneously infer multiple stellar labels (i.e., atmospheric parameters
and chemical abundances) from stellar spectra. Every CNN contains
convolutional layers which enable the network to find extended features
in the input data. In stellar spectra, these features are absorption lines
and continuum points; In 2-D images, such features could be eyes in
a face or star clusters in a spiral galaxy (Bialopetravičius & Narbutis
2020). Neural network methods are purely data-driven and therefore
require no input of any physical laws or models. Instead, during a train-
ing phase, the network learns to associate the strength of spectral fea-
tures with the values of the stellar labels. This requires a training set of
spectra with pre-determined labels, from which the network can learn.
Training sets for spectral analysis typically contain several thousand
stellar spectra with high quality labels. Current spectral surveys, which
provide ∼105 spectra with labels, are an ideal testing ground for the
CNN approach to spectral parameterization.

Spectroscopic surveys provide insights into the evolution of indi-
vidual stars, of large-scale structures such as globular clusters and of
the Milky Way galaxy as a whole. Upcoming projects, for example the
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William Herschel Telescope Enhanced Area Velocity Explorer (WEAVE,
Dalton et al. 2018) and the 4-metre Multi-Object Spectroscopic Tele-
scope (4MOST, de Jong et al. 2019) will observe millions of stars. Ef-
ficient automatic tools will be needed to analyze the large number of
spectra that such surveys will deliver.

To find the atmospheric parameters and chemical composition of
stars, classical spectroscopic methods either measure equivalent widths
of absorption lines or compare observed spectra to synthetic spectra.
These synthetic spectra can be generated on-the-fly or are part of a
pre-computed spectral grid. Jofré et al. (2019) provide an overview of
classical spectral analysis methods in the context of large spectroscopic
surveys.

The main benefit of using machine-learning for spectra parameter-
ization is computation speed. While classical methods typically take
several minutes to determine parameters and abundances from a sin-
gle spectrum, a trained CNN can parameterize several 104 spectra in
the same amount of time. This speed is crucial to fully utilize the ca-
pabilities of the upcoming spectra surveys. For instance, 4MOST will
observe ∼25 000 stars per night, with the goal of measuring up to 15
abundances per star. Machine-learning will be a way to manage such
large amounts of data every day.

Examples of stellar parameterization using CNNs can be found in
several recent studies. Fabbro et al. (2018) have developed StarNet, a
CNN that can infer the stellar atmospheric parameters directly from ob-
served spectra in the APO Galactic Evolution Experiment (APOGEE,
Majewski et al. 2017). A grid of synthetic spectra was used to train and
test StarNet. Purely observational data from APOGEE DR14 were used
by Leung & Bovy (2019) to train their astroNN convolutional network.
To mimic the methods of standard spectroscopic analysis, astroNN is
designed to use the whole spectrum when predicting atmospheric pa-
rameters but is limited to individual spectral features for the prediction
of chemical abundances. Guiglion et al. (2020) trained their CNN on
medium-resolution stellar spectra from the RAdial Velocity Experiment
(RAVE, Steinmetz et al. 2020) together with stellar labels that were de-
rived from high-resolution APOGEE DR16 spectra. They also added
absolute magnitudes and extinction corrections for their sample stars as
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inputs for the network. This information allowed their CNN to put ad-
ditional constraints on its predictions of the effective temperature and
surface gravity.

This thesis tests a CNN approach in the context of the Gaia-ESO
survey (GES, Gilmore et al. 2012; Randich et al. 2013). We use GI-
RAFFE spectra with labels from the sixth internal data release. The
GES survey is designed to complement the astrometric data from the
Gaia space observatory (Gaia Collaboration et al. 2016). The goal of
the present project is to prepare the groundwork for machine–learning
for the next generation of spectroscopic surveys, such as 4MOST and
WEAVE.

1.2 The Gaia-ESO survey

The Gaia-ESO survey is a public spectroscopic survey. Its goal is to
observe more than 105 stars to obtain a homogeneous overview of the
chemical properties of various stellar populations in the Milky Way
galaxy. When combined with the stellar kinematic properties from the
Gaia space mission (Gaia Collaboration et al. 2016), the stellar chemi-
cal compositions provide insights into the formation and assembly his-
tories of the Milky Way bulge, the thin and thick disks, the stellar halo,
as well as globular and open clusters. Figure 1 shows the areas of the
sky which have been observed by the Gaia-ESO survey.

Observations for the survey have been carried out with the FLAMES
instrument of the ES0 Very Large Telescope (VLT) in Chile, between
December 2011 and January 2018. FLAMES feeds two different spec-
trographs, GIRAFFE and UVES (Pasquini et al. 2002). Both of these
are multi-object spectrographs. GIRAFFE can observe up to 130 ob-
jects at a time, with intermediate and high resolutions (R ∼ 5000 to
R ∼ 30000), while UVES provides higher resolution (R ∼ 47000) but
can only observe 8 targets at once. The wavelength ranges of both spec-
trographs are divided into several predefined setups that together cover
the whole visual range.

In the Gaia-ESO survey, multiple workgroups analyze the spectra
from different spectrograph setups. The workgroups themselves are
composed of various nodes, located in different countries across Eu-
rope (Gilmore et al. 2022). Each node used slightly different methods
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Figure 1: Fields in the sky as observed by Gaia-ESO survey. Different types of
fields have different colors: Milky Way targets in blue, clusters in green, and
calibration fields in magenta.

to determine the stellar parameters and abundances from the same spec-
tra. The results from the individual nodes were then homogenized by
using benchmark stars. In this work, we employ CNNs to investigate
spectra from the GIRAFFE setups HR10, HR21, and HR15N. The Vil-
nius node analyzed spectra from the GIRAFFE HR10 and HR21 setups
and provided the main stellar atmospheric parameters and abundances
measurements for magnesium, aluminum, and iron, among other ele-
ments. Spectra from the GIRAFFE HR15N setup were investigated by
the Arcetri node. This node measured the lithium abundance for the fi-
nal data release of the survey (Franciosini et al. 2022). In the following
section, we will summarize the methods used by the Vilnius and Arcetri
nodes.

1.2.1 Classical methods for the determination of stellar parameters and
chemical abundances

The term classical refers to methods that use knowledge about the phys-
ical processes within stellar atmospheres. This knowledge allows us to
calculate how the radiation from the deeper layers of a star is trans-
ported through the stellar atmosphere, and how the atmospheric param-
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eters and chemical elements shape the stellar spectra which we observe
on earth. Given this knowledge, we can solve the inverse problem, and
analyze the observed spectra to find the physical conditions in the stars.
An in-depth description of the classical methods for the observation and
analysis of stellar atmospheres is given in the book by Gray (2005).

The main atmospheric parameters of a star are the effective temper-
ature Teff, surface gravity log(g), the metallicity [M/H]1, and microtur-
bulence velocity vt. The Vilnius node determined these parameters by
finding the model atmospheres, that satisfy the excitation and ionization
balances in the GIRAFFE spectra. First, the equivalent widths of mul-
tiple Fe I and Fe II absorption lines were measured in every spectrum,
across the whole spectral range. This was done automatically with the
DAOSPEC tool (Stetson & Pancino 2008). The Fe lines were selected
based on a line list that includes wavelengths, excitation potentials, and
oscillator strengths of the absorption lines. Details about the selected
lines and the used atomic data can be found in (Heiter et al. 2021a).
The measured equivalent widths were then used as inputs for the spec-
tral analysis code MOOG (Sneden 1973). The MOOG code calculates
the iron abundance from a given iron line, based on the line’s equiva-
lent width and a given model atmosphere. Spectra from a grid of 1D
MARCS model atmospheres (Gustafsson et al. 2008), assumed to be in
local thermal equilibrium (LTE), were used as inputs for MOOG. These
models are characterized by the parameters Teff, log(g), and vt. The
model atmospheres were exchanged (by changing the values of Teff,
log(g), and vt) until all iron abundances from the different lines were
independent of the line excitation potential and equivalent width, and
until Fe I and Fe II lines yielded the same average iron abundance (ion-
ization balance). A Nelder-Mead simplex search (Nelder & Mead 1965)
was used for the simultaneous optimization of Teff, log(g), and vt. Once
the optimization is finished, the metallicity [M/H] is calculated by aver-
aging the Fe abundances measured from all used Fe I and Fe II lines.

Elemental abundances of magnesium, aluminum, and iron ([Fe/H])
were found with a spectral synthesis method. Synthetic spectra were

1For clarity, we use [M/H] as the symbol for the metallicity as an atmospheric parameter.
The iron abundance, determined by measuring selected iron absorption lines, is denoted as
[Fe/H].
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computed with the radiation transfer code TURBOSPECTRUM (Plez 2012),
based on the same atomic line lists that are used for measuring the main
atmospheric parameters. Turbospectrum takes MARCS model atmo-
spheres with the previously measured atmospheric parameters as inputs.
In addition to a model atmosphere, elemental abundances are passed as
inputs to Turbospectrum. To measure the elemental abundance from
an absorption line, multiple synthetic spectra with varying input abun-
dances are generated. These synthetic spectra are then compared to the
observed spectrum. The optimal input abundance (the result of the mea-
surement) is found when the difference between the resulting synthetic
spectrum and the observed spectrum is minimal. Examples of synthetic
spectra fits to Mg and Al absorption lines in a GIRAFFE solar spectrum
are shown in Fig. 2. If the input abundance is too low, the absorption
line in the synthetic spectrum is too weak — its flux at the center of
the line is much higher than the flux of the observed spectrum. When
the input abundance is too high, then the flux at the line center is lower
than the observed flux. As will be shown in Sect. 4.3, this physical con-
nection between line depth and elemental abundance is learned by the
CNN during the training phase.

The Arcetri node used a curve of growth method to determine the Li
abundances from the GIRAFFE HR15N spectra. In this approach, the
Li abundance is directly determined from the equivalent width of the Li
I double feature at ∼ 6708 Å via an appropriate curve of growth. These
curves show the relation between the abundance of an absorbing ele-
ment and the equivalent width a specific absorption line of the element.
Examples of curves of growths for the Li I double feature in HR15N
are shown in Fig. 3. The shape of the curves depends on the stellar
atmospheric parameters. To choose the appropriate curve of growth,
the parameters of the given star must be known. For their Li measure-
ments, the Arcetri node used atmospheric parameters from an earlier
Gaia-ESO data release. These curves themselves were also computed
by the Arcetri node. In total, they provided a grid of ∼120000 curves
for various spectral types, ranging from Teff = 3000 - 8000 K, logg = 0.5
- 3.5, and [M/H] = −2.50 - 0.50. These curves have been interpolated
to match the atmospheric parameters of the individual stars when deter-
mining the Li abundances. Additional details about the computation of
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Figure 2: Examples of synthetic spectra fits to absorption lines in a GIRAFFE
solar spectrum. Left panel: Fit to the Mg absorption line at 8806.75 Å. Right
panel: Fit to the Al doublet around 8773 Å. In both panels, the observed GI-
RAFFE spectrum is shown by the black data points. The best fit synthetic
spectra are indicated in color, while synthetic spectra with too low or too high
input abundance are shown in gray.

the curves of growth and the Li abundance measurements can be found
in Franciosini et al. (2022).

1.3 Structure of the thesis

We here outline the structure of the main body of this thesis: The fol-
lowing Section 2 presents an application of the classical spectral analy-
sis methods. Precise abundances determinations from spectra of stars in
the globular cluster NGC 1851 are used to separate the cluster stars into
two chemically distinct subpopulations. The analysis shows that a pre-
cise investigation of multiple chemical elements is necessary to uncover
this chemical separation.

Section 3 gives a theoretical introduction to convolutional neural
networks. While this section does not include any scientific results,
it presents our CNN architecture and explains how its different parts
function. The details of the network training phase and the concept of
network gradients are also given there.

23



Figure 3: Curves of growth for FGK stars from Franciosini et al. (2022) for the
Li I double feature at ∼ 6708 Å. The shown curves have been computed for
log(g) = 4.5 and [M/H] = 0.00 dex. The effective temperature for the curves
increases from top to bottom.

In Section 4 it is shown that our convolutional neural network can
predict multiple chemical abundances and atmospheric parameters from
stellar spectra. In the same section, we present a method to identify
spectra that are dissimilar to the training set spectra. The distinction
between training-unlike and training-like spectra is crucial for real-life
applications of neural networks to newly observed spectra. This sec-
tions also shows what exactly the network learns during the training
phase.

In Section 5, we evaluate our network results by investigating some
of the key properties of the Milky Way galaxy. Among others, we re-
visit the globular cluster NGC 1851, this time comparing the magne-
sium and aluminum abundances from Section 2 to the results from our
network. In the same section, we also report the discovery of 31 previ-
ously unidentified lithium-rich giants in the Gaia-ESO iDR6 data set.

Finally, in Sections 6 and 7 we discuss some caveats of our neural
network method and summarize the main points of this thesis.
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2 The need for precise abundance measurements of mul-
tiple chemical elements: Two stellar populations in
the globular cluster NGC 1851

Different elements are produced on different timescales, by various pro-
cesses, in various environments. Studying the chemical composition of
stars in a stellar population therefore gives insight into the evolution of
the stars in the population and the formation history of the population as
a whole. A successful application of this approach is the investigation of
globular clusters in the Milky Way galaxy. Traditionally, these objects
were considered to consist of stars that all have the same age and chem-
ical composition (Bastian & Lardo 2018). It was therefore assumed
that all stars in a globular cluster are of common origin. In the last two
decades, this view has changed. The investigation of high-resolution
spectra of many cluster member stars has revealed a rich chemical vari-
ety of stars in many globular clusters. These chemically peculiar clus-
ters contain stellar populations with varying metallicities and differing
abundances of slow neutron-capture process (s-process) elements (e.g.,
Carretta et al. 2010; Mucciarelli et al. 2015; Kovalev et al. 2019). This
development was made possible by spectroscopic surveys, such as Gaia-
ESO. These surveys provided high-resolution spectra of hundred thou-
sand stars across the Milky Way galaxy in multiple wavelength ranges.

In this section, we present a detailed chemical study of the glob-
ular cluster NGC 1851. Abundances of up to 29 elements have been
studied in 45 red giant stars in this cluster. The analysis reveals the ex-
istence of two chemically distinct sub-clusters. The figures and tables
in the following sections are adapted from Tautvaišienė et al. (2022).
All presented results are based on data that is published on the VizieR
catalogue service2.

Studies like this show the importance of obtaining precise abun-
dances of multiple chemical elements.

2https://doi.org/10.26093/cds/vizier.36580080
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2.1 Data and methods of analysis

The globular cluster NGC 1851 is massive (M = 3.2·105M⊙) and rela-
tively close with a distance of 15.1 kpc (Baumgardt & Hilker 2018). Its
member stars are clearly separable from Milky Way field stars by the
cluster’s halo-like orbit and high radial velocity (320.5 km s-1, Dinescu
et al. 1999). For details on the target selection for globular clusters
see Pancino et al. (2017a). Observations of the target stars have been
carried out for the Gaia-ESO survey, using the high-resolution UVES
spectrograph (see Sect. 1.2 for the survey details).

For our analysis, we use the stellar atmospheric parameters and
chemical abundances (except those for C, N, and O) which have been
published in the fourth internal data release of the Gaia-ESO survey.
The presented abundances of Na and Ba have been corrected for non-
local thermodynamic equilibrium (NLTE) effects. The Na corrections
were taken from Lind et al. (2011), those for Ba from Korotin et al.
(2014). We determined the abundances of carbon, nitrogen, and oxygen
with a spectral synthesis method, as described in Sect. 1.2.1. Carbon
abundances were measured from the two C2 Swan bands at 5135.5 and
5635.2 Å. The oxygen abundance was determined by fitting the sin-
gle forbidden [O I] line at 6300.3 Å. Due to the molecular equilibrium
in stellar atmospheres, the C and O abundances are not independent
of each other and have to be measured together. We did this by first
measuring O and keeping its value fixed for the following C measure-
ment. In the next step, the found C abundance was fixed for a new
measurement of O. We repeated this cycle until both O and C abun-
dances do not change anymore. The above-mentioned C and O features
are well suited for measuring abundances because they are not sensitive
to NLTE effects. In the case of the C2 Swan bands, this is because they
are formed by purely vibrational transitions. The [O I] line at 6300.3 Å
also forms in LTE due to collisional coupling of the relevant energy lev-
els (Asplund 2005). However, the region in the spectrum around our [O
I] feature is contaminated by telluric lines. For our analysis, we used
only those lines that were unaffected by telluric contamination. We also
accounted for the two weak nickel lines that blend with the [O I] line.
In our line list, we set the oscillator strengths of the two blending Ni
lines to the values given by Johansson et al. (2003). Several 12C14N
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absorption features in the wavelength interval from 6470−6490 Å were
investigated to determine nitrogen abundances. To make our abundance
determination differential to the sun, we calibrated our analysis method
to the solar spectrum from Kurucz (2005).

There are two categories of uncertainty sources in our abundance
determinations. These are systematic errors, which affect all lines in a
stellar spectrum simultaneously, and random errors in the analysis of in-
dividual lines. The systematic errors arise from uncertainties in the de-
termined stellar atmospheric parameters. Random errors in the analysis
of individual spectral lines are mainly due to errors in the normalization
of the observed spectrum.

2.2 Chemical separation based on iron, nitrogen, and s-process
elements

The investigation of the stars’ composition reveals two chemically dis-
tinct sub-populations in the cluster. This distinction is most clear in the
abundances of nitrogen and the s-processed elements (Y, Zr, Ba, La, Ce,
Nd). The right panel of Fig. 1 shows the [s/Fe] ratios of the cluster stars
relative to their nitrogen-to-iron ratio [N/Fe]. In this plot, two groups
of data-points can be identified. Based on this, we separate our sample
stars into the two sub-populations — the population with low average
[s/Fe] and the population with high [s/Fe]. These two groups also differ
in their average iron abundances (left panel of Fig. 1). We therefore
refer to the two groups as the metal-poor and metal-rich populations.
Their [Fe/H] values have a difference of 0.07 dex. The average [Fe/H]
of the metal-rich sample is −0.98 ± 0.04 dex and the average of the
metal-poor sample is −1.05 ± 0.05 dex. The average abundances of the
s-processed elements and nitrogen, as well as the results for the other
elements, are listed in Table 1.
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Figure 4: Chemical separation of cluster stars. Left panel: Average abundances
of s-processed elements relative to [Fe/H]. Right panel: Average abundances
of s-processed elements relative to their [N/Fe]. Our separation of the two
subsamples is indicated by the colors of the data points (metal-rich sample in
blue, metal-poor in red).
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Table 1: Average abundances for the two populations and numbers of stars.

