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ABSTRACT

Context. Modeling the convection process is a long-standing problem in stellar physics. To date, all ad hoc models have relied on a
free parameter, α, (among others) that has no real physical justification and is therefore poorly constrained. However, a link exists be-
tween this free parameter and the entropy of the stellar adiabat. There are existing prescriptions, derived from 3D stellar atmospheric
models, that treat entropy as a function of stellar atmospheric parameters (effective temperature, surface gravity, and chemical com-
position). This can offer sufficient constraints on α through the development of entropy-calibrated models. However, several questions
have arisen as these models are increasingly used with respect to which prescription should be used and whether it ought to be used
in its original form, along with the impacts of uncertainties on entropy-calibrated models.
Aims. We aim to study the three existing prescriptions in detail and determine which of them demonstrate the most optimal perfor-
mance and how it should be applied.
Methods. We implemented the entropy-calibration method into the stellar evolution code (Cesam2k20) and performed comparisons
with the Sun and the αCen system. In addition, we used data from the CIFIST grid of 3D atmosphere models to evaluate the accuracy
of the prescriptions.
Results. Of the three entropy prescriptions currently available, we determined the one that has the best functional form for reproduc-
ing the entropies of the 3D models. However, the coefficients involved in this formulation must not be taken from the original paper
because they were calibrated against a flawed set of entropies. We also demonstrate that the entropy obtained from this prescription
should be corrected for the evolving chemical composition and for an entropy offset different between various EoS tables. This must
be done following a precise procedure to ensure that the classical parameters obtained from the models are not strongly biased. Fi-
nally, we provide a data table with entropy of the adiabat of the CIFIST grid, along with the fits for these entropies.
Conclusions. Thanks to a precise examination of entropy-calibrated modeling, we are able to offer our recommendations with respect
to which adiabatic entropy prescription to use, how to correct it, and how to implement the method into a stellar evolution code.
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1. Introduction

Convection modeling is a major problem in the context of
obtaining realistic stellar evolution models. Stellar convective
regions are highly turbulent media where the Reynolds num-
ber can reach values on the order of 108 (solar photosphere;
Komm et al. 1991) to 1014 (bottom of the solar convective enve-
lope; Kupka & Muthsam 2017). In such regimes, Navier-Stokes

? Full Table A.1 is available at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/687/A146

equations can only be solved numerically. Conducting such
hydrodynamic simulations would require high spatial resolu-
tions on a large domain going from the top of adiabatic region to
the outer layers of the photosphere and over a timescale of stel-
lar evolution. This is completely unachievable with the computa-
tional capabilities available presently and even in the foreseeable
future.

To circumvent this problem, physicists have designed ad
hoc models that manage to reproduce the general properties
of stellar convective envelopes, including their thermal struc-
ture. Among them, we can cite: mixing length theory (MLT;
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Böhm-Vitense 1958) or full spectrum of turbulence models
(FST; Canuto & Mazzitelli 1991, 1992; Canuto et al. 1996). The
MLT reduces the spectral energy cascade of turbulence to a Dirac
distribution, namely: the whole convective flux is carried by
eddies of a single size. A hot parcel of matter, before dissolv-
ing into the surrounding medium, rises a certain distance (called
the mixing length) ` = αMLTHp, where Hp is the pressure scale
height and αMLT is a free parameter. In deeper regions of the star,
convective energy transport is very close to adiabatic, which is
isentropic, the thermal structure is then independent of the con-
vection formulation, and (in particular) of αMLT, which is used
in the models (Gough & Weiss 1976). However, when the adia-
baticity assumption breaks down, typically in low-density near-
surface layers in convective stellar envelopes, the value of αMLT
determines the degree of non adiabaticity in the model, namely:
the entropy difference between the minimum of entropy occur-
ring at the top of the convective envelope and the fully adia-
batic interior. The FST represents an attempt to work around this
dependence. It assumes a more complex form for the cascade,
for instance, a Kolmogorov spectrum. Original formulations of
the FST models do not introduce any free parameters and define
the mixing length simply as the distance, z, to the nearest bound-
ary of the convective zone. For the purposes of fine-tuning this
approach, Canuto et al. (1996) introduced a dependence on the
pressure scale height through a free parameter αFST, intended to
be small and to experiencing only small changes from a model
to another.

However Ludwig et al. (1999) found, using the thermal
structures obtained from 2D radiation hydrodynamics (RHD)
stellar atmosphere models that αFST does not remain small
and varies by a similar amount as αMLT over the HR dia-
gram. Over recent decades, there have been many works high-
lighting the successes and caveats of MLT and FST models
(e.g., Arnett et al. 2015; Trampedach 2010; Kupka & Muthsam
2017) and trying to improve or to go beyond them (e.g.,
Gough 1977; Grigahcène et al. 2005; Li 2012; Pasetto et al.
2014; Gabriel & Belkacem 2018).

Nonetheless, MLT and FST models remain widely used in
stellar evolution codes. The most practical issue these models
raise is: how do we choose the value of the free parameter
α1? Overall, there are two ways to choose the α value. Firstly,
through an optimization process, α can be tuned so that stellar
models match a set of observable constraints for one or several
stars. The most straightforward case is the widely used solar cal-
ibration, in which α is obtained by adjusting its value (together
with the chemical composition) of models to reproduce the
present-day global solar properties (e.g., Christensen-Dalsgaard
1982; Morel et al. 2000; Serenelli 2016; Vinyoles et al. 2017).
The same α value is then used to compute stellar models. This
assumes that a unique value of α is appropriate for all stars at all
evolutionary stages but there is no reason a priori why this should
be the case (Ireland & Browning 2018) and RHD simulations of
convective stellar atmospheres consistently point to a variable α
(Trampedach et al. 2014; Sonoi et al. 2019). A possible exten-
sion would be to use stars, or sets of them, as calibrators, ideally
establishing a semi-empirical relation between α values and stel-
lar fundamental parameters. There is, however, a lack of reliable
calibrators for which the stellar parameters are known with high
enough level of accuracy.

Secondly, a different approach is to consider α as a com-
pletely free parameter that can be optimized on star-by-star basis

1 In the following, we use α equivalently for αMLT or αFST, except when
explicitly mentioned otherwise.

Table 1. Summary of the different notations used to denote the specific
entropy.

sad Specific entropy of the adiabat in 1D stellar evolu-
tion models.

sRHD Specific entropy of the adiabat in 3D stellar atmo-
sphere models. Entropy assigned to the inflow at
the bottom.

spresc Value of the specific entropy of the adiabat,
obtained from a prescription.

sbot Average specific entropy at the bottom layer of 3D
simulations of stellar atmospheres.

to find best-fitted stellar models to a set of observables. This can
be done using either stellar models that are computed as part of
the optimization process or pre-computed grids of models with
different α-values together with an interpolation algorithm (e.g.,
SPInS; Lebreton & Reese 2020) to find the best-fit model. This
is actually not a calibration, as the resulting α values are not used
as the basis for modeling other stars, only to obtain a best-fit
model. However, such an approach offers little hope of improv-
ing on our formulations and understanding of convection.

To improve the use of MLT or FST modeling of convection,
it is necessary to find a relationship between α and global stellar
parameters (effective temperature, surface gravity, and chemi-
cal composition). This is the aim of α calibrations. Ludwig et al.
(1999) used standard 1D stellar atmosphere models with a tun-
able αMLT parameter (similar to what we have in stellar evo-
lution models) and a grid of more realistic two-dimensional
(2D) radiative-hydrodynamics stellar atmosphere models, to find
a relation between αMLT, Teff , and log g. More precisely, they
adjusted the value of αMLT so that the specific entropy of the
adiabat of their envelope models matches the one of their 2D
models. This work provided an expression for αMLT as a func-
tion of effective temperature, Teff , and surface gravity, g, of
the models. Aiming at improving this pioneering study, sim-
ilar work was carried out by Trampedach et al. (2014) using
solar-metallicity 3D atmosphere simulations computed with the
Nordlund & Stein (1990) code and later by Magic et al. (2015)
with 3D Stagger models with a metallicity of [Fe/H] ∈
[−4.0; +0.5]. More recently, Sonoi et al. (2019) used a grid of 3D
stellar atmosphere models computed with CO5BOLD (i.e., COn-
servative COde for the COmputation of COmpressible COnvec-
tion in a BOx of L Dimensions, with L = 2, 3; Freytag et al.
2002, 2012; Wedemeyer et al. 2004) to obtain a representation
of α as a function of global stellar parameters for MLT and
FST modeling, as well as for different temperatures, T, versus
the optical depth τ relations (T (τ) relations) used to describe the
atmosphere. All those prescriptions for α are very easy to imple-
ment in a stellar evolution code. However, they are highly depen-
dent on the physical ingredients, as it is shown by the important
change of calibrated α values introduced by a change of T (τ)
relation.

At the same time, Tanner et al. (2016) suggested directly
adjusting the α parameter in stellar evolution calculations along
the evolution such that the specific entropy of the model adi-
abat, sad, matches (at all times) sRHD, the value obtained in
RHD simulations for the same Teff , log g, and [Fe/H] values
(notations for the various specific entropies are summarised in
Table 1). This has the advantage that the specific entropy has a
well defined physical meaning and is linked to the surface prop-
erties of the star by means of the realistic RHD models. In this
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way, α simply becomes a parameter used to ensure that stellar
models reproduce the correct sRHD, as inferred from RHD sim-
ulations, in a consistent way with the physical ingredients in the
stellar evolution models; for instance, different T (τ) relations,
use of MLT or FST, or any other prescription for convection.
The idea of Tanner et al. (2016) was implemented in Yale Rota-
tional stellar Evolution Code (YREC; Demarque et al. 2008) and
tested on the Sun (Spada et al. 2018) and on the αCen system
(Spada & Demarque 2019). Finally, the method was extended to
evolved stars (Spada et al. 2021).

