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R. Kisielius, L. Radžiūtė, P. Rynkun, and G. Merkelis, Cascade emission

in electron beam ion trap plasma of W25+ ion, J. Quant. Spectrosc. Radiat.
Transfer 160, 22 (2015).
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Chapter 1

Introduction

The existence of a non-zero permanent electric dipole moment (EDM) of an
elementary particle, or in a nondegenerate system of particles, would be one
manifestation of violation of parity (P) and time-reversal (T ) symmetries [1, 2].
Violation of P symmetry has been observed in the β -decay of 60Co [3] followed
by decay of muons [4] and pions [5]. Violation of charge and parity (CP) sym-
metry has been observed in the weak decay of neutral kaons K0 [6]. Both CP

and T symmetry violations have been observed in the neutral kaon system [7],
although direct T symmetry violation has been disputed [8, 9]. More recently a
direct observation of the T symmetry violation in the B meson system has been
reported [10].

The violations of P, C, CP, and T symmetries are predicted by the Standard
Model of particle physics [11, 12]. Relevance of problem is caused by several
unexplained issues, such as the origin of baryogenesis, the mass hierarchy of
fundamental particles, the number of particle generations, the matter-antimatter-
asymmetry observed in the universe, and the nature of the dark matter. These
and other issues are addressed within a large number of extensions of the present
version of the Standard Model. Several of these extensions predict EDMs in-
duced by the P and T violating interactions and also EDMs of the fundamental
particles significantly larger than the values predicted by the Standard Model
itself.

The search for a permanent electric dipole moment of an elementary parti-
cle, or a composite system of particles (see [1], or reference [13] for a recent
review), is a challenge, not only for experiments, but also for theories of com-
posite systems. Electric dipole moments have not yet been detected experimen-
tally. The experimental searches have been going on for the last 50 years,
and the role of theory is not only to provide the limits on the fundamental pa-
rameters, but also to guide the experimentalists to various systems with suitable
enhancement factors, such as paramagnetic atoms (thallium experiment [14]),
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diamagnetic atoms (mercury [15]), molecules [16, 17], neutrons [18], and other
species [1, 19, 20]. Experimentalists need to know (order of magnitude of) en-
hancement factors before they set up their apparatus to detect EDM in a new
species [2]. Heavy atoms are excellent examples of composite systems with large
EDMs, due to the existence of mechanisms which may induce atomic EDMs sev-
eral orders of magnitude larger than an intrinsic particle EDM. The present thesis
is intended to present the calculations of EDMs, carried out with the multicon-
figuration Dirac-Hartree-Fock theory, of a superheavy element 285

112Cn.
An EDM experiment on a short-lived superheavy element is impractical at this

time. However, the techniques for trapping atoms [21, 22], controlling quantum
systems [23, 24], and performing spectroscopic investigations of radioactive [25]
and superheavy elements [26] advance rapidly. At the same time the quest for
the superheavy island of stability continues [27, 28], and sooner or later one may
expect a breakthrough of laser spectroscopic methods into the realm of super-
heavy elements [26]. The EDM experiments with superheavy elements, if ever
becoming feasible, would probably constitute the final frontier for atomic tests
of violation of parity (P) and time reversal (T ) symmetries.

Weak interaction effects in atomic physics play a very important role in search-
ing for new physics beyond the Standard Model of elementary particles. There
are several experimental and theoretical investigations of parity violation effects
in heavy neutral atoms [19, 29]. However, correlation effects are the main source
of uncertainty in theoretical results. Therefore, it looks promising to investigate
relatively simple highly charged few-electrons He-like ions in order to minimize
the impact of correlation effects.

Radial integrals involving matrix elements of P,T -odd interactions contain fac-
tors, which effectively cut-off integration outside the nucleus. These matrix ele-
ments require exact radial wave functions at the origin. Meanwhile, radial wave
functions for matrix elements of electric dipole moment must be accurate in outer
parts of the wave functions. The differences between the transition parameters
evaluated with the two gauges can be used as a test of accuracy [30]. N- and
Si-like sequences were chosen for this analysis.

Electron correlation effects must be very carefully evaluated in order to obtain
accurate atomic state functions, necessary for determination of electric dipole
moments. At the same time expansions of configuration state function basis
should be reasonable. Er3+ ground configuration was chosen for testing correla-
tion effects.
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The main goal of present work

• To investigate parity and time-reversal violation in atomic theory, by using
multiconfiguration Dirac-Hartree-Fock method, and to suggest most suit-
able elements for atomic electric dipole moment experiments.

The main tasks of the thesis:

1. To expand multiconfiguration Dirac-Hartree-Fock method:

• to derive expressions for matrix elements of P,T -odd interactions between states of
different parity for multiconfiguration Dirac-Hartree-Fock method;

• to create programs and tools for computation of these matrix elements;

• to test programs and tools created for electric dipole moment investigations.

2. To perform large scale calculation for atomic parameters of light and heavy
ions:

• to investigate properties of N-like isoelectronic sequence in nonorthogonal orbital
basis;

• to study parameters of ions in Si-like isoelectronic sequence;

• to investigate energy spectrum of ground configuration for Er3+ ion.

3. To analyse transitions in He-like isoelectronic sequence induced by a weak
interaction parity nonconserving term:

• to identify Z and N dependence of transition probability induced by a P-odd term;

• to analyse influence of quantum electrodynamic effects on energy spectrum and
transition probabilities;

• to evaluate results, comparing with theoretical computations by other authors.

4. To investigate permanent electric dipole moments of heavy elements:

• to perform research on electric dipole moments of Hg, Yb, and Ra elements;

• to analyse electric dipole moment dependence on Z in homologous sequence: Zn,
Cd, Hg, Cn;

• to evaluate results, comparing with data from other theoretical computations.
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The scientific novelty

1. Full set of atomic data: excitation energies, AJ and BJ hyperfine constants,
Landé gJ-factors, mass- and field shift parameters, E1, E2, and M1 transi-
tion parameters, were computed for the first time with ab initio method for
ions Cr XVIII, Fe XX, Ni XXII, and Zn XXIV in very high precision, and
may serve as benchmarks for other calculations.

2. All energy levels for 3s23p2, 3s3p3, and 3s23p3d configurations, and tran-
sitions properties (excitation energies, lifetimes and transition rates) be-
tween these configurations were computed for the first time for the Si-like
ions Ti IX - Ge XIX, Sr XXV, Zr XXVII, and Mo XXIX. Energies are in
excellent agreement with observations (up to 0.03%) and computed wave-
lengths are almost of spectroscopic accuracy, and may serve as benchmark
for other calculations.

3. The energy spectrum of the [Xe]4 f 11 configuration of the Er3+ ion was
computed in ab initio method for the first time in very high accuracy and
at the same time the influences of different types of correlation effects on
energy levels were estimated.

4. Weak and hyperfine interaction induced 1s2s 1S0 → 1s2 1S0 E1 transition
rates were computed with ab initio method for the He-like isoelectronic se-
quence, and for the first time exponential Z-dependence of matrix element
for weak interaction was observed.

5. Calculation of atomic electric dipole moment arising from P,T -odd tensor-
pseudotensor and pseudoscalar-scalar electron-nucleon interactions, nu-
clear Schiff moment, and interaction of electron electric dipole moment
with nuclear magnetic field for 285

112Cn were performed for the first time.

6. Exponential Z-dependence of atomic electric dipole moment in homolo-
gous sequence (Zn, Cd, Hg, Cn) was determined for the first time.
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Statements to defend

1. 151
63Eu, 155

64Gd, 229
90Th and 231

91Pa ions of He-like isoelectronic sequence are
the most promising candidates for experiments of parity nonconservation
effects, due to the high values of the weak and hyperfine interaction in-
duced transition rates.

2. Electric dipole moment of an atom arising from parity and time symmetries
violating tensor-pseudotensor, pseudoscalar-scalar nucleon-electron inter-
actions, as well as nuclear Schiff moment, and electron electric dipole mo-
ment, have exponential dependence on atomic number Z.

3. Isotopes of superheavy elements No, Cn, Nh, Lv, Ts, Og, E119, and E120
with sufficiently long half-lives would be most suitable for searching for
parity and time nonconservation in atomic experiments, because their EDM
enhancement factors are of the order of 30 times bigger than those of cur-
rently studied systems.

Personal contribution
I have participated in computation, collected and analysed data from refer-

ences for the Tables in paper and in Strasbourg Astronomical Data Center (CDS),
prepared manuscript of article A1 and have led submission procedure. I have
performed part of computation and analysis of energy spectrum and transition
parameters analysis in A2. I have done analysis of energy spectrum, as well as
of LSJ and j j applicability in A3. I have been involved in analysis of data, prepa-
ration of paper A4 and its submission. I have written parts of the manuscript A5
and I have done analysis of the results. I have participated in the creation of pro-
grams for EDM computations and of electron correlation strategies. I have per-
formed computations for EOL analysis, and Rydberg series analysis. I prepared
first manuscript of A6 article and lead submission procedure. I have improved
electron correlation strategy and computed EDMs of 69

30Zn, 111
48Cd, 199

80Hg, 285
112Cn.

I took part in all steps of preparation and submission of manuscript A7.
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Thesis outline
The doctoral dissertation consist of 8 chapters. Chapter 1 introduces research

problem, actuality, scientific novelty, main goal and tasks of study, and state-
ments for defence. Chapter 2 describes different terms of the weak interac-
tion Hamiltonian, represented by neutral currents: parity nonconserving (P-odd)
vector-pseudovector product (vector-axial vector), parity and time-reversal sym-
metry violating (P,T -odd) tensor-pseudotensor and pseudoscalar-scalar terms.
The remaining part of chapter 2 is dedicated to description of MCDHF method
and the theory of weak and hyperfine interaction induced transition probabili-
ties, as well as Schiff moment and electron electric dipole moment. In Chapter
3 atomic properties for N- and Si-like isoelectronic sequences are presented. In
Chapter 4 the results of calculations for energy spectrum of Er3+ ion ground
configuration are presented. In Chapter 5 results of vector-pseudovector (vector-
axial vector) product in weak interaction induced transitions in He-like ions are
presented. This term of weak interaction mixes states of opposite parity. Vector-
pseudovector is usually called - parity nonconserving weak interaction, so in
this work this convention will be followed. Chapter 6 presents the analysis of
the calculations performed for the electric dipole moments. Chapter 7 is the
continuation of the research on electric dipole moments, but from a different
perspective. The main goal of this chapter are suggestions of isotopes suitable
for EDM experiments. The last chapter presents main conclusions.
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Chapter 2

Theoretical background

2.1 Weak interaction [A5, A6]
Beta decay (n→ p+ e−+ ν̃e) was postulated by Fermi [31] as a following ex-
pression:

Hv =
G√

2
[p(x)γµn(x)][e(x)γµ ν̃(x)]+herm.con j. (2.1.1)

Here p(x),n(x),e(x), ν̃(x) are wave functions of corresponding particles, and G

is constant characterizing the interaction strength, γµ are Dirac matrices, and all
particles interact at the same point (x) of space and time. This expression is
scalar product of two four-vectors or two charged currents. Later this expression
of beta decay was extended to:

Hβ =
G√

2
[p(x)(1+λγ5)n(x)][e(x)γµ(1+ γ5)ν̃e(x)]+herm.con j, (2.1.2)

here λ = 1.25, γ5 = −iγ0γ1γ2γ3. This expression is a scalar product, but now
each of them is constructed as linear combinations of vector and axial vectors,
which behave differently under coordinate reversal. This Hamiltonian violates
parity, by not transforming into itself under space inversion.