Parameter
Metal-poor Metal-rich

Average σ N Average σ N

[Fe/H] −1.05 0.05 28 −0.98 0.04 17
A(Li I) 3DNLTE 0.14 0.66 27 0.46 0.59 17

[C/Fe] (C2) −0.31 0.08 14 −0.36 0.11 9
[N/Fe] (CN) 0.47 0.09 12 0.73 0.14 9
[O/Fe] ([O I]) 0.27 0.18 28 −0.13 0.20 16
[Na I/Fe] NLTE 0.02 0.23 25 0.32 0.17 16
[Mg I/Fe] 0.26 0.08 28 0.25 0.10 17
[Al I/Fe] 0.17 0.19 28 0.38 0.15 17
[Si I/Fe] 0.07 0.05 28 0.09 0.05 17
[Ca I/Fe] 0.17 0.05 28 0.21 0.05 17
[Ca II/Fe] 0.24 0.12 25 0.29 0.15 15
[Ti I/Fe] 0.14 0.07 28 0.16 0.08 17
[Ti II/Fe] 0.17 0.05 28 0.18 0.04 17
[Sc I/Fe] −0.01 0.12 28 −0.02 0.12 17
[Sc II/Fe] −0.01 0.04 28 −0.02 0.05 17
[V I/Fe] −0.11 0.07 28 −0.08 0.08 17
[Cr I/Fe] −0.16 0.06 28 −0.12 0.07 17
[Cr II/Fe] 0.04 0.11 27 −0.05 0.08 17
[Mn I/Fe] −0.37 0.05 28 −0.41 0.05 17
[Co I/Fe] −0.09 0.04 28 −0.07 0.04 17
[Ni I/Fe] −0.14 0.04 28 −0.15 0.06 17
[Cu I/Fe] −0.33 0.17 28 −0.28 0.16 17
[Zn I/Fe] −0.06 0.10 28 0.00 0.15 17
[Y II/Fe] −0.24 0.06 28 −0.02 0.14 17
[Zr I/Fe] 0.15 0.18 27 0.37 0.15 17
[Mo I/Fe] 0.16 0.16 14 0.37 0.13 12
[Ba II/Fe] 0.10 0.13 28 0.55 0.19 17
[Ba II/Fe] NLTE 0.00 0.15 28 0.47 0.20 17
[La II/Fe] −0.03 0.14 27 0.37 0.10 17
[Ce II/Fe] −0.18 0.15 28 0.32 0.19 17
[Pr II/Fe] 0.46 0.05 15 0.63 0.12 12
[Nd II/Fe] 0.27 0.07 28 0.52 0.14 17
[Sm II/Fe] 0.37 0.13 14 0.55 0.15 12
[Eu II/Fe] 0.40 0.10 28 0.41 0.07 17

A(C+N+O) 7.97 0.11 12 7.94 0.08 9
C/N 0.66 0.13 12 0.35 0.13 9
[α/Fe] 0.16 0.04 28 0.18 0.05 17
[Iron peak/Fe] -0.09 0.04 28 -0.07 0.04 17
[s/Fe] −0.01 0.08 28 0.34 0.11 17
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Figure 5 shows that the two populations also differ in the abundances
of the individual s-processed elements. The average abundance ratios of
Y, Zr, Ba, La, Ce, and Nd relative to iron are all higher in the metal-rich
population than in the metal-poor one. By contrast, the ratio of the r-
processed element Eu to iron is uniform across both cluster subsamples.
There is also no difference between the metal-poor and metal-rich stars
in the abundances of the eight iron-peak elements to iron which we in-
vestigate in this study (Fig. 6). As already seen for nitrogen, some other
light elements also show differences between the two samples. The dif-
ference between the metal-rich and metal-poor sample is ≥ 0.3 dex for
both [O/Fe], and [Na I/Fe]NLTE. To a lesser extent, the aluminum to
iron ratios of the two samples are also different (by 0.21 dex). Carbon
and the abundances of the α-elements (Mg, Si, Ca, Ti) relative to iron
are almost the same in the two sub-populations. The distribution of the
light elements is shown in Fig. 7.

2.3 Ages of the two cluster sub-populations from CNO abundances

In their high-precision photometric study, Milone et al. (2008) found
that there exist two distinct subgiant branches in NGC 1851. They
suggest that possible reasons for this are differences in age, overall
[(C+N+O)/Fe] abundance, or both. This interpretation received sup-
port from Yong et al. (2009, 2015), who, in their analysis of 11 stars,
observed a significant difference of 0.6 dex in [(C+N+O)/Fe] between
the two branches. Simpson et al. (2017) obtained a narrower range
in A(C+N+O) using medium-resolution spectra. However, Villanova
et al. (2010) examined high-resolution spectra from 15 RGB stars in
NGC 1851. They found no significant difference in the total A(C+N+O)
content between the two populations.

The position of our two subpopulations in the color-magnitude dia-
gram of NGC 1851 can be seen in Fig. 8. In this diagram, the metal-poor
population is “on top” of the metal-rich one. This means that the metal-
poor sub-branch is brighter than the metal-rich branch. We find a spread
of ∼0.1 dex of A(C+N+O) in both populations, but no significant dif-
ference in their average C+N+O abundances (Table 1 and Fig. 9). Grat-
ton et al. (2012) also observe a brighter, metal-poor sub-branch, and
a fainter sub-branch which is more metal-rich in NGC 1851. More-
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Figure 5: Element-to-iron ratios [X/Fe] of individual neutron-capture elements
relative to iron. As in Fig. 1, the metal-rich population is shown in blue, the
metal-poor one in red. The average abundances of the two sub-populations are
marked by black crosses
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Figure 6: Same as Fig. 5, but for iron-peak elements.
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Figure 7: Same as Fig. 5, but for the light elements.
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Figure 8: Positions of our metal-poor (red) and metal-rich (blue) subsamples
in the color-magnitude diagram of NGC 1851. The V and B magnitudes of
our 45 sample stars and of ∼60000 other cluster members were taken from the
photometric catalog of Stetson et al. (2019).

over, they find that the metal-rich population would be ∼0.6 Gyr older
than the metal-poor one, if the C+N+O abundance is the same for both.
Based on this, we conclude conclude that our metal-rich subpopulation
is by ∼0.6 Gyr older than the metal-poor one.
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Figure 9: Total A(C+N+O) abundances of stars in our two subpopulations
relative to [Fe/H] (left panel) and s-process elements [s/Fe] (right panel).

3 Convolutional neural networks

A convolutional neural network (CNN) is a type of machine learning
method. Machine learning methods are complex, non-linear algorithms
used to extract information from input data. These algorithms typically
have many free parameters, which are not specified by the user. Instead,
the algorithm “learns” the values of the parameters during a “training”
phase. Subtypes of machine learning methods are defined by the distinct
designs of their training phases:

• Supervised methods require labeled training data for the training
phase. The labels of the input data, which can either be categorical
or continuous, must be determined before the training. Training
is the search for the parameter values that minimize the difference
between the pre-determined labels and the algorithm’s output la-
bel predictions. Supervised machine learning methods therefore
learn by solving an optimization problem.

• Unsupervised methods work with unlabeled input data. These
algorithms try to find relationships between the individual data
points in the training data without any exterior information. Un-
supervised methods are typically used to find clusters of similar
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data points in large, high-dimensional data sets.

Convolutional neural networks belong to the class of supervised ma-
chine learning methods. The structure of CNN algorithms differs from
other supervised machine learning methods. In the following, we de-
scribe the main building blocks of a CNN and their connections (the
network “architecture”). We focus on our implementation of a CNN
that can predict continuous labels from 1D stellar spectra.

3.1 Architecture of a CNN

The defining building blocks of a CNN are its convolution layers. These
layers are designed to find features and patterns in the input data. In
stellar spectra, these features could be single absorption lines, relations
between groups of absorption lines, or the mean slope of the spectrum.
The found spectral features are the basis for the calculation of the out-
put label values. This calculation is done by the dense layers, which
follow the convolutional layers in the CNN architecture. Every layer
in a CNN can be followed by a regularization layer. In complex net-
work architectures, regularization is needed to prevent the network from
over-fitting to the training data. Table 2 shows the architecture of our
CNN. We found this final architecture by experimentation, starting from
a simple network with one convolution layer and one dense layer. Ad-
ditional layers were added and the number of convolution kernels and
dense layer neurons was adjusted until the network performance was
satisfactory. Our choice of regularization layers was inspired by the
network architecture of Guiglion et al. (2020). It should be mentioned
that the architecture presented in Table 2 produces good results for our
purposes. However, even better architectures for future projects might
be found through further experimentation. Our final network contains
560 599 free parameters, most of them in the first dense layer. This
first dense layer receives the flattened outputs from the convolution lay-
ers, which contains all the information about the found features in the
training spectra. As will be detailed in Section 3.2.1, the free parame-
ters will be optimized to accurately predict the labels of the training set
spectra. We use 8807 training spectra with 8669 pixels each. In total,
the ∼ 6 · 105 parameters will be fit to 8807 · 8669 ≈ 70 · 106 data points.
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This low ratio of free parameters to data points ensures that the network
training is not overdetermined by too many free parameters.

Below follow detailed descriptions of the CNN layer types.

3.1.1 Input layer

The input layer receives the raw input data and passes it on to the first
convolution layer. Before the data is passed on, it may be prepared so
that all samples are scaled and distributed evenly. Our input data are
normalized stellar spectra, which have been corrected for redshift, and
they all cover the same wavelength range. Therefore, no extra scaling
or distribution has to be done in our input layer. An individual input
spectrum is represented by a 1-dimensional array (or list) of flux values.
The wavelength values of the individual points in a spectrum are not
important for the prediction of the CNN. However, the order (index) of
the spectrum’s flux values must be preserved.

3.1.2 Convolution layers

In the first convolution layer, an input spectrum is convolved with one or
multiple convolution kernels. The result of these operations are the fea-
ture maps, so named because they show the positions of various features
in the input spectra. The type of feature, which is represented in a fea-
ture map, depends on the parameters of the used kernel. Figure 10 de-
picts the convolution of an input spectrum with the kernel [−1, 1, −1].

The parameters of this kernel are chosen so that it detects absorp-
tion lines in the input spectrum. Therefore, the feature map shows the
highest response at the positions of the absorption lines. If a spectrum
without any absorption features is convolved with this kernel, the re-
sulting feature map will be a horizontal line. The information about the
lack of absorption is passed on to the other layers of the CNN by this
flat feature map.

The kernel from Fig. 10 is hand-designed to detect absorption lines.
However, in a typical CNN application, the values of the kernel pa-
rameters are unknown before the network training. During the training
phase, the CNN finds the kernels that result in the best precision accu-
racy for the spectra in the training set. A convolution layer can have
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Table 2: Architecture of our CNN. The input layer reads in the flux informa-
tion of the stellar spectra. It is followed by three 1D convolution layers. An
activation layer directly follows each convolution layer. The output from the
third convolution block is then flattened to serve as input for the dense layers.
Three dense layers (with a dropout layer after each) interpret the spectral fea-
tures, found by the convolution layers, into output labels. The outputs from a
last dense layer are the values of our five stellar labels (atmospheric parame-
ters and elemental abundances). The order and number of the layers, as well
as the hyperparameters, are set by the user. The values of the free parameters
are initialized randomly and are optimized during the network training.

Layer Hyperparameters Free parameters
Input Input shape: 8669

1D convolution filters: 8, kernel size: 20 168
Activation LeakyReLU
1D Max-pooling pool size: 2

1D convolution filters: 6, kernel size: 20 966
Activation LeakyReLU
1D Max-pooling pool size: 2

1D convolution filters: 4, kernel size: 20 484
Activation LeakyReLU

Flatten
Dropout dropout rate: 0.2

Dense Layer Neurons = 64 546 368
Dropout dropout rate: 0.2
Activaton LeakyReLU

Dense Layer Neurons: 128 8320
Dropout dropout rate: 0.2
Activaton LeakyReLU

Dense Layer Neurons: 32 4128
Dropout dropout rate: 0.2
Activaton LeakyReLU

Dense layer Neurons: 5 165
Activation Linear

Total: 560 599
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Figure 10: Example of the convolution of an input spectrum with a convolution
kernel. The convolution operation is symbolized by an asterisk (∗). Top panel:
A part of the input spectrum. Bottom panel: Feature map as the result of the
convolution of the input spectrum with the kernel [−1, 1, −1].
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multiple kernels, that independently produce feature maps of the layer
input. Each of these different feature maps then represents a different
aspect of the input spectrum. This is analogous to how the red, green,
and blue color channels each represent a different aspect of a color im-
age.

If a CNN has multiple convolution layers, the feature maps from the
first layer will be convolved themselves in the following convolution
layer. As the input data transforms as it passes from layer to layer, the
resulting feature maps of feature maps become difficult to interpret. Fig-
ure 11 shows how a convolution layer with three inputs (feature maps
from a previous layer) and four outputs works. Each of the three in-
put maps is convolved with four individual kernels, making 12 different
kernels in total. The 12 intermediate feature maps are then added to-
gether, so that each output is the sum of one intermediate feature map
of each of the three inputs. In this way, each of the four outputs contains
information from all three inputs.

A bias value (additional free parameter) is added to each of the four
output channels. This effectively shifts the whole feature map up or
down, as is demonstrated in Fig. 12.

The values of the pixels in the feature maps becomes important in
the following activation operation. In the activation, the feature map is
transformed according to an activation function. The value of every in-
dividual pixel in the map is changed in this operation. There are several
types of activation functions, each adding non-linearity to the neural
network. In recent machine–learning applications, the “Leaky ReLU”
activation function (Fig. 13) is most often used. It leaves positive and
zero output values unchanged, and multiplies negative outputs with a
small positive value. Or, notated mathematically (Maas 2013):

LeakyReLU(x) =

{
a · x if x < 0

x otherwise

Where x is the value of an individual pixel in a feature map and
a ∈ (0,1). The effect of applying this activation function to a feature
map is shown in Fig. 14.
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Figure 11: Operations inside a convolution layer with four filters. The layer
receives three feature maps from a previous convolution layer, and forwards
four feature maps to the next layer in the network architecture.
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Figure 12: Effect of adding a bias value to a feature map. Positive bias shifts
the feature map up (orange), negative bias shifts the map down (blue).

Figure 13: Leaky ReLU function. Input values x > 0 remain unchanged, while
negative input values are multiplied by a value between 0 and 1.
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Figure 14: Convolution layer output after applying Leaky ReLU activation.
This example shows the activated version of the black line from Fig. 12.

The output of the last convolution layer is a set of activated feature
maps. These maps must be prepared in the following "flattening" layer
before passing them to the first dense layer.
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3.1.3 Flattening

The output from the last convolution layer consists of multiple feature
maps (i.e., the output is multidimensional). Since the dense layers can
only process one-dimensional input, the convolution output must be
"flattened" before it can be used as input for the first dense layers. This
is done by simply appending the individual feature maps to each other.
For example, the flattening of four feature maps with 1000 pixels each
will result in a one-dimensional output with 4000 pixels. Each of the
neurons in the following dense layer will then take 4000 input values.

3.1.4 Dense layers

A dense layer consists of one or multiple neurons (also called units or
nodes). Every neuron takes multiple inputs from a previous layer (either
the flatten layer or a previous dense layer). Inside a single neuron, a
linear combination of all input values is calculated, and a bias value
is added. The result is transformed by an activation function and then
passed as the neuron output to the next layer. As for the convolution
layers, the activation function is typically "Leaky ReLU". A scheme
of the operations inside a single neuron with four inputs is shown in
Fig. 15. The four input values [x1,x2,x3,x4] are multiplied elementwise
with the four weights [w1,w2,w3,w4] and added together. A bias value
is then added to the result. The four weights and the bias term are free
parameters of the CNN. Their optimal values are found in the network
training. The result of this linear combination is a single value, that is
passed to the activation function. The output of the activation function
is then the final output of the neuron. This single output value is passed
on to the neurons of the following dense layer. In this way, every layer
neuron is connected to all neurons from the previous layer and passes
its output value to all neurons of the next layer. Neurons within one
layer are independent of each other.

3.1.5 Output layer

The output layer is a final dense layer, whose number of neurons is
equal to the number of labels which should be predicted. The outputs
of these neurons are directly proportional to the label predictions. If the
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Figure 15: Scheme of the operations inside a single neuron. This neuron is
part of an intermediate dense layer, between a layer with four neurons and a
layer with two neurons.

network is used to solve a regression problem, no activation function is
applied to the neuron outputs. If the network is built for classification
tasks, sigmoid or softmax functions are often used (Singh et al. 2023).

3.1.6 Regularization layers

Regularization techniques can be used to prevent overfitting. Overfit-
ting occurs when a network predicts accurate labels for the training set
but performs poorly on other spectra. In this work, we add two types
of regularization layers to the CNN architecture. These are the max-
pooling and dropout layers.

Max-pooling is applied to the output feature maps of the convolution
layers. It works by dividing a feature map into windows of equal widths.
In each of these windows, only the maximum point is kept, and the
other points are discarded. An example of the effect of max-pooling on
a feature map is shown in Fig. 16.

The dropout layers are located between two dense layers in a net-
work architecture. Dropout deactivates a fraction of neurons in the pre-
vious layer by setting their output values to zero (they are “dropped
out”). This deactivation only happens during the network training. A
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Figure 16: Max-pooling of a feature map. The original map is shown in black,
the result of the max-pooling operation in red. Blue vertical lines show the
borders of the max-pooling windows. Only the maximum flux value in a win-
dow is kept, the lower flux values are discarded. The windows have a width of
5 pixels, which corresponds to a wavelength range of 0.15 Å in this example.

new set of dropped neurons is chosen at random for every training spec-
trum. After the network training, dropout is not active anymore.

Other regularization methods include performing changes on the in-
put data ("augmentation") and the transformation of the input labels.
See Santos & Papa (2022) for a summary of regularization methods for
convolutional neural networks.

3.2 Network training

When a network architecture is set up, the values of the convolution ker-
nels, the weights in the dense layers, and the bias values are unknown.
In the following text, we will call these values collectively the “free pa-
rameters” of the CNN. The search for the parameters that result in the
best network output is called network training. We consider the network
output optimal, when the variation between the pre-determined labels of
a set of validation spectra and the CNN output for the same spectra is
minimal.
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3.2.1 Training and validation data sets

For the training of a neural network, two separate sets of spectra with
associated labels are needed. One of these sets is the training set. In the
training phase, the network repeatedly predicts the labels for the spectra
in the training set. The values of the free parameters in the network
are updated after every training iteration, with the goal of increasing the
accuracy of the predictions in the next iteration.

The other data set is the validation set. It is used to detect over-
fitting of the network, by comparing the network performance on the
validation spectra to the performance on the training spectra. If the net-
work performs poorly on the validation spectra but well on the training
spectra, the network is over-fitting. This shows that the current network
has specialized on the training set only and cannot generalize to other
spectra. The user can then adjust the network architecture to prevent the
over-fitting, by reducing the complexity of the network (fewer convolu-
tion and/or dense layers, fewer kernels/neurons in the individual layers).
Another strategy to prevent over-fitting is to use regularization methods
(see Sect. 3.1.6). The validation data is also used to monitor the training
progress and to stop the training when the validation accuracy does not
increase anymore.

3.2.2 Optimizing the free network parameters

The variation between input and output is also called the loss and is
calculated with a loss-function. Network training is an optimization
problem, where the loss is minimized by optimizing the free parameters
of the network. The optimization process is carried out according to the
following algorithm:

0. Random initialization of the free parameters

1. Network predicts labels for all spectra in the training set and vali-
dation set

2. Loss between pre-determined training labels and CNN output is
calculated

3. Free parameters are updated
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These steps are repeated, until the loss does not decrease anymore.
One iteration of the steps 1-3, in which all training spectra pass once
through the network, is called an epoch. The main task in the network
training lies in step number 3, the updating of the parameter values. This
must be done in a way that guarantees that the loss decreases with every
epoch. A typical loss function for regression problems is the mean-
squared error (MSE) between input labels and output labels. The total
MSE loss is the average of the MSEs of the individual labels:

MSEtotal =
1

Nlabels

Nlabels

∑
label=1

MSElabel (1)

MSElabel =
1

Nsamples

Nsamples

∑
i=1

(inputi −out puti)2 (2)

Every individual output depends on the values of the free parameters
in the CNN architecture. Equations 1 and 2 therefore connect the total
loss to the free parameters.