The aim of the present work is to contribute to the gen-
eral effort to develop more accurate stellar models. Modeling
the atmosphere of solar-type stars is based on three main com-
ponents: (1) the opacity profile in the atmosphere, (2) the T (τ)
relation which defines the transition in the temperature gradient
between optically thick and optically thin regions, and (3) the
convection formalism. For a seismically reliable stellar model,
these three components must be chosen with the utmost care.
This work focuses on the last component by removing the main
free parameters of the convection formalism. Specifically, in this
work, we built on previous works to produce stellar models that
no longer include the mixing length as a free parameter. To that
purpose, we implemented the same method in the stellar evo-
lution code Cesam2k20 (formerly known as CESTAM: Code
d’Evolution Stellaire avec Transport, Adaptatif et Modulaire;
Morel 1997; Morel & Lebreton 2008; Marques et al. 2013), as
in the YREC code (Demarque et al. 2008). The previous works
made it clear that a lot of care must be taken in the use of entropy
prescription. In Sect. 2, we review the available prescriptions and
in Sect. 3, we describe the implementation of entropy calibration
in Cesam2k20. In Sect. 4 we describe the necessary improve-
ments that should be added to the prescriptions. A discussion is
presented in Sect. 5, followed by our conclusions in Sect. 6.

2. Available prescriptions for entropy at the bottom
of the convective envelope

2.1. Stellar atmosphere codes

Before describing the entropy prescriptions, it is worth consid-
ering a few details on the 3D radiation-hydrodynamics model
atmosphere codes that were used to compute the simulations
they are based on. The atmosphere codes can solve hydrody-
namic and radiative transfer equations. All simulations used
hereafter do not include the magnetic field and therefore are
referred to as RHD simulations. The codes rely on the “box-in-
a-star” setup, where only the flow included in a box is simulated.
This box covers an optical depth range of −6 ≤ log10 τRoss ≤ 5,
which encompasses the superadiabatic region. This domain is
small in comparison to stellar dimensions but large enough to
resolve properties of the convective flow. Periodic boundary con-
ditions are assumed at the vertical faces of the box and, at hor-
izontal faces, the flow is free to enter and leave the box. The
upper boundary condition can vary from one code to the other.
At the bottom, the specific entropy of the inflowing material is
fixed, which allows for the effective temperature of the result-
ing model to be constrained. The specific entropy of the inflow
can be seen as the entropy of the adiabat. Because at the lower
boundary, inflow and outflow do not have the same entropy, the
horizontally average at this depth is not equal to the entropy of
the adiabat.

In the following, we use spresc to denote the specific entropy
obtained from a prescription, sRHD the specific entropy of the
adiabat of an atmosphere model, and the word “entropy”, as

applied as a synonym for “specific entropy” (entropy per unit
of mass). Up to now, three different mathematical formulations
have been proposed to relate sRHD to Teff , log g and, optionally,
[Fe/H]. While their general mathematical forms remain similar,
they have been calibrated on different sets of models.

2.2. The functional form of Ludwig et al. (1999)

The original idea that models of surface convection could be
used to derive constraints on the value of the entropy of the adi-
abat was first suggested by Steffen (1993). Ludwig et al. (1999)
(hereafter L99) used a grid of 58 two-dimensional RHD atmo-
sphere models with 4300 K ≤ Teff ≤ 7100 K, 2.54 ≤ log g ≤
4.74 and a chemical composition close to that of the proto-Sun
composition proposed by Grevesse & Sauval (1998) (hereafter
GS98), with Y = 0.28 and Z = 0.016. The entropy of the adiabat
is expressed as follows:

sL99
presc(T̃ , g̃) = a0 + a1T̃ + a2g̃ + a3 exp(a4T̃ + a5g̃), (1)

where {ai}
5
i=0 are constants determined using the grid of models,

T̃ = (Teff − 5770)/1000 and g̃ = log(g/27500).

2.3. The functional form of Magic et al. (2013)

Magic et al. (2013) (hereafter M13) used a grid (the Stagger-
grid) of 217 3D RHD atmosphere models computed with the
Stagger code (Nordlund & Galsgaard 1995), with 4000 K ≤

Teff ≤ 7000 K in steps of 500 K, 1.5 ≤ log g ≤ 5.0
in steps of 0.5, and seven values of metallicity [Fe/H] =
+0.5, 0.0,−0.5,−1.0,−2.0,−3.0,−4.0. The solar chemical com-
position follows the determination of Asplund et al. (2009)
(hereafter AGSS09), for the present Sun. M13 suggested that the
entropy of the adiabat ought to be to represented by the following
function:

sM13
presc(T̃ , g̃, z̃) = P2(ai, z̃) + P2(bi, z̃)T̃ + P2(ci, z̃)̃g

+ P2(di, z̃) exp(P2(ei, z̃)T̃ + P2( fi, z̃)̃g), (2)

and

P2(ai, z̃) =

2∑
i=0

aĩzi, (3)

where the coefficients {ai, bi, ci, di, ei, fi}2i=0 are constants, tuned
to fit the entropy sRHD of the Stagger-grid models, T̃ = (Teff −

5777)/1000, g̃ = log g − 4.44, z̃ = [Fe/H]. We stress that z̃ must
be computed with respect to an AGSS09 chemical mixture. If
one wants to use another chemical composition of reference,
the coefficients in Eq. (2) should be recomputed. The expres-
sion proposed by M13 is essentially the same as the one of L99,
except that the M13 one takes into account the metallicity.

2.4. The functional form of Tanner et al. (2016)

Based on the same Stagger-grid, Tanner et al. (2016) proposed
a different form to represent sad as a function of Teff , log g and
[Fe/H]:

sT16
presc(T̃ , g̃; z̃) = s0 + β exp

AT̃ + Bg̃ − x0

τ0

 , (4)

where s0, x0, β, τ0, A and B are constants, calibrated for each sub-
set of models with same metallicity; T̃ = log Teff and g̃ = log g.
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0. At time t + ∆t

1. Find limit RZ/CZ

Convergence ?

2. Evolution of chem-
ical composition

Convergence ?

3. Compute new
quasi-static structure

Convergence ?

4. Next time step

no

yes

no

∆t = ∆t
2

yes

nono

re-iterate

yes

Fig. 1. Schematic representation of the step of a Newton-Raphson
scheme followed by Cesam2k20 during the computation over a time
step. The “problem” can be an unconverged solution, an interpolation
outside EoS, or opacity table.

3. Implementation of entropy-calibration in
Cesam2k20

3.1. The Cesam2k20 code

The Cesam2k20 code2 implements the same numerical meth-
ods as its predecessors (for details, see Morel 1997 for CESAM,
Morel & Lebreton 2008 for CESAM2k, and Marques et al. 2013
for CESTAM). The stellar structure equations are solved using
a collocation method where solutions are represented as a lin-
ear combination of piecewise polynomials, projected over a B-
Spline basis.

Cesam2k20 uses opacity tables either from the OPAL team
(Rogers & Iglesias 1992; Iglesias & Rogers 1996) or OP tables
from the Opacity Project (Seaton et al. 1994; Badnell et al.
2005; Seaton 2005, 2007). Several equations of state (EoS) are
implemented and this work uses tables from the OPAL5 EoS
(Rogers & Nayfonov 2002). Concerning the nuclear reaction
rates, we used compilations from NACRE (Aikawa et al. 2006)
(except LUNA – Broggini et al. 2018 – for the 14N(p, γ)15O reac-
tion).

Regarding the mixing processes, rotation is neglected
throughout this work. The effects of atomic diffusion are
modeled with the formalism proposed by Michaud & Proffitt
(1993). The convection is modeled with mixing-length theory
formalism under the formulation of Henyey et al. (1965) tak-
ing into account the optical thickness of the convective bub-
ble. We stress that the entropy-calibration method also works
with more complex formalisms, such as the one developed by
Canuto & Mazzitelli (1991) or by Canuto et al. (1996), assum-
ing a Kolmogorov spectrum for the turbulent convective flow.

2 https://www.ias.u-psud.fr/cesam2k20/
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Fig. 2. Profile of specific entropy as a function of the depth in the model.
The origin of the depth is taken as the location of then entropy minimum
in the superadiabatic region. Average specific entropy profile of a 3D
simulation is represented as a solid black line, and the entropy of the
adiabat as a dash black line. The entropy of the adiabat is an input of
the 3D model. Other curves are profiles of specific entropy obtained
with 1D models computed with different values of αMLT = 1.5 (blue),
1.75 (orange), 1.82 (green), and 1.9 (red).

A schematic flowchart of steps followed by Cesam2k20 dur-
ing the computation of a time step is represented in Fig. 1.
At a given time step, Cesam2k20 iterates following a Newton-
Raphson scheme to find the solution to the structure equations.
More precisely, using the stellar structure determined at the pre-
vious time step, Cesam2k20 starts by finding the boundaries of
the convective zones (CZ), then it evolves the chemical com-
position to the current time-step, then finally solving the stellar
structure for that time. After each iteration, numerical conver-
gence is assessed. If it is satisfied, the solution is accepted and
new time step is computed. In general, this process is repeated
several times to find an acceptable solution.

3.2. Scheme for entropy-calibration

As mentioned in the introduction, the value of αMLT controls
the adiabat of the convective envelope of the stellar model. This
is easily seen in Fig. 2, where we present an average specific
entropy profile extracted from a 3D atmosphere simulation and
entropy profiles computed from 1D stellar structures. Despite the
fact that 3D and 1D models give very different entropy profiles
in the superadiabatic layers, they can converge in deeper layers
to the same adiabat, providing we find the correct value of αMLT.

The procedure of entropy calibrations requires an intermedi-
ate step between the computation of the new chemical compo-
sition and the resolution of the structure equations. This inter-
mediate step is part of the Newton-Raphson iteration described
in Eq. (1). In that step, we compute a preliminary version of
the entropy sad,1 and the mean molecular weight (the reasoning
is discussed in Sect. 4.2) at the bottom of the convective enve-
lope. These quantities are computed in an approximate stellar
structure obtained with a given α1 ≡ α, either from a previous
time step or from a previous structure iteration. With the values
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Table 2. Parameters of the SSM model.