Later the interaction of neutral currents was added to the weak interaction
charged currents. It is mediated by Z neutral boson and does not change the
charges of particles (proton (p) or neutron (n)):

Ĥe−p(x) = GS
¯p(x)p(x)ē(x)e(x)+GP p̄γ5 pēγ5e

+GV p̄γµ pēγµe+GA p̄γµγ5 pēγµγ5e+GT p̄σµν pēσµνe

+G′V p̄γµ pēγµγ5e+G′A p̄γµγ5 pēγµe

+iG′S p̄pēγ5e+ iG′P p̄γ5 pēe+ iG′T p̄γ5σµν pēσµνe. (2.1.3)
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Here we will consider only electron-nucleons (e-N) interaction. The general
expression of weak e-N interaction due to the exchange of neutral Z0 bosons
between the electron and nucleus can be written according to [1, 29, 20]:

Ĥe−N(x) =

A

∑
i=1

(GSN̄iNiēe+GPN̄iγ5Niēγ5e

+GV N̄iγµNiēγµe+GAN̄iγµγ5Niēγµγ5e+GT N̄iσµνNiēσµνe

+G′V N̄iγµNiēγµγ5e+G′AN̄iγµγ5Niēγµe

+iG′SN̄iNiēγ5e+ iG′PN̄iγ5Niēe+ iG′T N̄iγ5σµνNiēσµνe). (2.1.4)

Ni represents neutron and protons, σµν = 1/2(γµγν − γνγµ) and i =
√
−1 is the

imaginary unit, the sum is taken over all nucleons in nucleus. GS, GP, GV , GA,
GT are coupling constants, describing strengths of interactions. The indices are
derived from descriptors of nucleon-nucleon interactions (scalar, pseudo-scalar,
vector, axial, and tensor, respectively). Usually these constant are expressed in
terms of Fermi’s constant GF and CS, CP, CV , CA, and CT . This interaction is
considered to be local (all four particles interact at point x). The last five terms
of equation (2.1.4) are P-odd. These terms have primed constants. To obtain
P-odd terms additional matrix γ5 or iγ5 is inserted in to one scalar term of the
bilinear structure (with unprimed coupling constant). It should be noted that
γ2

5 = 1. The last three terms are not invariant under T transformation.

2.1.1 Parity nonconservation

Let us examine P-odd, but T -even terms of equation (2.1.4) of vector and axial
vector products (V-A). In this and following sections this term of weak interac-
tion will be called parity nonconserving weak interaction, following [32, 33]

ĥ =−GF√
2

A

∑
i=1

(CN
V N̄iγµNiēγµγ5e+CN

A N̄iγµγ5Niēγµe). (2.1.5)

Here GF = 1.027×10−5/m2
p is the Fermi constant. G′V and G′A are related to CN

V

and CN
A in the following way: G′V =−GF√

2
CN

V and G′A =−GF√
2
CN

A . The dimension-
less coupling constants CN

V and CN
A give different weights to the contributions of

protons and neutrons to the parity violating interaction: Cp
V = 0.04, Cn

V = −0.5,
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and Cp
A =−Cn

A = 0.05.
In nonrelativistic approximation interaction between nucleons and electrons

can by expressed by the nuclear spin-independent Hamiltonian [19, 29]:

ĥ =−GF√
2

γ5[ZCp
V ρp(r)+NCn

V ρn(r)], (2.1.6)

where Z and N are the numbers of protons and neutrons, respectively. Densities
ρn,p(r) = ρ(r) of neutrons and protons are normalized to unity and assumed they
coincide; we use the Fermi nuclear density function normalized to unity.

In the lowest order in the electroweak interaction weak charge of the nucleus
is:

QW = Z(1−4sin2
ΘW )−N ≈−N. (2.1.7)

In our calculations we assumed sin2
ΘW = 0.2312 for the Weinberg angle ΘW

[34]. So, according to [19, 29], the Hamiltonian (equation 2.1.6) reduces to (in
a.u.):

ĤW = − GF

2
√

2
QW

M

∑
j=1

γ5 j ρ (r j) . (2.1.8)

here M is number of electrons. This interaction mixes atomic states with different
parities, but only with the same electron angular momentum (it is a scalar), and
also opens new decay channels. The total atomic wave function with mixed
parities can be expressed as:

Ψ̃(γPJMJ) = b0Ψ(γPJMJ) +
m

∑
i=1

bi Ψ(γi(−P)JiMJi) . (2.1.9)

The parity non-conserving interaction, like the off-diagonal hyperfine interac-
tion, is quite weak and the coefficient b0 of the dominant function can be set to
1 and expansion coefficients can also be perturbatively approximated as:

bi =

〈
Ψ(γi(−P)JiMJi) |ĤW |Ψ(γPJMJ)

〉
E (γPJ) − E (γi(−P)Ji)

. (2.1.10)

For the general tensor operator T̂ k
q , the matrix element between states of dif-
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ferent parity can be expressed by Wigner-Eckart theorem as:〈
Ψ(γPJMJ) |T̂ k

0 |Ψ(γi(−P)JiMJi)
〉

=

(−1)J−MJ
√

2J+1

(
J k Ji

−MJ 0 MJi

)
×
[
Ψ(γPJ)‖T̂ k‖Ψ(γi(−P)Ji)

]
.(2.1.11)

Applying Wigner-Eckart theorem, the matrix element of the weak interaction
operator can be expressed as:

〈
Ψ(γPJMJ) |ĤW |Ψ(γi(−P)JiMJi)

〉
=

δ (J,Ji)δ (MJ,MJi)
[
Ψ(γPJ)‖ĤW‖Ψ(γi(−P)Ji)

]
, (2.1.12)

where 〈γiJi‖HW‖γJ〉=
√

2J′+1[γiJi‖HW‖γJ]. Using multiconfiguration expan-
sions the reduced matrix elements of the general spherical tensor operator T k

q can
be expressed by the following equation

[
Ψ(γPJ)‖T̂ k‖Ψ(γi(−P)Ji)

]
= ∑p,i cpci

[
Φ(γpPJ)‖T̂ k‖Φ(γi(−P)Ji)

]
. (2.1.13)

Reduced matrix elements of one-electron operator between configuration state
functions can be expressed as sums over terms involving single-particle orbitals:[

Φ(γpPJ)‖T̂ k‖Φ(γi(−P)Ji)
]
= ∑

a,b
dk

ab(ps)
[
naκa‖t̂k‖nbκb

]
, (2.1.14)

where dk
ab(ps) are spin-angular coefficients that arise from using Racah’s alge-

bra in the decomposition of the many-electron matrix elements [35, 36]. The
expressions (2.1.11), (2.1.13) and (2.1.14) are general and can be used for any
one-particle operator. The single-particle reduced matrix element can be fur-
ther factorized into a reduced angular matrix element and a radial integral. Here
we give the factorization of the reduced matrix element of the weak interaction
(k = 0):

[
naκa‖ĥW‖nbκb

]
= δ (−κa,κb)i

GF
2
√

2
QW

∫
∞

0 (PbQa − PaQb) ρ(r) dr, (2.1.15)

where i =
√
−1 is the imaginary unit. In the radial integral P and Q are the

large and small components of the relativistic one-electron radial wave func-
tions, respectively. For the calculations of the matrix elements we extended the
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GRASP2K relativistic atomic structure package. The extension, presented in
this work, includes programs for the weak interaction matrix elements.

2.1.2 Tensor-pseudotensor interaction

The last term in the expression (2.1.4), one of the possible sources of the EDM
in diamagnetic atoms, is the tensor-pseudotensor interaction between electrons
and nucleons, violating both parity (P) and time (T )-reversal invariance

iG′T N̄γ5σµνNēσµνe, (2.1.16)

constant G′T is replaced by GF√
2
CT . CT is a dimensionless coupling constant of

the TPT interaction and it is of interest for ongoing EDM experiments. It can be
expressed as [1, 19]:

ĤT PT = i
√

2GFCT

M

∑
j=1

(
<σσσA> · γγγ j

)
ρ (r j) . (2.1.17)

A is the number of nucleons, γγγ j is the Dirac matrix. CT is equal to zero within
the standard model, but it is finite in some theories beyond the standard model
of elementary particle physics. According to Dzuba et al [19, 37]:

CT <σσσA>=

〈
Cp

T ∑
p

σσσ p +Cn
T ∑

n
σσσn

〉
, (2.1.18)

where 〈...〉 represents average over the nuclear state with the nuclear spin III. Cp
T

and Cn
T are tensor-pseudotensor interaction constants between proton-electron

(e-p) and neutron-electron (e-n).
The single-particle reduced matrix element

[
naκa‖t̂k‖nbκb

]
in equation

(2.1.14) for the tensor-pseudotensor interaction has the form:

[
naκa‖ĥ1

T PT‖nbκb
]
=
√

2 GF CT <σσσA>
[
naκa‖i γ̂

1
ρ (r)‖nbκb

]
=

−
√

2 GF CT <σσσA >×

×
{[
−κa‖σ1‖κb

] ∫
∞

0 PbQa ρ (r)dr +
[
κa‖σ1‖−κb

] ∫
∞

0PaQb ρ (r)dr
}
,(2.1.19)
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where the single-particle angular reduced matrix elements can be expressed as:

[
−κa‖σ1‖κb

]
=〈

lb 1
201

2 | ja
1
2

〉〈
lb 1

201
2 | jb

1
2

〉
−
〈
lb 1

21−1
2 | ja

1
2

〉〈
lb 1

21−1
2 | jb

1
2

〉〈
jb11

20| ja 1
2

〉 , (2.1.20)

[
κa‖σ1‖−κb

]
=〈

la 1
201

2 | ja
1
2

〉〈
la 1

201
2 | jb

1
2

〉
−
〈
la 1

21−1
2 | ja

1
2

〉〈
la 1

21−1
2 | jb

1
2

〉〈
jb11

20| ja 1
2

〉 . (2.1.21)

2.1.3 Pseudoscalar-scalar interaction

The penultimate term in the expression (2.1.4) is also P,T -odd interaction be-
tween the electrons and the nucleus:

iG′PN̄γ5Nēe. (2.1.22)

The Hamiltonian for the pseudoscalar-scalar reads [1, 19]:

ĤPSS =
−GF CP

2
√

2mpc

M

∑
j=1

γ0 (∇∇∇ jρ (r j)<σσσA>). (2.1.23)

CP is a dimensionless coupling constant of the PSS interaction (iG′P = −GF√
2

CP).
Analogously to the T PT interaction, CP constant is zero within the standard

model. According to Dzuba et al [37]

CP <σσσA>=

〈
Cp

P ∑
p

σσσ p +Cn
P ∑

n
σσσn

〉
, (2.1.24)

Cp
P and Cn

P are PSS interaction constants between e-p and e-n.
The single-particle reduced matrix element

[
naκa‖t̂k‖nbκb

]
in the equation

(2.1.14) for the pseudoscalar-scalar interaction has the following form:

[
naκa‖ĥ1

PSS‖nbκb
]
=− GF CP

2
√

2mpc
<σσσA>

[
naκa‖γ0 ∇

1
ρ (r)‖nbκb

]
=

− GF CP

2
√

2mpc
<σσσA>

[
κa‖C1‖κb

]∫ ∞

0
(PaPb − QaQb)

dρ (r)
dr

dr. (2.1.25)
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2.2 Computation methods

2.2.1 Multiconfiguration Dirac-Hartree-Fock

In the multiconfiguration Dirac-Hartree-Fock (MCDHF) method [35, 38, 39, 40,
41, 42], an atomic state function (ASF) of parity P, Ψ(γPJ), is expressed as
a linear combination of symmetry-adapted configuration state functions (CSFs)
with the same parity, Φ(γiPJ), i.e.

Ψ(γPJ) =
NCSF

∑
i

ciΦ(γiPJ), (2.2.1)

where J is the total angular momentum of the configuration. The multiconfigu-
ration energy functional is based on the Dirac-Coulomb Hamiltonian, given by
(in a.u.),

ĤDC =
M

∑
j=1

(
cααα j · ppp j +(β j−1)c2 +V (r j)

)
+

M

∑
j<k

1
r jk

, (2.2.2)

where ααα and β are the fourth-order Dirac matrices, ppp is the momentum operator,
and V (r j) is the electrostatic electron-nucleus interaction.

In all calculations reported here, the nuclear charge density distribution ρ (r)

is normalized to unity two-parameter Fermi function [38]

ρ(r) =
ρ0

1+ e(r−b)/a
, (2.2.3)

where parameters a and b depend on the mass of the isotope.
The configuration state functions Φ(γiPJ) are antisymmetrized linear combi-

nations of products of relativistic orbitals:

φ(r) =
1
r

(
Pnκ(r)χκm(r̂)

iQnκ(r)χ−κm(r̂)

)
. (2.2.4)

Here κ is the relativistic angular quantum number, Pnκ(r) and Qnκ(r) are the
large and small components of radial wave function, respectively, and χκm(r̂) is
the spinor spherical harmonic in the ls j coupling scheme

χκm(r) = ∑
ml ,ms

〈l1/2mlms| jm〉Ylml(θ ,ϕ)ξms(σ). (2.2.5)
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The radial functions Pnκ(r) and Qnκ(r) are numerically represented on a log-
arithmic grid and are required to be orthonormal within each κ symmetry as
follows: ∫

∞

0
[Pn′κ(r)Pnκ(r)+Qn′κ(r)Qnκ(r)]dr = δn′n. (2.2.6)

In the multiconfiguration self-consistent field (SCF) procedure both the radial
functions and the expansion coefficients for the configuration state functions are
optimised to self consistency.

Wave functions can be optimised with two forms of the energy functional: Ex-
tended Optimal Level (EOL) and Extended Average Level (EAL). Both energy
functionals are implemented in the GRASP2K [43, 44] package.

One-electron orbitals based on the EOL form are optimised to minimise the
energy functional, which is defined through the equation (39) in reference [38],
where generalised weights (equation (40) in ref. [38]) determine a specific atomic
state ASF (or a set of ASFs). Consequently, the orbitals in the EOL approach are
optimal for a specific atomic state ASF or a set of ASFs.

One-electron orbitals based on the EAL form are optimised to minimise the
(optionally weighted) sum of energies of all ASFs which may be constructed
from a given set of CSFs, so eventually it yields an (optionally weighted) average
energy of a set of atomic states. This approach is computationally much cheaper,
but usually less accurate than the approach based on the EOL functional.

2.2.2 Breit interaction

Once a set of radial orbitals has been obtained, configuration interaction calcula-
tions can be performed with the RCI program [42]. In RCI calculations the wave
function is expanded in terms of CSFs, but now only the expansion coefficients
are determined. This is done by diagonalizing the Hamiltonian matrix. In the
RCI calculations the transverse photon interaction

ĤBreit =−
M

∑
i< j

[
ααα i ·ααα j

cos(ωi jri j/c)
ri j

+ (ααα i ·∇∇∇i)(ααα j ·∇∇∇ j)
cos(ωi jri j/c)−1

ω2
i jri j/c2

]
(2.2.7)

may be included in the Hamiltonian. The photon frequency ωi j used by the RCI
program in calculating the matrix elements of the transverse photon interaction
is taken to be the difference between the diagonal Lagrange multipliers εi and
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ε j associated with the orbitals. In general, diagonal Lagrange multipliers are
approximate electron removal energies only when orbitals are spectroscopic and
singly occupied. Thus it is not known how well the multiconfiguration Dirac-
Fock method can determine the full transverse photon interaction when corre-
lation orbitals are present. Frequently, only the low frequency limit ωi j −→ 0,
referred to as the Breit interaction, is used.

2.2.3 Computation of transition parameters

The transition parameters, such as rates (probabilities) for spontaneous decay,
for multipole transitions between two atomic states γJMJ and γ ′J′M′J can be
expressed in terms of reduced transition matrix elements〈

γJ‖Q̂(λ )
k ‖γ ′J′

〉
, (2.2.8)

where Q̂(λ )
k is the electromagnetic multipole operator of order k in Coulomb or

Babushkin gauge [45]. The superscript designates the type of multipole: λ = 1
for electric multipoles and λ = 0 for magnetic multipoles. Standard Racah al-
gebra assumes that the atomic state functions are built from the same orthogonal
radial orbital set [46]. However, this restriction can be relaxed. To compute
transition matrix elements between two atomic state functions described by in-
dependently optimised orbital sets, transformations of the atomic state functions
are performed in such a way that the orbital sets become biorthogonal, in which
case the calculation can be handled using standard techniques [47]. For elec-
tric dipole (E1) and electric quadrupole (E2) transitions there are two forms of
the transition operator, the length (Babushkin) form and the velocity (Coulomb)
form. The length form is more sensitive to the outer parts of the wave functions
and it usually is the preferred form.

The differences between the transition parameters evaluated with the two
forms can be used as an indicator of the uncertainty [30]. The quantity δT ,
characterizing the uncertainty of the computed transition rates, is defined as

δT =
|Al−Av|

max(Al,Av)
, δT =

|Sl−Sv|
max(Sl,Sv)

, (2.2.9)

where Al and Av are transitions rates, Sl and Sv - line strengths in length and
velocity form, respectively.
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2.2.4 Hyperfine interaction

The hyperfine structure of atomic energy level is the result of the interaction
between the electrons and the electromagnetic multipole moments of nucleus.
The Hamiltonian of this interaction can be expressed as a multipole expansion
[48]:

Ĥh f s = ∑
k≥1

T̂(k) ·M̂(k)
, (2.2.10)

where T̂(k)
and M̂(k)

are spherical tensor operators of rank k in the electronic and
nuclear spaces, respectively. The k= 1 represents the magnetic dipole interaction
and the k = 2 – electric quadrupole. Below are presented the magnetic dipole
tensor operator in the electronic space for M-electron atom (in a.u.):

T̂(1)
=

M

∑
j=1

t̂(1)( j) =−iα
(

ααα j · l j C(1)( j)
)

r−2
j , (2.2.11)

and the electric quadrupole tensor operator:

T̂(2)
=

M

∑
j=1

t̂(2)( j) = C(2)( j)r−3
j . (2.2.12)

Here α is the fine structure constant, l is orbital angular momentum, C(k) is the
spherical tensor related to the spherical harmonic as:

C(k)
q =

√
4π

2k+1
Ykq. (2.2.13)

In the presence of hyperfine interaction the coupled wave function of the total
system of the electrons and the nucleus can be written as:

Ψ(γνPJIFMF) = ∑
MJMI

〈JIMJMI|JIFMF〉 Ψ(γPJMJ) Ψ(νIMI) , (2.2.14)

where the expansion coefficients are the Clebsch-Gordan coefficients. The wave
function Ψ(νIMI) corresponds to the state of the nucleus. More details can be
found in [48].
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The nuclear tensor operators are related to the usual nuclear magnetic dipole
moment µI and electric quadrupole moment QI through relations:

µI =
〈

Ψ(νIMI) |M̂
(1)
0 |Ψ(νIMI)

〉
, (2.2.15)

QI = 2
〈

Ψ(νIMI) |M̂
(2)
0 |Ψ(νIMI)

〉
, (2.2.16)

where MI = I. The hyperfine interaction couples the nuclear I and electronic
J angular momenta into the total momentum F = I + J. The diagonal and off-
diagonal matrix elements of the magnetic dipole and electric quadrupole terms
of the hyperfine interaction are expressed as:

WM1 =
〈

Ψ(γνPJIFMF) |T̂
(1) ·M̂(1)|Ψ

(
γνPJ′IFMF

)〉
, (2.2.17)

J′ = J,J−1,

WE2 =
〈

Ψ(γνPJIFMF) |T̂
(2) ·M̂(2)|Ψ

(
γνPJ′IFMF

)〉
. (2.2.18)

J′ = J,J−1,J−2.