Commonly used techniques for updating the network parameters are
based on the gradient descent method. Gradient descent calculates the
derivative of the loss function with respect to each individual free pa-
rameter in the network. Because of the connection between loss func-
tion and free parameters, it is possible to calculate the derivative of the
total loss with respect to every individual parameter. These derivatives
are then used to update the parameter values p for the next iteration in
the optimization. If the value of the derivative is positive, then an in-
crease of the parameter value also increases the total loss. Equation 3
shows the rule for updating a single parameter in the network:

pupdated = pold −
d(total loss)

d(pold)
·α (3)

where α , the so-called learning rate, is > 0. When this learning rate
is too high, the updating steps are too large, and the gradient descent
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method will “overstep” the optimal parameter value. Successive updat-
ing iterations will then cause the parameter value to oscillate around its
optimum. If alpha is too small, the parameter will get stuck at a value
where the loss function has a local minimum. The learning rate is there-
fore an important hyperparameter that must be set by the user to ensure
a successful training of the CNN.

In the simplest case, the total loss is calculated after the network has
predicted label values for all spectra in the training set. Gradient descent
is then used to update all free parameters once per training epoch. A
modification of this method is called stochastic gradient descent. Here,
the parameters are updated after every individual training spectrum. An
intermediate between these two approaches is the mini-batch gradient
descent. This method updates the parameters multiple times per epoch,
after a specified number of spectra has passed through the network.

For the training of our network we used the mini-batch gradient de-
scent method, with a batch-size of 16 spectra and a learning rate of
0.0001. We also experimented with other optimization algorithms, in-
cluding Adam and RMSProp. Both of theses are variants of the basic
stochastic gradient descent method, and produced nearly identical re-
sults. We therefore chose to remain with the simple mini-batch gradient
descent as our optimizer.

3.2.3 Testing of the network

After the successful training of the network, its performance on new
spectra has to be tested. This requires a test set of labeled spectra. These
spectra have not been used for training or validation during the training
phase. Therefore, the performance on the test spectra shows what accu-
racy can be expected from applying the trained network to a large set of
unlabeled spectra.

3.3 Explainability of the network predictions

As has been established above, a convolutional neural network is a com-
plex non-linear function that takes an array of flux values (spectrum)
as an input and calculates the label predictions as an output. As with
other functions, we can calculate the derivative, or gradient, of this net-
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work function with respect to the individual input variables (the fluxes).
These gradients are a measure of the importance of individual flux val-
ues for the network output. If a network gradient at a certain pixel in
the input spectrum is high, then this pixel is important for the label pre-
diction. Positive gradients show that the higher the flux value at a pixel,
the higher the value of the output prediction. Negative gradients indi-
cate inverse correlation: Higher flux values then lead to lower values of
the output label. The network gradients therefore supply important ex-
plainability for the predictions of neural networks, which are still often
considered black box algorithms (Haar et al. 2023).

We show how network gradients can explain CNN label predictions
for stellar spectra in Sect. 4.3.
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4 Investigation of GES iDR6 spectra with CNNs

In the following sections, we show the application of the CNN method
to spectra from the Gaia-ESO survey. The details of the sample selec-
tion, network training, testing, and physical validation of the network
predictions are presented. We also demonstrate that CNNs can iden-
tify relevant spectral features and use them for the label predictions in a
physically intuitive way.

The methods and results in these sections are based on the work that
is presented in Ambrosch et al. (2023). This publication focuses on the
training of a CNN for the simultaneous prediction of the labels Teff,
log(g), [Mg/Fe], [Al/Fe], and [Fe/H]. These results are complimented
by those published in Nepal et al. (2023), who trained a CNN to pre-
dict Teff, log(g), [Fe/H], and the lithium abundance A(Li). Both works
use CNNs that were built and trained in a Python programming envi-
ronment. Within Python, the open source deep-learning library KERAS

(Chollet et al. 2015) was used together with the TENSORFLOW back-
end (Abadi et al. 2015).

4.1 Spectra and associated labels for the training and testing of
the neural network

Our data set consists of spectra, associated stellar parameters, and abun-
dances from the GES iDR6 data set. In the Gaia-ESO survey, atmo-
spheric parameters and chemical abundances are determined by multi-
ple workgroups that apply different codes and methodologies to the sur-
vey spectra. The spectra which we used in this study were taken with
the GIRAFFE spectrograph that covers the visible wavelength range of
370–900 nm. Several setups divide the whole GIRAFFE spectral range
into smaller parts. For this study we chose the HR10 (533.9–561.9 nm,
R = 19800) and HR21 (848.4–900.1 nm, R = 16200) setups because
they cover important Mg and Al absorption features.
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4.1.1 Preparation of GES data for neural network training

For our analysis, we used normalized 1-D spectra from the GES archive.
We removed bad pixels and cosmic ray spikes where necessary. To do
so, we first calculated the median of all spectrum flux values. We then
looked for cosmic ray spikes by finding all pixels with flux values that
exceeded this median flux by five sigmas. The spikes were removed by
setting their flux values to be equal to the spectrum median flux. Pixels
with zero flux values were also set to the median flux. Afterward, we
corrected the spectra for redshift based on the radial velocity provided
by GES. To reduce the number of pixels per spectrum and therefore the
computational cost of the further analysis, we re-binned the spectra to
larger wavelength intervals per pixel. The HR10 spectra were resampled
to 0.06 Å per pixel and the HR21 spectra to 0.1 Å per pixel. The original
bin size for both setups is 0.05 Å per pixel. After re-binning, the spectra
were truncated at the ends to ensure that all spectra from one setup share
the exact same wavelength range. Eventually, we combined the HR10
and HR21 spectra to create one input spectrum per star for our network.
The combined spectra are composed of 8669 pixels each and cover the
wavelength ranges from 5350-5600 Å and 8480-8930 Å.

To build our training set, we performed several quality checks to
ensure that our network will be trained on high-quality data. Spectra
with signal-to-noise ratio (S/N) < 30 and large errors in atmospheric
parameters and elemental abundances (eTeff > 200 K, elog(g) > 0.3 dex,
eA(element) > 0.2 dex) were discarded, as well as spectra that were
marked with the TECH or PECULI flags or have rotation velocities >
20 km s-1. Similar to Guiglion et al. (2020), we tested the inclusion
of low S/N spectra into our training set. This increases the number of
training spectra, but the training performance gets worse and the overall
prediction quality of our network decreases. While too noisy spectra are
worsening the performance of our network, a moderate degree of noise
is beneficial because it plays a significant role in the regularization of
the training process (Bishop et al. 1995, particularly Sect. 9.3 there). To
exclude very noisy spectra, while still utilizing the regulatory effect of
noise in the training data, we set the lower S/N limit for our training
set to 30. We also removed spectra that showed a difference larger than
0.2 dex between the provided metallicity [M/H] (as a stellar atmospheric
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parameter) and the iron elemental abundance [Fe/H].
We further examined the remaining spectra to find outliers and in-

correct measurements. To investigate the similarity between all the
spectra, a t-distributed stochastic neighbor embedding (t-SNE) analysis
was employed. The t-SNE analysis is a popular unsupervised machine
learning technique used to visualize the internal relationships and simi-
larities in high dimensional data sets. This is done by giving each data
point a location in a two- or three-dimensional similarity map (van der
Maaten & Hinton 2008). In our case, the data points are the individ-
ual spectra, and the data set is n-dimensional, where n is the number of
pixels in each spectrum. Figure 17 shows a two-dimensional similarity
map for our combined spectra, obtained with the SKLEARN.MANIFOLD

library for python programming (Pedregosa et al. 2011). Every point
in the map corresponds to one spectrum, and the distance between the
individual points is related to the similarity of the shapes of the indi-
vidual spectra. There are two main branches in the map with several
sub-structures. The two branches represent spectra from stars in two
distinct populations: Main sequence stars with surface gravity log(g) ≳
3.5 and stars in the giant branch with lower log(g) values. The different
physical properties in stellar atmospheres are reflected in the shapes of
their spectra, which in turn determine their locations on the t-SNE map.
The connection between physical parameters and spectral features is
what our CNN learns during the training phase. It is worth to mention
that t-SNE on its own has also been used to classify spectra: Traven
et al. (2017), for example, used t-SNE as a tool to separate GALAH
spectra into different, physically distinct classes; Matijevič et al. (2017)
used t-SNE to search for metal-poor stars in the RAVE survey.

We see several outlier-spectra in our Fig. 17. Upon inspection, these
spectra show signs of emission lines, have distorted absorption features,
or have suffered from failed cosmic removal or wrong normalization.
We excluded these outliers from the further analysis. For the analysis of
future surveys such as WEAVE and 4MIDABLE-HR surveys, including
emission line stars will be a necessity, as we expect many young stars
to be observed. We note that the initialization of our t-SNE application
includes an element of randomness, which results in slightly different
shapes of the map after every run. The map will also look different for
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Figure 17: A t-SNE similarity map of our sample GIRAFFE spectra. The four
panels show the same map, each color-coded with either a physical parameter
or the spectrum S/N. While the relative distance of points in the map indicate
the degree of similarity of the corresponding spectra, their X and Y coordi-
nates themselves have no physical meaning. The map in this figure has been
computed with perplexity 30. For our data, perplexity values between 20 and
50 produce qualitatively identical results.
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different sets of spectra. However, in all our t-SNE runs, the outlier
spectra were clearly identifiable.

Every training spectrum has a set of associated stellar labels. In
our case these are the two atmospheric parameters Teff and log(g) and
the chemical abundances [Mg/Fe], [Al/Fe], and [Fe/H]. In the GES
iDR6 data set the elemental abundances are given as absolute abun-
dance values A(X), where X is any given element. We calculated [Fe/H]
and [X/Fe] as follows: [Fe/H] = A(Fe)star − A(Fe)⊙ and [X/Fe] =
A(X)star −A(X)⊙− [Fe/H]. The absolute solar abundances were taken
from Grevesse et al. (2007) to be consistent with the GES spectral anal-
ysis strategy. The decision to use these relative abundances instead
of absolute abundances for the training of our network is justified in
Sect. 4.3.

Magnesium and aluminum abundances are known to be sensitive
to non-local thermodynamic equilibrium (NLTE) effects (Bergemann
et al. 2017; Amarsi et al. 2020; Lind et al. 2022). These effects were
not considered by GES during the parametrization of GIRAFFE spectra
or during the homogenization (Hourihane et al., in prep). For dwarfs,
NLTE corrections are well below 0.05 dex for both Al and Mg, while
for giants they are in the range of ∼ 0.05− 0.15 (Amarsi et al. 2020).
Strong NLTE effects may then have some effects on the training labels,
but quantifying such an effect in out of the scope of the present thesis.

After applying all these constraints, we were left with 14 634 com-
bined spectra with associated high-quality atmospheric parameters and
elemental abundances. The training labels and the spectra themselves

Table 3: Values of the five training labels for the first few stars in our training
set. The star CNAMES and indices are for identification purposes only and are
not passed to the network for the training. The full training label input table
has five columns and 14634 rows.

CNAME Index Teff (K) log(g) [Mg/Fe] [Al/Fe] [Fe/H]

16153746-0822162 1 5780 4.35 0.05 0.06 0.17
12202074+0318445 2 4335 1.69 0.39 0.24 -0.32
12320544-4332104 3 4753 1.69 0.40 0.45 -0.41
20041963-3203228 4 4334 1.83 0.40 0.49 -0.51
21300375-1230399 5 4376 4.34 0.16 0.22 -0.16
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Table 4: Spectrum fluxes of the five stars in the training set listed in Tab. 3. The
indices are for identification only and are not used during the training. The full
spectra input table for the training has 8669 columns and 14634 rows.

Flux in wavelength bin

Index 1 2 3 4 ... 8666 8667 8668 8669

1 0.883 0.883 0.871 0.867 ... 1.017 1.009 1.010 1.010
2 0.962 0.961 0.958 0.953 ... 1.016 0.998 0.987 0.979
3 1.072 1.092 0.992 0.992 ... 0.979 0.974 0.979 0.990
4 0.993 1.004 1.008 1.008 ... 0.995 0.999 1.002 1.003
5 0.856 0.851 0.838 0.824 ... 1.060 1.000 1.001 1.001

are passed as a data-tables to the python code (Table 3). As mentioned
in Sect. 3.1.1, the absolute wavelength positions of the individual data
points in the spectra are not important for the CNN training. Therefore,
the ∼2900 Å gap between the GIRAFFE HR10 and HR21 setups does
not influence the training process either. Table 4 shows the format of the
training spectra input for the CNN. These 14 634 spectra were assigned
to either the training set or the validation set for the training of our CNN.
We found that using 40% of the total training data for the validation set
yields the best training results for our application. That means that of
our 14 696 spectra, 8817 spectra were assigned to the training set and
5879 to the validation set. Training and validation spectra were chosen
at random before the training and we ensured that their labels cover the
same parameter space.

4.1.2 Parameter space of training and validation set labels

To assess the parameter space of our training set input labels, we show
the Kiel-diagram and abundance plots in Figs. 19 and 20. Effective
temperatures range from Teff = 4000 - 6987 K, the surface gravity log(g)
is between 1.08 and 4.87 dex and [Fe/H] spans a range of ∼2 dex, from
−1.53 to 0.72 dex. The color-coding in Fig. 19 reveals the metallicity
sequence in the giant-branch of the Kiel-diagram.

Figure 20 shows density maps of the [Mg/Fe] and [Al/Fe] distri-
bution of our training set. The [Mg/Fe] values range from −0.25 to
0.80 dex, [Al/Fe] values have a large spread of almost 2 dex, from
−0.95 to 1.00 dex. The Mg distribution reveals two distinct regions of
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Figure 18: Input spectrum of the first star in our training set (CNAME
16153746-0822162). The spectrum is a combination of the individual GI-
RAFFE HR10 and HR21 spectra of this star. The locations of Mg and Al
absorption features in the spectrum are marked by colored vertical lines.
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enhanced density, separated by a narrow region of lower density. These
two regions reflect the separation of Milky Way stars into a thin disk
(low [Mg/Fe]) and a thick disk (enhanced [Mg/Fe]) population. Mag-
nesium abundances are the best probe for this chemical separation be-
tween the thin and thick disk of our Galaxy (e.g. Fuhrmann (1998),
Gratton et al. 2000). As expected, we do not see this separation in the
[Al/Fe] plot. Our training set is dominated by nearby stars, due to the
S/N cut and other quality criteria that we applied to the entire GES iDR6
data set. Therefore, our data does not cover some Milky Way proper-
ties that become apparent when one investigates a larger volume of our
galaxy. Queiroz et al. (2020), for example, find two detached [Al/Fe]
sequences for stars close to the galactic center (RGal < 2 kpc) in their
sample of APOGEE stars. At low [Fe/H] several groups of stars can be
observed in both the Mg and Al plots. The stars in these patches belong
to different globular clusters. In the [Al/Fe] plot, the scatter of Al abun-
dances in the globular clusters is higher than the scatter of Mg at equal
metallicities. This large spread of Al abundances, especially in globular
clusters at low metallicities, has already been observed in earlier GES
releases (Fig. 4 in Pancino et al. 2017c) and indicates the existence of
multiple stellar populations within the clusters.

4.1.3 "Inner" and "outer" test sets

In addition to the training and validation sets, we constructed a test set.
This set is used to test the performance of our CNN on spectra that were
not used in the training process. In this way, we can mimic the appli-
cation of our CNN method to newly observed spectra, which have not
yet been analyzed spectroscopically. The full test set therefore contains
spectra without any applied quality constraints and spans wider S/N and
label ranges than the training set. As we will show in Sect. 4.2.3, our
network is not able to accurately label spectra that are outside the train-
ing set limits. Because of this, we have to find a way to identify spectra
that are similar to our training spectra, as the labels of these spectra are
likely to fall into the training set limits. We already demonstrated that
t-SNE can show the similarity between spectra. We therefore employ t-
SNE to identify those spectra in the test set whose labels are likely to be
within the training set limits. A depiction of this method can be seen in
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Figure 19: Kiel diagram containing the 14 634 stars that will be used to train
and test our neural network. The color-coding indicates the metallicity gradient
in the giant branch stars.
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Figure 20: Density plots of [Mg/Fe] vs. [Fe/H] (top panel) and [Al/Fe] vs.
[Fe/H] (bottom panel) for the 14 696 stars in the training and test sets. Brighter
colors indicate a higher density of data points (linear color scale).
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Fig. 21. In the top left panel, we show a t-SNE map that was calculated
for all spectra in our data set. After constructing the t-SNE projection,
we identified the training spectra in the map. The top right panel shows
those spectra in the test set that cover the same area in the t-SNE map
as the training spectra in the left panel. This was done by limiting the
distance between training set data points and test set data points in the
t-SNE map. The test spectra that are close to the training spectra in the
map are similar to the training spectra. We call this set in the top right
panel our "inner" test set. Finally, the bottom panel shows those spectra
that are not similar to the training spectra, and their distance from the
training spectra in the map exceeds our chosen maximum distance. This
set of spectra is our "outer" test set, and we use it to test our network on
spectra which are unlike the spectra in the training set. n Figs. 22 and
23 we show sample spectra from the training set together with spectra
from the inner and outer test sets. All spectra from the areas 1, 2, and
3 of the t-SNE map are similar to each other. These spectra belong to
the training and inner test sets. Based on this spectral similarity, we as-
sume that the labels of these spectra are also similar to each other. The
labels for the test set have already been determined by GES. Therefore,
we can indeed confirm that the labels of all spectra in the top panels
of Fig. 23 are within the training set limits. The spectra a, b, c, and
d from the outer test are quite different from the spectra in the inner
set. This difference is caused by the different physical conditions in the
atmospheres of these stars. Spectrum a for example has a higher Fe
abundance than any star in the training set, the surface gravity log(g) of
spectrum b and the effective temperature of spectrum c exceed the train-
ing set limits, and the Fe abundance of spectrum d is by 0.2 dex lower
than the lowest Fe value in the training set. With this t-SNE approach,
we can therefore identify spectra that are likely to have labels that are
outside the training set limits. These spectra can then be excluded from
the further analysis, or their CNN label predictions can be flagged as
uncertain. With the given GES labels of all our sample spectra, we can
quantify the efficiency of this method: About 20% of all test spectra
have GES labels outside the training set limits. The situation improves
for our inner test set, with 12% of its spectra labels falling outside the
training limits. When we additionally require the S/N of the inner set
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to be ≥ 30 (to match the S/N range of the training set), less than 10%
of these high S/N inner set spectra have labels exceeding the training
limits. In a situation where the labels of an observed spectrum are not
yet known, we therefore recommend to check if the spectrum is similar
to the training set spectra.

The t-SNE method described above was developed in Ambrosch
et al. (2023), and has since been successfully applied to a large set
of Gaia spectra by Guiglion et al. (2024). In their study, the method
was used to classify 841300 Gaia RVS spectra into training-like and
training-unlike spectra. A table with CNN predictions for all Gaia RVS
spectra has been published, with flags that indicate if a spectrum was
similar to their training set or not.