Observational constraints

L [L�] Teff [K] (Z/X)s

1 5772 0.0231
Adjustable parameters

Y0 (Z/X)0 αMLT
0.27334 ± 4 × 10−5 0.02651 ± 10−5 1.828 ± 3 × 10−3

Notes. Optimal parameters are obtained for the standard solar model
SSM calibrated with the OSM stellar optimization tool.

of Teff , log g and [Fe/H] for this intermediate model, we evalu-
ate the chosen functional representation of sad that provides the
entropy spresc,1 of the adiabat that this model ought to have.

Then, the value of α1 is modified by a small amount: α2 =
α1 + δα (currently, δα = 0.001α1). With α2, we call again the
routine that solves for the stellar structure. Again, we compute
sad,2 at the bottom of CZ, and the value spresc,2 that it must take
according to the chosen functional. We want to find the correc-
tion ∆α applied to α1, such that at next iteration we have:

δs1 +
δs2 − δs1

δα
∆α = 0, (5)

with δsi = (spresc,i − sad,i), i = 1, 2. Then, ∆α is:

∆α = −
δs1

δs2 − δs1
δα. (6)

In the Cesam2k20 input file, the fitting function pro-
posed respectively by Ludwig et al. (1999), Magic et al. (2013),
and Tanner et al. (2016) can be set through the option
nom_alpha respectively equal to ‘entropy_ludwig99’,
‘entropy_magic13’, and ‘entropy_tanner16’.

3.3. Control of precision and performance

The agreement between sad and spresc is controlled before the end
of a time step. If the absolute value of the difference between
the two exceeds 105 erg g−1 K−1, the solution is rejected and the
computation of the current evolution step is started over again
with a time step divided by two. This threshold was found by trial
and error, and can be adjusted by the user. To give a comparison,
in the Stagger grid, the total variation of the entropy of the
adiabat spans 1.6903 × 109 erg g−1 K−1. Therefore, the criterion
is almost always met at the first try and the time step rarely needs
to be decreased.

In terms of performance, the use of entropy calibration sig-
nificantly increases the computation time (by a factor 2 to 3).
This is due to the fact that in order to evaluate the effect of a
change of α on sad, one has to recompute the entire stellar struc-
ture with α + δα. YREC proceeds differently: the envelope and
the rest of the star can be computed separately and this can pro-
vide the new adiabat sad,2 much faster. In Cesam2k20, the inte-
rior and the envelope are solved together and the calculation can-
not be decoupled.

4. Amendments to the entropy prescription

4.1. A first naive implementation

Once the entropy calibration procedure has been implemented
into Cesam2k20, the next question is how the method impacts a

standard3 evolutionary track. To do so, we first calibrated a stan-
dard solar model (SSM) with a chemical composition follow-
ing the determination of GS98 which is close to the one used in
the 2D atmosphere grid that the L99 function was fitted on. The
opacity and EoS are interpolated from the OPAL5 tables, con-
vection is treated in the MLT framework, gravitational settling
is modeled using the Michaud & Proffitt (1993) approximation
and no rotation is assumed. The atmosphere is reproduced using
the reduced T (τ) relation, known as the Hopf function, q(τ):

T (τ) = Teff

[
3
4

(q(τ) + τ)
]1/4

. (7)

The Eddington T (τ) turns into a constant q(τ) = 2/3. Other
choices are discusses in Sect. 5.1.3.

This SSM is calibrated by adjusting the initial helium mass
fraction Y0, initial metal to hydrogen ratio (Z/X)0 content, and
the parameter αMLT to match (at a solar age) the luminosity, 1 L�
(L� = 3.828×1033 erg s−1 cm−2; Mamajek et al. 2015), the effec-
tive temperature 5772 K, and the current surface (Z/X)s of the
Sun with a maximum error of respectively 10−5, 1 K and 10−5.
These parameters are adjusted using a Levenberg-Marquardt
algorithm implemented in the Optimal Stellar Model program
(OSM4; for detailed applications, see Castro et al. 2021). This
package is currently interfaced with the Cesam2k20 code and
finds the model that best matches a set of observational con-
strains (in that sense, it can be considered an “optimal” model).
Best values found for adjustable parameters of the model are
reproduced in Table 2. Once this optimal model has been
obtained, we recompute the evolution by keeping everything
identical, except that this time, the value of αMLT is adjusted at
each time step during its evolution to match the entropy pre-
scribed by either L99, M13 or T16. These models are called
entropy-calibrated models (ECMs).

The resulting evolutionary tracks are represented in Fig. 3,
left panel. As can be seen, the four models follow very different
paths. During the PMS, the locations of the respective Hayashi
tracks are very far apart, while all models follow quite a similar
Henyey track (Henyey et al. 1955). At a solar age, the shift in
effective temperature can reach '130 K, with respect to the SSM.
Models computed with M13 and T16 lead to similar results for
evolved phases after the terminal age main sequence (TAMS),
but they significantly differ from the one obtained with L99.

We see that ECMs are different from SSM, but are they bet-
ter? The discrepancies obtained at a solar age are problematic:
the Sun must have a definite entropy for its adiabat, however,
all prescriptions give very different values for the same set of
input values. With this first implementation, it would seem that
entropy-calibration is not very robust for stellar models. More-
over, the shift observed on the RGB between the track com-
puted with L99 on the one hand, and the tracks computed with
M13 and T16 (on the other hand) may reveal large differences
between the grids on which these functions are adjusted. These
issues stress the fact that the prescriptions should not be used at
face value (as given in the original papers), but at least corrected.

4.2. On the proper use of entropy prescriptions

In their works, Spada et al. (2018) and Spada & Demarque
(2019) used the entropy given by T16’s mathematical formu-

3 In the following, “standard” means that αMLT stays fixed along evo-
lution.
4 https://pypi.org/project/osm/, developed in Python 2.7 by
R. Samadi, adapted to Python 3 for the present work.
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Fig. 3. HR diagram of a standard solar model (black line) and associated entropy-calibrated models shown in the left panel, with the uncorrected
prescriptions: L99 (blue), M13 (orange), and T16 (green) taken “as is” Dots represent the location of each model at solar age. Right panel displays
the HR diagram of a standard solar model (black line) and associated entropy-calibrated models with the prescriptions L99 (blue), M13 (orange),
and T16 (green) corrected using Eq. (11). Dots represent the location of each model at solar age.

lation corrected by an offset, ds. Indeed, the entropy is for-
mally defined up to a constant. This constant can differ from
one code to another because different EoS tables were used to
generate either the atmosphere or the evolution models. Actu-
ally, entropies used in the Stagger-grid to calibrate the coeffi-
cients in M13 or T16’s functions were already defined using a
constant offset to make possible their comparison to those in the
L99 models (see Magic et al. 2013, p. 9).

To compute the offset ds that should be added to spresc, we
first need to compute a model with a standard (i.e., a fixed α)
and then compare its adiabat to the one predicted by the chosen
prescription. Of course, the standard model should use the same
physics, and especially the same EoS, as the entropy calibrated
model that will be computed.

The second effect that needs to be taken into account is
the entropy variation due to a change of chemical composi-
tion. Strictly speaking, to conduct entropy calibration, we should
always consider models with a chemical composition identical to
the one used to fit the coefficients of the entropy representation.
However, the chemical composition changes through the star’s
life and this should be accounted for. In an ideal gas, neglecting
the radiation pressure and assuming a polytropic EoS, one can
write the entropy as (e.g., Ireland & Browning 2018):

s ' s0 +
NAkB

µ
ln

(
T 1/(γ−1)

ρ

)
, (8)

where s0 is a constant, µ is the mean molecular weight, T the
temperature, ρ the density, and γ the adiabatic exponent. A
change of chemical composition has its main impact through the
mean molecular weight. Because the term s0 in Eq. (8) is small
compared to the second term5, the entropy of a given atmosphere
model with a mean molecular weight changing from µRHD to µ

5 This has been verified using data of the 3D atmosphere models grid
CIFIST reproduced in Table A.1.

can be approximated as

s ' spresc fµ, with fµ =
µRHD

µ
. (9)

This relation is valid only for a small change of µ.
This correcting factor was used in Spada et al. (2021) to

account for significant chemical changes in evolved stellar
phases but the offset correction, ds, was not used. We recom-
mend, however, using both corrections. So, the next issue is to
find out what form the correction should take. Coming back to
the computation of the offset, ds, if the standard 1D model and
the atmosphere model grid do not share the same chemical com-
position, then the offset simply computed as ds = sad − spresc
does not only depend on a different choice of constant, but also
on the different chemical mixtures. Instead, the offset should be
adjusted as follows:

dspresc = sad
std − spresc(T std

eff , log gstd, [Fe/H]std) f std
µ , (10)

where “std” stands for quantities of the standard model, f std
µ from

Eq. (9) accounts for the change in mean molecular weight, from
the entropy prescription (based on 3D RHD simulations) to the
1D standard model we want to apply it to. Then, the corrected
entropy takes the form:

scorrected
presc = spresc fµ − dspresc. (11)

This correction is applied every time a prescription is evaluated
because fµ changes over the course of the evolution, for instance,
as a result of gravitational settling or dredge up.

In order to see the impact of this correction on the evolu-
tionary tracks, we repeated the experiment of Sect. 4.1 but this
time the ECMs follow the corrected prescriptions. To compute
the entropy offset of each entropy representation, we used SSM
as our standard model. The values are given in the first line of
Table 3. The evolutionary tracks of SSM and the new ECMs are
presented in Fig. 3. Now, we find that all four tracks intersect at
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Table 3. Entropy offset ds [109 erg g−1 K−1] computed with the SSM
model and for various prescriptions.