Usually, the interaction energies are expressed in terms of the hyperfine interac-
tion factors A and B:

AJ =
µI

I
1

[J(J+1)]1/2

〈
Ψ(γPJMJ) |T̂

(1)|Ψ(γPJMJ)
〉
,

AJ,J−1 =
µI

I
1

[J(2J−1)]1/2

〈
Ψ(γPJMJ) |T̂

(1)|Ψ
(
γP(J−1)M(J−1)

)〉
,

BJ = 2QI

[
J(2J−1)

(J+1)(2J+3)

]1/2〈
Ψ(γPJMJ) |T̂

(2)|Ψ(γPJMJ)
〉
,

BJ,J−1 =
QI

2

[
J(J−1)

(J+1)(2J−1)

]1/2〈
Ψ(γPJMJ) |T̂

(2)|Ψ
(
γP(J−1)M(J−1)

)〉
,

BJ,J−2 =
QI

4

[
J(J−1)(2J−1)

(2J−3)

]1/2〈
Ψ(γPJMJ) |T̂

(2)|Ψ
(
γP(J−2)M(J−2)

)〉
.

(2.2.19)

2.2.5 Biorthogonal transformation of atomic state
functions

Calculation of several properties (e.g. transitions probabilities, electric dipole
moments) a basis build from orthogonal orbitals is necessary. For this reason
biorthogonal transformation is implemented in the GRASP2K package (program
biotra2 [47, 49]). Applying linear transformation, this program convert two
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nonorthogonal orbital bases {φ L
i } and {φ R

j }〈
φ

L
i |φ R

j
〉
= SLR

i j , (2.2.20)

(where SLR
i j is the overlap matrix [47]) into new orbital sets:

φ
A = φ

LCLA; φ
B = φ

RCRB, (2.2.21)

which are biorthonormal:

〈
φ

A
i |φ B

j
〉
= δi j. (2.2.22)

This transformation allows to use standard Racah algebra in evaluation of various
atomic properties, including EDM.

2.3 Extension of MCDHF method for P- and
P,T -odd interactions [C1, C2]

2.3.1 Transitions induced by parity mixing interactions

The rate of the spontaneous one-photon electric dipole (E1) transition between
two atomic states with mixed parity is given by (in a. u.) [50, 51]:

A =
4ω3

3c3 ∑
MF ,q

∣∣∣〈Ψ̃(γνIFMF) |Q̂1
q|Ψ̃(γ

′
νIF

′
M
′
F)
〉∣∣∣2 , (2.3.1)

where Q̂1 is the operator of the electric dipole transition.
In the presence of hyperfine interaction the coupled wave function of the total

system of the electrons and the nucleus is written as expression (2.2.14): Tak-
ing the off-diagonal part of the hyperfine interaction into account the total wave
function of an atom can be expressed as:

Ψ(γνPIFMF) = a0Ψ(γνPJIFMF) +
n

∑
l=1

al Ψ(αlνPJlIFMF) . (2.3.2)

The off-diagonal hyperfine interaction is quite weak and the coefficient a0 of the
dominant function can be set to 1 and the expansion coefficients can be pertur-
batively approximated as:
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al =

〈
Ψ(αlνPJlIFMF) |Ĥh f s|Ψ(γνPJIFMF)

〉
E (γPJ) − E (αlPJl)

, (2.3.3)

where Ĥh f s is the hyperfine interaction operator [48]. In the analysis of the weak
interaction only the nuclear magnetic dipole hyperfine interaction was consid-
ered.

Substituting eq. (2.3.2) and eq. (2.1.9) into expression (2.3.1) and summing
over the projections of the angular momenta one obtains:

A =
4ω3

3c3
1

2F ′+1

×
∣∣∣∑l,r,l′ ,r′ a∗l a

′
lb
∗
r br
′
〈

Ψ(γlrνPrJlIF) ||Q̂1||Ψ(γl′r′νPr′Jl′ IF
′
)
〉∣∣∣2 . (2.3.4)

The perturbative formalism (2.3.3) does not include the radiation-damping ef-
fects, which are important when radiative line width is comparable to the sepa-
ration between fine structure levels [52].

The reduced matrix (submatrix) element of the electric dipole transition oper-
ator can be expressed as:〈

Ψ(γlrνPrJlIF) ||Q̂1||Ψ(γl′r′νPr′Jl′ IF
′
)
〉
=

(−1)I+Jl+F
′
+1 δ (Pr,−Pr′)

√
(2F +1)(2F ′+1)

×

{
J F I

F
′

Jl′ 1

}〈
Ψ(γlrPrJl)‖Q̂1‖Ψ(γl′r′(−Pr)Jl′)

〉
. (2.3.5)

The square of the reduced matrix element on the right hand side of the equation
2.3.5 is the line strength.

2.3.2 P,T -odd interactions and permanent electric dipole
moment of an atom

This section of the work is based on the review by Ginges and Flambaum [19].
We present here only the expressions for the four P,T -odd operators and the
corresponding matrix elements necessary for the discussion of the results. The
reader is referred to the review [19] for full explanation, and to the paper [37] for
the explicit form of the matrix elements (the only difference is the prefactor 1/r,
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which is absorbed in the definition of radial wave functions).
The interactions which mix atomic states of different parities and induce a

static electric dipole moment of an atom are quite weak. Therefore an ASF of
a mixed parity state can be expressed as in 2.1.9. The expansion coefficients of
opposite parity (−P) admixtures, bi can be found in 2.1.10.

Ĥint represents the Hamiltonian of the P,T -odd interaction, which mixes states
of opposite parities. The mixed-parity state of a particular atomic level 2S+1LJ

induces a static EDM of an atom:

dint
at =

〈
Ψ̃(γJMJ) |D̂z|Ψ̃(γJMJ)

〉
=

2∑
i

bi
〈
Ψ(γPJMJ) |D̂z|Ψ(γi(−P)JiMJi)

〉
, (2.3.6)

where D̂z represents the z projection of the electric-dipole moment operator.
Eventually an EDM of atoms can be written as a sum:

dint
at =

2∑
i

〈
Ψ(γPJMJ) |D̂z|Ψ(γi(−P)JiMJi)

〉〈
Ψ(γi(−P)JiMJi) |Ĥint |Ψ(γPJMJ)

〉
EγPJMJ − Eγi(−P)JiMJi

,

Ji = J±1. (2.3.7)

For group 12 elements (Zn, Cd, Hg, Cn), analysed in this work, equation (2.3.7)
can be simplified to:

dint
at = 2∑

i

〈
0|D̂z|i

〉〈
i|Ĥint |0

〉
E0 − Ei

, (2.3.8)

where |0〉 represents the ground state |Ψ(γPJMJ)〉, with J = 0 and even parity,
and the summation runs over excited states |Ψ(γi(−P)JiMJi)〉, with Ji = 1 and
odd parity. E0 and Ei are energies of ground and excited states, respectively. In
practice this sum needs to be truncated at some state.

Calculations of an atomic EDM require evaluation of both matrix elements,〈
0|D̂z|i

〉
and

〈
i|Ĥint |0

〉
, in the numerator of the equation (2.3.8). The operators

associated with the above matrix elements are all one-particle operators.
We consider the following four mechanisms which may induce atomic EDM:

tensor-pseudotensor (ĤT PT ), pseudoscalar-scalar (ĤPSS), Schiff moment (ĤSM),
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and electron EDM interaction with the nuclear magnetic field (ĤB). The inter-
actions, which are all of rank k = 1, are discussed in more detail in the next
sections. In addition the expression for the electric dipole interaction is given.

2.3.3 Electric dipole operator

The electric-dipole moment operator has the rank k = 1 in (2.1.11), (2.1.13),
and (2.1.14), and the single-particle reduced matrix element

[
naκa‖t̂k‖nbκb

]
in

equation (2.1.14) can be written as

[
naκa‖d̂1‖nbκb

]
=−

[
κa‖C1‖κb

] ∫ ∞

0
(PaPb + QaQb) r dr. (2.3.9)

The single-particle angular reduced matrix elements can be expressed as:

[
κa‖Ck‖κb

]
= (−1) ja+1/2

√
2 jb + 1

(
ja k jb

1/2 0 −1/2

)
π (la, lb,k) , (2.3.10)

where π (la, lb,k) is defined as:

π (la, lb,k) =

{
1; if la + k+ lb even,
0; otherwise.

(2.3.11)

2.3.4 Electron electric dipole moment

Electron electric dipole moment (de) may contribute to the atomic EDM (deEDM
at )

in different ways. First case is projection of de along the total angular momentum
of an atom. In the second case the electron EDM interacts with electric and
magnetic fields of the atom [53]. In this section we analyse the operator for the
electron EDM interaction with the magnetic field of a nucleus [37]:

ĤB = −ide

M

∑
j=1

(γγγ j BBB), (2.3.12)

where de represents the electron electric dipole moment, and BBB the magnetic field
of the nucleus.

The single-particle reduced matrix element
[
naκa‖t̂k‖nbκb

]
in expansion

(2.1.14) for operator of electron EDM interaction with magnetic field of a nu-
cleus can be factorized into reduced angular matrix element and radial integral
[37]:
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[
naκa‖ĥel

B ‖nbκb

]
=

deµ

2mpc

{
−3
[
−κa‖C1‖−κb

] ∫ ∞

R

QaPb

r3 dr − 3
[
κa‖C1‖κb

]∫ ∞

R

PaQb

r3 dr

−
[
−κa‖σ1‖κb

] ∫ ∞

R

QaPb

r3 dr−
[
κa‖σ1‖−κb

]∫ ∞

R

PaQb

r3 dr

+ 2
[
−κa‖σ1‖κb

] ∫ R

0

QaPb

R3 dr + 2
[
κa‖σ1‖−κb

]∫ R

0

PaQb

R3 dr
}
, (2.3.13)

where R and µ represent the nuclear radius and nuclear magnetic moment, re-
spectively.