Our full GIRAFFE test set contains 22 270 spectra, with a minimum
S/N of 10 and including spectra with different shapes than those in the
training set. The outer test set contains 3877 spectra. The inner test set
then consists of the remaining 18 393 spectra which cover the same area
in the t-SNE map as the training spectra. Of the inner test spectra, 4916
have S/N ≥ 30.

4.2 Training and testing of our CNN

4.2.1 Training of our network

At the start of the network training phase, the kernel values in the con-
volution layers, the weights for the dense layer neurons, and the bias
values are initialized randomly. Also random is the assignment of train-
ing spectra to the batches for the mini-batch training. Due to this, the
final parameter values of the trained network model, and therefore the
network output, vary slightly every time the network is trained. To ac-
count for this variation, we performed ten training runs and recorded the
results from each. We removed the two CNN models with the largest
remaining validation losses at the end of their training phase. The re-
maining eight CNN models were then used to predict the labels for the
spectra in the training, validation, and test sets. We report here the av-
erages of the eight sets of labels as our results.

The training and validation sets remained unchanged for each of the
ten training runs. We checked the label distributions for both the train-
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Figure 21: Top left panel: t-SNE map of all spectra in our GIRAFFE data set
(dark blue), containing the training set spectra (green). Extreme outlier spectra
have been removed. Top right panel: "Inner" test set, defined as the subset
of test spectra that cover the same area in the t-SNE map as the training set
spectra. Bottom left panel: Spectra in the test set that do not cover the same
area in the map as the training set. This is our "outer" test set.
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Figure 22: t-SNE map of all spectra in our data set. Colors indicate the GES
label Teff for each spectrum. The three black boxes mark areas in the map, that
contain training, validation, and "inner" test spectra (see Fig. 21). The orange
data points (a, b, c, d) mark spectra in the "outer" test set. We show these,
together with spectra from the boxes 1, 2, and 3, in Fig. 23.
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Figure 23: Sample spectra which are marked in the t-SNE map in Fig. 22. The
three top panels contain spectra from the areas 1, 2, and 3. In each of these
panels, the top spectrum is a training spectrum, the bottom spectrum belongs
to the "inner" test set. The bottom panel shows the spectra a, b, c, and d from
the "outer" test set. For display, the spectra are shifted vertically, but the flux
scale remains the same for all spectra.
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ing and validation set and found that both span the same label ranges
and are equally distributed. They also span the same area in the t-SNE
map in Fig. 21. We therefore do not expect that keeping the training
and validation sets constant will add any large uncertainties or training
biases.

In every training epoch, the loss between the GES input labels and
the CNN label predictions decreases (Fig. 24). In Fig. 25 we show the
Kiel diagram and the [Mg/Fe] and [Al/Fe] distributions which our CNN
predicts at different stages of the training phase. In early epochs, only
the basic shapes of the parameter distributions are reproduced. As the
training progresses, the finer details, which are visible in the GES input
data, emerge in the CNN predictions. We stopped the training runs
when the loss of the validation set did not decrease anymore in the last
30 training epochs.

On average, one training run lasted for 159 epochs and took ∼45
minutes to complete3. The label prediction was very fast: the parame-
terization of the ∼37 000 spectra in our data set took less than 20 sec-
onds per CNN model.

4.2.2 Training results

In Fig. 26 we show the direct comparisons between the input GES mea-
surements and the CNN predictions for the training and validation sets.
There is a good agreement between the GES measurements and CNN
predictions across all labels and for the two sets. Both the CNN pre-
dictions for the training set and validation set show the same offset (if
any) and small dispersion around the 1:1 relation. This shows that the
network performs well on spectra which it was not directly trained on
and does not overfit. The dispersion around the 1:1 relation is uniform
across most of the value ranges of all five labels. We use the disper-
sion of the training set as a measure for the training precision of our
network: The training precision is 37 K for Teff, 0.06 dex for log(g),
0.05 dex for [Mg/Fe], 0.06 dex for [Al/Fe], and 0.04 dex for [Fe/H].
However, our CNN does not accurately reproduce the highest and low-
est GES measurements. This is especially clear in the case of [Al/Fe],

3On a desktop PC, using only CPU (Intel Core i7-9700 CPU @ 3.00 GHz × 8)
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Figure 24: Evolution of the training and test losses during the network training
phase. The loss of the test set is closely following the training loss. The small
difference between training and test sets at the end of the training phase shows
that the network is not over-fitting.

where the CNN predictions overestimate the lowest [Al/Fe] measure-
ments by ∼0.5 dex, while the highest values are underestimated by the
same amount. We explain this behavior by noting that only a few spec-
tra with these extreme measurements were available for the network
training. The CNN therefore predicts more moderate labels for these
spectra.

4.2.3 Performance on the test sets

To evaluate the ability of our network to parameterize new spectra, that
have not been involved in the training process at all, we compare the
GES input labels to the CNN predictions for three different test sets.
The definitions of our inner and outer test sets are given in Sect. 4.1.3.
The top row of Fig. 3 shows the GES input to CNN output comparison
for the inner test set spectra with S/N ≥ 30. In this subset, 90% of the
GES labels lie within the training limits. Most of the remaining 10% of
spectra are outside the [Mg/Fe] and [Al/Fe] limits. The reason for this
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Figure 25: Progress of the network training. Left column: Kiel diagram,
[Mg/Fe], and [Al/Fe] distributions, based on the GES input labels for our train-
ing and validation sets. Other columns: CNN predictions for the different label
distributions after 1, 10, and 150 training epochs. The color-coding of the Kiel
diagrams indicates the [Fe/H] values of each data point and is on the same
scale as in Fig. 19. Brighter colors in the [Mg/Fe] and [Al/Fe] density plots
indicate a higher density of data points (linear color scale).
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lies in the way we find our inner test set. This set contains only stars that
occupy the same area in a t-SNE map as the training spectra (Fig. 21).
The shape of a spectrum, and therefore its position in the t-SNE map,
depends strongly on the labels Teff, log(g), and [Fe/H], while changes
in [Al/Fe] only have a small effect on the overall spectrum. The same
is true for [Mg/Fe], but to a lesser extent. This is because there are
more Mg absorption lines than Al lines in our sample spectra (Heiter
et al. 2021b). The accuracy of the network predictions starts to degrade
with the low S/N inner test set (middle row of Fig. 3). This set contains
spectra that are similar to the training spectra but have lower S/N (we
remind that the minimum S/N of the training spectra is 30). The low
S/N inner set contains more spectra that are outside the training limits.
It is clear that our CNN cannot accurately parameterize spectra whose
GES labels lie outside the training set range. The bottom row shows
the results for the outer test set. Network predictions for this set are
increasingly inaccurate, even for spectra inside the training set limits.
The difference between GES input and CNN output for the outer test
set is most prominent in [Al/Fe] and [Fe/H], where extremely low and
high GES labels are not accurately predicted by our network.

The comparison of the CNN predictions for the different test sets
highlight the importance of pre-selecting spectra that are likely to fall
within the training set limits. Network predictions for spectra that are
dissimilar to the training spectra or have lower S/N are likely to be in-
accurate.

4.2.4 Estimation of internal precision

As described, the label predictions from our eight trained CNN models
vary slightly. This variation can be used to estimate the internal pre-
cision of our methodology. We define the internal uncertainty of our
results as the dispersion between the label predictions from the eight
CNN models. In Fig. 28 we display the distribution of the internal un-
certainty of our five labels relative to the predicted label values and to
the spectra S/N. This analysis is done for both the inner test set with
S/N≥ 30, the inner test set with S/N < 30, and for the outer test set. The
boxplots show the spread and median of the uncertainties in S/N bins
of size 10, for the entire test set. Where S/N ≥ 30, the uncertainties are
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small, with near constant median and spread across all bins. Towards
lower S/N, both the median uncertainty and the spread in the bins in-
crease. The mean uncertainties of the label predictions for the high S/N
inner test set are small: 27 K for Teff, 0.04 for log(g), and 0.03 dex for
[Mg/Fe], [Al/Fe], and [Fe/H] alike. The GES label errors for this set
show little to no dependence on the absolute label value and S/N. Their
mean values are 63 K for Teff, 0.15 for log(g), 0.22 dex for [Mg/Fe],
0.19 dex for [Al/Fe], and 0.18 dex for [Fe/H].

The CNN predictions with large uncertainties for one label also
show large uncertainties for all other labels, while precise predictions
are precise across all five labels. The internal precision of our Teff and
log(g) is highest where the training set density is highest. For Teff this
is the case between ∼ 4500 and 5775 K, for log(g) at ∼ 2.5 and 4.5 dex.
Here, the uncertainties of the predictions for these two labels is lowest.
Except for [Fe/H], the precision of the abundance predictions show no
clear trends with the absolute label value. For [Fe/H], the uncertainty
increases with lower [Fe/H] abundances. This is presumably due to the
smaller number of stars in the metal-poor regime compared to the main
bulk of the sample. Also, our CNN struggles to provide precise predic-
tions due to the weak spectral features present in this [Fe/H] regime. We
find that the uncertainties of the predictions for all five labels increase
as the S/N of the spectra decreases.

The mean prediction uncertainties for the low S/N inner set and for
the outer set are higher than for the high S/N test set. Precision for these
sets also show strong trends with the absolute label value, especially for
Teff and [Fe/H].

We also tested how the uncertainty distributions change when we
change the composition of the training and test sets for every training
run. The resulting label uncertainties are similar to the uncertainties
from our original approach. We leave the detailed investigation of the
effect of varying train and test sets for future work.

4.2.5 Influence of radial velocity errors

As described in Sect. 4.1.1, we use the radial velocity of the stars for
the redshift correction of the input spectra. Within GES, the radial ve-
locities were measured by comparing the redshifted observed spectra
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Figure 28: Internal precision of our CNN results for the inner test set with
S/N ≥ 30 (light blue), with S/N < 30 (dark blue) and the outer test set (red).
The left panels show the internal precision relative to the absolute CNN label
values, the right panels show the precision relative to the spectra S/N. The box
plots in the right panels show the median and spread of the uncertainties of the
whole test set, in S/N bins of width 10, starting at S/N = 10.
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to unshifted synthetic spectra (Gilmore et al. 2022). The velocities are
measured from each GIRAFFE setup and then homogenized to pro-
vide one value for every star. We tested how uncertainties in the pro-
vided radial velocities for the HR15N spectra influence the accuracy
of the CNN predictions of the labels Teff, log(g), [Fe/H], and A(Li).
In Fig. 29, we show the difference ∆ between the CNN label predic-
tions for the HR15N test set and the GES input labels for these spectra.
The data points in this figure are color-coded by the provided error of
the radial velocity (E_Vrad) of these spectra. We see that the disper-
sion of ∆ increases for all four labels, when the E_Vrad increases. The
bias (average difference ∆) also increases with the uncertainty. This is
most pronounced for the labels Teff and [Fe/H]. Most of our stars with
E_Vrad > 0.5 km s-1 are hotter than 5200 K. Measuring the radial ve-
locity from GIRAFFE spectra becomes increasingly difficult for stars
hotter than ∼5500 K, because of a lack of strong absorption lines in hot
stars (Jackson et al. 2015).

We demonstrated that minor changes in input data wavelengths can
significantly impact machine learning pipelines. For forthcoming sur-
veys like 4MOST and WEAVE, accurate radial velocity estimation be-
comes crucial, given the extensive adoption of machine learning tech-
niques due to increased observation volumes.

4.3 What does the network learn?

The purpose of the convolution layers in our CNN is to find spectral
features. These spectral features are then interpreted into the labels by
the dense layers. This approach is also used by classical spectral clas-
sification methods, where individual spectral features are investigated
to derive the stellar parameters. However, since machine–learning is
purely data-driven, the predictions of our CNN could merely be the re-
sult of our network learning correlations between labels in the training
data. Inferring stellar parameters from correlations like these can lead
to satisfying results for some spectra. Stars with exotic chemical com-
positions (for example stars with a non-solar mixture of elements, such
as old thick disk stars) do not follow such trends and will not be param-
eterized well. This effect can be demonstrated by attempting to infer Li
abundances from spectra that do not contain any Li absorption features.
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Figure 29: Difference ∆ between CNN and GES labels as a function of GES
labels for the HR12N test set. The stars are color-coded according to their
radial velocity uncertainties. For each label, the bias = mean(CNN−GES) and
σ = std(CNN−GES) in the four uncertainty bins are given. Figure from Nepal
et al. (2023).

75



To this end, we trained a CNN on GIRAFFE HR15 spectra, where the
Li line at 6707.8 Å has been masked out, with the training labels Teff,
log(g), [Fe/H], and A(Li). Due to the lack of Li features in these mod-
ified training spectra, the network can only learn the astrophysical cor-
relation between the input labels Teff and A(Li). The A(Li) predictions
of the so-trained CNN follow the general 1:1 relation when compared
with the input A(Li) from GES iDR6 (Fig. 30). However, in addition to
the large scatter of ∼0.5 dex, this version of the network fails to predict
the high Li abundances of several stars. These stars are Li-rich giants,
whose Li abundance does not follow the common Li-Teff correlation.
Without knowledge about the Li absorption line, the network cannot
predict accurate Li abundances for these exotic objects. Individual el-
emental abundances can also be correlated. Magnesium and aluminum
abundances for example are correlated with the iron abundance: Stars
with low iron generally show low abundances of Mg and Li as well.

We therefore want to show that our CNN is indeed able to identify
spectral lines and to associate them with the right labels.

To visualize where our CNN is active for a given label, we computed
sensitivity maps using GradientTape from TensorFlow. In general, our
CNN behaves like a function that maps input pixels in stellar spectra
to the output label values. This mapping is differentiable, which means
that the influence of every input pixel for the resulting label predictions
can be quantified. Using automatic differentiation, one can compute the
gradients, ∂ Label / ∂ λ , i.e., the sensitivity of the CNN to each pixel
for every label. A large absolute gradient value at a wavelength bin then
means that the network prediction for a given label is very sensitive to
flux changes in that bin. In Fig. 4 we show the network gradients for our
five labels across the whole wavelength range of the input spectra. The
gradients are scattered randomly around zero for most of the wavelength
range. Only at certain wavelength bins, the network is sensitive to flux
changes. Here, the gradients show individual, narrow spikes. This is es-
pecially apparent in the gradients for [Mg/Fe] and [Al/Fe] in the HR21
part of our input spectra. The [Mg/Fe] gradients show two clear spikes
at 8736.0 and 8806.8 Å. These are the locations of two Mg I absorption
lines. The largest spike in the [Al/Fe] gradients mark the location of
the Al I double feature at ∼8773 Å. These Mg and Al lines were used
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Validation set

Figure 30: CNN vs. GES-iDR6 A(Li) for the CNN that has been trained on
spectra with a masked 6707.8 Å Li line. Blue and orange represent train and
validation sets, respectively. The dashed line shows the 1:1 relation, and two
dotted lines are at ±0.5 dex. The red ellipse shows the Li-rich giants, whose
high input Li abundance has been miss-predicted by the network. Figure from
Nepal et al. (2023).
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by GES for the determination of our input Mg and Al abundances. The
gradients for Mg and Al also show spikes at the locations of the other
absorption lines of these elements. Their precise wavelengths in the
HR10 and HR21 setups are 5528.41, 8717.81, 8736.02 and 8806.75 Å
for Mg and 5557.06, 8772.87 and 8773.90 Å for Al (Heiter et al. 2021b).
We therefore see that our network can identify absorption lines in the
input spectra. The negative gradient values at these wavelengths mean
that if the flux at the absorption lines is low, the predicted abundance
is high, and vice versa. This reflects the fact that stronger absorption
features in spectra indicate higher elemental abundances in stellar at-
mospheres. Nepal et al. (2023) show analogous behavior of the CNN
gradients of a network that has been trained to predict the Li abundance
from GIRAFFE HR15N spectra. The Li gradient at the wavelength of
the 6707.8 Å Li absorption line is strong and negative, while it is close
to zero for all other wavelengths. The CNN label predictions are there-
fore directly based on the strength of the relevant absorption lines in the
input spectra.

Further investigation of our gradient peaks gives interesting insights
into the behavior of our CNN. Some spectral lines influence the network
predictions for only one of the labels. An example in the HR10 setup
is a Cr I line at ∼5410 Å, that corresponds to a peak in the gradient
for Teff. Other lines affect multiple, uncorrelated labels. For deriving
Teff and log(g), our CNN is sensitive to the Ni I line in the red end of
the HR10 setup. While this line coincides with the strongest peak in
the log(g) gradient, only a minor peak is present in the Teff gradient.
A Fe I line at ∼8805 Å is also important for both the Teff and log(g)
predictions, but not for the [Fe/H] likely due to its blend with a Mg line.

The infrared calcium triplet (the three most prominent absorption
lines in the HR21 setup) does not have a significant influence on the net-
work predictions for any of the labels, but the Ca II line beyond 8900 Å
causes a very strong response of the Teff and [Fe/H] gradients. A deeper
investigation of the CNN gradients could be done to search for comple-
mentary spectral features that could be used by standard spectroscopic
pipelines, but this is out of the scope of this thesis.

We ran several tests to investigate the effect of correlations between
the input labels in our training set. For this, we trained our CNN with
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different combinations of input labels. We found that the gradients of a
combination of Teff, log(g), and one or all abundances show no gradient
correlations. This means that the CNN mainly learns from the spectral
features. If the network is trained only with the highly correlated labels
A(Mg), A(Al), and A(Fe) (absolute abundances), the gradients for the
three labels are almost identical (Fig 32). In this case the CNN is still
able to identify the locations of the Mg, Al and Fe absorption lines, but
the network predictions for one element are also very sensitive to ab-
sorption lines of the other two elements. In addition, the quality of the
CNN predictions starts to degrade, leading to larger differences between
GES input labels and CNN predictions. This is because the network re-
lies too much on the label correlations within the training set instead of
the connection between spectral features and labels of individual spec-
tra. For future surveys, we therefore recommend to carefully inspect
the training data for strong correlations because they can influence the
CNN performance.
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Figure 31: Network gradients for our five labels as a function of wavelength
(black). The top panel shows the gradients across the GIRAFFE setup HR10,
the bottom panel shows the same for the HR21 setup. An average input spec-
trum is shown in gray as the top line in both panels. The locations of selected
absorption lines of different elements are marked with vertical colored lines.
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Figure 32: CNN sensitivity maps when trained only on the highly correlated
labels A(Mg), A(Al), and A(Fe). For clarity, this figure focuses on a wave-
length range in the GIRAFFE HR21 setup. It contains two Mg lines and the
Al double absorption line.

5 Evaluation of the CNN results

5.1 Evaluation with benchmark stars

The GES iDR6 data set contains a number of benchmark stars with
high quality spectra and precise stellar labels (Heiter et al. 2015). This
benchmark set covers stars in different evolutionary stages with a wide
range of stellar parameters and abundances, suited for the verification
and calibration of large data sets (Pancino et al. 2017b). Our data set
contains 25 benchmark stars, including the Sun. As for the rest of our
data set, the labels for the benchmark stars were determined spectro-
scopically by GES. We note that none of the benchmark stars are present
in the training or validation sample. Five of the benchmark stars are not
part of the inner test set, meaning that their spectra are different from
the training set spectra. Four of them have the lowest [Fe/H] of all
benchmark stars, the fifth is the benchmark star with the highest [Fe/H]
in our data set. The CNN predictions for these five stars do not match
the GES input values well. The CNN predictions of the remaining 20

81



benchmark stars, which are part of the inner test set, agree well with
the GES values across all five labels. The largest differences occur for
stars on the edges of the parameter space, where the network predicts
more moderate values compared to the extreme GES values. An exam-
ple is HD 49933, the benchmark star with the highest Teff, for which our
network predicts ∼350 K less than what is reported by GES. This star
stays one of the hottest in our benchmark set, even with this reduction in
Teff. Despite the large difference in one label, the CNN predictions for
the other labels of HD 49933 agree well with the GES measurements.
The label-specific bias and scatter between GES and CNN labels for
the benchmark stars in the inner test set is comparable to the bias and
scatter that we found for the training and validation sets in Fig. 26.