Prescription

L99 M13 T16

With original coefficients: 0.011 0.042 0.021
With coefficients recalibrated on
the CIFIST grid:

0.008 0.010 −0.001

Notes. The coefficients used in the prescriptions can either be taken
from the original papers or re-calibrated on the CIFIST grid (see
Appendix B; Ludwig et al. 2009).

solar age. However differences remain during the Hayashi tracks
and on the RGB. The Hayashi track is a very short period of
time ('6 Myrs for the Sun), and its modeling is subject to a lot
of uncertainties (e.g., Zwintz & Steindl 2022). The differences
seen in this phase do not propagate to later evolutionary phases
and do not affect the validity of the method. The differences for
PMS and RGB models have two sources. First of all, these two
regions correspond to locations where the three entropy func-
tional representations have the higher inaccuracies, i.e. largest
errors between fitting function and entropy of the adiabat com-
ing from 3D models. Moreover, the entropy of the adiabat does
not vary linearly with Teff and log g. The entropy fitting func-
tions of Eqs. (1), (2), or (4), together with coefficients given
in Appendix B, show that the entropy of the adiabat increases
towards higher Teff and lower log g, but with decreasing slopes in
the same direction. Therefore, a given uncertainty on the entropy
coming from the fitting procedure, will imply a smaller change
of location when the model is on the RGB region than when it is
in the PMS. This explains why the discrepancies in the RGB
region are smaller than around the Hayashi track. Still, some
work remains to be done to improve the method in these evolu-
tionary phases, for instance, by improving the analytic prescrip-
tions in these regions of the Kiel diagram.

4.3. Recommendations on the use of prescriptions

In addition to the a posteriori correction of the prescribed entropy
values, the 3D RHD simulation basis for the three formulations
(L99, M13, and T16, i.e., a re-fit of M13) are not equivalent.
The models used to calibrate the L99 law have been computed
in 2D; therefore they may not be reliable enough to reproduce
the entropy stratification of 3D models. Furthermore, this rela-
tion was obtained only for one (solar) metallicity. Therefore, the
correction fµ may not be valid because the difference between
µRHD and µ from the entropy calibrated model may not be close
enough to zero. For these reasons, we recommend not to use
the L99 prescription (with any set of coefficients), except when
computing non diffusive models, with a chemical composition
similar to GS98. L99 is therefore not used in the remainder of
this work.

Regarding the functional forms suggested by M13 and T16,
it appears that they have not been originally calibrated against
the “true” entropies of the adiabat of the Stagger grid (i.e., the
inputs of the models), but against sbot the average entropy at the
bottom of the simulation domain (sRHD values are not publicly
available). These simulations assume that at the bottom of the
boxes, the adiabat is reached and sbot = sRHD. However, this

is only true for some models (see Table A.1) and it introduces
significant disagreements between sRHD and the value given by
the prescription. On the contrary, in CO5BOLD models of the
CIFIST grid, the true entropy of the adiabat is known exactly
because it is an input of the simulation and corresponds to the
entropy of the inflow at the bottom boundary of the simulation
domain. This also mean that the value of sRHD is not flawed by
any boundary effect, which is not the case for the value of sbot.

In order to perform a comparison of the various entropy
representations (see Sect. 2) and to improve the quality of the
entropy calibration, we re-calibrated the coefficients on a set
of entropies of the adiabats obtained from 102 models of the
CIFIST grid (Ludwig et al. 2009) computed with the CO5BOLD
code (Freytag et al. 2002, 2012; Wedemeyer et al. 2004). Here,
we use the true entropy of the adiabats, sRHD (and not the
one computed at the bottom of the simulated box). These data
are available in Appendix A for models with solar metallic-
ity and the coefficients of the functional forms are available in
Appendix B. Figure 4 illustrates the impact of re-calibrating
the M13 function, defined in Eq. (2). The left column shows
∆sM13,o ≡ sCIFIST

RHD − sM13,o
presc , namely, the entropy difference

between the true entropy of the adiabat in the CIFIST grid and
the original M13 formulation (“original” in the sense that the
coefficients are taken from Magic et al. 2013). We note here
that a constant has been added to the original M13 relation to
compensate for the zero point offset between the entropy of the
solar models in the CIFIST and Stagger grids, as stated in
Fig. 4 caption. The right column in Fig. 4 shows the differences
∆sM13,r ≡ sCIFIST

RHD − sM13,r
presc , in which sM13,r

presc is obtained after the
M13 formulation has been re-calibrated in the CIFIST grid.

The distribution of ∆spresc for CIFIST models is also rep-
resented as a histogram in Fig. 5. We see that this new cali-
bration reduces the range of entropy differences (from '0.05 to
'0.03 × 109 erg g−1 K−1) but the accuracy of M13 remains sim-
ilar for the two grids. However, variations of ∆spresc across the
Kiel diagram do not behave the same. In Fig. 4, left column, the
entropy difference rises with decreasing Teff , but in the right col-
umn, the larger differences are localized in the PMS region and
around the RGB of stars more massive than the Sun. Those dif-
ferences may arise from two effects: (1) the offset we added does
not fully correct the discrepancies between the different EoS and
reference solar composition (i.e., these differences do not induce
a constant change across the Kiel diagram) and (2) in Fig. 4, left
column, coefficients of Eq. (2) are calibrated on sbot instead of
spresc.

The distributions of ∆spresc for the re-calibrated M13 and T16
formulations (Eq. (4)) are represented in Fig. 6. Both prescrip-
tions hardly exceed an absolute error of 0.05 × 109 erg g−1 K−1,
which is less than 3% of the extremal variation of entropy across
the CIFIST grid. This agreement is very satisfying. In addition,
we note that the distribution of ∆sM13,r is much more peaked
around 0.0 than the one of ∆sT16,r. This comparison advocates
for generalizing the use of the M13 prescription in entropy-
calibrated modeling. From this point onwards, we only use the
M13 prescription of adiabatic entropy.

5. Discussion

5.1. Possible sources of uncertainties

The accuracy of entropy calibration modeling can be affected by
several factors. In the following section, we review them and esti-
mate their impact on the determination of a star’s characteristics.
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Fig. 4. Specific entropy differences in the adiabat ∆spresc ≡ sRHD − spresc between values provided by the CIFIST grid (Ludwig et al. 2009), and
values predicted by the M13 prescription, Eq. (2). Left column: original coefficients from Magic et al. (2013) are used. Here, entropy from the
CIFIST grid has been corrected by an offset of 0.04794 × 109 erg g−1 K−1 corresponding to the entropy difference between the solar atmosphere
models in the CIFIST and Stagger grids. Right column: same as left column but the coefficients involved in the M13 mathematical form have
been re-calibrated with the CIFIST entropies. Rows: each row displays the models with a given metallicity: [Fe/H] = +0.0 (row 1), −1.0 (row 2)
and −2.0 (row 3).

One source of uncertainty is the already mentioned gap between
sRHD and the corresponding value obtained from prescriptions.
Accuracy can also be impacted by the methods used to deter-
mine the offset ds, along with the sad and µ values at the bot-
tom of the convective envelope of the stellar evolution model.

Then, we should also examine what happens when a prescription
is evaluated outside of its domain of definition. Finally, it could be
expected that a different choice of T (τ) relation would change the
location of an evolutionary track on the HRD or Kiel diagrams.
These points are investigated in the following subsections.

A146, page 8 of 17



Manchon, L., et al.: A&A, 687, A146 (2024)

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

∆s [109ergg−1K−1]

0

5

10

15

20

N
u

m
b

er
of

m
o
d

el
s

∆sM13,o

∆sM13,r

Fig. 5. Histogram showing the distribution of the entropy errors ∆spresc

for the M13 prescription. The data plotted are the same as shown in
Fig. 4, for all metallicities. In blue is shown the ∆sM13,o distribution cor-
responding to differences sCIFIST

RHD − sM13,o
presc , where sM13,o

presc represents the
entropies predicted by the M13 prescription with original coefficients
(taken from Magic et al. 2013). The ∆sM13,r distribution is shown in
orange, corresponding to sCIFIST

RHD − sM13,r
presc , where this last term represents

the entropies obtained from the M13 prescription re-calibrated on the
CIFIST grid (i.e., on the true entropies of the adiabats).
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Fig. 6. Histogram showing the distribution of the entropy errors between
sRHD and spresc for M13 and T16 entropy representations. Both functions
have been re-calibrated on entropies from the CIFIST grid.

5.1.1. Determination of µ and sad in 1D models

Several factors can affect the accuracy of entropy-calibration
modeling. The first one comes from the way we determine the
mean molecular weight µ (in order to compute fµ) and the
entropy of the adiabat in the 1D model.

The mean molecular weight depends on the relative abun-
dance and on the ionization rates of each element. Strictly speak-
ing, the mean molecular weights in the 3D simulations and in the
1D models should be compared assuming well-defined ioniza-
tion states between the two chemical compositions. The proper
way to compute µ1/3D would be to use the same EoS in the 1D
and 3D code, and evaluate them for a given state (given pres-
sure, temperature and chemical composition). However, we want
to be able to use any EoS in the 1D code, possibly different
from the one used in the 3D simulations. Moreover, not only
is the chemical composition different in the 1D and 3D simu-
lations, but also the elements considered are not the same. To
get around these issues, we can assume that at the bottom of the
convective zone, the material is fully ionized. This is not exactly

105106

T [K]

1.7820

1.7825

1.7830

1.7835

1.7840

s
[1

0
9
er

g
g
−

1
K
−

1
]

Entropy at bottom

Entropy average of green area

Entropy average of orange points

Fig. 7. Entropy as a function of temperature (black line) in a sub-region
of the convective envelope of SSM. The value of entropy at the limit
between radiative and convective zone is represented as a blue line. The
average of entropy in the green shaded area is represented as a green line
and the average of entropy at orange points is represented as a dashed
orange line. The green area has a width of 10% of the total width of the
CZ (roughly 2/3 of the mass of the CZ) and the orange points are located
only every ten layers in the green area.

true, but it has the merit of considering the same ionization state
for the two mixtures. In this case, µ can be approximated as
µ−1 = 2X + 3Y/4 + Z/2 where X, Y an Z are respectively the
hydrogen, helium and metal abundance. The error on fµ induced
by this approximation is below 1% for stars with M < 1.5M�.
We could relax this approximation by assuming that the ioniza-
tion rates are the same in the evolutionary and in the atmosphere
models. This would allow us to consider each element individ-
ually, instead of a dependence in X, Y, and Z. However, for this
to work, it would require us to consider exactly the same chemi-
cal elements in both simulations, which would involve too much
constraint from a modeling point of view. In any case, this would
modify the value of µ by an almost constant factor, which would
be taken into account in fµ, as defined in Eq. (9).

