
communications biology Article

https://doi.org/10.1038/s42003-024-06478-x

Single-cell transcriptional profiling of
clear cell renal cell carcinoma reveals a
tumor-associated endothelial tip cell
phenotype

Check for updates

Justina Zvirblyte 1, Juozas Nainys1,5, Simonas Juzenas1, Karolis Goda1, Raimonda Kubiliute2,
Darius Dasevicius3, Marius Kincius4, Albertas Ulys4, Sonata Jarmalaite 2,4 & Linas Mazutis 1

Clear cell renal cell carcinoma (ccRCC) is themost prevalent form of renal cancer, accounting for over
75% of cases. The asymptomatic nature of the disease contributes to late-stage diagnoses and poor
survival. Highly vascularized and immune infiltrated microenvironment are prominent features of
ccRCC, yet the interplay between vasculature and immune cells, disease progression and response to
therapy remains poorly understood. Using droplet-based single-cell RNA sequencing we profile
50,236 transcriptomes from paired tumor and healthy adjacent kidney tissues. Our analysis reveals
significant heterogeneity and inter-patient variability of the tumor microenvironment. Notably, we
discover a previously uncharacterized vasculature subpopulation associated with epithelial-
mesenchymal transition. The cell-cell communication analysis reveals multiple modes of
immunosuppressive interactions within the tumor microenvironment, including clinically relevant
interactions between tumor vasculature and stromal cells with immune cells. The upregulation of the
genes involved in these interactions is associated with worse survival in the TCGA KIRC cohort. Our
findings demonstrate the role of tumor vasculature and stromal cell populations in shaping the ccRCC
microenvironment and uncover a subpopulation of cells within the tumor vasculature that is
associated with an angiogenic phenotype.

The asymptomatic nature of clear cell renal cell carcinoma (ccRCC), the
most common renal cancer, often leads to diagnosis in late III or IV stage
with survival probability of 59% and 20%, respectively, also, ~30% of cases
metastasize1. Previous efforts aimed at characterizing ccRCC tumors have
provided valuable insights into the genomic2, transcriptomic and
epigenetic3,4 landscape of both the tumor and the tumormicroenvironment
(TME). It is now well-established that the most abundant genomic altera-
tions in ccRCC involve the loss of regions in 3p chromosome (occurring in
>90% of cases) and von Hippel–Lindau gene mutations (>50% of cases).
These alterations lead to impaired degradation and abnormal accumulation
of hypoxia-inducible factors2,3, resulting in a highly vascularized tumor
appearance. Moreover, ccRCC tumors exhibit a high degree of immune
infiltration5,6. Consequently, the most common first-line treatment options
for the localized disease involve surgical removal of the tumor, while

advanced diseasemay be treatedwithVEGFpathway inhibitors, standalone
or in combination with immune checkpoint blockade therapies2,7,8. How-
ever, owing to a high degree of intra- and inter-tumor heterogeneity, these
treatments benefit only a fraction of patients, and often result in acquired
resistance and further disease progression2,9.

Recent advancements in microfluidics and molecular barcoding have
enabled high-throughput transcriptional, epigenomic and evenmulti-omic
tissue profiling at the single cell resolution, yielding important biological
insights. For instance, using single-cell RNA sequencing (scRNA-seq) a
plethora of single-cell resolution healthy and cancerous tissue atlases have
been constructed, revealing the phenotypic complexity and plasticity of the
tumor microenvironment10–13. In the context of ccRCC, single-cell techni-
ques have shed light on the cell of origin of ccRCC14,15, malignancy-related
transcriptional programs of the tumor16 and the heterogeneous
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tumor-associated immune cell infiltrate17–20. Furthermore, the phenotypical
changes of immune cell populations along advancing disease stage21 and
immunotherapy treatment18,22 have been characterized in detail.

Upon the widespread adoption of the single cell profiling techniques
there was a noticeable paradigm shift in the field of cancer research—a
systemic view of the tumor as a highly orchestrated ecosystem took over the
tumor cell-centric point of view. This shift has highlighted the crucial role of
other players in the TME, including various subpopulations of stromal and
endothelial cells that have been discovered to have an impact on disease
progression, response to therapy and patient survival23,24. While consider-
able efforts have been made to characterize the ccRCC tumor micro-
environment at the single-cell level, most of the previous studies focused on
tumor or immune cells, leaving the role of other cell types within the ccRCC
TME poorly understood. In this study, we aimed to address this gap by
profiling fresh ccRCC tumor and matched healthy adjacent tissue samples
using droplet-based scRNA-seq, omitting cell sorting and enrichment steps
in order to capture thediverse phenotypes present in theTME, including the
stromal cell populations. As a result, we captured all major specialized
epithelial and endothelial cell populations in healthy adjacent kidney tissue,
including a progenitor-like epithelial cell phenotype resembling the cell of
origin for ccRCC. Furthermore, we described five tumor endothelium
subpopulations and discovered a previously uncharacterized tip-like cell
phenotype. Within the TME, we identified well-described immunosup-
pressive tumor associated macrophage (TAM) populations and exhausted
infiltrating T cells21. Through cell-cell communication analysis, we inferred
the interactions between various cell typeswithin the TME, revealing tumor
vasculature and stromal cell involvement in maintaining an immunosup-
pressive niche. Expression of genes involved in these interactions was
associated with worse overall survival in the TCGA KIRC cohort. Overall,
our results complement ongoing ccRCC TME characterization efforts by
introducing a tumor-associated endothelial phenotype and highlighting the
importance as well as potential therapeutic relevance of stromal and
endothelial cells in the TME.

Results
Single-cell profiling of healthy and tumor tissues reveals inter-
patient variability and epithelial ccRCC progenitor-like popula-
tion in healthy tissue
To dissect the transcriptional landscape of the human ccRCC tumor
microenvironment (TME), we profiled fresh tumor (n = 8) and healthy
adjacent (n = 9) kidney tissue samples (histology slides provided in Sup-
plementary Fig. S1) using a droplet-based scRNA-seq platform (Fig. 1a). To
capture the diverse range of cell types constituting the TME, our experi-
mental strategy involved rapid isolation of dissociated cells in microfluidic
droplets, without any enrichment or sorting steps (seeMethods). Following
quality control, batch correction and doublet removal (see Methods), we
obtained a total of 50,236 single-cell transcriptomes that were then clustered
using graph-based spectral clustering. The cell types belonging to each
cluster were identified manually based on differentially expressed top 25
marker genes (adjusted p value < 0.05; cluster vs the rest of cells, Mann-
Whitney U test with Benjamini-Hochberg correction), validated by an
extensive literature review (Fig. 1b, f and Supplementary Information
Table 1).