The CNN predicts similar label values for repeat spectra of our
benchmark stars, oftentimes predicting identical labels for multiple re-
peats. The dispersions between repeated label predictions can be inter-
preted as the uncertainties of the CNN results. These CNN uncertainties
are within the GES label uncertainties for the benchmark stars.

We conclude that our CNN can accurately predict multiple labels of
individual stars, if their spectra are similar to the training set spectra.
However, the most extreme CNN results should be used cautiously be-
cause they are likely to underestimate high values and overestimate low
values.

5.2 Network predictions for globular clusters

Our data set includes stars that belong to several globular clusters. We
identified member stars of five separate clusters based on their posi-
tion in the sky and their scatter in [Fe/H] and radial velocities that are
reported in GES iDR6. The position of the cluster members in the
[Mg/Fe] and [Al/Fe] plots is displayed in Fig. 34. The CNN predictions
reproduce the grouping of cluster members in the plots, with a small
spread of [Fe/H] within each cluster. However, the CNN predictions
show a smaller scatter in [Element/Fe] compared to the GES values,
especially for Al. This reduced scatter reflects the results that we saw
in Figs. 26 and 3, where the CNN predicts more moderate labels for
spectra with extreme GES labels.

Our CNN results recover the Mg-Al anti-correlation, which is used
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Figure 33: Comparison of GES input labels with CNN predictions for the
benchmark stars. Red data points represent benchmark stars that are in the
outer test set. Blue data points are benchmark stars in the inner test set and
have S/N ≥ 30. Different data point sizes have no physical meaning and are
for visualization purposes only.
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Figure 34: [Mg/Fe] and [Al/Fe] vs. [Fe/H] plots for stars in the training, val-
idation, and test sets. The panels on the left show the distributions of the
GES iDR6 values, the panels on the right are the predictions of the trained
neural network. Cluster membership is indicated by differently colored data-
points.
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Figure 35: Mg-Al anti-correlation plots for three of our sample clusters with
decreasing cluster metallicity. Colored data points show the labels predicted by
the CNN; black points are the GES results. The color for the different clusters
is the same as in Fig. 34. Average uncertainties of the GES results are shown
in the lower left corner.

to investigate the chemical evolution of globular clusters (Pancino et al.
2017c). Figure 35 shows the Mg-Al anti-correlation in the clusters
NGC 6752, NGC 6218, and NGC 1851. The average [Fe/H] values of
these three clusters span a range of ∼0.5 dex. We see that the match be-
tween GES input and CNN output is improving with increasing cluster
[Fe/H]. The cluster NGC 6752 contains stars with [Fe/H] values at the
lower edge of the training set limit, where the density of training spectra
is low. The density of the training set increases with [Fe/H], which leads
to better CNN predictions for the cluster stars. Except for the two stars
with the lowest [Al/Fe], all CNN predictions for the NGC 6218 agree
with the GES results within their reported uncertainties. For NGC 1851,
which has the highest average [Fe/H] value among the clusters in our
sample, we observe a good match between the Mg-Al anti-correlation
as measured by GES and our predicted anti-correlation.
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5.2.1 NGC 1851 revisited

Here we investigate in more detail the CNN predictions for the globular
cluster NGC 1851 and compare the results to what was found for this
cluster in Sect. 2. The predicted [Fe/H] of the 20 cluster stars in our
CNN sample spans a range of ∼0.2 dex. As already seen in Fig 34, and
shown in more detail in Fig. 36, the [Al/Fe] of the stars in this cluster is
quite varied.

There are two stars whose [Fe/H] is about 0.1 dex larger than the
cluster mean of −0.92 dex. The predicted [Al/Fe] values of these two
more metal-rich stars are 0.43 and 0.53 dex. Their average is 0.35 dex
larger than the average predicted [Al/Fe] of the remaining, more metal
poor stars (0.13 dex). The spread of [Mg/Fe] of the cluster shows little
variance across the whole [Fe/H] range. This observation is comparable
to what was found in Section 2 when analyzing NGC 1851 member stars
with classical spectroscopic methods. There, the average [Al/Fe] value
of the metal-rich cluster subpopulation is by 0.21 dex larger than the
average of the metal-poor population. The average [Mg/Fe] values of
both populations are within 0.01 dex (see the bottom panel of Fig. 36
and Table 1).

Our CNN sample has only one star in common with the cluster sam-
ple from Section ?? (CNAME 05134740-4004098). This star’s CNN
predictions for [Mg/Fe], [Al/Fe], and [Fe/H] are given in Table 5, to-
gether with the corresponding values from Section 2. The common star
is part of our training set, and in Table 5 we also list its GES input values
for the network training.

We remind here that the abundance values from Section 2 are from
the 4th internal data release of the Gaia-ESO survey, obtained from

Table 5: CNN predicted values of the labels [Mg/Fe], [Al/Fe], and [Fe/H] for
the common star 05134740-4004098, together with its corresponding values
from Section ?? (GES iDR4) and the training input values (GES iDR6).

[Mg/Fe] [Al/Fe] [Fe/H]

CNN 0.27 0.43 -0.84
GES iDR4 (UVES) 0.23 0.50 -0.92
GES iDR6 (GIRAFFE) 0.23 0.40 -0.88
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Figure 36: Top: Detailed view of the CNN predicted [Mg/Fe] and [Al/Fe]
vs. [Fe/H] distributions of 20 stars in the cluster NGC 1851. Bottom: The
same but for the sample of 45 cluster members from Section 2. The metal-rich
population is shown in blue, the metal-poor one in red (compare to Fig. 7). In
both subplots, results for the common star 05134740-4004098 are marked by
a black circle.
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spectra by the UVES spectrograph. Our training data is from the 6th
internal Gaia-ESO data release and is based on spectra from the GI-
RAFFE spectrograph. As seen in Table 5, the CNN predictions agree
quite well with the classically obtained results from both GES iDR4 and
iDR6 data releases.

We conclude that our CNN is able to qualitatively reproduce the Mg
and Al results that we found for the cluster NGC 1851 in Section 2.
However, we only have CNN predictions for 20 cluster members. A
detailed chemical study of the cluster would benefit from a larger sam-
ple. For a thorough separation of the cluster stars into chemically dis-
tinct subpopulations, abundance predictions for additional chemical el-
ements (for example several s-processed elements and nitrogen) would
be necessary.

5.3 Thin and thick disk populations

As discussed in Sect. 4.1.2, [Mg/Fe] values can be used to separate the
Milky Way stars into a thin disk and a thick disk population. We per-
formed this separation based on our CNN results for the inner observed
set with S/N ≥ 30 in combination with the training and test sets. We
also attempted to perform the separation for the combination of the low
S/N inner observed set and outer observed set. The top panel of Fig. 37
shows the distribution of [Mg/Fe] vs. [Fe/H] for the CNN predictions
for the low S/N set plus the outer observed set. We can see that the stars
are not separated into the two distinct thin and thick disk populations.
The CNN predictions for both [Mg/Fe] and [Fe/H] are strongly clus-
tered around the label averages, and it is not possible to clearly separate
the stars into a thin and thick disk population. The bottom panels show
the same plot for the inner observed set with S/N ≥ 30 plus the test set.
Here we can see the separation between the two disks: Thin disk stars
with [Mg/Fe] lower than ∼0.2 dex and thick disk stars with enhanced
[Mg/Fe]. To identify the thick and thin disk stars, we used the clustering
algorithm HDBSCAN (Campello et al. 2013), which is implemented in
the hdbscan library for Python programming. This algorithm assigns
data points to different clusters, depending on the density of data points
in a distribution. Two clusters are identified that correspond to the two
stellar populations, as displayed in the two panels of Fig. 37. About
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35% of the stars do not fall into any of the two clusters. Stars out-
side the two dense regions in the distribution are considered "noise" by
the HDBSCAN algorithm and are not assigned to any cluster. In the
literature, the chemical separation between thin and thick disk is of-
ten performed by splitting the distribution into several [Fe/H] bins and
finding the [Mg/Fe] value in each bin where the density of stars is at
a minimum (e.g. Adibekyan et al. 2011, Mikolaitis et al. 2014). An-
ders et al. (2018) use a sophisticated t-SNE approach to identify the
different stellar populations. They include abundances measurements
from 13 chemical elements to further dissect the thin and thick disk into
additional subpopulations.

To investigate the age distributions of the two populations, we used
the isochrone fitting code A Unified tool to estimate Distances, Ages
and Masses (UniDAM). The UniDAM tool (Mints & Hekker 2017)
follows a Bayesian approach of isochrone fitting. It compares stellar
atmospheric parameters and absolute magnitudes from simulated PAR-
SEC isochrones (Bressan et al. 2012) to the corresponding values in
observed stars. All PARSEC isochrones also have stellar masses and
ages associated with them. For the isochrone fitting we used the CNN
predictions for the atmospheric parameters Teff and log(g) in combi-
nation with [Fe/H]. Magnitudes of our sample stars in the J, H, and K
bands were taken from the 2MASS catalog (Skrutskie et al. 2006). For
UniDAM to calculate the absolute magnitudes, it is also necessary to
provide the parallax value for each sample star. We used the parallaxes
from Gaia EDR3 (Gaia Collaboration 2020). We removed stars with
negative parallaxes as well as stars with relative parallax errors > 0.2.
To get the most precise age estimates, we only considered turn-off stars
in this analysis. Turn-off stars in our thin and thick disk samples were
selected by their position in the Kiel-diagram. The resulting average age
of the thin disk stars is 8.7 Gyr, the average thick disk age is 9.7 Gyr.
This age difference between the two populations has been found in nu-
merous studies and by using several age determination methods. Kilic
et al. (2017) for example, find ages from 7.4–8.2 Gyr for the thin disk
and 9.5–9.9 Gyr for the thick disk by analyzing luminosity functions
of white dwarfs in the two disks. Using APOGEE spectra and precise
age estimates based on asteroseismic constraints, Miglio et al. (2021)
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Figure 37: Top panels: Density map of the [Mg/Fe] vs. [Fe/H] distribution
of our CNN results for the stars in the validation set and inner observed set
with S/N ≥ 30. Thin and thick disk populations found by the HDBSCAN
algorithm are shown at the bottom. The two populations correspond to the two
dense regions in the panel above. Bottom panel: Same density map as above,
but for stars in the low S/N inner + outer test sets. Brighter colors indicate a
higher density of data points (linear color scale).
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also show that the chemically selected thick disk stars are old, with a
mean age of ∼11 Gyr. We note that the detailed age distribution of thin
and thick disk members is sensitive to several selection criteria such as
metallicity, kinematic properties, and the distance from the Milky Way
center. A detailed investigation of the two stellar populations is out of
the scope of this work.

We also investigated the kinematic properties of our thin and thick
disk samples. Based on the current positions and velocities of the stars,
we integrated their orbits for 5 Gyr in a theoretical Milky Way poten-
tial, using the Python-based galactic dynamics package galpy (Bovy
2015). For the integration we used the gravitational potential MWPo-
tential2014, which combines bulge, disk, and halo potentials. Proper
motions, sky coordinates and parallaxes of our sample were taken from
the Gaia EDR3. In Fig. 38 we show the trends of the orbital eccentrici-
ties relative to [Fe/H] for our thick and thin disk stars. A linear regres-
sion model shows that the eccentricity e of thick disk orbits is decreas-
ing with increasing [Fe/H]: ∆e/∆[Fe/H] = −0.25. The eccentricities of
thin disk stars are on average lower than the thick disk eccentricities
and show a slight positive trend (∆e/∆[Fe/H] = 0.02). These results are
consistent with the findings of Yan et al. (2019), who investigated the
chemical and kinematic properties of thin and thick disk stars from the
LAMOST data set (Zhao et al. 2012).

5.4 Discovery of 31 new lithium-rich giants

The training set of HR15N spectra with labels, which was used to train
the CNN from Nepal et al. (2023) to predict Li abundances, contains
38 Li-rich giants (log(g < 3.5 and A(Li) > 2). When considering that
the same training set contains ∼2500 giant stars in total, it becomes
apparent that Li-rich giants are rare objects. Standard stellar evolution
models (for example, from Lagarde et al. 2012) predict that an initial
stellar A(Li) value of 3.3 dex decreases during the star’s lifetime to be-
low ∼1.50 dex. This reduction is predicted to happen mostly during and
after the first dredge-up. In this mixing event, Li is transported from the
stellar atmosphere into the center of the star, where it is destroyed by
nuclear reactions. The existence of Li-rich giants implies the existence
of one or several mechanisms that increase the stellar Li abundance
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Figure 38: Eccentricities of stellar orbits as a function of [Fe/H] for our thick
disk and thin disk samples. Black lines show linear fits to the thick disk
(dashed) and thin disk data points (solid).

again after this depletion event. Cameron & Fowler (1971) propose
a Li-enrichment mechanism in which, in a first step, Be7 is produced
in the stellar interior. Convection and non-standard mixing processes
then rapidly transport the Be7 to the stellar surface, where it decays to
Li7. External enrichment mechanisms have also been proposed, includ-
ing planet engulfment and mass-transfer from a Li-rich companion star.
The review by Casey et al. (2016) provides an overview over currently
discussed Li-enrichment processes in giant stars.

We report here the discovery of 31 previously unidentified Li-rich
giants as a result of our CNN predictions. These 31 new Li-rich giants
are part of the test set from Nepal et al. (2023) and miss one or multiple
labels (Teff, log(g), [M/H], or A(Li)) in the Gaia-ESO iDR6 data set.
All of these giants have A(Li) > 2 dex, log(g) < 3.5, and Teff < 5500 K.
The S/N of their specra is > 25 and the internal CNN uncertainties of
their label predictions are < 50 K for Teff, and < 0.1 dex for log(g),
[M/H], and A(Li). None of these 31 stars have been reported as Li-
rich giants in any previous Gaia-ESO papers. A search in the GALAH
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survey catalog of Li-rich giants in the southern hemisphere Martell et al.
(2021) also found no match with any of our newly discovered objects.
We list our found Li-rich giants with their predicted labels in Table 6.
Figure 5 shows the position of the found Li-rich giants together with
label predictions for the stars from the above-mentioned training set.
The giant branch of the Kiel diagram contains 67 Li-rich (A(Li) > 2 dex)
in total, 38 of these are included in the training set.

Despite their rarity, Li-rich giants are believed to play an impor-
tant role in the Li-enrichment of the interstellar medium (Romano et al.
2001). Studying these stars can therefore provide important insights
into the formation and enrichment history of the Milky Way galaxy. Up
to now, ∼11 000 Li-rich giants have been found (Hong-liang & Jian-
rong 2022). This number is expected to grow considerably with the
upcoming large-scale spectroscopic surveys. Machine-learning meth-
ods like our CNN will be key in the search for the Li-rich giants and
other rare objects.
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Table 6: Gaia-ESO CNAMES of our 31 discovered Li-rich giants and their
label predictions for Teff (K), log(g) (dex), [M/H] (dex), and A(Li) (dex). The
stars are sorted by descending A(Li).

CNAME Teff log(g) [M/H] A(Li)

07434938−3841399 4841 2.84 −0.31 3.88
10495937−6345553 4805 2.72 −0.16 3.83
07464933−3750081 4948 2.9 −0.20 3.62
08064077−4736441 4797 2.66 −0.10 3.56
16271097−2455213 4920 2.82 −0.45 3.55
06410348+0905141 5071 3.13 −0.18 3.50
07493206−3759457 4799 2.69 −0.24 3.48
10430727−6456318 4619 2.47 −0.16 3.43
08110435−4853491 4831 2.68 −0.30 3.42
10400095−6419586 4525 2.34 0.01 3.29
08084532−4701292 4836 2.74 −0.19 3.26
07462219−3712141 4862 2.82 −0.20 3.22
06273069−0440141 4714 2.53 −0.68 3.21
08512566−4135067 4331 2.20 0.23 3.15
08102172−4845417 4514 2.36 −0.06 3.14
06255393−0457404 4981 2.93 −0.29 3.03
08083354−4711111 4441 2.31 0.10 3.00
07442999−3812166 4857 2.65 −0.24 2.98
10350175−6405092 4469 2.35 0.11 2.88
07475310−3733040 4853 2.80 −0.21 2.86
10483936−6327542 4383 2.21 0.08 2.74
10420066−6421333 4397 2.22 0.08 2.73
11130526−7617396 4815 2.67 −0.32 2.73
11123294−7727006 4315 2.31 0.16 2.61
10575316−7634459 4858 2.70 −0.21 2.42
07472841−3850499 5276 3.47 −0.12 2.35
10513847−6335341 4352 2.24 0.31 2.29
07472390−3856376 5049 2.93 −0.24 2.27
06272996−0518528 4522 2.44 −0.02 2.20
08075108−4744027 4719 2.57 −0.13 2.19
07483625−3724338 4939 3.01 −0.15 2.03
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Figure 39: Kiel diagram of the training set stars from Nepal et al. (2023) and
the 31 discovered Li-rich giants as larger data points with black edges. The
data points are color-coded according to their lithium abundance. The label
values are CNN predictions.
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6 Caveats of the CNN method

During the network training, the GES input labels are considered to
provide the true parameterization of the training spectra. The quality
of the network predictions therefore depends entirely on the quality of
the training data. We limited the uncertainties and errors in our train-
ing data by applying several quality constraints (Sect. 4.1.1), but there
is still a possibility that the input labels may suffer from systematics.
Inaccurate labels of a few input spectra will not have a noticeable ef-
fect on the training process. The cases with a large difference between
GES input value and CNN prediction could therefore be the result of
the network predicting accurate labels for spectra with inaccurate GES
labels. Future work could investigate if and how CNNs can be used for
the quality control of classically derived stellar parameters. Future sur-
veys should also take care of including proper 3D and NLTE modeling
when deriving atmospheric parameters and chemical abundances.

We estimate the internal uncertainties of our network predictions by
training multiple CNN models on the same data. These uncertainties,
however, do not consider the uncertainties of the training labels them-
selves. Bayesian deep learning frameworks account for both the train-
ing data uncertainties and model uncertainties (Kendall & Gal 2017).
Future work could benefit from implementing this Bayesian approach
into our CNN method.

The predictive power of our CNN is limited by the sparse training
data that is available at the edges of the parameter space (Sect. 4.2.2).
A more homogeneous coverage of the parameter space, achieved by in-
creasing the number of training spectra with extreme parameter values,
will increase the precision of the CNN predictions. In this way, the
training sample is proactively built instead of relying on an existing set
of labels.

During the training phase, our CNN not only learns the correlations
between spectral features and stellar labels but is also sensitive to cor-
relations within the training labels themselves. The effect of this is
discussed in Sect. 4.3, where we see for example how the strength of
Mg absorption lines also influences the network predictions for [Al/Fe].
These correlations can never be avoided when training the network to
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predict multiple abundances at once. The alternative then is to train
a separate network model for each abundance label. This strategy de-
creases the efficiency of the CNN approach, especially when the goal
is to predict abundances of many chemical elements. Therefore, care
should be taken to reduce the correlations in the training data without
sacrificing the ability of the network to predict multiple labels at once.