With respect to the determination of the entropy of the adi-
abat in the 1D model, we compared the three available meth-
ods. In the first one, we defined sad ≡ sad

bot as the value of
the entropy exactly at the transition between the radiative zone
and the convective envelope. Another method would be to define
sad ≡ sad

av as the average of the entropy in a sub-region of the
adiabatic region. This second method would require us to inter-
polate in the EoS table for each layer in the sub-region, which is
time-consuming. To improve its efficiency, we introduce instead
a third definition, whereby sad ≡ sad

av10 is the average of the
entropy computed for every ten layers in the sub-region only.

Figure 7 represents the entropy profile in the adiabatic region
of SSM. We stress that the figure is extremely zoomed-in and
what seems to be large fluctuations is actually nearly constant.
Starting from T ' 105 [K] to the right, we see a decrease of
entropy, corresponding to the beginning of the superadiabatic
region. The value of sad

bot is represented as the blue line. The
green shaded area corresponds to the sub-regions where sad

av

and sad
av10 have been defined. The green region represents 10%

of the radial extension of the convective envelope and '66% of
its total mass. This extent is chosen arbitrarily but ensures that,
for every model in the domain of definition of the CIFIST grid,
we only enclose a sub-region of the adiabatic region. Clearly,
sad

av and sad
av10 are nearly equal. So, we consider why the use of
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blue. The subplot shows a zoom of the Hayashi track.

sad
av10 instead of sad

bot would give significantly different results
and discuss these possibilities below.

We implemented both definitions in Cesam2k20 and com-
puted two evolutionary tracks using the M13 prescription.
Tracks are shown in a HR diagram in Fig. 8. In terms of global
quantities, the two definitions give similar results. However, as
stressed by the subplot showing a zoom of the Hayashi track,
using sad

bot gives a more irregular path than sad
av10, whereas

using sad
av10 actually significantly increases the numerical sta-

bility of the method.

5.1.2. Constancy of the entropy offset, ds

The way we computed the offset, ds, immediately brings on the
concern that it may vary across HR diagram. As said before, the
offset ds corrects for a systematic difference in the entropy of the
3D atmosphere grid and the one computed in the stellar evolu-
tion model. This offset is the sum of the entropy zero-point for
that EoS, and an ad-hoc constant for it to match the L99 entropy.
The offset should be estimated with a standard solar model (stan-
dard in the sense that αMLT stays fixed along evolution), which
provides us with the most accurate constraint one can obtain on
the entropy of the adiabat.

In order to verify that ds is almost constant over the HR
diagram, we computed entropy for three different EoS (numer-
ical or analytical), for a given chemical composition, and con-
ditions of pressure and temperature that cover the ones found
at the bottom of convective envelope of stellar models with a
mass between 0.8 to 1.3 M�. The three EoS are the OPAL5
equation of state, the simple EoS proposed by Wolf (1983, here-
after noted as W836) and FreeEOS (Irwin 2012). OPAL5 is the
EoS table used to compute Cesam2k20 models. The simple ana-

6 Notice the typo in the summation part of their Eq. (16): one should
not read me, the mass of an electron, but mi the mass of the considered
element.

lytic EoS proposed by W83 is the one used by CO5BOLD. Here,
we implemented a simplified version which accounts only for
H+, He+, He++, e− and a representative metal (case f. in W83).
FreeEOS is also an analytic EoS but much more detailed. We fol-
lowed FreeEOS’s recommendation and adopted the version suit-
able for stellar interiors that also reproduces the MHD equation
of state (Mihalas et al. 1988) used by the Stagger code. This
version includes 20 elements with 295 ionization states. The
entropy differences between FreeEOS (resp. W83) and OPAL5
are presented in a log10 p − log10 T plane in left (resp. right)
panel of Fig. 9. Extremal variation in this interval is on the
order of 107 erg g−1 K−1. This is negligible compared to, for
instance, the extremal variation of entropy across the CIFIST
grid (1.69 × 109 erg g−1 K−1). In addition, these extremal vari-
ations are reduced if we exclude top left (resp. bottom-right)
corner that corresponds to regions of low p – high T (resp.
high p – low T ), which are never found at the bottom of the
convective envelope of our models. Therefore, the assumption
that offset, ds, is constant over the HR diagram holds to good
accuracy.

5.1.3. Impact of the T (τ) relation

The previous attempts to prescribe a value for αMLT have in
common the weakness that the α prescription depends on the
kind of T (τ) relation chosen to reproduce the atmosphere. This
issue disappears with entropy calibration modeling, as shown in
Spada et al. (2018) for the Sun and in Spada et al. (2021) for
MS and RGB stars. The reason is that the entropy of the adi-
abat depends on the characteristics of the adiabatic layers, not
on how the atmosphere is computed. The adiabat of the convec-
tive envelope of a star depends solely on the star’s location in
the Kiel diagram and its metallicity. If the T (τ) relation changes,
the value of αMLT will adapt, but the location on the Kiel dia-
gram is the same. To verify that this property remains true with
our procedure, we computed four identical solar entropy cali-
brated models except for the T (τ) relation that follows either an
Eddington law, a fit of Vernazza et al. (1981)’s Model C of the
quiet Sun, the Krishna Swamy (1966) relation, or a T (τ) relation
recently proposed by Ball (2021).

A change in the T (τ) relation, at a fixed αMLT, changes global
quantities such as Teff . However, here, we are adjusting αMLT
to match a given entropy of the adiabat, therefore changing the
T (τ) relation does not imply a change of location in the HR
diagram. In the top panels of Fig. 10, we represent the evo-
lution with age, starting from PMS, of the relative L, R, Teff

and the absolute sad differences for models computed with vari-
ous T (τ) relations, with respect to a standard model computed
with the Eddington T (τ) relation. It clearly shows the invari-
ance of such global quantities when a different T (τ) law is
chosen. On the bottom left panel, we show αMLT along evolu-
tion for the same models. Since, Teff , log g and the metallic-
ity are the same from one model to the other, sad also remains
constant. The structure of superadiabatic layers at final age
(4570 Myrs) is shown in the bottom panel of Fig. 10. It stresses
that T (τ) relations have an important impact on the modeling
of the shallowest layers but the structures are all identical when
deep enough in the star. The deepest layer shown in the figure
has a pressure of 107 dyn cm−2, which is well above the bot-
tom of the convective envelope, located around a pressure of
1013 dyn cm−2. It highlights the fact that although the choice of
T (τ) relation does not impact global properties of the model,
this choice is still crucial for obtaining realistic models for
asteroseismology.
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Fig. 9. Entropy differences between two EoS, in the log10 p − log10 T plane. The colour codes for the entropy difference. Left panel: entropy
differences between free EOS and OPAL5. Right panel: entropy differences between EoS of Wolf (1983) and OPAL5.

The examination of the bottom left panel of Fig. 10, reveals
a minimum in the αMLT variation with age between 2 and 6
Myrs, when models are on their Hayashi track. It is not possi-
ble to relate this behavior to previous calibrations of αMLT of
Ludwig et al. (1999) or Magic et al. (2015), but only with the one
of Trampedach et al. (2014) or Sonoi et al. (2019) for what they
called “Eddington + MLT(BV)”. This last work calibrated αMLT
by matching 1D CESTAM structure models to 3D CIFIST atmo-
sphere models. CESTAM (and also its successor Cesam2k20)
implements two versions of the MLT that assume either a linear
temperature distribution in the convective bubble (that Sonoi et al.
2019 called “BV”) or a distribution that obeys a diffusion equa-
tion, as suggested by Henyey et al. (1965). The BV version of
MLT is also the version used in the work of Trampedach et al.
(2014) and in this work, which explains the agreement.

5.1.4. Interpolation outside the prescription’s domain of
definition

It may happen that at some stage of the evolution, a model falls
outside the domain of definition of the prescription, which is the
domain covered by the CIFIST grid in this work. For instance,
when starting from the PMS, a solar model spends its first 1 Myrs
slightly outside this domain.

Every time a given prescription is evaluated, Cesam2k20
checks if the model (its (Teff , log g, [Fe/H])) is inside the con-
vex hull of the set of 3D models. By default, Cesam2k20 only
sends a warning (this behavior can be changed by the user), and
proceeds to evaluate the prescription. It must be noted that if pre-
scriptions are evaluated outside of the domain, on the hot side,
the resulting entropy can diverge because of the positive term in
the exponential of Eqs. (1) and (2)). On the cool side, the expo-
nential should remain small and the entropy does not diverge
(which does not mean its value is reliable). The only solution to
circumvent this issue is to extend the range of definition of the
prescriptions. This work is currently in progress.

5.2. Comparison with YREC: The αCen system

As a final test, we compared the results of modeling the αCen
system computed with standard or entropy-calibrated modeling,
to the models presented in Spada & Demarque (2019, hereafter
SD19). The microphysics of the models is kept as close as possi-
ble to the one used in YREC models: the MLT treatment of con-
vection, Eddington atmosphere, and element abundance ratios
following the GS98 chemical composition and only gravitational
settling is taken into account in the diffusive treatment. SD19
used the YREC code to obtain best fitting models of αCen A
and B, using a Markov chain Monte Carlo (MCMC) method
(more details given in SD19). The use of the MCMC method
allowed the authors to provide reliable uncertainties to their best
estimated parameters. To speed up the process, evolution models
were started at the ZAMS.