Healthy-adjacent samples displayed all major epithelial and endothe-
lial cell populations characteristic of a healthy kidney (Fig. 1b)25–27. By
omitting the cell enrichment step, we could successfully capture diverse cell
types that are known to be highly sensitive to handling and extended
workflow procedures28. For example, we captured both, ascending (DNA-
SE1L3) and descending (AQP1, SLC14A1) parts of the vasa recta, as well as
glomerular endothelium marked by IGFBP5 and SOST expression. The
epithelial compartment encompassed cells from various specialized
nephron segments, including rare populations such as intercalating cells of
type A and B (expressing marker genes ATP6V1G3 and SLC26A4, respec-
tively), as well as podocytes (NPHS2, PODXL). Interestingly, in contrast to
tumor, all healthy tissue samples comprised a population of epithelial

progenitor-like cells, similar to that described by ref. 14 (Fig. 1e) and ccRCC
“cell of origin” PT-B phenotype delineated by Zhang et al., (Supplementary
Fig. S2a). This population expressed genes associated with de-differentiated
injured kidney epithelium, such as PROM1 and ITGB829, as well as CD24
and SOX4, which have been implicated in kidney development and mark
proximal tubule and distal nephron response to acute kidney injury30

(Fig. 1e). Therefore, the epithelial progenitor-like cell population in our
dataset likely represents a de-differentiated phenotype, similar to a potential
cell of origin for ccRCC disease (PT-B, Supplementary Fig. S2a).

The tumor samples encompassed localized and locally advanced pT1a
and pT3a pathologic stages of ccRCC (Fig. 1c, Supplementary Data S1).
These samples exhibited high immune cell infiltration, including several
populations of tumor-associated macrophages and T cells (Fig. 1b). The
stromal cells separated intomyofibroblast (type I, IV andVI collagens, FN1,
TIMP2, ACTA2), vascular smooth muscle cell (TAGLN, ACTA2, SNCG)
and mesangial/vSMC (BGN, PDGFRB, TAGLN) clusters. Tumor endo-
thelium completely separated from healthy-adjacent endothelial popula-
tions (Fig. 1b) and included ascending vasa recta-like cells (ACKR1,
DNASE1L3) as well as heterogeneous vasculature subpopulations expres-
sing tumor-associated endothelial markers PLVAP, VWF, SPARC, INSR,
ANGPT2, and others (Supplementary Data S2, S3). Tumor vasculature
exhibited distinct expression patterns as compared to healthy endothelium
(Fig. 1f).While four out of five vasculature subpopulations identified in our
data have been described previously14–16, one tumor vasculature sub-
population (Tumor vasculature 3 comprising151 cells) appeared tobenovel
in the context of ccRCC and featured upregulation of LY6H, PGF, LOX,
CHST1, and type IV collagen (Fig. 1f), consistentwith a tip-cell phenotype31.

The tumor cells in all samples expressed canonical markers CA9,
NDUFA4L2, VEGFA and segregated into three subpopulations, out of
which one (Tumor cells 1) was patient-specific (126 cells in population, 120
of them specific to patient P9, Supplementary Fig. S2b). Notably, these cells
exhibited elevated expression of progenitor-like phenotype marker
SLC17A3, which was not highly expressed in the healthy-adjacent epithelial
progenitor cells (Fig. 1e, Supplementary Fig. S2c). Furthermore, Tumor cells
1 population was the most distinct from other tumor cells based on unsu-
pervised hierarchical clustering (Fig. 1f, Supplementary Fig. S2c). These cells
over-expressed genes suchas vitaminDbindingproteinGC andHLA-G, the
latter being involved in immunosuppressive interactions (Fig. 2c), as well as
FABP7, crucial for lipid uptake and storage in hypoxic conditions when de
novo lipid synthesis is repressed32. Additionally, these cells were marked by
high expression of pan-cancer markerMDK33, along with IFI27 and SOD2
(Supplementary Fig. S2c), both of which play a role in interferon response22.
Consistently, Tumor cells 1was the only tumor cell population not enriched
for hypoxia, but instead enriched for oxidative phosphorylation and adi-
pogenesis. Considering the elevated expression ofVCAM1 and SLC17A3, it
is possible to envision that this small patient-specific population could
represent an intermediate progenitor-tumor cell phenotype.

The cellular composition of tumor tissues, as expected, displayed
noticeable variability across the patients as compared to their matched pair
of healthy-adjacent tissues (Fig. 1d, Supplementary Data S4). A common
theme to all tumor samples was a high number of immune cells infiltrating
the TME, accompanied by almost complete loss of specialized kidney-
specific epithelial and endothelial cell populations (Fig. 1c, d and Supple-
mentary Fig. S2b). Except for Tumor cells 1, no other cell phenotype was
patient-specific; cell population composition analysis by patient ID con-
firmed adequate representation of cells of different origins (Supplementary
Fig. S2b). To quantitively assess tumor sample heterogeneity, we calculated
Shannon entropy for eachbroad cell category11. Lowentropy values for a cell
phenotype indicate that it is rarely shared between samples, meaning that
the level of heterogeneity within samples is high. In tumor samples, the
heterogeneity was highest for stromal, endothelial and tumor cells, whereas
healthy adjacent tissue samples exhibited comparatively lower hetero-
geneity (Supplementary Fig. S2d, e). Such diverse TME snapshots among
different patients in our and other ccRCC studies15,34 suggest that patient
stratification may rely on the abundance of specific cellular phenotypes
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Fig. 1 | Profiling the ccRCC microenvironment. a Experimental design. b Global
single cell transcriptional map of ccRCC. cClinical information of collected samples
and corresponding UMAPs of cells annotated by disease stage (adjacent healthy,
pT1a and pT3a) and patient ID (P1–P9). Healthy adjacent samples (blue) almost
completely separate from the tumor (light and dark red). d Sample composition by
major cell type. Notably, healthy adjacent samples are enriched with specialized
kidney epithelial and endothelial cells, while tumor samples are enriched for
immune cells. e Expression of ccRCC cell of origin markers in epithelial progenitor-

like cell population. f Global heatmap for population-specific markers. Only genes
with Benjamini-Hochberg adjusted p value < 0.05 are shown. Color of the gene name
indicates major cell type. AVR ascending vasa recta, DVR descending vasa recta,
vSMCs vascular smooth muscle cells, LOH loop of Henle, tAL thin ascending limb,
TAL thick ascending limb, DCT/CNT distal convoluted/connecting tubule, ICs
intercalated cells, OM outer medullary, TAM tumor associated macrophages. All
graphic elements in the figure were created by the first author.
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Fig. 2 | Characterization of immune cell populations found in ccRCC. aMyeloid
cell compartment consists of CD14+ and CD16+monocytes and four populations of
tumor associatedmacrophages diverse in expressionof polarizationmarkers.bLymphoid
cells in ccRCC display heterogeneous exhaustion profile. c Immunosuppressive

interactions of clinical importance revealed by cell-cell communication analysis between
immuneand tumor cells usingCellPhoneDB.dTumor-immunecell interaction signature
expression in TCGA KIRC cohort is associated with a worse overall survival. e Tumor-
immune cell interaction signature increases along the progression of the ccRCC disease.
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within the TME, rather than patient-specific phenotypes. This underscores
the importance of revisiting strategies for biomarker selection to aid per-
sonalized treatment options in ccRCC.