2.3.5 Schiff moment

Schiff moment is a nuclear electric dipole moment, generated by intrinsic electric
dipole moments of valence nucleons, or by CP-odd interactions between nucle-
ons [54]. The interaction with Schiff moment would lead to rearrangement of
the electronic cloud and consequently would induce an atomic EDM [55]. The
Hamiltonian of this interaction can be expressed as [19, 56]:

ĤSM =
3
B

M

∑
j=1

(SSS · rrr j) ρ (r j) . (2.3.14)

The Schiff moment SSS is directed along the nuclear spin III and SSS ≡ SIII/I, with S

being the coupling constant, and B =
∫

∞

0 ρ(r)r4dr.
The single-particle reduced matrix element

[
naκa‖t̂k‖nbκb

]
in expansion (2.1.14)

for the Schiff moment can be factorized into reduced angular matrix element and
radial integral [37]

[
naκa‖ĥ1

SM‖nbκb
]
=

3
B

S
[
naκa‖r̂1

ρ (r)‖nbκb
]
=

3
B

S
[
κa‖C1‖κb

] ∫ ∞

0
(PaPb + QaQb) ρ (r)r dr . (2.3.15)
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2.3.6 Summary

Matrix elements of interaction: P-odd vector-axial and of P,T -odd tensor-pseu-
dotensor and pseudoscalar-scalar electron-nucleon are presented in subsections
2.1.1, 2.1.2, and 2.1.3, respectively. Factorized and reduced angular matrix ele-
ment and radial integrals of these interactions are presented in equations ( 2.1.15,
2.1.19, 2.1.21, 2.1.20 and 2.1.25). Also nuclear Schiff moment interaction with
electrons and electron electric dipole moment interaction with nuclear magnetic
field, was presented in subsection 2.3.5 and 2.3.4, respectively, and factorized
matrix element are given in equations (2.3.15 and 2.3.13).

2.4 Code development
We extended the GRASP2K [43] package for calculations of single-particle re-
duced matrix elements (2.3.9), (2.1.19), (2.1.25), (2.3.15), and (2.3.13). The
extension, presented in this work, includes subroutines for calculations of matrix
elements of type

〈
i|Ĥint |0

〉
in equation (2.3.8) for tensor-pseudotensor ĤT PT ,

pseudoscalar-scalar ĤPSS, Schiff moment ĤSM, electron EDM interaction with
nuclear magnetic field ĤB, and electric dipole moment D̂z.

Figure 2.4.1 describes program flow in EDM computation procedure. Section
from iso to biotra2 is well known and more detailed description can be found
in [43]. Computation of ASF can be performed in orthogonal or nonorthogonal
approach. Wave functions for ground and excited states (even and odd states) in
orthogonal computation are generated simultaneously and biorthogonal trans-
formation is not necessary. On the other hand, for nonorthogonal ASFs the
biorthogonal transformation procedure must be applied. The program biotra
from GRASP2K package [43] is used for this procedure. In figure 2.4.1 double
arrows show the flow of files for that section of the calculation, when the ground
and excited states are generated separately.

The program biotraEDM2015 for computations of matrix elements can only
be used, when ASFs are either orthogonal or biorthogonal. Matrix elements
for each operator – Dz, TPT, PSS, SM, and eEDM — are obtained in separate
calculations.

Output files from program biotraEDM2015, called name1.name2.* (see fig-
ure 2.4.1), contain information about: isotope; radial grid; initial and final sub-
shell radial wave function summary; eigenenergies; mixing coefficients; and ma-
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Flow of files between GRASP2K programs

iso
??

Output: isodata

jjgen

??

Input: rcsl.inp
Output: rcsl.out

jsplit

??

Input: rcsl.inp
Output: rcsl.out

mcp3

??

Input: rcsl.inp
Output: mcp.xx where xx = 30, 31, 32, ...

erwf

??

Input: rcsl.inp, optional radial function file(s)
Output: rwfn.inp

rscf2

??

Input: rcsl.inp, rwfn.inp, mcp.xx
Output: rmix.out, rwfn.out, rscf.sum

rci3

??

Input: name.c, name.w
Output: name.cm, name.csum

jj2lsj

??

Input: name.c, name.(c)m
Output: name.lsj.lbl

biotra2

?

Input: name1.c, name1.(c)m, name1.w,
name2.c, name2.(c)m, name2.w
Input: name1.TB, name2.TB (if available)
Output: name1.(c)bm, name1.(c)bw, name2.(c)bm, name2.(c)bw
name1.TB, name2.TB

biotraEDM2K2015

?

Input: name1.c, name1.(c)m, name1.w
name2.c, name2.(c)m, name2.w
name1.(c)bm, name1.(c)bw, name2.(c)bm, name2.(c)bw
Output: EDM.EDM, TPT.EDM, HPSS.EDM
HSM.EDM, H el EDM M.EDM
name1.name2.EDM, name1.name2.TPT
name1.name2.HPSS, name1.name2.HSM,
name1.name2.H el EDM M

grnus Input: HSM.EDM, H el EDM M.EDM, EDM.EDM,
TPT.EDM, HPSS.EDM
Output: Screen

Figure 2.4.1: Flow of files for a normal sequence of program runs.
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trix elements. For example, file called name1.name2.TPT contains information
about TPT interaction matrix elements.

Files with suffix .EDM contain total energies of ground state and excited states,
as well as matrix elements (in a.u.). The first section of the file name identi-
fies the interaction for which the matrix elements were recorded. For example,
the file TPT.EDM contains records about matrix element of the TPT interaction.
These files contain also an empty column called ”Exp. Energy”, in which the ex-
perimental energy (in a.u.) may be manually written. In the column ”A” matrix
elements (in a.u.) are written. As an example, a part of the file TPT.EDM from a
calculation for Hg (with 4 layers of virtual orbitals) is presented below:

E0 Levels J Parity Energy A Exp. Energy
1 0 + -0.1964930249D+05

Ek Levels J Parity Energy A Exp. Energy
1 1 - -0.1964909603D+05 0.3816654259D+02
2 1 - -0.1964902949D+05 0.1990148145D+02
3 1 - -0.1964867511D+05 0.1409045570D+02
4 1 - -0.1964866549D+05 0.2551936923D+02

In the last step program grnus performs computation of atomic EDM, accord-
ing to the equation (2.3.8). The program grnus must be launched separately for
each EDM inducing mechanism. Program requires two input files: one with Dz

matrix elements and another with matrix elements of EDM interaction. The out-
put from grnus program for Hg (with 4 layers of virtual orbitals) is presented
below:

The name of a input file
The name of b input file

Tensor-pseudotensor in units (C_T <\sigma_N>|e|cm)

EDM4 file completed
TPT_new_2 file completed

Theoretical value Experimental value Theo cont Exp cont Theo cont% Exp cont %
1 -0.1539347712D-19 -0.1539347712D-19 31.78824%
2 -0.4650789420D-19 -0.3111441709D-19 64.25270%
3 -0.4719932672D-19 -0.6914325187D-21 1.42784%

4 -0.4405852722D-19 0.3140799497D-20 -6.48590%
...
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Chapter 3

Results of calculations of atomic properties for N-
and Si-like isoelectronic sequences [A1, A2]

Spectroscopic data for the nitrogen isoelectronic sequence are of importance in
astrophysics. N-like ions emit several lines that are used for diagnosing the phys-
ical conditions of the solar chromosphere, transition region, and corona in the
Solar Ultraviolet Measurement of Emitted Radiation (SUMER) spectrograph on
the SOHO spacecraft [57, 58]. Moreover, the X-ray telescopes on board the
space observatories Chandra and XMM-Newton provide high-resolution spectra
that are rich in emission and absorption lines from various iron ions, including
Fe XX [59]-[61].

Data for nitrogen-like ions are also of importance in fusion science. The
XEUS (X-ray and Extreme Ultraviolet Spectrometer) and LoWEUS (Long -
Wavelength and Extreme Ultraviolet Spectrometer), which operate in the 5-
400 Å region, were used to find impurities, both for intrinsic elements present
in the plasma and for metal impurities resulting from damage of various compo-
nents in NSTX (National Spherical Tokamak Experiment). The most commonly
seen metal impurity is iron, followed by copper, and nickel. Iron, nickel and
chromium are used in NSTX as the makeup of stainless steel, of which the outer
wall, a number of hardware components, shielding of magnetic sensors, as well
as cables are made. Identification of metal impurities provides information about
components which are affected, and to what degree [62]. These spectrometers
provide information about plasma conditions, but the identification of spectra
lines is problematic without experimental or theoretical data. For reasons listed
above large scale computation were done for Cr XVIII, Fe XX, Ni XXII, Zn
XXIV ions.

Transition probabilities (A), wavelengths (λ ), weighted oscillator strengths
(g f ) of electric dipole (E1), electric quadrupole (E2), and magnetic dipole (M1)
transitions, as well as lifetimes of levels in length and velocity forms (τl,v) were
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computed for a large part of the energy spectrum (for 272 levels).
Nuclear parameters (hyperfine structure: magnetic dipole (A) and electric

quadrupole constants (B), Landé gJ-factors; isotope shifts: the normal and spe-
cific mass shifts (K̃NMS, K̃SMS), and the field shifts (F̃ ) are also computed for
these levels. All results are available at Strasbourg Astronomical Data Center
(CDS) http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A61. Do
to the sizes of the files, only Fe XX data are presented.

The emission spectrum of Si-like Fe (Fe XIII) in the extreme ultraviolet (EUV)
range provides important lines for electron density diagnostics of the solar and
stellar coronal plasma [63]. These lines have been observed using the EUV
Imaging Spectrometer (EIS) on board the Hinode satellite, the Coronal Diag-
nostic Spectrometer (CDS) on board the SOHO satellite, and by the Solar EUV
Rocket Telescope and Spectrograph (SERTS), see for example [64]. Much work
has been devoted to benchmark and validate atomic data for Fe XIII against high-
resolution spectroscopic observations of the solar corona [65], and against well
defined laboratory plasmas [66, 67]. Also, lines from Ni XV can be used for
electron density diagnostics in high-temperature (3 MK) plasmas, such as those
of solar active region cores, as discussed in [68]. Authors of paper [69] provided
a complete set of rates and a list of the strongest lines that are observable in
astrophysical plasmas, and previous identifications were revised.

3.1 Atomic state function expansions for N- and
Si-like isoelectronic sequences

The configuration expansions were obtained using the active set (AS) method
[70]. Here CSFs of a specified parity and J symmetry are generated by sub-
stitutions from a number of reference configurations (a so called multireference
set – MR) to a set of virtual relativistic orbitals. By applying restrictions on the
allowed substitutions, different electron correlation effects can be targeted. For
energies and transition rates, valence and core-valence correlation effects are by
far the most important. To monitor the convergence of the calculated energies
and transition parameters, the active sets were increased in a systematic way by
adding layers of orbitals. Only CSFs interacting with the MR set were retained
in CSF expansions. Separate self-consistent field calculations were performed
for even and odd states in the EOL form (see section 2.2.1).