97



7 Summary and conclusions

Here we summarize the main results of this thesis and the steps carried
out to find these results.

• We investigated spectra of 45 red giant stars in the globular clus-
ter NGC 1851 with classical spectroscopic methods. Stars in this
cluster can be separated into two subsamples, with a difference
of 0.07 dex in their mean metallicity. The subsamples also dif-
fer in their mean carbon-to-nitrogen ratios and abundances of the
s-processed neutron-capture elements Y, Zr, Ba, La, Ce, and Nd.
The average difference of these s-processed elements in the two
subpopulations is 0.35 dex. We found no notable distinction in
the average abundance-to-iron ratios of carbon, europium, α- and
iron-peak elements. Analysis of the C, N, and O abundances in the
cluster stars shows that the metal-rich subpopulation is ∼0.6 Gyr
older than the metal-poor one.

• We built a training and a test set based on GES iDR6 spectra with
S/N ≥ 30. Together, these sets consist of 14 634 stellar spec-
tra with associated atmospheric parameters and chemical abun-
dances. We applied several quality checks on these sets to ensure
that our network is trained on high quality spectra and stellar la-
bels. We use the parameters Teff and log(g) and the abundances
[Mg/Fe], [Al/Fe], and [Fe/H] as the input labels for our neural net-
work. We also built an observed set of 22 270 spectra to test the
performance of our CNN on spectra that were not involved in the
training process.

• We used t-SNE to identify observed spectra that are similar in
shape to the training set spectra. In this way we can identify spec-
tra that are likely to have labels within the training label range,
without relying on their GES labels. Less than 10% of the ob-
served spectra that are similar to the training set spectra in shape
and S/N range have GES labels outside the training set limits. This
pre-selection step is important because neural networks are not
able to accurately predict labels outside the training range.
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• We then built a convolutional neural network with the Python-
based library Keras. Our network architecture contains three con-
volutional layers, designed to detect features and absorption lines
in input spectra. Three succeeding dense layers then convert the
found spectral features into the values of the five output labels.
We performed ten training runs, resulting in ten slightly different
CNN models. We used the eight best CNN models to predict the
labels of the training, test, and observed set spectra.

• On average, one training run took ∼45 minutes to complete on
a desktop PC, using only CPU. Label prediction with our trained
network is very fast: the parameterization of the ∼35 000 spectra
in our data set took less than 20 seconds per CNN model.

• The CNN label predictions for the training and test sets agree well
with the GES input labels. The bias (average offset) and scat-
ter between CNN and GES labels are identical for the training
and test sets, showing that our CNN is not over-fitting during the
training. We use the scatter between GES input and CNN out-
put for the training set as a measure for the training precision of
our network: The training precision is 37 K for Teff, 0.06 dex for
log(g), 0.05 dex for [Mg/Fe], 0.08 dex for [Al/Fe], and 0.04 dex
for [Fe/H]. The results for the pre-selected observed set, with sim-
ilar spectral shape and S/N range as the training set, are also in
good agreement with the GES input values, albeit with a larger
scatter between CNN and GES values. We find that the quality of
the CNN results degrades for spectra with S/N < 30, especially for
abundance predictions. Observed spectra that are different from
the training set spectra are not parameterized accurately. We warn
the community that machine–learning on low-S/N spectra may
not be sufficient for deriving precise enough abundances. Surveys
should therefore gather spectra with high-enough S/N (depending
on their science goals).

• All sets of spectra have in common that the differences between
CNN predictions and GES values increase at the edges of the pa-
rameter space. At the edges, the number of available training
spectra is small. Increasing the number of training spectra in these
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parameter regimes would increase the accuracy (mean bias) of the
CNN predictions, as well as precision as the number of sample
observations increases.

• The scatter between the predictions from the eight different CNN
models can be used to assess the internal precision of our network.
This scatter is small: On average 27 K for Teff, 0.04 for log(g),
and 0.03 dex for [Mg/Fe], [Al/Fe], and [Fe/H] alike. However,
the mean scatter may overestimate the precision of our network
predictions. We find that the uncertainties increase at the edges of
the parameter space. The uncertainties also increase as the spectra
S/N decreases. Therefore, the spectra S/N and the position of the
predicted labels in the parameter space should also be considered
when estimating the label precision for individual spectra.

• We use network gradients to demonstrate the sensitivity of our
network to different parts of the input spectra. The gradients show
that the network can identify absorption lines in the input spectra
and associates those lines to the relevant stellar labels. Caution
should be applied when choosing input labels, because strongly
correlated input labels lead to strongly correlated network gradi-
ents. The network then predicts labels based on unrelated spectral
features (for example, absolute Al abundance from Mg absorption
lines). Inferring stellar parameters from correlations like these can
lead to satisfying results for some spectra. However, stars with ex-
otic chemical compositions will not be parameterized well.

• The validation of our results with 25 GES benchmark stars shows
that our CNN can precisely predict labels for individual stars over
a large range of label values. Network predictions for repeat spec-
tra of the benchmark stars show a small scatter per star. This scat-
ter is within the GES uncertainties for the benchmark star labels.

• We investigated the Mg-Al anti-correlation in globular clusters,
ranging from −0.92 to −1.40 in metallicity. In the most metal-
poor regime, where our training set contains only a few stars, our
CNN mainly recovers the Al spread in the clusters. The match
between GES Mg-Al anti-correlation and CNN anti-correlation is

100



improving for clusters with higher [Fe/H], where the training data
is denser.

• Our CNN is able to qualitatively reproduce the Mg and Al results
that we found for the cluster NGC 1851 in Section 2. A detailed
chemical study of the cluster would benefit from a larger sample.
For a thorough separation of the cluster stars into chemically dis-
tinct subpopulations, abundance predictions for additional chemi-
cal elements (for example several s-processed elements and nitro-
gen) would be necessary.

• We found 31 previously unidentified lithium-rich giants in the
Gaia-ESO iDR6 data set by training a convolutional neural net-
work to predict Li abundances. The predicted A(Li) of all of these
giants exceeds 2 dex, their log(g) is lower than 3.5 dex. The pre-
cision of the network label predictions for these 31 stars is high,
with eTeff < 50 K and elog(g), e[M/H], and eA(Li) < 0.1 dex.
None of these 31 Li-rich giants have previously been reported in
any Gaia-ESO paper, and they do not appear in the GALAH sur-
vey catalog of Li-rich giants in the southern hemisphere. Lithium-
rich giants are rare. Machine learning methods will play a crucial
role in finding these objects in the observations of the upcoming
large-scale spectroscopic surveys.

101



8 Acknowledgements

Here I would like to express my gratitude towards those who have made
my PhD studies a joyful experience. First to my supervisor Šarūnas,
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Santrauka (Summary in Lithuanian)

Darbo tikslai ir mokslinis naujumas

Pagrindinis šio darbo tikslas - sukurti ir apmokyti konvoliucinius neu-
roninius tinklus (convolutional neural networks - CNN)4, kurie galėtų
efektyviai ir greitai parametrizuoti didelės apimties žvaigždžių spektrų
rinkinius. Tokie tinklai vienu metu nustato pagrindinius žvaigždžių at-
mosferos parametrus ir cheminių elementų gausas. Šiuo darbu siekiama
parodyti, kad nauji mašininio mokymosi metodai yra patikimi įrankiai,
kurie padės išnaudoti visą būsimų didelio masto spektroskopinių tyrimų
potencialą. Taip pat bus parodyta, kad tinklo prognozių kokybė labai
priklauso nuo mokomųjų spektrų ir susijusių etikečių kokybės. Tink-
lo apmokymui naudojamos etiketės nustatomos klasikiniais spektros-
kopiniais metodais. Siekiant įvertinti tinklo našumą, svarbu žinoti, kaip
buvo sudarytas mokomasis rinkinys ir kokie yra jo apribojimai. Šiame
darbe sukurti metodai tobulinti remiantis ankstesniais panašiais darbais:
tinklo architektūros sudėtingumo, mokymo strategijų ir tinklo prognozių
taiklumo bei tikslumo kontekste. Šioje studijoje pademonstruota, kad
konvoliuciniai neuroniniai tinklai gali sąvarankiškai atrinkti tyrimui nau-
dojamas spektro linijas. Tinklas prognozuoja šių linijų etiketes tokiu
būdu, kuris yra intuityvus ir atitinka tokias procedūras, kokiomis kla-
sikiniais metodais analizuojami žvaigždžių spektrai. Norint nustaty-
ti chemiškai ypatingas žvaigždes, labai svarbu remtis esamais spektri-
niais požymiais, o ne vien tik numatyti astrofizikinėmis koreliacijomis
pagrįstas etiketes. Šis metodas taip pat padidina tinklo prognozių su-
pratimą.

Naujausioje literatūroje aprašoma, kad šiame darbe sukurti metodai
buvo išplėtoti taip, kad būtų galima ištirti daugiau kaip 800 000 Gaia-
RVS spektrų. Su šia disertacija susijusios publikacijos yra pasirengimas
būsimoms WEAVE ir 4MOST spektroskopinėms apžvalgoms. Šiose

4angliškų terminų vertimui į lietuvių kalbą naudotas mašininio ir giliojo mokymosi sąvokų
žodynas, inicijuotas dr. Lino Petkevičiaus iš VU Matematikos ir Informatikos fakulteto:
https://github.com/linas-p/ML-AI-2-LT
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apžvalgose bus stebima milijonai žvaigždžių, esančių visose Paukščių
Tako dalyse.
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Ginamieji teiginiai

1. Žvaigždes, esančias kamuoliniame spiečiuje NGC 1851, galima
suskirstyti į dvi grupes, kurių vidutinis metalingumas skiriasi per
0,07 dex. Šios grupės taip pat skiriasi vidutiniu anglies ir azoto
gausų santykiu bei letojo neutronų pagavimo branduolinių reakcijų
(s proceso) elementų Y, Zr, Ba, La, Ce ir Nd elementų gauso-
mis. Vidutinis šių s-proceso elementų gausų skirtumas abiejo-
se sub-populiacijose yra 0,35 dex. Nepastebėta jokių reikšmingų
skirtumų tarp vidutinių anglies, europio ir geležies piko ir α ele-
mentų gausų.

2. Naudodami neprižiūrimo mašininio mokymosi algoritmą t-SNE
galime nustatyti, ar stebėto spektro forma yra panaši į mokomo-
sios aibės spektrų rinkinį. Spektrai, kurių forma ir S/N santykis
yra panašūs į mokomojo rinkinio, CNN nustatyti rezultatai ge-
rai dera su GES vertėmis. Taip pat nustatyta, kad CNN rezultatų
kokybė pablogėja, kai spektrų S/N < 30, ypač prognozuojant ele-
mentų gausas. Spektrai, kurių forma skiriasi nuo mokomosios
aibės spektrų, parametrizuojami netiksliai.

3. Po apmokymo neuroniniai tinklai per kelias minutes gali vienu
metu įvertinti žvaigždžių atmosferos parametrus Teff ir log(g) bei
cheminių elementų gausas [Mg/Fe], [Al/Fe] ir [Fe/H] iš ∼ 35 000
žvaigždžių spektrų. Teff nustatymo tikslumas yra 37 K, log(g) -
0,06 dex, cheminių gausų - < 0,08 dex.

Šiame darbe tyrėme Mg-Al antikoreliaciją kamuoliniuose spiečiuo-
se, kurių metalingumas svyruoja nuo 0,92 iki 1,40 dex. Nemeta-
lingiausiuose speičiuose, kurių mokymo rinkinyje yra tik kelios
žvaigždės, CNN daugiausia atkuria aliuminio gausų sklaidą. GES
Mg-Al antikoreliacijos ir CNN antikoreliacijos geriau atkuriamos
metalingesniuose spiečiuose, kuriuose mokymo duomenų tankis
yra didesnis.

Remdamiesi CNN [Mg/Fe] ir [Fe/H] įverčiais savo imties žvai-
gždes suskirstėme į plono ir storo disko populiacijas. Nustatėme,
kad storojo disko žvaigždės yra vidutiniškai 1 mlrd. m. senesnės
už plonojo disko žvaigždes. Storo disko žvaigždžių orbitos eks-
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centricitetas turi neigiamą tendenciją nuo metalingmo (∆e/∆[Fe/H]
= −0,26). Šie CNN pagrįsti rezultatai atitinka panašius literatūroje
pateiktus tyrimus.

4. Apmokę konvoliucinį neuroninį tinklą nustatyti ličio gausą žvaig-
ždžių atmosferose, "Gaia-ESO iDR6" duomenų rinkinyje radome
31-ą anksčiau neidentifikuotą ličiu praturtintą raudonąją milžinę
(log(g)< 3,5 dex). Šioms žvaigždėms nustatyta A(Li) gausa virši-
ja 2.0 dex. Tinklo etikečių prognozių tikslumas šioms žvaigždėms
yra didelis: eTeff < 50 K ir elog(g), e[M/H] bei eA(Li) < 0,1 dex.
Nė viena iš šių 31 Li turtingų raudonųjų milžinių anksčiau nebuvo
aprašyta jokiame "Gaia-ESO" straipsnyje. Jų nėra ir GALAH ap-
žvalgos kataloge, kuriame aprašomos pietų pusrutulio ličiu pratur-
tintos raudonosios milžinės. Turint omenyje, kad ličiu praturtintos
raudonosios milžinės yra retos, galima sakyti, kad mašininio mo-
kymosi metodai bus labai svarbūs ieškant šių objektų būsimose
didelio masto spektroskopinėse apžvalgose.

5. CNN gradientus naudojame tam, kad pademonstruotume mūsų
tinklo jautrumą įvairiems įvesties spektro segmentams. Gradien-
tai rodo, kad tinklas sugeba panaudoti absorbcijos linijas įvesties
spektruose. Mūsų CNN susieja rastų sugerties linijų stiprumą su
atitinkamomis žvaigždžių etiketėmis. Renkantis įvesties etiketes
reikia atidumo, nes stipriai koreliuotos įvesties etiketės lemia stip-
riai koreliuotus tinklo gradientus. Tada tinklas prognozuoja etike-
tes pagal nesusijusias spektrines savybes (pavyzdžiui, absoliučią
Al gausą pagal Mg sugerties linijas). Žvaigždžių parametrus nu-
statant pagal tokias koreliacijas, kai kurių spektrų atveju galima
gauti patenkinamus rezultatus. Tačiau žvaigždžių, kurių cheminė
sudėtis yra ne tipinė, parametrai nebus gerai nustatyti.

6. Mūsų mokymo, tikrinimo ir testavimo domenų rinkiniams bendra
tai, kad skirtumai tarp CNN prognozių ir GES verčių didėja pa-
rametrų erdvės pakraščiuose. Kraštuose esančių tinklo mokymui
skirtų spektrų skaičius yra mažas. Didinant tokių spektrų skaičių
šiose parametrų erdvėse būtų galima padidinti CNN prognozių
tikslumą (vidutinį nuokrypį), taip pat preciziškumą didėjant ste-
bėjimų imčiai.
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Kelių skirtingų CNN modelių prognozių sklaida gali būti naudo-
jama mūsų tinklo vidiniam tikslumui įvertinti. Ši sklaida yra ne-
didelė: vidutiniškai 27 K, jei tai Teff, 0,04 log(g) ir 0,03 [Mg/Fe],
[Al/Fe] bei [Fe/H]. Nustatėme, kad neapibrėžtys didėja parametrų
erdvės pakraščiuose. Neapibrėžtys taip pat didėja mažėjant spekt-
ro signalo-triukšmo santykiui. Todėl vertinant atskirų spektrų eti-
kečių tikslumą, taip pat reikėtų atsižvelgti ir į spektrų S/N ir pro-
gnozuojamų etikečių padėtį parametrų erdvėje.

109



1 Įvadas

1.1 Žvaigždžių spektrų analizė taikant mašininio mokymosi me-
todus

Jau daugiau nei prieš tris dešimtmečius buvo prognozojama, kad maši-
ninis mokymasis bus naudajimas didelių duomenų rinkinių tyrimui ast-
ronomijoje (Rosenthal 1988). Tačiau didelės šio metodo skaičiavimo
sąnaudos ilgai stabdė šio metodo plėtrą. Vieni pirmųjų mašininio moky-
mosi neuroninių tinklų taikymų buvo automatinė objektų paieška astro-
nominiuose vaizduose (SExtractor, Bertin & Arnouts 1996), galaktikų
morfologinis klasifikavimas (Lahav et al. 1996) ir žvaigždžių spektrų
klasifikavimas (Bailer-Jones 1997). Pastaraisiais metais dėl tobulėjančių
šiuolaikinių kompiuterinių sistemų ir debesų kompiuterijos galimybių
vis labiau populiarėja mašininio mokymosi metodai. Galingos Python
atvirojo kodo bibliotekos, tokios kaip TensorFlow (Abadi et al. 2015)
ir PyTorch (Paszke et al. 2019) siūlo lengvai naudojamas kelių tipų
neuroninių tinklų kūrimo ir mokymo sistemas.

Didelės spektroskopinės apžvalgos leidžia tirti didelių žvaigždžių
struktūrų, tokių kaip kamuoliniai spiečiai, evoliuciją, taip pat ir viso
Paukščių Tako evoliuciją. Būsimi projektai, pavyzdžiui, Viljamo Herše-
lio teleskopo „William Herschel Telescope Enhanced Area Velocity Ex-
plorer“ (WEAVE, Dalton et al. 2018) ir 4 metrų multiobjektinis spektro-
skopinis teleskopas (4MOST, de Jong et al. 2019), leis stebėti milijonus
žvaigždžių. Reikės veiksmingų automatinių priemonių didelės apimties
rinkinių spektrinei analizei, kuriuos pateiks tokios apžvalgos. Šiomis
aplinkybėmis dabartinė „Gaia-ESO“ spektroskopinė apžvalga pateikia
idealų duomenų rinkinį mašininio mokymosi metodams kurti ir testuoti.

Pastaruoju metu konvoliuciniai neuronų tinklai (CNN) naudojami
vienu metu iš žvaigždžių spektrų nustatyti kelias žvaigždžių etiketes (t.
y. atmosferos parametrus ir chemines gausas). Kiekvieną CNN suda-
ro konvoliuciniai sluoksniai, kurie leidžia tinklui įvesties duomenyse
rasti išplėstinius požymius. Žvaigždžių spektruose tokie požymiai yra
absorbcijos linijos ir kontinuumo taškai; dvimačiuose vaizduose tokie
požymiai gali būti akys veide arba žvaigždžių telkiniai spiralinėje ga-
laktikoje (Bialopetravičius & Narbutis 2020). Neuroninių tinklų meto-
dai pagrįsti tik duomenimis, todėl jiems nereikia įvesti jokių fizikinių
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dėsnių ar modelių. Vietoj to per, mokymo etapą tinklas išmoksta su-
sieti spektrinių požymių stiprumą su žvaigždžių etikečių reikšmėmis.
Tam reikia mokomojo spektrų rinkinio su iš anksto nustatytomis eti-
ketėmis, iš kurių tinklas gali mokytis. Spektrinės analizės mokomuo-
sius rinkinius paprastai sudaro keli tūkstančiai žvaigždžių spektrų su
kokybiškai nustatytomis etiketėmis. Dabartinės spektrinės apžvalgos,
kuriose pateikiami ∼105 spektrai su etiketėmis, yra ideali terpė CNN
metodų kūrimui ir tobulinimui.