Tumor-associated macrophages exhibit phenotypic hetero-
geneity and immunosuppressive tumor–immune interaction
signature is associated with poor survival
ccRCC is recognized as highly immune infiltrated tumor with a dynamic
microenvironment. The compositional changes that occur along tumor
stage progression21 and in response to immunotherapy treatment22,35 have a
profound impact on patient survival. Therefore, the phenotypic states of
immune populations represent potentially druggable targets for advanced
and metastatic ccRCC treatments.

Within the immune compartment, we identified all major lymphoid
andmyeloid cell populations including plasma cells (IGKC, IGHG1), B cells
(CD79A, MS4A1), mast cells (TPSB2), NK cells (GZMB, NKG7), classical
(CD14) and non-classical (FCGR3A) monocytes and two major groups of
T cells and macrophages (Fig. 1b), in concordance with previous ccRCC
studies18,19,21. As expected, the tumor samples were enriched in TAMs that
clustered into four transcriptionally distinct subpopulations (Fig. 2a). The
TAM 1 and TAM 2 cells expressed genes hinting towards M1 and M2
polarization, respectively (Fig. 2a), thus encompassing a traditional view of
TAM dichotomy. However, TAM 3 and TAM 4 subpopulations did not
followa clear activationpattern, despite theirmarker genes seemed to reflect
an alternatively activated macrophage phenotype (Fig. 1f, Supplementary
Information Table 1). For example, while the expression of certain immu-
nosuppressive genes, such asMARCO, were clearly diminished in TAM3/4
cells, other immune-response modulating genes such as VSIG436 or VSIR
were highly expressed in TAM 4 population. In addition, among all TAM
populations, TAM 4 demonstrated the highest expression of complement
systemC1Qgenes (Fig. 2a), products ofwhichare known to promote tumor
progression in ccRCC by interacting with tumor-produced complement
system molecules37. Interestingly, some complement components were not
only specific to the tumor cells but also present in the stromal compartment,
suggesting potential stromal cell involvement in tumor progression (Sup-
plementary Fig. S3a). These findings support the notion that ccRCCTME is
enriched in suppressive macrophages that adapt to the microenvironment-
derived signals influencing disease progression6,10,21.

The lymphoid compartment predominantly consisted of CD8 T cells
(CD8B, DUSP4), CD4 regulatory T cells (FOXP3, TNFRSF4), resting/
memory T cells (IL7R,CD52), cytotoxic T cells (XCL1,KLRB1) and natural
killer cells (GZMB, NKG7). These subpopulations expressed multiple
exhaustion markers (Fig. 2b), with classic immune-checkpoint molecule
PDCD1 expressed abundantly in CD8 T cell cluster andCTLA4 enriched in
regulatory T cells. The cytotoxic T cell population shared the exhaustion
pattern with NK cells characterized by high expression of CD160, EOMES,
CD38 and CD69. As expected, resting/memory T cells displayed the least
exhausted phenotype compared to other lymphoid cell populations
(Fig. 2b). Given the established exhaustion profile of lymphoid cells and
immunosuppressive phenotype of myeloid cells18,21,38, we evaluated the
crosstalk of these immune cell populations and tumor cells.

Receptor-ligand analysis (see Methods) revealed multiple interactions
involved in chemokine processing, immune suppression and sustained
survival of tumor cells (Fig. 2c, Supplementary Data S5, S6). For example,
tumor cells were predicted to communicate with monocytes and TAMs
through the immune checkpointHLA-G–LILRB1/2 axis, which is involved
in promoting the immunosuppressive M2 phenotype and immune escape
of the tumor39. Interestingly, both pro-inflammatory (M1) and anti-
inflammatory (M2) TAMs received signals from tumor cells via
SPP1–PTGER4 interaction, known to promote macrophage polarization
towards tumor-supporting phenotype in hepatocellular carcinoma40.
Another important interaction observed in the TME involved T-cell co-
stimulatory CD27–CD70 axis, targeted at CD8 T cells and CD4 regulatory
T cells. Recent studies have shown that this cell-cell interaction is associated
with a pro-tumoral effect, primarily driven by chronic stimulation of T cells

leading to exhaustion, enhanced survival of regulatory T cells, and
recruitment of TAMs41. Furthermore, the expression of interaction sig-
nature (gene set of both receptors and ligands, Supplementary Data S7) was
associated with significantly lower overall survival (Fig. 2d, Supplementary
Data S8) and steadily increased along the progression of the disease in the
TCGA KIRC dataset (Fig. 2e). Therefore, our analysis of the ccRCC TME
reveals the extensive network of immune and cancer cell interactions that
are involved in establishing an immune-suppressive TME for sustained
tumor survival and growth.

Tumor endothelial cells are diverse and play a role in re-shaping
the tumor microenvironment, associated with worse overall
survival
The highly vascularized appearance of ccRCC tumors is often attributed to
the abnormal accumulation of hypoxia-inducible factors2,3 that create
pseudohypoxic conditions and subsequently increase production of
angiogenic factors. To this day, the heterogeneity and possible regulatory
role of the tumor vasculature in ccRCC remains poorly described. Focusing
on ccRCC endothelium in our scRNA-seq dataset we identified five tumor
vasculature (TV) subpopulations (Fig. 3a) that weremarkedly distinct from
healthy kidney endothelium (Fig. 3b) and featured upregulation of genes
important in vascularization, angiogenesis and disease progression. For
instance, among the multiple overexpressed genes (Supplementary Data
S9), theTVcells displayed elevated levels of the fenestrationmarkerPLVAP,
which is recognized as a therapeutic target in hepatocellular carcinoma42;
ANGPT2, which stimulates angiogenesis in autocrine manner and is
involved in recruitment of immunosuppressive TAMS43; IGFBP7, which is
clinically used acute kidney injury urinary biomarker44. Moreover, endo-
thelial migration stimulating insulin receptor (INSR) was overexpressed in
tumor endotheliumand is known to be associatedwith poor overall survival
in bladder cancer, which, similarly to ccRCC, can become resistant toVEGF
pathway targeted therapy45. These findings highlight the abnormal, fene-
strated nature of tumor endothelial cells andmight provide future guidance
for tumor-specific vasculature identification in ccRCC.