In the present work, we found optimal Cesam2k20 models
for the αCen system using the OSM program. In our calibra-
tions, we used the same observational constraints as the one used
by SD19, summarized in Table 4 and we adjusted the age of the
model, its initial helium content Y0, its initial (Z/X)0 ratio and
(only for the standard models) the αMLT, so that we match the
observed radius, luminosity, and current (Z/X)s. In ECMs, of
course, αMLT is varying along evolution, following the change
of entropy. The mass is not a free parameter: we used the value
reported in Table 4. In parallel, using the same physical ingre-
dients, we calibrated a solar model to be the standard model
for the computation of entropy offset ds. Using the M13 pre-
scription yields ds = 0.0264 × 109 erg g−1 K−1 and we used
this value to compute entropy-calibrated models by tuning the
same parameters as before (except for αMLT). The Levenberg-
Marquardt scheme implemented in OSM cannot yield reliable
uncertainties and therefore, we give our best estimated parame-
ters, without uncertainties. The squared-distance χ2 between the
best Cesam2k20 model and the observational constraints is com-
puted with:
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Fig. 10. Comparison of luminosity (solid lines) and effective temperature (dashed lines) for four models computed with different choices of T (τ)
relation (top-left). The displayed quantity is the relative difference of L or Teff , with respect to model computed with the Eddington T (τ) relation:
δX ≡ (XT (τ) − XEdding.)/XEdding.. Top right panel is the same as top left panel but, instead of X ≡ sad, we display the absolute difference. Indeed,
with sad being defined up to a constant, the relative difference would have no meaning. Also, ∆spresc is in the units: 109 erg g−1 K−1. Bottom left
panel: evolution of αMLT for different T (τ) relations: Eddington (blue), Vernazza et al. (1981) Model-C (orange), Krishna Swamy (1966) (green),
and Ball (2021) (red). Bottom right panel: temperature as a function of the pressure for the same four final models at solar age.

χ2 =
∑

i

Xi
obs − Xi

model

σi

2

, (12)

where Xi
obs are the observational constraints, σi their uncer-

tainties, and Xi
model are the values of the same parameters in

the best model. The MCMC method used by SD19 explores
a wide parameter space, and then requires the computation of
more models than OSM. Therefore, we could afford to start our
Cesam2k20 models from the PMS.

The optimal parameters obtained with YREC and
Cesam2k20 are presented in Table 4. Top panels of Fig. 11
show the tracks of all models in the radius − luminosity plane
with the measured location of αCen A and B. Models taken
from SD19 show slightly worse agreement with observational
constraints than models computed for the present work. This
is only a consequence of the optimization scheme: since the
MCMC method explores all the parameter space, a very large
number of models need to be computed and obtaining a very
precise solution is extremely time consuming. Alternatively,
OSM requires to compute only a small number of models and
the optimal solution is guided to a (possibly local) minimum.

The differences obtained between YREC and Cesam2k20
models can have a number of causes. First of all, the numeri-
cal schemes differ. The convective envelope is treated separately
from the core in YREC, which allows it to tune α by recomputing
only the envelope structure. This is not possible with Cesam2k20
and we have to recompute the complete structure every time α
is changed. Also, in the case of ECM models, different entropy
prescriptions are used and the way of correcting them differs.
SD19 also made use of the T16 function with the coefficients
taken from the original paper while we used the M13 function
with coefficients re-calibrated on the CIFIST grid. In addition,
it must be stressed that the model of αCen B has its Hayashi
track outside the domain of definition of M13, which was not
the case for models in SD19, because their tracks started from
the ZAMS. However, it represents a very short time of the life
of αCen B and should not have significantly impacted its evolu-
tion. Finally, SD19 corrected the prescribed entropy using only
the entropy offset while Cesam2k20 also corrected for differ-
ences in the chemical composition. These discrepancies translate
in quite different evolution of αMLT between models with simi-
lar physics. However, the general trend remains similar: αMLT
increases when sad increases. The variations of entropy can eas-
ily be understood with the approximation that sad ∝ ln T 3/2/ρ.
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Fig. 11. Evolutionary tracks (top) for αCen A (left panel) and αCen B (right panel) on the R − L plane. Tracks computed in the present work are
represented as solid lines, while the one from Spada & Demarque (2019) are drawn as dashed lines. Standard models are in blue and EC models
in orange. Evolution of αMLT as a function of age (middle) for the same models. Evolution of the convective envelope depth (bottom) along the
evolution.

With the virial theorem, it follows that T ∝ R−1 and ρ ∝ R−3,
with R being the total radius of the star. Therefore, during expan-
sion phases, when R increases, sad increases, and the inverse is
true during the contraction phases.

The bottom panels of Fig. 11 display the variation of the
depth of the convective envelope dcz for all models of the αCen
system. Once again, it reveals a very good agreement between
YREC and Cesam2k20 models. Whereas αMLT depends a lot on
the physical ingredients and numerical methods used in the code
and does not have a precise physical meaning, dcz is a measur-
able quantity. Having such an agreement for dcz between the two
codes advocates for the reliability of the method. Moreover, the
values of dcz predicted for a standard and EC models are close,
but not identical. For αCen B (the less massive), the two values
are almost equal during the main sequence, while in the case of
αCen A (the more massive), the ECM predicts a shallower CZ

at the ZAMS and deeper at the present age of αCen A. If con-
firmed, such pattern should have repercussions on the transport
of chemicals and angular momentum.

6. Conclusion

In this work, we present a comprehensive description of the
entropy-calibrated modeling, along with details on how to prop-
erly implement and apply it. The entropy-calibration consists in
adjusting the value of the convection parameter, α, so that the
entropy of the adiabat in a stellar structure model matches the
one predicted by an entropy prescription.

We studied and compared the accuracy of the three avail-
able prescriptions for the entropy of the adiabat suggested
in Ludwig et al. (1999), Magic et al. (2013) and Tanner et al.
(2016). Those functions are adjusted to fit the entropy of the adi-
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Table 4. Observable constraints and optimal parameters derived for the αCen system.

Parameter Obs. constraints Standard Entropy-calib.

YREC (SD19) Cesam2k20 YREC (SD19) Cesam2k20

αCen A
Mass (M�) 1.1055 ± 0.004 (1) – – – –
Radius (R�) 1.2234 ± 0.0053 (1) 1.2235 1.2233 1.2097 1.2235
Luminosity (L�) 1.521 ± 0.015 (1) 1.5091 1.5197 1.5045 1.5198
(Z/X)s 0.039 ± 0.006 (2,3) 0.0315 0.0327 0.0347 0.0361
Age (Gyrs) – 5.243 5.35 5.243 5.00
αMLT – 1.71 1.732 1.758(∗) 1.719(∗)

Y0 – 0.2785 0.2781 0.2785 0.2898
Z0 – 0.027 0.0275 0.027 0.0298
χ2 – 2.21 1.12 8.38 0.24

αCen B

Mass (M�) 0.9373 ± 0.003 (1) – – – –
Radius (R�) 0.8632 ± 0.004 (1) 0.8646 0.8631 0.8608 0.8687
Luminosity (L�) 0.503 ± 0.006 (1) 0.5122 0.5032 0.5103 0.4994
(Z/X)s 0.039 ± 0.006 (2,3) 0.0346 0.0357 0.0364 0.0339
Age (Myrs) – 5.263 5.11 5.263 4.75
αMLT – 2.04 1.985 2.05(∗) 1.86(∗)

Y0 – 0.2668 0.2666 0.2668 0.2640
Z0 – 0.0273 0.0278 0.0273 0.0263
χ2 – 3.00 0.30 2.035 2.99

Notes. (∗)The values of αMLT are the final values of the model, as for ECM, αMLT is varying through evolution, as shown in Fig. 11, middle row.
References. (1): Kervella et al. (2017); (2): Thoul et al. (2003); (3): Porto de Mello et al. (2008).

abat in stellar atmosphere simulations, as a function of Teff , log g,
and [Fe/H] in a grid of such simulations. Our study points out the
fact that the M13 fit was based on the entropy, averaged over both
the adiabatic up-flows and the cooled down-flows, at the bottom
boundary of their RHD simulations – instead of on the entropy
of the asymptotic adiabat. T16 is a refitting of those same, flawed
entropies, introducing a bias on the prescribed entropy value.
After the re-calibration of the entropy functional representations
using the correct set of entropies of the adiabat obtained from
the CIFIST grid (Ludwig et al. 2009), we show that the func-
tional form that most accurately reproduces the RHD results and,
therefore, the one we recommend is the formulation proposed by
Magic et al. (2013) with coefficients given in Table B.2. We have
made the quantities extracted from the CIFIST grid that have
been used in this work publicly available. The coefficients of the
fitting functions are also given in Appendix B, which extends the
small list of entropy prescriptions available to the stellar model-
ing community.

We note that not only must the prescription be carefully cho-
sen, but its use must be correctly set up. Spada et al. (2018) first
proposed to correct the prescribed entropy with an offset that
corresponds to a different choice of entropy integration constant
between different EoS tables. In contrast, Spada et al. (2021)
proposed to only correct the prescription for the influence of a
different chemical composition between the one used in the evo-
lution and in the atmosphere model. We demonstrate in this work
that both corrections must be used. In order to compute entropy-
calibrated models, the steps are as follows:
1. Compute a standard (i.e. not with entropy-calibration)

model of reference. We advocate using a solar model as
the reference because it is the star with the best obser-
vational constraints available. This standard model must
implement exactly the same physical ingredients as the

future EC model (same convection model, same opacity
table, etc.).

2. Compute the entropy offset between the standard model and
the value it should have according to a given prescription. Of
course this value changes for a different mathematical for-
mulation and a different set of coefficients.

3. Knowing the offset value, the EC model can be computed.
Each time the entropy prescription is evaluated, the resulting
value must be corrected with the offset and for the different
chemical composition.