Pagrindinis mašininio mokymosi naudojimo spektrų parametrams
nustatyti privalumas yra skaičiavimo greitis. Klasikiniais metodais au-
tomatinis atmosferos parametrų ir gausų nustatymas iš vieno spektro
paprastai trunka kelias minutes, o apmokytas CNN per tą patį laiką gali
parametrizuoti 104 spektrų. Šis greitis yra labai svarbus, norint visiškai
išnaudoti būsimų spektrų tyrimų galimybes. Pavyzdžiui, 4MOST stebės
≈ 25 000 žvaigždžių kiekvieną naktį, o kiekvienai žvaigždei bus gali-
ma išmatuoti iki 15-os elementų gausų. Mašininis mokymasis bus labai
tinkamas metodas analizuoti tokius didelius duomenų kiekius.

Žvaigždžių parametrizavimo naudojant CNN pavyzdžių galima ras-
ti naujausiuose tyrimuose. Fabbro et al. (2018) sukūrė StarNet - CNN,
kuris gali tiesiogiai išvesti žvaigždžių atmosferos parametrus iš stebimų
spektrų APO Galaktikos evoliucijos eksperimente (APOGEE, Majews-
ki et al. 2017). StarNet mokymui ir testavimui buvo naudojamas sinte-
tinių spektrų tinklas.

Leung & Bovy (2019) savo astroNN konvoliuciniam tinklui apmo-
kyti naudojo tikrus stebėjimo duomenis iš APOGEE DR14. Siekiant
imituoti standartinės spektroskopinės analizės metodus, astroNN sukur-
tas taip, kad prognozuojant atmosferos parametrus būtų naudojamas vi-
sas spektras, tačiau prognozuojant chemines gausas apsiribojama atski-
rais spektro segmentais. Guiglion et al. (2020) savo darbe CNN ap-
mokė su vidutinės skiriamosios gebos žvaigždžių spektrais iš RAdial
Velocity Experiment (RAVE, Steinmetz et al. 2020) kartu su žvaigždžių
etiketėmis, kurios buvo gautos iš didelės skiriamosios gebos APOGEE
DR16 spektrų. Jie taip pat pridėjo žvaigždžių absoliutinius ryškius ir
ekstinkcijos pataisas, kaip tinklo įvesties duomenis. Ši informacija lei-
do jų CNN nustatyti ir naudoti papildomus apribojimus efektinės tem-
peratūros ir laisvo kritimo pagreičio įvertinimui.
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Šioje disertacijoje CNN metodas naudojamas „Gaia-ESO“ spekt-
rinės apžvalgos (GES, Gilmore et al. 2012; Randich et al. 2013) kon-
tekste. Naudojome GIRAFFE spektrus su etiketėmis iš iDR6 rinkinio.
Bendrai, GES yra skirtas papildyti kosminės observatorijos „Gaia“ ast-
rometrinius duomenis (Gaia Collaboration et al. 2016). Šio darbo tiks-
las - paruošti pagrindus mašininiam mokymuisi naujos kartos spektros-
kopinėms apžvalgoms, tokioms kaip 4MOST ir WEAVE.
1.2 Gaia-ESO spektrinė apžvalga

„Gaia-ESO“ spektrinės apžvalgos tikslas - stebėti daugiau kaip 105 žvaig-
ždžių, kad būtų gauta vienalytė įvairių Paukščių Tako žvaigždžių popu-
liacijų cheminių savybių apžvalga. Kartu su žvaigždžių kinematinėmis
savybėmis, gautomis iš Gaia kosminės misijos (Gaia Collaboration et al.
2016), žvaigždžių cheminė sudėtis leidžia analizuoti mūsų Galaktikos
bei sudėtinių jos struktūrų, tokių kaip centrinio telkinio, plono ir storo
disko, formavimąsi ir evoliuciją.

Tyrimo stebėjimai buvo atliekami naudojant Čilėje esančio Euro-
pos pietinės observatorijos (ESO) VLT teleskopo FLAMES instrumen-
tą. Nuo 2011 m. gruodžio FLAMES dirba su dviem skirtingais spekt-
rografais: GIRAFFE ir UVES (Pasquini et al. 2002). Abu jie yra dau-
giaobjektiniai spektrografai. GIRAFFE vienu metu gali stebėti iki 130
objektų, skiriamoji geba nuo R ∼ 5000 iki R ∼ 30000, o UVES užtikri-
na didesnę skiriamąją gebą (R ∼ 47000), tačiau vienu metu gali stebėti
tik 8 objektus. Abiejų spektrografų bangų ilgių segmentai apima visą
regimąjį diapazoną.

Šiame darbe naudojame GIRAFFE HR10, HR21 ir HR15N spektri-
nius segmentus.
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2 Poreikis atlikti tikslius kelių cheminių elementų gau-
sų matavimus: dvi žvaigždžių populiacijos kamuoli-
niame spiečiuje NGC 1851

Čia pateikiame išsamų kamuolinio žvaigždžių spiečiaus NGC 1851 che-
minių gausų analizę kurioje 45 raudonųjų milžinių žvaigždėse buvo
ištirta iki 29 elementų gausos.

Žvaigždžių atmosferų cheminės sudėties tyrimas atskleidė dvi che-
miniu požiūriu skirtingas žvaigždžių subpopuliacijas. Šis skirtumas ryš-
kiausias azoto ir s-proceso elementų (Y, Zr, Ba, La, Ce, Nd) gausose.
1 pav. kairėje pavaizduoti speičiaus žvaigždžių [s/Fe] gausų santykiai,
lyginant su [Fe/H] ir dešinėje – lyginant su [N/Fe]. Šiame grafike gali-
ma išskirti dvi grupes. Tuo remiantis, mūsų atrinktas žvaigždes skirsto-
me į dvi subpopuliacijas: populiaciją su mažu vidutiniu [s/Fe] santykiu
ir populiaciją su dideliu [s/Fe]. Šios dvi grupės taip pat skiriasi vidutine
geležies gausa (1 pav. kairėje). Todėl šias dvi grupes skirstome į popu-
liacijas žvaigdžių su mažesne metalų gausa (metal-poor) ir, atitinkamai,
didesne metalų gausa (metal-rich). Jų [Fe/H] vertės skiriasi per 0,07
dex. Metalingesnės populiacijos vidutinė [Fe/H] yra −0,98 ± 0,04 dex,
o nemetalingesnės - −1,05 ± 0,05 dex. Vidutinės s-proceso elementų ir
azoto gausos, taip pat kitų elementų rezultatai pateikti 1 lentelėje.
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1 pav.: Cheminis spiečiaus žvaigždžių pasiskirstymas. Kairėje: vidutinės s-
proceso elementų gausos lyginant su [Fe/H]. Dešinėje: vidutinės s-proceso
elementų gausos lyginant su [N/Fe]. Taškų spalvomis pažymėtas dviejų
populiacijų atskyrimas (melsvi taškai – metalingesnė populiacija, rausvi taškai
– nemetalinga populiacija).
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1 lentelė: Vidutinės abiejų populiacijų cheminių elementų gausos ir žvaigždžių
skaičius.

Parametras
Nemetalinga Metalinga

Vidurkis σ N Vidurkis σ N

[Fe/H] −1.05 0.05 28 −0.98 0.04 17
A(Li I) 3DNLTE 0.14 0.66 27 0.46 0.59 17

[C/Fe] (C2) −0.31 0.08 14 −0.36 0.11 9
[N/Fe] (CN) 0.47 0.09 12 0.73 0.14 9
[O/Fe] ([O I]) 0.27 0.18 28 −0.13 0.20 16
[Na I/Fe] NLTE 0.02 0.23 25 0.32 0.17 16
[Mg I/Fe] 0.26 0.08 28 0.25 0.10 17
[Al I/Fe] 0.17 0.19 28 0.38 0.15 17
[Si I/Fe] 0.07 0.05 28 0.09 0.05 17
[Ca I/Fe] 0.17 0.05 28 0.21 0.05 17
[Ca II/Fe] 0.24 0.12 25 0.29 0.15 15
[Ti I/Fe] 0.14 0.07 28 0.16 0.08 17
[Ti II/Fe] 0.17 0.05 28 0.18 0.04 17
[Sc I/Fe] −0.01 0.12 28 −0.02 0.12 17
[Sc II/Fe] −0.01 0.04 28 −0.02 0.05 17
[V I/Fe] −0.11 0.07 28 −0.08 0.08 17
[Cr I/Fe] −0.16 0.06 28 −0.12 0.07 17
[Cr II/Fe] 0.04 0.11 27 −0.05 0.08 17
[Mn I/Fe] −0.37 0.05 28 −0.41 0.05 17
[Co I/Fe] −0.09 0.04 28 −0.07 0.04 17
[Ni I/Fe] −0.14 0.04 28 −0.15 0.06 17
[Cu I/Fe] −0.33 0.17 28 −0.28 0.16 17
[Zn I/Fe] −0.06 0.10 28 0.00 0.15 17
[Y II/Fe] −0.24 0.06 28 −0.02 0.14 17
[Zr I/Fe] 0.15 0.18 27 0.37 0.15 17
[Mo I/Fe] 0.16 0.16 14 0.37 0.13 12
[Ba II/Fe] 0.10 0.13 28 0.55 0.19 17
[Ba II/Fe] NLTE 0.00 0.15 28 0.47 0.20 17
[La II/Fe] −0.03 0.14 27 0.37 0.10 17
[Ce II/Fe] −0.18 0.15 28 0.32 0.19 17
[Pr II/Fe] 0.46 0.05 15 0.63 0.12 12
[Nd II/Fe] 0.27 0.07 28 0.52 0.14 17
[Sm II/Fe] 0.37 0.13 14 0.55 0.15 12
[Eu II/Fe] 0.40 0.10 28 0.41 0.07 17

A(C+N+O) 7.97 0.11 12 7.94 0.08 9
C/N 0.66 0.13 12 0.35 0.13 9
[α/Fe] 0.16 0.04 28 0.18 0.05 17
[Iron peak/Fe] -0.09 0.04 28 -0.07 0.04 17
[s/Fe] −0.01 0.08 28 0.34 0.11 17
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3 Konvoliuciniai neuroniniai tinklai

Konvoliucinis neuroninis tinklas (CNN) yra mašininio mokymosi meto-
das. Mašininio mokymosi metodai - tai sudėtingi, netiesiniai algoritmai,
naudojami informacijai iš įvesties duomenų išgauti. Šie algoritmai pa-
prastai turi daug laisvų parametrų, kurių naudotojas nenurodo. Vietoj to
algoritmas "išmoksta" parametrų reikšmes per "mokymo" etapą.

3.1 CNN architektūra

Pagrindinės CNN sudedamosios dalys yra jo konvoliucijos sluoksniai.
Šie sluoksniai skirti įvesties duomenyse rasti tam tikras ypatybes ir dė-
sningumus. Rasti spektriniai ypatumai yra pagrindas išvesties etikečių
reikšmėms apskaičiuoti. Šį skaičiavimą atlieka tankūs sluoksniai, kurie
CNN architektūroje eina po konvoliuciniais sluoksniais. Sudėtingose
tinklo architektūrose reikalingas reguliavimas, kad tinklas pernelyg ne-
pritaptų prie mokymo duomenų (over-fitting). 2 lentelėje pateikta mūsų
CNN architektūra.

Įvesties sluoksnis gauna neapdorotus įvesties duomenis ir perduoda
juos pirmajam konvoliucijos sluoksniui. Prieš pateikiant duomenis, juos
reikia paruošti taip, kad jų struktūra būtų vienoda.

Pirmajame konvoliuciniame sluoksnyje įvestas spektras konvoliuo-
jamas su vienu ar keliais konvoliuciniais filtrais. Šių operacijų rezulta-
tas yra parametrų žemėlapiai. Juose parodoma įvairių parametrų padėtis
įvesties spektruose. Parametrų žemėlapyje vaizduojamų požymių tipas
priklauso nuo naudojamo filtro parametrų. Mokymo etape CNN randa
filtrus, kurie užtikrina geriausią mokymo aibės spektrų tikslumą. Kon-
voliucijos sluoksnis gali turėti kelis filtrus, kurie nepriklausomai suku-
ria sluoksnio įvesties požymių žemėlapius. Jei CNN turi kelis konvo-
liucinius sluoksnius, pirmojo sluoksnio požymių žemėlapiai patys bus
konvoliuojami kitame konvoliuciniame sluoksnyje.

Paskutinio konvoliucijos sluoksnio išvesties formatą sudaro keli po-
žymių žemėlapiai (t. y. išvestis yra daugiamatė). Tankieji sluoksniai ga-
li apdoroti tik vienmatį įvesties formatą, todėl reikia paruošti paduodant
duomenis pirmiesiems tankiesiems sluoksniams vienmačiu pavidalu.

Tankųjį sluoksnį sudaro vienas ar keli neuronai (dar vadinami vie-
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2 lentelė: Mūsų CNN architektūra. Paskutinio tankaus sluoksnio išvestys yra
mūsų penkių žvaigždžių etikečių (atmosferos parametrų ir elementų gausų)
vertės. Sluoksnių eiliškumą ir skaičių, taip pat ir hiperparametrus nustato var-
totojas.

Layer Hyperparameters Free parameters
Input Input shape: 8669

1D convolution filters: 8, kernel size: 20 168
Activation LeakyReLU
1D Max-pooling pool size: 2

1D convolution filters: 6, kernel size: 20 966
Activation LeakyReLU
1D Max-pooling pool size: 2

1D convolution filters: 4, kernel size: 20 484
Activation LeakyReLU

Flatten
Dropout dropout rate: 0.2

Dense Layer Neurons = 64 546 368
Dropout dropout rate: 0.2
Activaton LeakyReLU

Dense Layer Neurons: 128 8320
Dropout dropout rate: 0.2
Activaton LeakyReLU

Dense Layer Neurons: 32 4128
Dropout dropout rate: 0.2
Activaton LeakyReLU

Dense layer Neurons: 5 165
Activation Linear

Total: 560 599
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netais arba mazgais). Kiekvienas neuronas gauna kelis įvesties kanalus
iš ankstesnio sluoksnio (plokščiojo sluoksnio arba ankstesnio tankaus
sluoksnio). Vieno neurono viduje apskaičiuojama visų įvesties verčių
tiesinė kombinacija ir pridedama nuokrypio vertė. Rezultatas transfor-
muojamas aktyvacijos funkcija ir perduodamas kaip neurono išvestis į
kitą sluoksnį.

Norint išvengti tinklo permokymo, galima naudoti reguliarizavimo
metodus. Permokymas pasireiškia tada, kai tinklas numato tikslias mo-
komosios aibės etiketes, bet prastai veikia dirbant su kitais spektrais.
Šiame darbe CNN architektūrą papildome dviejų tipų reguliarizavimo
sluoksniais. Tai maksimalaus kaupimo (max-pooling) ir išmetimo (dro-
pout) sluoksniai. Max-pooling taikomas konvoliucijos sluoksnių išves-
ties požymių žemėlapiams. Jis veikia padalijant požymių žemėlapį į
vienodo pločio langus. Kiekviename iš šių langų išsaugomas tik di-
džiausios vertės, o kitos vertės atmetamos. Tinklo architektūroje išme-
timo sluoksniai yra tarp dviejų tankių sluoksnių. Išmetimo sluoksnis
deaktyvuoja dalį ankstesnio sluoksnio neuronų, nustatydamas jų išves-
ties vertes lygiomis nuliui (jie "išmetami").

Išvesties sluoksnis yra galutinis tankus sluoksnis, kurio neuronų skai-
čius yra lygus prognozuojamų etikečių skaičiui. Šių neuronų išvestys
yra tiesiogiai proporcingos nustatytoms etiketėms.

3.2 Tinklo mokymas

Sudarant tinklo architektūrą, nežinomos konvoliucijos filtro branduolių,
tankiųjų sluoksnių svorių ir šališkumo reikšmės (bendrai vadinamos
"laisvaisiais parametrais"). Parametrų, kurių dėka gaunamas geriausias
tinklo rezultatas, paieška vadinama tinklo mokymu. Tinklo išvestį laiko-
me optimalia, kai skirtumas tarp iš anksto nustatytų validavimo spektrų
rinkinio etikečių ir CNN išvesties tiems patiems spektrams yra minima-
lus. Sėkmingai apmokius tinklą, reikia patikrinti jo veikimą su naujais
spektrais. Tam reikia sukurti testinį pažymėtų spektrų, kurie nebuvo
naudojami tinklo mokymui, rinkinį.

118



4 GES iDR6 spektrų parametrų nustatymas naudojant
CNN

4.1 Mokymo, validavimo ir testavimo rinkiniai

Mūsų duomenų rinkinį sudaro GES iDR6 spektrai, atitinkamų žvaig-
ždžių parametrai ir cheminių elementų gausos. Spektrai, kuriuos nau-
dojome šiame tyrime, buvo gauti naudojant GIRAFFE spektrografą,
apimantį regimąjį 370-900 nm bangų ilgių diapazoną. Visgi GIRAFFE
spektrografu visas 370-900 nm nestebimas, o parenkami tyrimui reika-
lingi specifiniai mažesni regionai. Šiame tyrime naudoti HR10 (533,9-
561,9 nm, R = 19800) ir HR21 (848,4-900,1 nm, R = 16200) regionai,
nes jie apima svarbias Mg ir Al sugerties linijas.

Siekdami sukurti mokymo rinkinį, atlikome keletą kokybės pati-
krinimų, kad užtikrintume, jog mūsų tinklas bus apmokytas naudojant
aukštos kokybės duomenis. Spektrai, kurių signalo ir triukšmo san-
tykis S/N < 30 ir atmosferos parametrų bei elementų gausų paklaidos
(eTeff > 200 K, elog(g) > 0.3 dex, eA(elementas) > 0,2 dex) buvo at-
mesti, taip pat atmesti spektrai, kurie buvo pažymėti TECH arba PE-
CULI žymomis, o taip pat tokios žvaigždėws, kurių sukimosi greičiai >
20 km s-1.

Siekiant ištirti visų spektrų panašumą, taikyta (t-SNE - distributed
stochastic neighbor embedding) analizė. t-SNE analizė yra populia-
rus nekontroliuojamas mašininio mokymosi metodas, naudojamas vidi-
niams ryšiams ir panašumams didelės dimensijos duomenų rinkiniuose
atvaizduoti. Tai atliekama kiekvienam duomenų taškui suteikiant vie-
tą dvimačiame arba trimačiame panašumo žemėlapyje (van der Maaten
& Hinton 2008). Skirtingos žvaigždžių atmosferų fizikinės savybės at-
sispindi jų spektrų formose, kurios savo ruožtu lemia jų vietą t-SNE
žemėlapyje. Ryšį tarp fizikinių parametrų ir spektrinių savybių mūsų
CNN išmoksta mokymo etape.

Kiekvienas apmokymo spektras turi susijusių žvaigždžių etikečių
rinkinį. Mūsų atveju tai yra du atmosferos parametrai Teff ir log(g), bei
cheminės gausos [Mg/Fe], [Al/Fe] ir [Fe/H]. GES iDR6 duomenų rin-
kinyje elementų gausos pateikiamos kaip absoliučiosios gausos vertės
A(Elementas). Apskaičiavome [Fe/H] ir [Elementas/Fe] taip: [Fe/H] =
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A(Fe)star−A(Fe)⊙ ir [Element/Fe] =A(Element)star−A(Element)⊙−
[Fe/H].