Within the tumor vasculature we found an ascending vasa recta-like
population thatwas transcriptionally closer to the healthy endothelium cells
than to other tumor vasculature cells (Fig. 3c), as noted in previous work15.
Intriguingly, our ccRCC atlas also unveiled an uncharacterized population
of tumor vasculature (referred to as TV3) that appeared as themost distinct
from the rest of TV cells (Fig. 3c). This population was marked by high
expression of tip cell markers LOX, PXDN, LY6H and PGF31,46 (Supple-
mentary Fig. S4a, Supplementary Data S10), characteristic of a tip cell
phenotype. Furthermore, TV 3, along with TV 1 and TV 4, displayed
elevated expression of extracellular matrix constituents, including pro-
angiogenic and potentially pro-metastatic collagen type IV and perlecan
(HSPG2) (Fig. 3c)47–49. Meanwhile, TV 2 overexpressed multiple genes
implicated in tumor progression, such as VEGF receptor FLT1, ESM1,
ANGPT2,KCNE3, coagulation factor VIII (F8) (Fig. 3c), which are involved
in tumor-associated angiogenesis49,50. In addition, TV 2wasmarked by high
expressionof autotaxin (ENPP2), a potent stimulator of tumordevelopment
and invasion, which has been associated with acquiring resistance to the
antiangiogenic drug sunitinib in ccRCC51 (Fig. 3c). Interestingly, a fraction
of cells from all tumor vasculature sub-populations expressed INHBB and
SCGB3A1 (Supplementary Fig. S4a), which, in concert with perivascular
TNC (in our dataset expressed by myofibroblasts, Fig. 5a, b), have recently
been demonstrated to orchestrate the pro-metastatic niche in lung metas-
tasis models in mice52. Thus, the tumor vasculature in ccRCC appears to be
highly heterogeneous and expresses a variety of angiogenesis-related and
tumor-promoting factors.

Subsequently, we investigated the potential interactions between
tumor vasculature and other cell types within the TME. Cell-cell commu-
nication analysis using CellPhoneDB53 revealed crosstalk between vascular
and immune cells involved in angiogenesis, immune suppression and
adhesion (Fig. 3d, Supplementary Fig. S3b). Unexpectedly, our analysis
revealed that tumor vasculature delivers immunosuppressive signals
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Fig. 3 |Assessing the heterogeneity of tumor vasculature of ccRCC. aAclose-up of
endothelial cell subpopulations. b Tumor and healthy vasculature comparison
shows upregulation of angiogenesis related genes in tumor vasculature. cDifferential
gene expression between vasculature subpopulations. Only genes with Benjamini-
Hochberg adjusted p value < 0.05 are shown. d Tumor endothelium and myeloid

cells demonstrate abundant cell-cell interactions. e Collective tumor
vasculature–immune cell communication signature expression is associated with a
worse overall survival in TCGA KIRC dataset. AVR ascending vasa recta, DVR
descending vasa recta, TV tumor vasculature.
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previously thought to be confined to the tumor cells, such as the interactions
between TIGIT and NECTIN2 (Supplementary Fig. S3b) or HLA-F and
LILRB1/2 (Fig. 3d). Also, we observed several known interactions mediated
by myeloid cell produced TNF-α with tumor endothelium i.e TNF –
NOTCH1 (Supplementary Fig. S3b), which induces JAG1 expression and
enhances migration and proliferation of endothelial cells upon subsequent
VEGF exposure54. Importantly, a higher degree of cell-cell communication
between tumor vasculature and immune cells, as evaluated by higher
expression of receptor and ligand pairs, was found to result in a significantly
lower overall survival in TCGA KIRC cohort (Fig. 3e).

These findings suggest notable tumor vasculature participation in
tumor progression and tumor microenvironment shaping through the
expression of angiogenesis-related genes, tumor-promoting extracellular
matrix molecules, and active immunosuppressive communication with
immune cells.

Asubpopulationof tumor endotheliumexpressesgenes involved
in epithelial-mesenchymal transition associated with worse
patient survival
The tip cell-like tumor vasculature population (TV 3 in Fig. 3a) expressed
LOX,PXDN,LY6H andPGF, whichare not only denoted as tip cellmarkers,
but have also been implicated in tumor growth promotion within the TME.
For example, placental growth factor (PGF), amember of VEGF family, can
directly interact with VEGF receptors and increase vascular permeability
while promoting M2 macrophage polarization55. In PGF-deficient mice,
tumor-associated M1 macrophage polarization is largely restored while
tumor vasculature appears normalized56. Lysil oxidase LOX and peroxidase
PXDN are involved in cross-linking of the collagen type IV rich extracellular
matrix and basement membrane, which is essential for growth factor
induced endothelial cell proliferation and survival57. Inhibition of ECM
cross-linking through lysil oxidase knockdown has been shown to impair
vessel sprouting31. The transcriptional profile of tumor vasculature 3
population corresponded to angiogenic tip-cell phenotype extensively
characterized by ref. 31 (Supplementary Fig. S4b) and could potentially be
involved in promoting tumor progression.

Molecular Signatures Database Hallmark gene set over-representation
analysis in tumor, tumor vasculature and stromal cell populations (top 100
marker genes) revealed, as expected, hypoxia and glycolysis terms in tumor
cells (Fig. 4a, Supplementary Data S11). However, this analysis also
uncovered an enrichment of epithelial-mesenchymal transition (EMT)
associated genes in all tumor vasculature and stromal cell subpopulations.
Interestingly, the overexpression of EMT pathway overlapping genes for
AVR-like tumor vasculature (Fig. 4b) and TV 3 population (Fig. 4c) was
associated with a significantly worse overall survival in the TCGA KIRC
cohort. In this context, it is important to note that the specific genes over-
lapping with the EMT differed between these subpopulations (Supple-
mentary Data S12). Also, even though other cell populations, such as
stromal cells and the rest of tumor vasculature had a significant overlapwith
the EMT pathway (Supplementary Fig. S5a), no effect on patient survival in
theTCGAKIRCcohortwasobserved (SupplementaryFigs. S5b–g).Overall,
our findings highlight the presence of a tip cell-like tumor endothelium
subpopulation associated with an aggressive phenotype, potentially influ-
encing ccRCC disease progression and survival.

Stromal cells remodel the ECM and potentially contribute to
immunosuppression of TAM populations
Finally, we investigated the putative roles of stromal cells in the ccRCC
tumor microenvironment. While stromal cells have been recognized as
important components of the TME34, their specific contribution in ccRCC
have received much less attention compared to immune or tumor cells.
Graph-based clustering of our dataset revealed three cell populations within
the stromal cells: vascular smoothmuscle cells (vSMCs),myofibroblasts and
mesangial/vSMCs (Fig. 5a, b, Supplementary Data S13). The vSMCs
expressed markers TAGLN, ACTA2, and MYH11, while myofibroblasts
were enriched for ECM constituents (Collagen types I, III, IV, VI and

fibronectin) including markers TIMP1 and ACTA2 (Fig. 5b). The precise
annotation of the third stromal cell population was challenging due to
simultaneous upregulation of mesangial marker PDGFRB and vSMC genes
(Supplementary Information Table 1). Interestingly, this population fea-
tured substantial transcriptional differences between tumor and healthy
tissue (Supplementary Fig. S6, SupplementaryData S14). In tumor samples,
the mesangial/vSMC population overexpressed tumor markerNDUFA4L2
as well as some stress-related genes, such as CD36, which is upregulated in
chronic kidney disease and associated with poor prognosis in ccRCC58,59,
and renin (REN), which is expressed by mesangial cells under disturbed
homeostasis60 (Supplementary Fig. S6). Thus, it appears that themesangial/
vSMC population is reactive to the disruptive microenvironmental changes
exerted by the tumor.