39



Table 3.1.1: Configuration expansions for N-like and Si-like ions.

n and l MR set
N-like n = 3 . . .8 {2s22p3, 2p5, 2s22p23p, 2s2p33s. 2s2p33d, 2p43p} for odd states

l = 0 . . .5 {2s2p4, 2s22p23s, 2s22p23d, 2s2p33p, 2p43s, 2p43d} for even states
n = 3 . . .9 for Fe XX

the 1s2 core was closed for substitutions at the n = 6 stage for SCF calculations
Si-like n = 3 . . .7 {3s3p3, 3s23p3d, 3s3p3d2, 3p33d, 3p3d3} for odd states

l = 0 . . .6 {3s23p2, 3s23d2, 3s3p23d, 3p23d2, 3p4} for even states
the 1s2 core was closed for substitutions at the n = 6 stage for SCF and RCI calculations

The configuration expansions were obtained by single and double (SD) substi-
tutions from all shells of the MR set configurations to active sets (with principal
(n) and orbital (l) quantum numbers listed in Table 3.1.1). For the nitrogen iso-
electronic sequence the SD substitutions were forbidden from 1s shell at n = 6
for SCF calculations. For the n = 8 expansion this approach resulted in 1 076
078 (6 206 696) CSFs with odd parity and 916 973 (5 255 680) CSFs with even
parity with the 1s2 core closed (open). For silicon-like ions the 1s2 core was
closed for substitutions at the n = 6 stage for SCF and RCI calculations. Final
expansions (NCSF ) for the states of even and odd configurations distributed over
the J symmetry blocks for each isoelectronic sequence are provided in Table
3.1.2. The self-consistent field calculations for each layer of orbitals were fol-
lowed by RCI calculations, including the Breit interaction and the leading QED
effects (vacuum polarization and self-energy).

Table 3.1.2: Summary of the extended optimal level MCDHF calculations, listing the
ranges of eigenvalues and the sizes of the interaction matrices for each configuration.

Configurations J P Number NCSF
of states

N-like
2s22p3, 2p5, 2s22p23p, 2s2p33s, 2s2p33d, 2p43p 1/2-11/2 − 140 1 076 078

2s2p4, 2s22p23s, 2s22p23d, 2s2p33p, 2p43s, 2p43d 1/2-9/2 + 132 916 973
Si-like

3s3p3, 3s23p3d 0-4 − 22 1 500 000
3s23p2 0-2 + 5 4 600 000
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3.2 N-like ions
Due to their importance, N-like ions have been studied using a number of dif-
ferent theoretical methods. Vilkas & Ishikawa have made calculations of energy
levels and transition probabilities for a number of ions in the sequence [71],
in the framework of relativistic multireference Møller-Plesset perturbation the-
ory (MRMP). Merkelis et al. used second-order many-body perturbation the-
ory (MBPT) with relativistic corrections in the Breit-Pauli approximation to
compute oscillator strengths between the levels of the 2s22p3, 2s2p4, and 2p5

configurations [72], and between the levels of the 2s22p3 configuration [73].
Ions in the range Z = 10, . . . , 30 were covered. Kotochigova et al. evaluated
the wavelengths and oscillator strengths for the 2s22p23s, 3d → 2s22p3, and
2s2p33p→ 2s22p3 transitions in Fe XX, using a configuration interaction Dirac-
Fock-Sturm (MDFS) method combined with second-order Brillouin-Wigner per-
turbation theory [74]. Bhatia et al. determined transition parameters between
n = 2 and n = 3 levels of Ar XII, Ti XVI, Fe XX, Zn XXIV, and Kr XXX, using
the SUPERSTRUCTURE (SS) code [75]. Within the Iron Project, Nahar used
the Breit-Pauli R-matrix (BPRM) method and the SUPERSTRUCTURE code to
derive an extensive set of oscillator strengths, line strengths, and radiative decay
rates for transitions in Fe XX [76]. Jonauskas et al. took a broad approach and
performed multiconfiguration Dirac-Hartree-Fock (MCDHF) and configuration
interaction calculations on the basis of transformed radial orbitals (CITRO) with
variable parameters including relativistic effects in the Breit-Pauli approximation
to derive energies of 700 lowest levels in Fe XX, and corresponding transition
parameters [77]. A combined configuration interaction and relativistic many-
body perturbation theory (RMBPT) approach was used by Gu to obtain energies
in iron and nickel ions with high accuracy [78]. Rynkun et al. used relativistic
configuration interaction (RCI) approach to compute energies, transition rates,
and lifetimes of n = 2 levels for all N-like ions with Z = 9, . . . , 36 [79].

The aim of the present work is to provide highly accurate spectroscopic data
for four ions in the N-like isoelectronic sequence that are important for plasma
diagnostics. Compared with the recent work [79] the calculations are extended
to include additional 257 levels of the 2s22p23l, 2s2p33l, and 2p43l (l = 0,1,2)
configurations. The calculations also extend the work [78] to include levels of
the Cr XVIII and Zn XXIV ions.
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3.2.1 Energy levels and transition data results for N-like
ions

Table 3.2.1: Energy levels (cm−1) for the 15 lowest states of Fe XX as a function of
the highest principal quantum number n of the active set of orbitals. ENIST are NIST
recommended values.

No LSJ MR n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 ENIST

2s22p3

1 4So
3/2 0 0 0 0 0 0 0 0 0

2 2Do
3/2 142 564 142 464 140 512 139 411 138 985 138 854 138 814 138 787 138 620

3 2Do
5/2 180 433 180 363 177 886 176 901 176 496 176 367 176 332 176 308 176 130

4 2Po
1/2 263 718 263 044 263 293 261 487 260 828 260 630 260 573 260 533 260 270

5 2Po
3/2 326 426 326 053 325 739 324 303 323 759 323 592 323 549 323 520 323 340

2s2p4

6 4P5/2 756 552 755 964 754 312 752 983 752 667 753 346 752 844 752 725 752 730
7 4P3/2 824 202 823 604 822 144 820 861 820 557 821 237 820 743 820 628 820 630
8 4P1/2 846 426 845 775 844 215 842 795 842 436 843 111 842 610 842 492 842 480
9 2D3/2 1 056 030 1 055 207 1 047 209 1 044 066 1 043 019 1 043 621 1 042 999 1 042 839 1 042 570

10 2D5/2 1 071 189 1 070 330 1 062 812 1 059 765 1 058 759 1 059 363 1 058 748 1 058 590 1 058 360
11 2S1/2 1 210 845 1 209 054 1 201 978 1 197 566 1 196 045 1 196 601 1 195 901 1 195 713 1 195 260
12 2P3/2 1 261 249 1 259 748 1 248 317 1 244 514 1 243 178 1 243 757 1 243 106 1 242 934 1 242 430
13 4P1/2 1 357 678 1 356 013 1 346 103 1 342 158 1 340 774 1 341 346 1 340 689 1 340 516 1 340 040

2p5

14 2Po
3/2 1 983 635 1 981 308 1 963 292 1 956 866 1 954 974 1 954 738 1 954 735 1 954 623 1 954 310

15 2Po
1/2 2 090 757 2 088 025 2 070 782 2 064 485 2 062 626 2 062 396 2 062 402 2 062 298 2 061 990

Computed energies of a 15 lowest states are displayed in Table 3.2.1 as func-
tions of the increasing size of active orbital set. The mean relative difference
between theory and experimental data from the National Institute of Standards
and Technology (NIST) [81] is 1.32%, 1.21%, 0.58%, 0.21%, 0.08%, 0.09%,
0.05%, 0.04% for calculations based on the MR expansion and expansions ob-
tained from SD substitutions to orbital sets with the highest principal quantum
numbers n = 3− 9, respectively. The calculations are well converged with re-
spect to the size orbital set. A general observation is that the quartet states are
energetically lower compared to the doublet states. This is due to the fact that
electron correlation effects are smaller and converge faster with respect to the
orbital set for high spin states, compared with low spin states [82, 83]. The
calculations did not quite manage to correctly balance the contributions from
quartet and doubled states.

In Table 3.2.2 the current results (Our) are compared with results from other
calculations. The current results and the results from [79] and [78] stand out in
the sense that the mean uncertainties are 0.04%, 0.05% and 0.04%, respectively,
compared with NIST. With the exception of the calculation [71], the other calcu-
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lations are associated with uncertainties, that are larger by a factor of 10 or more.
Energies of all levels of configuration 2s22p23d were computed, while the NIST
database lists about half of them.

Table 3.2.2: Energy levels (cm−1) and the differences (Diff) between theoretical ener-
gies and those from NIST ENIST for Fe XX in N-like isoelectronic sequence. See text
for the explanation of the labels.

LSJ E Diff
NIST Our RCI MRMP SS BPRM CIT RO MBPT CI+MBPT MDFS
[81] [79] [71] [75] [76] [77] [72] [78] [74]

2s22p3

4So
3/2 0 0 0 0 0 0 0 0 0 0

2Do
3/2 138 620 167 198 5 1 978 2 283 236 432 53 262

2Do
5/2 176 130 178 212 5 2 859 5 485 −178 −213 6 258

2Po
1/2 260 270 263 307 1 052 −2 697 4 307 201 −1 323 366 627

2Po
3/2 323 340 180 226 2 703 −3 463 5 214 −972 −3 299 241 567

2s2p4

4P5/2 752 730 −5 −60 −224 −5 629 4 677 −2 344 −2 767 420
4P3/2 820 630 −2 −46 −222 −7 932 3 497 −2 927 −4 303 483
4P1/2 842 480 12 −27 −164 −8 037 3 704 −3 057 −4 538 466
2D3/2 1 042 570 269 267 −104 1 707 8 055 −3 326 −4 795 32
2D5/2 1 058 360 230 227 −188 2 856 9 713 −2 893 −5 396 36
2S1/2 1 195 260 453 476 3 191 24 9 985 −3 135 −7 329 314
2P3/2 1 242 430 504 522 6 112 8 974 10 880 −3 222 −8 014 −9
2P1/2 1 340 040 476 509 −133 5 272 11 265 −3 781 −10 430 2

2p5

2Po
3/2 1 954 310 313 611 1 419 12 380 −5 869 −10 477 −536

2Po
1/2 2 061 990 308 619 1 476 14 086 −6 348 −13 195 −426

Selected transition rates are compared with rates from other calculations in
Table 3.2.3. There is a detailed agreement with rates from [79], which is ex-
pected since the calculations are very similar. There is a good overall agreement
between all calculated values. The on-line material contains transition energies,
wavelengths, transition rates, weighted oscillator strengths and uncertainty esti-
mators δT for transitions between all 272 states and all four ions Cr XVIII, Fe
XX, Ni XXII, and Zn XXIV [A1]. The uncertainty of the transition rates, as
estimated by δT in equation (2.2.9), is around 1% for strong allowed transitions.
For weak intercombination transitions the uncertainties are often larger. There
are a number of weak two-electron one-photon transitions. These transitions are
forbidden in the single configuration approximation and become allowed only
through electron correlation effects. The two-electron one-photon transitions are
known to be very difficult to compute and are associated with large uncertainties.
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The lifetimes of the states have been computed from the transition rates.