Pritaikius visus šiuos apribojimus, liko 14 634 spektrai, kurie turėjo
aukštos kokybės atmosferos parametrų ir elementų gausų etiketes. Šie
spektrai atsitiktine tvarka priskiriami mokymo arba tikrinimo rinkiniui.
Šių dviejų rinkinių spektrų etikečių intervalas yra toks: efektinė tempe-
ratūra kinta nuo Teff = 4000 - 6987 K, laisvo kritimo pagreitis log(g) yra
nuo 1,08 iki 4,87 dex, o [Fe/H] kinta nuo −1,53 iki 0,72 dex. [Mg/Fe]
vertės svyruoja nuo −0,25 iki 0,80 dex, o [Al/Fe] vertės labai išsiba-
rščiusios, beveik per 2 dex: nuo −0,95 iki 1,00 dex.

Be mokymo ir validavimo rinkinių, sudarėme ir testavimo rinkinį.
Šis rinkinys naudojamas mūsų CNN veikimui patikrinti naudojant spekt-
rus, kurie nebuvo naudojami mokymo procese. Taip galime imituoti
mūsų CNN metodo taikymą naujai stebėtiems spektrams, kurie dar ne-
buvo analizuoti spektroskopiškai. Todėl visą testavimo rinkinį sudaro
spektrai be jokių taikomų kokybės apribojimų ir jis apima platesnius
S/N ir etikečių diapazonus nei mokymo rinkinys. Mūsų tinklas ne-
gali patikimai įvertinti spektrų, kurie nepatenka į mokomojo rinkinio
ribas. Todėl turime rasti būdą, kaip identifikuoti spektrus, kurie yra
panašūs į mūsų mokomuosius spektrus, nes tikėtina, kad šių spektrų
etiketės pateks į mokomosios aibės ribas. Jau įrodėme, kad t-SNE ga-
li parodyti spektrų panašumą. Todėl naudojame t-SNE, kad testavimo
rinkinyje nustatytume tuos spektrus, kurių etiketės greičiausiai patenka
į mokymo rinkinio ribas. Šio metodo atvaizdavimas pateiktas 2 pav.
Viršutiniame kairiajame paveikslėlyje parodytas t-SNE žemėlapis, ku-
ris buvo apskaičiuotas visiems mūsų duomenų rinkinio spektrams. Su-
darę t-SNE projekciją, žemėlapyje nustatėme mokymo rinkinio spekt-
rus. Viršutiniame dešiniajame paveikslėlyje parodyti tie testinio rinki-
nio spektrai, kurie t-SNE žemėlapyje užima tą patį plotą kaip ir kairiaja-
me paveikslėlyje pateikti mokomieji spektrai. Bandomieji spektrai, ku-
rie žemėlapyje yra artimi mokomiesiems spektrams, yra panašūs į mo-
komuosius spektrus. Šį viršutiniame dešiniajame paveikslėlyje esantį
rinkinį vadiname "vidiniu" testavimo rinkiniu. Galiausiai apatiniame
paveikslėlyje rodomi tie spektrai, kurie nėra panašūs į mokomuosius
spektrus. Šis spektrų rinkinys yra mūsų "išorinis" testavimo rinkinys,
kurį naudojame savo tinklui išbandyti spektrams, kurie nepanašūs į mo-

120



kymo rinkinio spektrus.

4.2 Mokymo etapas ir etikečių prognozės testavimo rinkiniui

Vidutiniškai vienas mokymo ciklas truko 159 epochas, o jo trukmė
buvo ∼45 minutės5. Galutinės apmokyto tinklo modelio parametrų
vertės, taigi ir tinklo išvestis, šiek tiek skiriasi kiekvieną kartą, kai tink-
las yra mokomas. Norėdami atsižvelgti į šį svyravimą, atlikome dešimt
mokymų ir užfiksavome kiekvieno iš jų rezultatus. Mokymo etapo pa-
baigoje pašalinome du CNN modelius su didžiausiais likusiais valida-
vimo nuostoliais. Likę aštuoni CNN modeliai buvo naudojami spektrų,
esančių mokymo, validavimo ir testavimo rinkiniuose, etiketėms prog-
nozuoti. Čia pateikiame aštuonių etikečių rinkinių vidurkius kaip mūsų
rezultatus.

Tiek mokymo, tiek validavimo rinkinyje GES matavimai ir CNN
prognozės gerai dera su visomis etiketėmis. Mokymo ir validavimo
rinkinių prognozės rodo tokį patį nuokrypį (jei toks yra) ir nedidelę dis-
persiją apie santykį 1:1. Tai rodo, kad tinklas gerai veikia su spektrais,
su kuriais jis nebuvo tiesiogiai apmokytas, ir nėra permokytas. Dispersi-
ja aplink 1:1 santykį yra vientisa daugumoje intervalų tarp visų penkių
etikečių reikšmių. Mokymo rinkinio dispersiją naudojame kaip mūsų
tinklo mokymo tikslumo matą: Teff mokymo tikslumas yra 37 K, log(g)
- 0,06 dex, [Mg/Fe] - 0,05 dex, [Al/Fe] - 0,06 dex, [Fe/H] - 0,04 dex.
Tiesa, mūsų CNN netiksliai atkuria didžiausias ir mažiausias GES verte.

Siekdami įvertinti mūsų tinklo gebėjimą parametrizuoti naujus spekt-
rus, kurie visiškai nedalyvavo mokymo procese, lyginame GES įvesties
etiketes su CNN prognozėmis trims skirtingiems testavmo rinkiniams.
Viršutinėje 3 paveikslo eilutėje parodytas GES įvesties ir CNN išves-
ties palyginimas vidiniam testavimo rinkinio spektrui, kurio S/N ≥ 30.
Šiame porinkinyje 90% GES etikečių yra mokymo ribose. Dauguma
likusių 10% spektrų yra už [Mg/Fe] ir [Al/Fe] ribų. To priežastis yra
mūsų vidinio testavimo rinkinio paieškos būdas. Šį rinkinį sudaro tik
tos žvaigždės, kurios t-SNE žemėlapyje užima tą pačią sritį kaip ir
mokomieji spektrai (2 pav.). Spektro forma, taigi ir jo padėtis t-SNE
žemėlapyje, labai priklauso nuo etikečių Teff, log(g) ir [Fe/H], tuo tarpu

5Staliniame kompiuteryje, naudojant tik CPU (Intel Core i7-9700 CPU @ 3.00 GHz × 8)
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2 pav.: Viršutiniame kairiajame paveiksle: visų GIRAFFE duomenų rinkinio
spektrų (tamsiai mėlyna spalva) t-SNE žemėlapis su mokymo rinkinio spekt-
rais (žalia spalva). Itin nutolę taškai buvo pašalinti. Viršutinis dešinysis pa-
veikslas: "vidinis" testavimo rinkinys, apibrėžiamas kaip testavimo spektrų,
kurie t-SNE žemėlapyje apima tą pačią sritį kaip ir mokymo rinkinio spektrai,
poaibis. Apatinis kairysis paveikslas: testavimo rinkinio spektrai, kurie neuži-
ma tos pačios žemėlapio srities kaip mokymo rinkinys. Tai mūsų "išorinis"
testavimo rinkinys.
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[Al/Fe] pokyčiai bendram spektrui turi tik nedidelę įtaką. Tas pats pasa-
kytina ir apie [Mg/Fe], tačiau mažesniu mastu. Taip yra todėl, kad mūsų
imties spektruose (Heiter et al. 2021b) yra daugiau Mg sugerties linijų
nei Al linijų. Tinklo prognozių tikslumas pradeda mažėti, kai vidinis
bandymų rinkinys turi mažą S/N (3 pav. vidurinė eilutė). Šiame rinki-
nyje yra spektrų, kurie yra panašūs į mokymams skirtus spektrus, tačiau
jų S/N yra mažesnis (primename, kad mažiausias mokymo spektrų S/N
yra 30). Mažo S/N vidiniame rinkinyje yra daugiau spektrų, kurie ne-
patenka į mokymo ribas. Akivaizdu, kad mūsų CNN negali tiksliai
parametrizuoti spektrų, kurių GES etiketės yra už mokomosios aibės
ribų. 3 pav. apatinėje eilutėje pateikti išorinio testavimo rinkinio re-
zultatai. Tinklo prognozės šiam rinkiniui yra vis mažiau tikslios, net
ir spektrams, esantiems mokymo rinkinio ribose. Skirtumas tarp GES
įvesties ir CNN išvesties išorinėje testavimo aibėje labiausiai pastebi-
mas [Al/Fe] ir [Fe/H] srityse, kur mūsų tinklas netiksliai prognozuoja
itin mažas ir dideles GES etiketes.

Mūsų rezultatų vidinę neapibrėžtį apibūdiname kaip aštuonių CNN
modelių etikečių prognozių dispersiją. Vidutinės etikečių prognozių ne-
apibrėžtys vidiniame bandymų rinkinyje su aukštu S/N yra mažos: 27 K
- Teff, 0,04 - log(g) ir 0,03 dex - [Mg/Fe], [Al/Fe] ir [Fe/H]. Šio rinki-
nio GES etikečių paklaidos beveik nepriklauso nuo absoliučios etikečių
vertės ir S/N. Jų vidutinės vertės yra 63 K (Teff), 0,15 (log(g), 0,22
[Mg/Fe], 0,19 [Al/Fe] ir 0,18 [Fe/H].

CNN prognozės su didele neapibrėžtimi vienai etiketei taip pat pa-
sižymi didele neapibrėžtimi visoms kitoms etiketėms, o tikslios prog-
nozės yra tikslios visoms penkioms etiketėms. Vidinis mūsų Teff ir
log(g) tikslumas yra didžiausias ten, kur mokymo rinkinio tankis yra
didžiausias. Teff atveju taip yra tarp ∼ 4500 ir 5775 K, o log(g) - tarp
∼ 2,5 ir 4,5 dex. Čia šių dviejų etikečių prognozių neapibrėžtys yra
mažiausios. Išskyrus [Fe/H], cheminių elementų gausos prognozių tiks-
lumas nerodo aiškių tendencijų, susijusių su absoliutine etiketės verte.
Kalbant apie [Fe/H], neapibrėžtis didėja mažesnėms [Fe/H] gausos. Tai,
tikriausiai, susiję su tuo, kad nemetalingų žvaigždžių santykinai yra ge-
rokai mažiau lyginant su visa imtimi. Nustatėme, kad mažėjant spektrų
S/N mažėja visų penkių etikečių prognozių neapibrėžtys.
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eč
ių
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į.
Še

šė
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4.3 Ko mokosi tinklas?

Norėdami vizualizuoti spektro sritis, kur mūsų CNN yra aktyvus tam
tikros etiketės atžvilgiu, sudarėme jautrumo žemėlapius naudodami "Gra-
dientTape" iš "TensorFlow". Apskritai, mūsų CNN elgiasi kaip funkci-
ja, kuri įvesties pikselius žvaigždžių spektruose atvaizduoja į išvesties
etikečių reikšmes. Šis atvaizdavimas yra diferencijuojamas, o tai reiš-
kia, kad galima kiekybiškai įvertinti kiekvieno įvesties pikselio įtaką
gautoms etikečių prognozėms. Naudojant automatinį diferencijavimą,
galima apskaičiuoti gradientus, ∂ Label / ∂ λ , t. y. CNN jautrumą
kiekvienam pikseliui kiekvienai etiketei. Didelė absoliutinė gradiento
vertė bangų ilgių diapozone reiškia, kad tinklo prognozė tam tikrai eti-
ketei yra labai jautri srauto pokyčiams būtent tame diapozone. 4 pav.
pavaizduoti tinklo gradientai mūsų penkioms etiketėms visame įvesties
spektrų bangų ilgių diapazone. Gradientai yra atsitiktinai išsibarstę apie
nulį beveik visame spektre. Tik tam tikruose bangos ilgių intervaluose
tinklas yra jautrus srauto pokyčiams. Čia gradientai rodo atskirus siau-
rus šuolius. Tai ypač akivaizdu [Mg/Fe] ir [Al/Fe] gradientuose mūsų
spektrų HR21 segmente. [Mg/Fe] gradientai rodo du aiškius šuolius
ties 8736,0 ir 8806,8 Å. Tai yra dviejų Mg I sugerties linijų pozicijos.
[Al/Fe] gradientų pikas žymi Al I dubleto poziciją ties ∼8773 Å. Tai-
gi matome, kad mūsų tinklas gali nustatyti absorbcijos linijas įvesties
spektruose. Neigiamos gradiento reikšmės šiuose bangos ilgiuose reiš-
kia, kad jei absorbcijos linijų srautas yra mažas, prognozuojama gausa
yra didelė, ir atvirkščiai. Tai intuityviai parodo, kad gilesnės absorbcijos
linijos spektruose rodo didesnes elementų gausas žvaigždžių atmosfe-
rose.

4.4 Paukščių Tako charakteristikų analizė pagal CNN prognozes

Į GES iDR6 duomenų rinkinį įtrauktos žvaigždės, priklausančios ke-
liems kamuoliniams spiečiams. Mūsų CNN rezultatai leidžia atkurti
Mg-Al antikoreliaciją NGC 6752, NGC 6218 ir NGC 1851 spiečiuose.
Tokia antikoreliacija naudojama kamuolinių spiečių cheminei evoliu-
cijai tirti (Pancino et al. 2017c). Spiečių vidutinės [Fe/H] vertės ap-
ima ∼0,5 dex intervalą. Matome, kad GES įvesties ir CNN išvesties
sutapimas gerėja didėjant spiečiaus [Fe/H]. Spiečiuje NGC 6752 yra
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4 pav.: Penkių etikečių tinklo gradientai pagal bangos ilgį (juoda spalva). Vi-
ršuje pavaizduoti GIRAFFE HR10 gradientai, o apačioje - HR21 gradientai.
Viršutinė pilka linija vaizduoja vidutinį įvesties spektrą. Pasirinktų skirtingų
elementų sugerties linijų vietos pažymėtos vertikaliomis spalvotomis linijo-
mis. Pažymėtos Mg ir Al linijos buvo naudojamos GES nustatant įvesties Mg
ir Al gausas. Jų bangos ilgiai yra 5528,41, 8717,81, 8736,02 ir 8806,75 Å Mg
ir 5557,06, 8772,87 ir 8773,90 Å Al (Heiter et al. 2021b).
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žvaigždžių, kurių [Fe/H] vertės yra ties apatine mokymo rinkinio riba,
kur mokymo spektrų tankis yra mažas. Mokymo rinkinio tankis didėja
didėjant [Fe/H], todėl CNN geriau prognozuoja metalingesnių spiečių
žvaigždžių savybes. Išskyrus dvi žvaigždes su mažiausiu [Al/Fe], vi-
sos CNN prognozės NGC 6218 spiečiuje sutampa su GES rezultatais,
neviršijant nurodytų paklaidų. NGC 1851, kurio vidutinė [Fe/H] vertė
yra didžiausia iš visų mūsų spiečių, Mg-Al antikoreliacija stebima tiek
GES tiek ir mūsų metodo prognozėse.

[Mg/Fe] vertės gali būti naudojamos skirstant Paukščių Tako žvai-
gždes į plono ir storo disko populiacijas. Šį skirstymą atlikome remda-
miesi CNN rezultatais, gautais vidiniam stebėjimų rinkiniui su S/N ≥ 30,
kartu su mokymo ir testavimo rinkiniais. Storojo ir plonojo disko žvai-
gždėms nustatyti naudojome klasterizavimo algoritmą HDBSCAN (Cam-
pello et al. 2013), kuris įgyvendintas "Python" programavimo biblio-
tekoje hdbscan. Šis algoritmas priskiria duomenų taškus skirtingoms
grupėms, priklausomai nuo duomenų taškų tankio pasiskirstymo. Iš-
skirtos dvi grupės, atitinkančios dvi žvaigždžių populiacijas.

Norėdami ištirti abiejų populiacijų amžiaus pasiskirstymą, naudo-
jome programą A Unified tool to estimate Distances, Ages and Masses
(UniDAM), kuri gali įvertinti amžių naudojant izochronas. Gautas vidu-
tinis plonojo disko žvaigždžių amžius yra 8,7 mlrd. m., o storojo disko -
9,7 mlrd. m. Toks amžiaus skirtumas tarp abiejų populiacijų nustatytas
atlikus ne vieną tyrimą ir naudojant keletą amžiaus nustatymo metodų.

Taip pat tyrėme plono ir storo disko populiacijų kinematines savy-
bes. Remdamiesi dabartinėmis žvaigždžių padėtimis ir greičiais, integ-
ravome jų orbitas 5 mlrd. m. laikotarpiui naudojant teorinį Paukščių Ta-
ko potencialą, pasitelkę Python pagrindu sukurtą galaktikos dinamikos
paketą galpy (Bovy 2015). Integravimui naudojome gravitacinį poten-
cialą MWPotencial2014, kuris apjungia centrinio telkinio, disko ir halo
potencialus. Žvaigždžių savieji judėjimai, dangaus koordinatės ir para-
laksai paimti iš Gaia EDR3. Tiesinės regresijos modelis rodo, kad sto-
rojo disko orbitų ekscentricitetas e mažėja didėjant [Fe/H]: ∆e/∆[Fe/H]

= −0,25. Plono disko žvaigždžių orbitų ekscentricitetas yra vidutiniškai
mažesnis už storo disko ir turi nedidelę teigiamą tendenciją (∆e/∆[Fe/H]

= 0,02). Šie rezultatai sutampa su Yan et al. (2019) išvadomis. Jie
tyrė plono ir storo disko žvaigždžių chemines ir kinematines savybes
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remiantis LAMOST duomenų rinkiniu (Zhao et al. 2012).

4.5 31-a nauja ličiu praturtinta raudonoji milžinė

Šiame darbe rasta 31-a anksčiau neidentifikuota Li praturtinta raudonoji
milžinė, pasinaudojant mūsų CNN prognozių rezultatais. Šios 31 nau-
jos ličiu praturtintos žvaigždės yra dalis Nepal et al. (2023) testavimo
rinkinio. Joms trūksta vienos ar kelių etikečių (Teff, log(g), [M/H] ar-
ba A(Li)) Gaia-ESO iDR6 duomenų rinkinyje. Visos šios milžinės turi
A(Li) > 2 dex, log(g) < 3,5, o Teff < 5500 K (5 pav.). Šių spektrų
signalo-triukšmo santykis yra > 25, o jų etikečių prognozių vidinės
CNN neapibrėžtys yra < 50 K Teff ir < 0,1 dex log(g), [M/H] ir A(Li).
Nė viena iš šių žvaigždžių nebuvo identifikuota kaip Li praturtinta mi-
lžinė Gaia-ESO darbuose. GALAH tyrimo kataloge Martell et al. (2021)
taip pat neidentifikavo nė vieno iš mūsų naujai aptiktų objektų kaip Li
praturtintų milžinių. Kylio (Teff-log(g)) diagramos milžinių šakoje yra
67 Li praturtintos žvaigždždės (A(Li) > 2 dex), 38 iš jų įtrauktos į mo-
kymo rinkinį.
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5 pav.: Kylio diagrama (Teff-log(g)), sudaryta iš Nepal et al. (2023). 31 aptik-
tos Li praturtintos milžinės pažymėtos didesniais apskritimais. Taškų spalvos
žymi ličio gausas.
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