Cell-cell interaction analysis between stromal and immune cells
revealed putative interactions related to stromal cell proliferation and sur-
vival, as well as immune cell suppression and adhesion. Majority of
immunosuppressive signals originating from the stromal cells were directed
at TAM 1 and TAM 2 subpopulations (Fig. 5c). For instance, we identified
ANXA1–FPR1 interaction, which is involved in anti-inflammatory mac-
rophage polarization and tumor progression in various cancers61,62. Fur-
thermore, we found an indication of myofibroblast and mesangial/vSMC
communication with cytotoxic T cells via HLA-E–KLRC1, which has
recently been proposed as a new targetable path of T cell exhaustion in
bladder cancer63. Treatment of HLA-E positive tumors with anti-KLRC1
antibodies has showna strong effect in restoring the anti-tumor immunity64.
Interestingly, our analysis shows that this communication signature is
associated with worse overall survival in the TCGA KIRC dataset (Fig. 5d),
and the expression of genes involved in the stromal-immune cell commu-
nication increasedwith advancing stage of the disease (Fig. 5e). Collectively,
our results suggest that stromal cells could be actively involved in mod-
ulating the tumor microenvironment in ccRCC through therapeutically
relevant paths.

Discussion
The single-cell transcriptomic studies have provided valuable insights about
the origin of ccRCC14,15, malignancy programs of the tumor16, immune cell
population phenotypical changes during tumorigenesis21 and immu-
notherapy treatment18,22 among other. Complementing these ongoing
efforts to better characterize ccRCC tumor microenvironment we profiled
single-cell transcriptomes of human ccRCC tumor samples along with
healthy adjacent tissues. In contrast to previous studies that used cell
enrichment prior to scRNA-seq, our strategy relied on a rapid isolation of
cells from ccRCC specimens, without involving any type of sorting or cell
enrichment.As a result,we could capture a richdiversity of cells constituting
heterogeneous TME that were either significantly depleted or absent in
previous studies. Given that immune compartment in our dataset largely
recapitulated previous findings17–22, we mainly focused on the phenotypic
heterogeneity and cellular interactions of the often overlooked and under-
appreciated endothelial and stromal cell populations.

Endothelial cells are very important in ccRCC tumorigenesis and to
this day remain themain targets of therapeutics in advanced andmetastatic
disease2. The tumor endothelial cells identified in our study include a pre-
viously uncharacterized tip cell phenotype, enriched for epithelial-
mesenchymal transition pathway genes that are associated with poor
patient overall survival. Indeed, the previous single-cell studies in ccRCC
have also captured endothelial cells, however, these were most often
represented by twomajor phenotypic subpopulations that are also found in
our ccRCCatlas. For instance,Zhanget al. reportedACKR1+ andEDNRB+
endothelium, while Long et al. reported VCAM1+ and VCAM1- vascu-
lature populations. Consistently, in our dataset we find a population co-
expressing ascending vasa recta markerACKR1 andVCAM1 (tumor AVR-
like vasculature), however, EDNRB is expressed by tumor vasculature 1, 2,
and4populations, but not by tumor vasculature 3 (Supplementary Fig. S4a),
further supporting that this endothelial (PECAM1+) phenotype has not
been characterized in ccRCC.
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The tip cell population (TV 3) in our dataset is very similar to a tip cell
population observed in lung cancer (LOX, PXDN, PGF, LXN, collagen type
IV enriched, Supplementary Fig. S4a, b) where it was shown to correlate with
worse patient survival31. The authors have found this phenotype the most
congruent across several species and tumor types, including kidney cancer (as
determined by bulk proteomics), which raises a question about why previous
single-cell studies of ccRCC did not capture this rare population. Further-
more, the authors demonstrated that tip cell marker LOX knock-down
impaired vessel sprouting, suggesting that the reported population in ccRCC
might be of interest for future research as a potential therapeutic target.

In linewith ourfindings, Long et al. showed thatVCAM1+ population
(labeled as AVR-like tumor vasculature in our dataset) is enriched for EMT

signature16, yet our pathway over-representation analysis indicates similar
association with EMT for all tumor vasculature and stromal cell popula-
tions, not just the AVR-like population (Fig. 4a). On another hand, the
worse overall survival in association with EMT was pronounced only for
AVR-like and the tumor vasculature 3 populations, further emphasizing the
diversity of tumor endothelial cells andpotential importance of the reported
tip cell phenotype. Alchahin et al. also reported association with EMT for
endothelial and stromal cells, but did not discriminate healthy kidney and
tumor endothelial cells. On the contrary to our findings, they report lower
endothelial cell abundance in tumor samples as compared to healthy
tissues20. Such discrepancies between different studies can be related to
technical aspects, for instance, processing of the samples, and further
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Fig. 4 | MSigDB Hallmark pathway overrepresentation analysis. a Tumor vas-
culature and stromal cell populations are enriched in epithelial-mesenchymal
transition (EMT) signature. b Tumor AVR-like vasculature and c tip-like tumor

vasculature 3 signature genes overlapping with EMT pathway associate with worse
overall survival in the TCGA KIRC cohort.
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underline the importance for accurate phenotypic characterization of the
tumor vasculature cells in ccRCC.

Our findings suggest two major modes of action of the tumor vascu-
lature cells in the TME. First, remodeling of the ECMby active deposition of
various ECM constituents and expression of their modifying agents related
to EMT (i.e., LOX, PXDN in tumor vasculature 3) and second, active
engagement in cellular communication in the tumor microenvironment,
mostly involved in immune suppression and angiogenesis maintenance.
Interestingly, spatial transcriptomic profiling of ccRCC by Li et al., showed
that collagen producing endothelial cells localize at the tumor–normal
interface enriched in EMT-high tumor cells and IL1B+ macrophages17.
These findings are also corroborated by our results suggesting that tumor
endothelial cells might indeed contribute to EMT in ccRCC and interact
with TAMs. The cell-cell communication analysis uncovered diverse
interactions of clinical relevance enriched in the tumor vasculature and

stromal cell communication with immune cells (Figs. 3d, 5c). For instance,
in 2021, a phase I–II clinical trial (IDNCT04913337) began for LILRB1 and
LILRB2 inhibitor as amonotherapyor in combinationwithPembrolizumab
(anti PD-1) for advanced or metastatic solid tumors, including ccRCC.
Inhibition of LILRB2 reprograms myeloid cells to a stimulatory (pro-
inflammatory) state, while inhibition of LILRB1 stimulates the repro-
gramming of both myeloid and lymphoid cells. Our analysis suggests that
LILRB1/2+ immune cells interact not only with tumor cells, but also with
endothelial cells. Similarly, endothelial cell-expressed NECTIN2 associated
with TIGIT expressed by regulatory T cells, an interaction that has gained
increased attention over the last few years and is currently exploited in a
multitude of clinical trials65. Another intriguing interaction observed
between TV 2 and TAM 2 populations was SCGB3A1–MARCO. As
demonstrated recently, SCGB3A1, a secreted secretoglobin family member
produced by endothelial cells, is a crucial component of a pro-metastatic