Table 3.2.3: Comparison of transition rates: E1 transition rates between states of the
upper (U) configuration 2s2p4 and the lower (L) configuration 2s22p3, E2 transition
rates between states of the upper (U) configuration 2p5 and the lower (L) configuration
2s22p3, and M1 transition rates between states of 2s22p3 in Fe XX in N-like isoelec-
tronic sequence. Transition rates A are given in s−1. Numbers in the brackets are powers
of ten.

U L A
NIST Our RCI MCDF BPRM MBPT
[81] [79] [77] [76] [72, 73]

E1
2P3/2

2Po
3/2 9.40[ 9]C 9.042[ 9] 9.038[ 9] 9.36[ 9] 9.187[ 9]

2P3/2
2Po

1/2 9.1[ 9]C 8.380[ 9] 8.380[ 9] 8.64[ 9] 8.315[ 9]
2P3/2

2Do
5/2 1.0[11]C 9.323[10] 9.321[10] 9.74[10] 9.247[10]

2P3/2
2Do

3/2 1.47[10]C 1.362[10] 1.362[10] 1.47[10] 1.372[10]
2P1/2

2Po
3/2 9.6[10]C 8.837[10] 8.835[10] 9.20[10] 8.26[10] 8.769[10]

2P1/2
2Po

1/2 4.4[ 9]D 3.676[ 9] 3.677[ 9] 4.14[ 9] 3.720[ 9]
2P1/2

2Do
3/2 2.91[10]C 2.648[10] 2.648[10] 2.85[10] 2.614[10]

2D3/2
2Po

1/2 2.98[ 9]C 2.670[ 9] 2.668[ 9] 2.81[ 9] 2.661[ 9]
2D3/2

2Do
5/2 4.3[ 7]E 3.056[ 7] 3.036[ 7] 4.95[ 7] 2.539[ 7]

2D3/2
2Do

3/2 4.3[10]C 3.850[10] 3.849[10] 3.97[10] 3.825[10]
2D5/2

2Po
3/2 6.0[ 9]C 5.419[ 9] 5.416[ 9] 5.61[ 9] 5.500[ 9]

2D5/2
2Do

3/2 2.7[ 7]E 1.448[ 7] 1.446[ 7] 1.39[ 7] 1.09[ 7] 1.096[ 7]
2D5/2

2Do
5/2 3.3[10]C 2.932[10] 2.930[10] 3.04[10] 2.916[10]

4P1/2
4So

3/2 2.09[10]C 1.877[10] 1.875[10] 1.92[10] 1.28[10] 1.852[10]
4P3/2

4So
3/2 1.86[10]C 1.677[10] 1.676[10] 1.72[10] 1.37[10] 1.667[10]

4P5/2
4So

3/2 1.3[10]C 1.187[10] 1.186[10] 1.22[10] 1.19[10] 1.194[10]
2D5/2

4So
3/2 1.590[ 7] 1.583[ 7] 1.40[ 7] 1.602[ 7]

2D3/2
4So

3/2 1.9[ 9]E 1.554[ 9] 1.555[ 9] 1.52[ 9] 2.87[ 9] 1.428[ 9]
2S1/2

4So
3/2 1.9[ 9]E 1.662[ 9] 1.663[ 9] 1.69[ 9] 1.48[10] 1.539[ 9]

2P3/2
4So

3/2 4.6[ 9]E 4.079[ 9] 4.082[ 9] 4.16[ 9] 8.75[ 9] 3.811[ 9]
2P1/2

4So
3/2 1.211[ 8] 1.212[ 8] 1.32[ 8] 1.226[ 8]

E2
2Po

1/2
2Do

3/2 5.2E 5.212 5.297 5.40 4.99
2Po

3/2
2Do

5/2 1.5[ 1]E 1.459[ 1] 1.497[ 1] 1.54[ 1] 1.39[ 1]
2Po

1/2
2Po

3/2 2.2E 2.066 2.072 2.15 1.87
M1

2Po
1/2

4So
3/2 3.3[ 4]D 3.135[ 4] 3.136[ 4] 3.13[ 4] 2.97[ 4] 2.98[ 4]

2Po
3/2

4So
3/2 2.91[ 4]C 2.921[ 4] 2.921[ 4] 2.98[ 4] 2.91[ 4] 2.85[ 4]

2Po
1/2

2Do
3/2 6.100[ 3]D 5.801[ 3] 5.801[ 3] 5.87[ 3] 6.06[ 3] 5.62[ 3]

2Po
3/2

2Do
3/2 4.49[ 4]D 4.339[ 4] 4.341[ 4] 4.28[ 4] 4.34[ 4] 4.06[ 4]

C, D and E are estimated accuracies of NIST database [81] transition probabili-
ties. C: ≤25%, D:≤ 50%, E: ≥ 50%.
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3.2.2 Conclusions

Self-consistent MCDHF and subsequent RCI calculations were performed for
the nitrogen-like ions Cr XVIII, Fe XX, Ni XXII, and Zn XXIV, using GRASP2K.
Energies, A and B hyperfine constants, Landé gJ-factors, mass- and field shift
parameters and transition rates involving the 2s22p3, 2s2p4, 2p5, 2s22p23l,
2s2p33l, and 2p43l (l = 0,1,2) configurations are provided. Compositions of
atomic state functions in LSJ-coupling are also reported. Previous theoretical
and experimental data for Fe XX were used to validate computational methods.
Energies from the RCI calculations are in excellent agreement with observations.
For the 15 lowest states the mean relative energy differences are around 0.04%
(comparing with NIST) for the four ions. This translates to wavelengths that
are accurate to within ±10 mÅ and thus of spectroscopic accuracy. The high
accuracy carries over also to the higher lying states.

Uncertainties in electric dipole transition rates between the lower states have
been estimated from the expressions suggested in paper [80] giving an average
of only 1.9%. We thus argue that the transition rates are highly accurate and may
serve as benchmark for other calculations. To summarize, the present work has
significantly increased the amount of accurate data for ions in the nitrogen-like
sequence.

3.3 Si-like ions
The diagnostic value of the EUV lines in Si-like ions relies on accurate atomic
data. A large number of theoretical studies have been done for the sequence,
as well as for individual ions and here we can only discuss a few of the more
recent ones. Froese Fischer et al. reported energies, lifetimes, and transition
rates for low-lying states in ions up to Fe XIII from multiconfiguration Hartree-
Fock calculations with Breit-Pauli relativistic corrections (MCHF-BP), as part
of the large compilation of atomic data for ions in the sodium- to argon-like
sequences [84]. For the Si-like ions only valence electron correlation was con-
sidered. Kohstall et al. performed fully relativistic multiconfiguration Dirac-
Hartree-Fock (MCDHF) calculations for seven ions in the sequence, providing
energies, lifetimes and transition rates [85]. Again, only valence correlation was
accounted. Brage and co-workers [86, 87] used both the MCHF-BP and MCDHF
methods to study energies and transition rates along the sequence. The effects
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of valence- and core-valence electron correlation were analysed with the con-
clusion that core-valence correlation is important at the low-Z end, but that the
effects decrease with Z. For higher Z it is important to use a fully relativistic
approach. As part of the comparison of theoretical emission-line-intensity ratios
with high-resolution spectra from the SERTS, Keenan et al. provided MCDHF
energy and transition data involving 301 levels in Fe XIII [63], originally from
paper [88]. Storey & Zeippen have performed R-matrix calculation of rate co-
efficients for electron collisional excitation and oscillator strengths for Fe XIII
[89]. Turning to Ni XV, Landi & Bhatia [90] have made FAC (Flexible Atomic
Code) calculations of electron impact collision strengths, energy levels, oscilla-
tor strengths, and transition rates, while Gupta & Msezane used the CIV3 code
to compute excitation energies from the ground state, oscillator strengths, and
radiative transition rates [91]. A lot of theoretical data have been provided by
Ishikawa & Vilkas using the relativistic multireference many-body perturbation
(MR-MP) method. Energies and transition probabilities were presented for var-
ious ions in the sequence in a number of publications [92] - [97]. The excitation
energies were computed with spectroscopic accuracy and a number of experi-
mental misidentifications could be detected. Also, the calculations allowed new
lines to be identified (see for example [98]). On the experimental side Träbert
and co-workers have reported lifetimes, as well as spectra for line identification
from accelerator based work: [99] - [105].

When computational method and strategy have been validated against observa-
tions, computed excitation energies may be used for further line identifications.
For transition parameters, such as oscillator strengths and transition rates, the
situation is quite different. There are no experimental data for individual transi-
tions; only lifetimes for a few states are available. In addition, lifetime measure-
ments are in many cases associated with large uncertainties resulting in sizable
error bars (see for example [102]). Also, transition parameters from calculations
are problematic in that they often scatter substantially. Rates for diagnostically
important transitions in Fe XIII from different calculations and tabulations are
compared as in the paper by Watanabe et al. [64]. For some transitions the rates
from the quoted studies differ by a factor of 3.

46



3.3.1 Energy results

In Table 3.3.1 we present the computed energies in Fe XIII for increasing active
sets of orbitals labeled by the highest principal quantum number n. For com-
parison, observed energies from [65] are quoted as well. The relative difference
between theory and observation is 1.51%, 0.48%, 0.20%, 0.09% and 0.03% for
the calculations based, respectively, on the expansion from the MR, and the ex-
pansions from SD substitutions to orbital sets with the highest principal quantum
numbers n = 4−7. Thus the calculations are well converged with respect to the
increasing orbital set. It is obvious that the uncertainties would be further de-
creased by extending the orbital set. This, however, would result in very large
expansions. A general observation is that energy for the 3s3p3 5So

2 high spin state
is too low compared with the 3s23p2 3P0 ground state. This is due to the fact that
electron correlation effects are smaller in states with high spin than in states with
lower spin [83, 82], such as the ground state, and there is a slight inbalance in
the amount of electron correlation that has been captured in the two states. The
energies for the 3s23p3d 1Fo

3 and 3s23p3d 1Po
3 states, on the contrary, are too

high, but the energies are moving in the right direction when the orbital set is
extended.