This work also describes the traps that should be avoided
when implementing the EC method in a stellar evolution code.
Our implementation in Cesam2k20 is tested with the solar
model. Then we are able to model the αCen binary system
and compare the results with those from the original imple-
mentation of the method in the YREC code (Spada et al. 2018;
Spada & Demarque 2019; Spada et al. 2021).

We use a physical description as close as possible to the
one used in the YREC models and performed an optimization
based on the Levenberg-Marquardt algorithm. The use of the
entropy calibration ties α to the physics of near-surface con-
vection as modeled by RHD simulations. This consequence has
many advantages. First, having a value of α that changes with
evolution is expected because there is no reason to think that the
convection should keep the same properties as a star experiences
strong structural modifications. Then, since with the entropy cal-
ibration the modeler does not have to provide a value for α, one
can remove it from the set of adjustable parameters in an opti-
mization process. This leads to one of two effects: either it just
reduces the set of parameters and thereby facilitates the opti-
mization or (instead of α) another free parameter can be adjusted
in order to constrain another physical process taking place in a
stellar model. The EC modeling not only leads to different results

A146, page 14 of 17



Manchon, L., et al.: A&A, 687, A146 (2024)

than standard modeling, but also improves the physical descrip-
tion of convective envelope. However, it must be stressed that
we do not expect any improvement of the seismic quality (e.g.,
a reduction of the surface effect) of stellar models by using EC
models. Indeed, reliable stellar oscillations strongly depend on
the modeling of the atmosphere which relies on the right choices
for the opacities, the T (τ) relation and, the convective formal-
ism. The EC models only bring stronger constraints on the free
parameters of the latter.

Despite the numerical differences of the two codes, and
a different choices of entropy prescriptions and corrections,
Cesam2k20 was able to find optimal models of αCen very sim-
ilar to those obtained with YREC. Regarding this comparison,
two important observations can be made: (1) the discrepancies
between standard and EC models are larger for αCen B, which
is the less massive star in the system, and (2) the depths of the
convective envelopes are slightly different between the standard
and EC models. The first observation may be explained by the
fact that the Hayashi track of αCen B was computed outside the
range of definition of the M13. In addition, a preliminary study
(presented in a forthcoming paper) suggests that the entropy of
the adiabat of M dwarfs stars are not fitted accurately by the pre-
scriptions presented in this paper. This point emphasizes the fact
that entropy prescriptions should not be used outside there range
of definition. A study focused on PMS and M Dwarf stars will
be the topic of a future work. The second observation may be of
strong importance for the understanding of chemical and angu-
lar momentum transport because the location of the convective
envelope boundary has a strong impact on it. This should also be
a focus of future studies.

Acknowledgements. We are very grateful to Federico Spada for all the help
he provided and for stimulating discussions. L.M. and L.G. acknowledge sup-
port from the Max Planck Society (MPG) under project “Preparations for
PLATO Science” and from the German Aerospace Center (DLR) under project
“PLATO Data Center”. L.M. acknowledges support from Agence Nationale de
la Recherche (ANR) grant ANR-21-CE31-0018. A.S. acknowledges grants from
the Spanish program Unidad de Excelencia María de Maeztu CEX2020-001058-
M, 2021-SGR-1526 (Generalitat de Catalunya), and support from ChETEC-
INFRA (EU project no. 101008324). J.K. acknowledges support from European
Social Fund (project No. 09.3.3-LMT-K-712-19-0172) under grant agreement
with the Research Council of Lithuania. Our study was partly supported by the
European Union’s Horizon 2020 research and innovation program under grant
agreement no. 101008324 (ChETEC-INFRA). H.-G.L. acknowledges finan-
cial support by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project-ID 138713538 – SFB 881 (“The Milky Way System”,
subproject A04).

References
Aikawa, M., Arai, K., Arnould, M., Takahashi, K., & Utsunomiya, H. 2006,

in Frontiers in Nuclear Structure, Astrophysics, and Reactions, eds. S. V.
Harissopulos, P. Demetriou, & R. Julin, AIP Conf. Ser., 831, 26

Arnett, W. D., Meakin, C., Viallet, M., et al. 2015, ApJ, 809, 30
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Badnell, N. R., Bautista, M. A., Butler, K., et al. 2005, MNRAS, 360, 458
Ball, W. H. 2021, Res. Notes Am. Astron. Soc., 5, 7
Böhm-Vitense, E. 1958, Z. Astrophys., 46, 108
Broggini, C., Bemmerer, D., Caciolli, A., & Trezzi, D. 2018, Prog. Part. Nucl.

Phys., 98, 55
Canuto, V. M., & Mazzitelli, I. 1991, ApJ, 370, 295
Canuto, V. M., & Mazzitelli, I. 1992, ApJ, 389, 724
Canuto, V. M., Goldman, I., & Mazzitelli, I. 1996, ApJ, 473, 550

Castro, M., Baudin, F., Benomar, O., et al. 2021, MNRAS, 505, 2151
Christensen-Dalsgaard, J. 1982, MNRAS, 199, 735
Demarque, P., Guenther, D. B., Li, L. H., Mazumdar, A., & Straka, C. W. 2008,

Ap&SS, 316, 31
Freytag, B., Steffen, M., & Dorch, B. 2002, Astron. Nachr., 323, 213
Freytag, B., Steffen, M., Ludwig, H.-G., et al. 2012, J. Comput. Phys., 231, 919
Gabriel, M., & Belkacem, K. 2018, A&A, 612, A21
Gough, D. O. 1977, ApJ, 214, 196
Gough, D. O., & Weiss, N. O. 1976, MNRAS, 176, 589
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161
Grigahcène, A., Dupret, M. A., Gabriel, M., Garrido, R., & Scuflaire, R. 2005,

A&A, 434, 1055
Henyey, L. G., Lelevier, R., & Levée, R. D. 1955, PASP, 67, 154
Henyey, L., Vardya, M. S., & Bodenheimer, P. 1965, ApJ, 142, 841
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Ireland, L. G., & Browning, M. K. 2018, ApJ, 856, 132
Irwin, A. W. 2012, FreeEOS: Astrophysics Source Code Library [record

ascl:1211.002]
Kervella, P., Bigot, L., Gallenne, A., & Thévenin, F. 2017, A&A, 597, A137
Komm, R., Mattig, W., & Nesis, A. 1991, A&A, 252, 812
Krishna Swamy, K. S. 1966, ApJ, 145, 174
Kupka, F., & Muthsam, H. J. 2017, Liv. Rev. Comput. Astrophys., 3, 1
Lebreton, Y., & Reese, D. R. 2020, A&A, 642, A88
Li, Y. 2012, ApJ, 756, 37
Ludwig, H.-G., Freytag, B., & Steffen, M. 1999, A&A, 346, 111
Ludwig, H.-G., Caffau, E., Steffen, M., et al. 2009, Mem. Soc. Astron. Ital., 80,

711
Magic, Z., Collet, R., Asplund, M., et al. 2013, A&A, 557, A26
Magic, Z., Weiss, A., & Asplund, M. 2015, A&A, 573, A89
Mamajek, E. E., Prsa, A., Torres, G., et al. 2015, IAU 2015Resolution

B3 on Recommended Nominal Conversion Constants for Selected Solar
and Planetary Properties, https://www.iau.org/static/resolutions/
IAU2015_English.pdf

Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74
Michaud, G. J., & Proffitt, C. R. 1993, in IAU Colloq. 138: Peculiar versus

Normal Phenomena in A-type and Related Stars, eds. M. M. Dworetsky, F.
Castelli, & R. Faraggiana, ASP Conf. Ser., 44, 439

Mihalas, D., Dappen, W., & Hummer, D. G. 1988, ApJ, 331, 815
Morel, P. 1997, A&AS, 124, 597
Morel, P., & Lebreton, Y. 2008, Astrophys. Space Sci., 316, 61
Morel, P., Provost, J., Lebreton, Y., Thévenin, F., & Berthomieu, G. 2000, A&A,

363, 675
Nordlund, A., & Galsgaard, K. 1995, A 3D MHD code for Parallel Computers,

Tech. Rep., Astronomical Observatory, Copenhagen University, 1
Nordlund, Å., & Stein, R. F. 1990, Comput. Phys. Commun., 59, 119
Pasetto, S., Chiosi, C., Cropper, M., & Grebel, E. K. 2014, MNRAS, 445, 3592
Porto de Mello, G. F., Lyra, W., & Keller, G. R. 2008, A&A, 488, 653
Rogers, F. J., & Iglesias, C. A. 1992, ApJ, 401, 361
Rogers, F. J., & Nayfonov, A. 2002, ApJ, 576, 1064
Seaton, M. J. 2005, MNRAS, 362, L1
Seaton, M. J. 2007, MNRAS, 382, 245
Seaton, M. J., Yan, Y., Mihalas, D., & Pradhan, A. K. 1994, MNRAS, 266,

805
Serenelli, A. 2016, Eur. Phys. J. A, 52, 78
Sonoi, T., Ludwig, H. G., Dupret, M. A., et al. 2019, A&A, 621, A84
Spada, F., & Demarque, P. 2019, MNRAS, 489, 4712
Spada, F., Demarque, P., Basu, S., & Tanner, J. D. 2018, ApJ, 869, 135
Spada, F., Demarque, P., & Kupka, F. 2021, MNRAS, 504, 3128
Steffen, M. 1993, in IAU Colloq. 137: Inside the Stars, eds. W. W. Weiss, & A.