Fig. 5 | Assessing the heterogeneity of stromal cells in the TME. a Stromal cell
populations consisting of vSMCs, myofibroblasts and mesangial/vSMCs.
bDifferential gene expression between stromal cell subpopulations. Only genes with
Benjamini-Hochberg adjusted p value < 0.05 are shown. c Stromal and immune cells
exhibit immunosuppressive interactions mediated by stromal cells. d Expression of

collective stromal-immune cell interaction signature gene set associates with worse
overall survival in the TCGA KIRC cohort. e Stromal-immune cell interaction sig-
nature expression increases along the progression of the ccRCC disease. vSMCs
vascular smooth muscle cells.
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niche and induces stemcell properties in cancer cells,whilemacrophages are
also required for the niche maintenance52. However, SCGB3A1–MARCO
interaction in ccRCC, to our knowledge, has not been described.

It is worth emphasizing that stromal cells in our dataset were involved
in communication with immune cells in a suppressive manner, suggesting
their participation in maintaining a pro-tumorigenic niche, especially
considering the difference of mesangial/vSMCs population expression in
tumor vs healthy adjacent tissue. Moreover, the communication signature
expression associated with worse overall survival and increased along the
progression of the disease in the TCGA KIRC dataset. On a side note,
increase of stromal cells has recently been shown in recurrent RCC as
compared to primary disease, furthermore, stromal cell-producedGalectin-
1 inhibitor significantly reduced tumor mass and improved anti-PD-1
immunotherapy efficacy in murine models66. Another report showed that
co-targeting stromal cells expressing PDGFRs and endothelial cells
expressingVEGFRs delays tumor vascularization andhas clinical efficacy in
pancreatic neuroendocrine tumors43. Therefore, there is a need for in-depth
characterization of ccRCC stromal cells and further validation of their pro-
tumorigenic properties. Understanding the role of stromal cells in the TME
could provide valuable insights for the development of targeted therapies.

Overall, our study introduces a tumor-associated endothelial tip cell
phenotype and provides new insights into the characterization of the TME
in ccRCC.Wepropose that tumor endothelial cells favor tumor progression
and potentially metastatic dissemination through the expression of metas-
tasis promoting factors, specific extracellular matrix components and
indirectly via targetable interactions with immune cells in the TME.
Undoubtedly, future functional studies are needed to elucidate the exact
roles of the described diverse tumor endothelial cells and explore their
potential as therapeutic targets in ccRCC.

Study limitations
Like any other, this study is not without limitations. Single-cell RNA
sequencing results generally suffer fromdata sparsity and tissue dissociation
biases. The latter is particularly relevant to adhesive cells, such as epithelial
or tumor cells, that are more challenging to dissociate into single cell sus-
pension as opposed to infiltrating immune cells28. Therefore, even though
immune cell infiltration is a common characteristic of ccRCC, the exact
cellular composition of tumors in our as well as other scRNA-seq
datasets16,18,20 is likely to be affected by the dissociation protocols and
other experimental variables, inflating the immune compartment at the
expense of the tumor cell capture. We aimed at minimizing these biases by
reducing the sample handling time in order to extend the viability of cells,
and deliberately avoided the FACS that is known to cause damage to the
fragile cells. Whilst our efforts led to a recovery of rich cell phenotypes,
including ccRCC endothelial tip-cell population, future studies will be
required to validate our findings. Moreover, functional in-vitro and in-vivo
characterization will be necessary to elucidate the role of tip-cell population
in the disease progression or response to therapy, as such experiments were
out of scope of this work. Finally, another compromise taken due to the
selected study design involves sacrifices to scRNA-seq data quality. The data

sparsitydidnotpermit us applying imputation, pseudotimeorRNAvelocity
algorithms that could provide further insights into tumor biology. None-
theless, despite the existing limitations, our study reveals previously under-
characterized cell populations and their putative interactions thereby not
only complementing ccRCC characterization, but also suggesting new
directions for future research.

Methods
Sample acquisition
Fresh ccRCC tumor (n= 8) and healthy-adjacent (n = 9) paired kidney tis-
sues were obtained from the National Cancer Institute (Vilnius, Lithuania)
with informed patient consent and a Vilnius Regional Bioethics Committee
approval No.2019/2˗1074˗586. All ethical regulations relevant to human
research participants were followed. No patient had received prior systemic
therapy for their cancer. Samples were collected during an open or laparo-
scopic, partial or radical nephrectomy surgery, placed on ice and rapidly
(<1 h) transferred to the laboratory for dissociation. Sample T1 (tumor from
patient P1) was highly necrotic, thus excluded from analysis. Clinical char-
acteristics of all samples profiled are provided in Supplementary Data S1.

Sample processing
Samplepreparationwasperformedaccording to the scRNA-seqprotocol67, yet
without FACS-based enrichment. Briefly, patient-derived tumor tissues were
dissociated using Tumor Dissociation Kit (Miltenyi Biotec, cat. no.130-095-
929) in an automated instrument gentleMACSOctoDissociator withHeaters
(Miltenyi Biotec) as per manufacturer’s instructions. Healthy-adjacent tissues
were dissociated using Tissue Dissociation Kit I (Miltenyi Biotec, cat. no. 130-
110-201). After dissociation, red blood cells were removed from the samples
using RBC lysis reagent (Miltenyi Biotec, cat. no.130-094-183). After RBC
lysis, cellswerewashed three times in ice-cold1XDPBS (Gibco, cat. no. 14080-
048) at 500 g for 5min. Cell viability and count were assessed using Trypan
Blue dye (Gibco, cat. no. 15250061) on a hemocytometer. No further
enrichment or selection of cells was performed. Cell suspension was imme-
diately loaded onto inDrops platform68 for cell barcoding experiment.

Single-cell barcoding, library preparation and sequencing
Dissociated cells were isolated in 1 nl droplets and their transcriptomes
barcoded using a modified version of inDrops protocol69. Specifically,
instead of linear cDNA amplification by in vitro transcription we used
template switching andPCRamplification. For that purpose,we isolated the
cells at occupancy 0.1 alongside barcoding beads (Atrandi Biosciences, cat.
no. DG-BHB-C) and reverse transcription/lysis mix, the latter supple-
mented with a template-switching oligonucleotide, TSO (see Table 1 for
composition). We used cell barcoding chip (Atrandi Biosciences, cat.no.
MCN-05) to inject the cells,DNAbarcoding beads, andRT/lysismix atflow
rates of 250, 60, 250 µl/h, respectively. The droplet stabilization oil (Atrandi
Biosciences, cat. no. MON-DSO2) was set at 700 µl/h. The emulsion was
collected off-chip on ice rack and briefly exposed toUV light (5min at 6.5 J/
cm2 of 350 nm, Atrandi Biosciences, cat.no. MHT-LAS2) to release the
photo-cleavable RT primers from the barcoding hydrogel beads. The RT

Table 1 | Lysis/RT reaction mix for single-cell mRNA barcoding

Reagent Amount, µl Concentration in droplet

Nuclease-free water 21 ---

5X RT buffer (Thermo Scientific, Cat. No EP0751) 60 1X

TSO primer (0.5 mM) 15 25 µM

dNTP (10mM each, Thermo Scientific, Cat. No. R0192) 15 0.5 mM

10% (v/v) Igepal CA-630 (Sigma Aldrich, Cat. No. 18896-50mL) 9 0.3%

RiboLock RNAse Inhibitor (Thermo Scientific, Cat. No. EO0382) 15 1 U/ul

Maxima H Minus Reverse Transcriptase (Thermo Scientific, Cat. No. EP0751) 15 10 U/ul

Total volume 150 ---
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reaction was performed at 42 °C for 60min followed by 5min at 85 °C. The
post-RT emulsion was burst with 10% emulsion breaker (Atrandi Bios-
ciences, cat.no. MON-EB1) and pooled material was used for subsequent
library construction.

Library construction
The barcoded-cDNA was purified twice with 0.8X AMPure XP reagent
(BeckMan Coulter, cat. co. A63881) as per manufacturer’s instructions. Next,
cDNA was PCR amplified with KAPA HiFi Hot Start Ready Mix (Roche,
cat.no. KK2601) using cDNA FWD primer and cDNA REV primers (see
Table 2). Amplified DNA was fragmented and ligated to adapter using
instruction and reagents provided by NEBNext® Ultra™ II FS DNA Library
Prep (NEB, cat.no. E7805S). Finally, the libraries were amplified by 12 rounds
of indexing PCR (2X KAPA HiFi Hot Start Ready Mix, Roche, cat.no.
KK2601). Library quality was assessed using Bioanalyzer DNA High Sensi-
tivity chip (Agilent, cat. no. 50674626). The libraries were sequenced on
Illumina NextSeq 550 platform inmultiple batches using either NextSeq 500/
550HighOutputKit v2.5 (75Cycles) (Illumina, cat. no. 20024906) orNextSeq
500/550 High Output Kit v2.5 (150 Cycles) (Illumina, cat. no. 20024907).

Raw sequencing data processing
The STARsolo pipeline (https://github.com/jsimonas/solo-in-drops) was
used to process the data and to obtain expression matrices. STAR (version
2.7.6a) was run with the following parameters: --soloMultiMappers Uni-
form, -- soloType CB_UMI_Simple, -- soloUMIfiltering MultiGeneUMI,
and --soloCBmatchWLtype 1MM. Homo sapiens (human) genome
assembly GRCh38 (hg38) and Ensembl v93 annotations were used as the
reference.

Data analysis: quality control, doublet, and RBC removal
Starting with cell x gene matrices, analysis was performed in Python using
scanpy toolkit (Table 3). All notebooks are provided at https://github.com/
zvirblyte/2023_ccRCC. Briefly, the raw count matrices were uploaded into
an AnnData object and filtered by total transcript count andmitochondrial
count fraction. The threshold for mitochondrial counts for all libraries was
20%. The total transcript count threshold was determined by evaluating the
total count distribution andwas selected permissive atminimum400UMIs
per cell (300UMIs for libraries T3.1, T9.1, N3.3, N4.3, N2.3). Doublets were
removed using Scrublet70 (v0.2.3) in the same PCA space used for initial
UMAP construction. Scrublet was applied on each emulsion separately.
Briefly, the procedure for doublet removal consisted of 1) Calculating

doublet scores for each cell in each emulsion using Scrublet; 2) high-
resolution graph-based clustering using Scanpy’s Louvain algorithm
implementation (resolution = 60); 3) evaluation of mean doublet score and
fraction of predicted doublets per cluster; 4) manual inspection of doublet-
rich clusters in the interactive SPRING application71, 5) removal of clusters
with high mean doublet score and doublet fraction and no cluster-specific
gene expression. This procedure, starting fromUMAP construction at step
2) was repeated a total of two times and 913 cells (<2% of the total cell
population) were removed. Transcriptomes with >1% of total raw counts
originating from hemoglobin genes (HBB, HBA1, HBA2, HBD) were
considered as red blood cells (RBCs) and 47 such transcriptomes were
removed from further analysis.

UMAP construction, clustering, and annotation
Afterfiltering andQC steps we retained 50,236 single cells that were used to
construct a graph and UMAP representation (Fig. 1b). The procedure
consisted of 1) normalization to 10,000 total counts, log-transformation and
scaling; 2) selection of highly variable genes; 3) PCA; 4) batch correction
using Harmony72; 5) graph construction and 6) UMAP representation.
After normalization, genes with 15 CPTT (counts per ten thousand) in not
less than 25 cells were considered abundant and retained, furthermore,
mitochondrial and ribosomal genes were excluded and top 2000 abundant
and highly variable genes, based on Fano factor (as in ref. 68), were used for
PCA. To remove batch effects due to different batches of barcoding beads
the dataset integration was performed using function scanpy.external.p-
p.harmony_integrate() with the batch variable ‘beads’. Then, adjacency
graph was constructed using sc.pp.neighbors() with n_neighbors = 30 and
UMAP representationwas built using sc.tl.umap() withmin_dist = 0.4. The
resulting representation was used for exploration in interactive SPRING
application. Graph-based spectral clustering with varying number of clus-
ters (k) was performed using sklearn.cluster.SpectralClustering() function,
the clustering resultswere explored in the interactive SPRINGenvironment,
and k = 43was selected for annotation. Differential gene expression analysis
(Mann Whitney U test with Bonferoni-Hochberg correction) was per-
formed and top 25 marker genes for each cluster (adjusted p value < 0.05)
were used for in-depth literature analysis and manual cell type annotation
(Supplementary Information Table 1, Supplementary Data S2).

Sample heterogeneity quantification
To quantify sample heterogeneity, Shannon entropy of samples was cal-
culated for each broad cell category as described in ref. 11. Briefly, entropy

Table 2 | List of DNA oligonucleotides

Name Sequence

Template-switching primer

TSO 5′-AAGCAGTGGTATCAACGCAGAGTACATrGrGrG

cDNA amplification primers

cDNA REV primer 5′-AAGCAGTGGTATCAACGCAGAGT

cDNA FWD primer 5′-CTACACGACGCTCTTCCGATCT

Ligation adapter

Ligation FWD primer 5′-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Ligation REV primer 5′-GCTCTTCCGATCT

Indexing PCR primers

Forward PCR index primer AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

PE2-ind1 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGT

PE2-ind2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGT

PE2-ind3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGT

PE2-ind4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGT

PE2-ind5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGT

PE2-ind6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGT

https://doi.org/10.1038/s42003-024-06478-x Article

Communications Biology |           (2024) 7:780 11

https://github.com/jsimonas/solo-in-drops
https://github.com/zvirblyte/2023_ccRCC
https://github.com/zvirblyte/2023_ccRCC


values were calculated for sample frequency in each cell group (stromal,
endothelial, tumor, lymphoid, myeloid, epithelial and cycling). To account
for differences in the number of cells per group, we subsampled 100 cells
from each group 100 times with replacement and calculated the Shannon
entropy using function scipy.stats.entropy(). Cells fromcluster “Tumor cells
1” were excluded, as they were sample specific.