Baglin, ASP Conf. Ser., 40, 300
Tanner, J. D., Basu, S., & Demarque, P. 2016, ApJ, 822, L17
Thoul, A., Scuflaire, R., Noels, A., et al. 2003, A&A, 402, 293
Trampedach, R. 2010, Ap&SS, 328, 213
Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å., &

Asplund, M. 2014, MNRAS, 445, 4366
Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635
Vinyoles, N., Serenelli, A. M., Villante, F. L., et al. 2017, ApJ, 835, 202
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H. G., & Holweger, H. 2004,

A&A, 414, 1121
Wolf, B. E. 1983, A&A, 127, 93
Zwintz, K., & Steindl, T. 2022, Front. Astron. Space Sci., 9, 914738

A146, page 15 of 17

http://linker.aanda.org/10.1051/0004-6361/202347700/1
http://linker.aanda.org/10.1051/0004-6361/202347700/2
http://linker.aanda.org/10.1051/0004-6361/202347700/3
http://linker.aanda.org/10.1051/0004-6361/202347700/4
http://linker.aanda.org/10.1051/0004-6361/202347700/5
http://linker.aanda.org/10.1051/0004-6361/202347700/6
http://linker.aanda.org/10.1051/0004-6361/202347700/7
http://linker.aanda.org/10.1051/0004-6361/202347700/7
http://linker.aanda.org/10.1051/0004-6361/202347700/8
http://linker.aanda.org/10.1051/0004-6361/202347700/9
http://linker.aanda.org/10.1051/0004-6361/202347700/10
http://linker.aanda.org/10.1051/0004-6361/202347700/11
http://linker.aanda.org/10.1051/0004-6361/202347700/12
http://linker.aanda.org/10.1051/0004-6361/202347700/13
http://linker.aanda.org/10.1051/0004-6361/202347700/14
http://linker.aanda.org/10.1051/0004-6361/202347700/15
http://linker.aanda.org/10.1051/0004-6361/202347700/16
http://linker.aanda.org/10.1051/0004-6361/202347700/17
http://linker.aanda.org/10.1051/0004-6361/202347700/18
http://linker.aanda.org/10.1051/0004-6361/202347700/19
http://linker.aanda.org/10.1051/0004-6361/202347700/20
http://linker.aanda.org/10.1051/0004-6361/202347700/21
http://linker.aanda.org/10.1051/0004-6361/202347700/22
http://linker.aanda.org/10.1051/0004-6361/202347700/23
http://linker.aanda.org/10.1051/0004-6361/202347700/24
http://ascl.net/1211.002
http://linker.aanda.org/10.1051/0004-6361/202347700/26
http://linker.aanda.org/10.1051/0004-6361/202347700/27
http://linker.aanda.org/10.1051/0004-6361/202347700/28
http://linker.aanda.org/10.1051/0004-6361/202347700/29
http://linker.aanda.org/10.1051/0004-6361/202347700/30
http://linker.aanda.org/10.1051/0004-6361/202347700/31
http://linker.aanda.org/10.1051/0004-6361/202347700/32
http://linker.aanda.org/10.1051/0004-6361/202347700/33
http://linker.aanda.org/10.1051/0004-6361/202347700/33
http://linker.aanda.org/10.1051/0004-6361/202347700/34
http://linker.aanda.org/10.1051/0004-6361/202347700/35
https://www.iau.org/static/resolutions/IAU2015_English.pdf
https://www.iau.org/static/resolutions/IAU2015_English.pdf
http://linker.aanda.org/10.1051/0004-6361/202347700/37
http://linker.aanda.org/10.1051/0004-6361/202347700/38
http://linker.aanda.org/10.1051/0004-6361/202347700/39
http://linker.aanda.org/10.1051/0004-6361/202347700/40
http://linker.aanda.org/10.1051/0004-6361/202347700/41
http://linker.aanda.org/10.1051/0004-6361/202347700/42
http://linker.aanda.org/10.1051/0004-6361/202347700/42
http://linker.aanda.org/10.1051/0004-6361/202347700/43
http://linker.aanda.org/10.1051/0004-6361/202347700/44
http://linker.aanda.org/10.1051/0004-6361/202347700/45
http://linker.aanda.org/10.1051/0004-6361/202347700/46
http://linker.aanda.org/10.1051/0004-6361/202347700/47
http://linker.aanda.org/10.1051/0004-6361/202347700/48
http://linker.aanda.org/10.1051/0004-6361/202347700/49
http://linker.aanda.org/10.1051/0004-6361/202347700/50
http://linker.aanda.org/10.1051/0004-6361/202347700/51
http://linker.aanda.org/10.1051/0004-6361/202347700/51
http://linker.aanda.org/10.1051/0004-6361/202347700/52
http://linker.aanda.org/10.1051/0004-6361/202347700/53
http://linker.aanda.org/10.1051/0004-6361/202347700/54
http://linker.aanda.org/10.1051/0004-6361/202347700/55
http://linker.aanda.org/10.1051/0004-6361/202347700/56
http://linker.aanda.org/10.1051/0004-6361/202347700/57
http://linker.aanda.org/10.1051/0004-6361/202347700/58
http://linker.aanda.org/10.1051/0004-6361/202347700/59
http://linker.aanda.org/10.1051/0004-6361/202347700/60
http://linker.aanda.org/10.1051/0004-6361/202347700/61
http://linker.aanda.org/10.1051/0004-6361/202347700/62
http://linker.aanda.org/10.1051/0004-6361/202347700/63
http://linker.aanda.org/10.1051/0004-6361/202347700/64
http://linker.aanda.org/10.1051/0004-6361/202347700/65
http://linker.aanda.org/10.1051/0004-6361/202347700/66


Manchon, L., et al.: A&A, 687, A146 (2024)

Appendix A: CIFIST grid for [Fe/H] = 0.0

Table A.1. Main characteristics of atmosphere models with solar metallicity in the CIFIST grid.

Teff log g sRHD sbot Tbot log10 pbot ρbot
[K] [cm s−2] [109 erg g−1 K−1] [109 erg g−1 K−1] [K] [dyn cm−2] [10−5 g cm−3]

6234.05 4 2.167 2.16394 25382.0 7.20509 0.51801
4017.85 1.5 2.347 2.33927 17506.8 5.92127 0.04109
6485.56 4 2.377 2.37243 30518.6 6.97112 0.23571
6724.63 4.25 2.366 2.36573 100759 8.52705 2.44203
5926.77 4 1.992 1.99046 24617.6 7.53879 1.23210
5488.30 4.5 1.693 1.69257 24230.8 8.12577 5.66237
4968.68 2.5 2.3656 2.33936 15693.8 5.57400 0.02156
4924.10 3.5 1.827 1.82572 20075.0 7.33025 1.09334
6233.07 4.5 1.893 1.89205 26068.3 7.88415 2.64366
4774.62 3.2 1.878 1.86767 14170.1 6.05283 0.09360
5884.96 3.5 2.289 2.28402 24098.6 6.79680 0.20937
6456.55 4.5 1.992 1.99047 26268.5 7.68594 1.58967
6431.15 4.25 2.143 2.14145 29361.6 7.54681 0.96039
5226.43 4.25 1.704 1.70357 23381.4 8.00951 4.52138
4954.90 4 1.703 1.70253 22374.0 7.89403 3.68594
4980.91 4.5 1.613 1.61224 19202.3 7.66689 2.85028
4476.99 4 1.623 1.62227 18236.3 7.48812 2.01844
5537.34 4.43933 1.718 1.71374 15845.2 6.81084 0.49295
6084.98 4.43933 1.862 1.85267 15847.9 6.50204 0.22516
5475.94 4 1.827 1.82586 22047.9 7.59745 1.77328
5775.01 4.43933 1.7734 1.76747 15828.4 6.68128 0.35625
5774.02 4.43933 1.7807 1.77406 15702.4 6.63837 0.32537
6227.31 4 2.167 2.16403 25389.2 7.20546 0.51826
4476.44 2.5 2.042 2.03857 18263.8 6.63023 0.22395
3963.69 4.5 1.473 1.47209 13568.4 7.10341 1.32621
5866.50 4.5 1.777 1.77645 25857.8 8.10968 4.76272
4510.49 4.5 1.553 1.55222 16874.8 7.44482 2.11165
5432.51 3.5 2.022 2.01999 22513.4 7.25906 0.71921

Note: The complete table is available at CDS. The entropy sRHD is the input entropy of the model, namely, the entropy of the inflow. Quantities
with the subscript ’bot’ are averages at the bottom of the simulation domain.

A146, page 16 of 17



Manchon, L., et al.: A&A, 687, A146 (2024)

Appendix B: New coefficients for entropy functional
representations

Table B.1. Coefficients for fit to CIFIST entropies at [Fe/H] = 0.0 to
the functional form, Eq. (1) by Ludwig et al. (1999).

a0 1.67199769

a1 0.10100425
a2 1.53800252
a3 −1.41784705
a4 0.10501243
a5 −0.14985532

Table B.2. Coefficients for fit to CIFIST entropies to the functional
form, Eq. (2) by Magic et al. (2013).

i = 0 i = 1 i = 2

ai 1.679013 0.051669 0.0080435
bi 0.106697 −0.014053 0.0049438
ci −0.155069 −0.018509 −0.0028387
di 0.094921 0.039575 0.0065080
ei 1.592803 −0.195275 −0.0015400
fi −1.460810 0.094490 0.0024214

Table B.3. Coefficients for fit to CIFIST entropies to the functional
form, Eq. (4) by Tanner et al. (2016).

[Fe/H] −3.0 −2.0 −1.0 0.0

A 0.989612 0.994939 1.004997 1.000814
B −0.060934 −0.066989 −0.077271 −0.081859
s0 1.346857 1.269913 1.398723 1.457433
x0 3.560125 3.550494 3.518347 3.516223
β 1.196213 1.027772 0.731657 1.233787
τ0 0.069621 0.103149 0.092566 0.086339

Table B.4. Values of mean molecular weight for fully ionized gas in the
CIFIST grid.

[Fe/H] µRHD

−4.0 0.593737
−3.5 0.593740
−3.0 0.593748
−2.5 0.593773
−2.0 0.593851
−1.5 0.594099
−1.0 0.594884
−0.5 0.596241
0.0 0.599408
0.5 0.611516

Note: These values are used for the computation of the fµ factor of Eq.
(9).
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