Receptor–ligand interaction analysis
Log-normalized expression values for all cell types, excluding healthy epi-
thelial cell populations and cycling cells were used to infer cell-cell inter-
actions using CellphoneDB v.2.0.053 with method “statistical_analysis” and
default parameters. Significant (p value < 0.05) cell-cell interactions were
explored and selected interactions are shown in Figs. 2c, 3d, 5c and Sup-
plementary Fig. S3b. Cell-cell interaction signatures for subsequent survival
analysis (as in Fig. 2d) were constructed by taking both the receptor and
ligand genes in the set (provided in Supplementary Data S7). Cell-cell
interaction analysis results are provided in Supplementary Data S5 and S6.

CellTypist label transfer
To examine the similarity of ccRCC tumor endothelial cell types to the ones
described by ref. 31, a CellTypist73 model was trained for label transfer
according to a tutorial available at https://www.celltypist.org/. Briefly,
Goveia et al., endothelial cell scRNA-seqmatrix andmetadata was obtained
from https://endotheliomics.shinyapps.io/lung_ectax/, the matrix was log-
normalized and filtered to exclude nontumor endothelial cells and patient

#5 specific phenotype. Then, the model was trained on the dataset without
gene filtering and applied for label transfer to our endothelial cell log-
normalized matrix with parameter majority_voting=True. Similarly, a
model was trained on ref. 15 dataset obtained from GEO (at GSE159115).
The dataset was filtered to epithelial cells only without gene filtering and
applied for label transfer to our epithelial cell log-normalized matrix with
parameter majority_voting=True. The results are presented in Supple-
mentary Figs. S2a and S4b.

Gene set over-representation analysis
Gene set over-representation analysiswas employed to evaluate thepotential
functional significance of a given gene signature. The analysis utilized gene
sets obtained from theHallmark Pathways of theMSigDB database v7.5.174.
Gene signatures were then submitted to a hypergeometric test implemented
in the enrichGO() functionof the clusterProfilerRpackage75 using genes that
were detected (nonzero UMI counts) in kidney tissue samples as a universe
(background reference). The pathways having FDR (Benjamini-Hochberg)
values below 0.05 were considered as significantly over-represented.

Survival analysis
TCGAKIRC cohort bulk RNA-seq (upper quartile FPKMnormalized) and
clinical data were downloaded from the NCI GDC Data Portal76 using the
TCGAbiolinks R package77. Cell type signature scoring of the TCGA bulk
RNA-seq samples was performed by calculating an arithmetic mean of
the z-score transformed expression values for all genes in a given signature.
The used gene-wise z-score transformation equalizeddifferences in the gene
expression abundances, so that lowly and highly expressed genes would
have the same scale and, thus equal weight in the score. The association
between signature score and overall survival time was assessed by Kaplan-
Meier and multivariate Cox regression analyses. Log-rank tests and Wald
tests, respectively, were used to evaluate statistical significance (at level of
0.05) of the performed survival analyses. For the Kaplan-Meier analysis,
stratified signature (high—greater or equal than themedian signature score;
low—lower than the median signature score) was used, while for the mul-
tivariate Cox regression analysis, the continuous signature score values were
used with patient age and sex as covariates. The survival analyses were
conducted using the survival and the survminer R packages.

Statistics and reproducibility
Single-cell RNA-seq datasets for paired healthy-adjacent kidney (n = 9) and
ccRCC tumor (n = 8) samples were generated in this study. One sample
(patient P1 tumor) was excluded from analysis due to high necrosis level in
tissue. Detailed descriptions of the statistical analyses in this study are
provided in the respective methods section. Significance threshold for
p values and adjusted p values was <0.05.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data generated in this study are available in Gene Expression Omnibus
(GEO) at GSE242299. Publicly available datasets used were downloaded
from GEO (at GSE159115) and https://endotheliomics.shinyapps.io/lung_
ectax/. TCGA KIRC cohort bulk RNA-seq (upper quartile FPKM nor-
malized) and clinical datawere downloaded from theNCIGDCData Portal
using the TCGAbiolinks R package.

Code availability
All Jupyter notebooks for scRNA-seq and R scripts for other analyses pre-
sented in this manuscript are publicly available at https://github.com/
zvirblyte/2023_ccRCC. Software versions used are provided in Table 3.
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Table 3 | Software and algorithms

Software Version Reference

solo-in-drops v1.0 https://github.com/jsimonas/solo-in-drops

STAR 2.7.6a https://github.com/alexdobin/STAR, https://doi.
org/10.1101/2021.05.05.442755

scanpy v1.8.0 78, https://scanpy.readthedocs.io/en/stable

harmonypy v0.0.5 72, https://github.com/slowkow/harmonypy

scrublet v0.2.3 70, https://github.com/swolock/scrublet

SPRING viewer N/A 71, https://github.com/AllonKleinLab/SPRING_dev

scikit-learn v1.0.2 https://scikit-learn.org/stable

statsmodels v0.12.2 https://www.statsmodels.org/v0.12.2

scipy v1.6.2 79, https://scipy.org

anndata v0.7.6 https://doi.org/10.1101/2021.12.16.473007,
https://anndata.readthedocs.io/en/latest

numpy v1.20.1 https://numpy.org/doc/1.20/index.html

pandas v1.2.4 https://pandas.pydata.org

louvain v0.7.1 https://github.com/vtraag/louvain-igraph

umap v0.5.1 https://umap-learn.readthedocs.io/en/latest

matplotlib v3.2.2 https://matplotlib.org/stable/index.html

seaborn v0.11.0 https://seaborn.pydata.org

jupyterlab v2.2.6 https://jupyter.org

CellPhoneDB v2.0 53, https://cellphonedb.readthedocs.io/en/latest/
index.html

R v4.2.1 https://www.r-project.org/

tidyverse v1.3.2 https://www.tidyverse.org/

biomaRt v2.52.0 https://bioconductor.org/packages/biomaRt/

clusterProfiler v4.4.4 https://bioconductor.org/packages/
clusterProfiler/

TCGAbiolinks v2.24.3 https://bioconductor.org/packages/
TCGAbiolinks/

survival v3.3-1 https://CRAN.R-project.org/package=survival

survminer v0.4.9 https://cran.r-project.org/package=survminer

CellTypist V1.6.2 https://www.celltypist.org/
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