The computed energies, based on the largest orbital set n = 7, are presented in
the Table 3.3.2, together with energies from MR-MP calculations [96], and with
energies from the NIST database and, for some ions, also from other sources, as
noted in the Table. For easy comparison the differences between the computed
and observed energies are also given. The agreement between the computed
transition energies and the observed ones is excellent. The present calculations
and the MR-MP calculations by Ishikawa [96] provide energies of spectroscopic
accuracy, i.e. the computed transition wavelengths are so accurate they can be
used to identify unknown lines in spectra. In some ions there are levels for
which the agreement between theory and observation is less satisfactory, with
differences up to a few thousand cm−1. In these cases we have reasons to believe
that the observed levels are incorrectly identified and wrongly assigned. For
some ions the energies listed in the NIST database are based on experimental
extrapolations. In many cases these extrapolations give, as it seems, good values,
in agreement with calculations. However, in some cases the extrapolations give
energies that differ substantially from calculated energies. We note that the slight
inbalance in energies for high- and low spin states for the present calculations
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Table 3.3.1: Excitation energies (cm−1) for Fe XIII as a function of the increasing size
of the CSF expansion. Expansions are obtained from CSFs that can be generated whit
SD substitutions from a MR to an active set labeled by the highest n value of the orbitals
in the set. Observed energies are from [65].

Level MR n = 4 n = 5 n = 6 n = 7 Eobs
3s2 3p2 3P0 0 0 0 0 0 0
3s2 3p2 3P1 9076 9220 9255 9275 9281 9303
3s2 3p2 3P2 18543 18557 18551 18554 18553 18561
3s2 3p2 1D2 50531 48895 48483 48317 48236 48069
3s2 3p2 1S0 95531 93155 92338 91985 91839 91511
3s3p3 5So

2 211494 213687 213982 214189 214152 214624
3s3p3 3Do

1 288418 287841 287418 287287 287123 287205
3s3p3 3Do

2 288577 287998 287570 287435 287270 287356
3s3p3 3Do

3 291342 290791 290381 290255 290095 290180
3s3p3 3Po

0 331811 330395 329556 329207 328974 328927
3s3p3 3Po

1 332489 331085 330261 329919 329689 329637
3s3p3 3Po

2 333031 331650 330870 330545 330323 330282
3s3p3 1Do

2 365802 363349 362891 362665 362482 362407
3s3p3 3So

1 425440 417451 416444 415875 415577 415462
3s2 3p3d 3Fo

2 436053 431815 430817 430476 430277 430124
3s2 3p3d 3Fo

3 442770 438580 437594 437259 437064 436919
3s3p3 1Po

1 449174 440987 439527 438735 438365 438086
3s2 3p3d 3Fo

4 452714 448609 447648 447325 447134 447001
3s2 3p3d 3Po

2 496799 489144 487534 486848 486542 486358
3s2 3p3d 3Po

1 504973 497626 496033 495387 495102 494942
3s2 3p3d 1Do

2 509858 501725 500082 499375 499060 498870
3s2 3p3d 3Po

0 510705 504078 502558 501949 501676 501514
3s2 3p3d 3Do

1 517400 509237 507607 506950 506661 506505
3s2 3p3d 3Do

3 520350 511899 510255 509592 509303 509176
3s2 3p3d 3Do

2 520606 511974 510342 509684 509394 509250
3s2 3p3d 1Fo

3 571745 562189 559131 557905 557432 556911
3s2 3p3d 1Po

1 586138 576606 573369 571925 571376 570743

persevere throughout the sequence. A method that better balances the MR, and
thus the electron correlation, is thus desirable and would lead to even better
energy predictions.

3.3.2 Lifetimes and transition rates

The lifetimes of the excited states were calculated from E1 transition rates in
both the length and velocity forms as well as from M1 transition rates. The
contributions to the lifetimes from E2 and higher multipoles are negligible. The
average relative difference between the lifetimes in the length and velocity forms
is less than 0.9%, which is highly satisfactory. All results are available at Stras-
bourg Astronomical Data Center (CDS)
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Table 3.3.2: Comparison of calculated and observed excitation energies are presented
as differences (cm−1). EOur are energies from the present calculations. Differences
between: our and observed energies (NIST database [81]) - ∆Ea, our and energies from
[96], [65], [69] - Eb, Ec and Ed respectively.

Ti IX V X Cr XI Mn XII Fe XIII
LSJ EOur ∆Ea EOur ∆Ea EOur ∆Eb ∆Ea EOur ∆Eb ∆Ea EOur ∆Eb ∆Ec

3s2 3p2

3P0 0 0 0 0 0 0 0 0 0 0 0 0 0
3P1 3103 -16 4172 -8 5521 -15 -5 7204 4 19 9281 -22 -8
3P2 7268 -14 9411 -10 11976 -4 6 15008 -2 13 18553 -9 14
1D2 28741 186 32691 182 37178 184 -154 42317 177 -144 48236 166 -85
1S0 61442 342 68109 358 75319 339 -114 83188 358 -100 91839 328 -3

3s3p3

5So
2 144818 -462 161021 177922 -548 -37 195600 -300 201 214152 -472 -84

3Do
1 200145 -64 220911 -73 242280 -66 34 264323 5433 5520 287123 -82 -6

3Do
2 200228 -65 221004 -68 242383 -73 28 264442 -108 -21 287270 -86 -8

3Do
3 200925 -75 222023 -81 243843 -73 32 266493 -117 -23 290095 -85 -1

3Po
0 230604 80 254017 81 278139 80 74 303083 328974 47 53

3Po
1 230725 80 254220 73 278462 68 69 303572 -118 -142 329689 52 65

3Po
2 230830 76 254404 67 278757 59 62 304016 26 6 330323 41 52

1Do
2 254167 139 280079 110 306672 102 49 334085 115 55 362482 75 9

3So
1 300019 75 327993 91 356512 88 107 385669 39 20 415577 115 57

1Po
1 311445 358 341696 361 372822 392 68 404986 236 -166 438365 279 -81

3s2 3p3d
3Fo

2 308803 338884 369085 399512 430277 153 5
3Fo

3 311421 342293 373442 404990 437064 145 -14
3Fo

4 315144 347179 379747 413009 447134 133 -42
3Po

2 353012 380 386028 238 419210 230 492 452675 255 479 486542 184 45
3Po

1 357172 210 391382 42 425721 241 513 460265 265 554 495102 160 300
1Do

2 357986 392438 427337 247 234 462825 125 130 499060 190 55
3Po

0 358828 401 393750 429091 465011 501676 162 153
3Do

1 364792 378 399451 321 434505 265 576 470173 273 510 506661 156 176
3Do

2 365987 376 401003 263 436442 232 595 472504 244 559 509394 144 191
3Do

3 366458 384 401468 258 436831 281 703 472718 168 558 509303 127 303
1Fo

3 402567 796 440750 660 479159 569 489 517989 629 544 557432 521 392
1Po

1 412714 894 451743 491065 735 525 530876 736 534 571376 633 444

Continued Table 3.3.2
Co XIV Ni XV Cu XVI Zn XVII

LSJ EOur ∆Eb ∆Ea EOur ∆Eb ∆Ed EOur ∆Eb ∆Ea EOur ∆Eb ∆Ea

3s2 3p2

3P0 0 0 0 0 0 0 0 0 0 0 0 0
3P1 11819 -25 2 14886 -31 5 18560 -37 7 22917 -39 16
3P2 22658 -3 18 27369 -7 18 32742 12 38 38829 -12 18
1D2 55077 156 -128 62993 141 -122 72146 130 -109 82705 111 -98
1S0 101404 324 -120 112033 314 -123 123873 323 -100 137087 332 -73
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Continued Table 3.3.2
Co XIV Ni XV Cu XVI Zn XVII

LSJ EOur ∆Eb ∆Ea EOur ∆Eb ∆Ed EOur ∆Eb ∆Ea EOur ∆Eb ∆Ea

3s3p3

5So
2 233663 254244 -456 59 275972 -458 77 298957 -363 183

3Do
1 310753 335306 -94 -2 360845 -399 -293 387465 0

3Do
2 310953 -97 -9 335603 -79 12 361312 68 173 388217 0

3Do
3 314771 -109 -8 340667 -127 -18 367909 -209 -81 396663 -453 -312

3Po
0 355936 384119 413652 0 444701 0

3Po
1 356950 385518 58 34 415537 36 28 447187 0

3Po
2 357813 53 32 386639 49 34 416924 -633 -629 448815 -1388 -1369

1Do
2 392023 13 -31 422905 50 16 455309 -8891 -8906 489461 0

3So
1 446342 162 100 478103 62 -23 510977 151 54 545123 152 39

1Po
1 473132 382 7 509487 320 -42 547605 270 -70 587699 263 -60

3s2 3p3d
3Fo

2 461484 493257 525698 0 558949 0
3Fo

3 469780 503269 537635 3135 3140 573014 0
3Fo

4 482285 518644 556370 3070 3068 595659 0
3Po

2 520911 111 297 555903 106 276 591616 -30 134 628182 12 168
3Po

1 530323 93 418 566046 246 565 602369 50 363 639423 -42 255
1Do

2 536193 153 205 574394 127 190 613806 116 194 654611 21 106
3Po

0 539240 577876 617732 -73 41 658989 -119 -3
3Do

1 544149 49 206 582820 60 195 622823 11 146 664346 -43 93
3Do

2 547305 75 -129 586447 68 279 627006 81 294 669200 41 242
3Do

3 546744 34 849 585218 33 372 624874 4 335 665894 -52 268
1Fo

3 597664 414 339 638880 403 327 681247 314 245 724968 267 203
1Po

1 612749 579 404 655198 698904 380 222 744082 468 320

Continued Table 3.3.2
Ga XVIII Ge XIX Sr XXV Zr XXVII Mo XXIX

LSJ EOur ∆Ea EOur ∆Ea EOur ∆Ea EOur EOur ∆Ea

3s2 3p2

3P0 0 0 0 0 0 0 0 0 0
3P1 28043 -47 34021 -56 92950 -125 123752 161571 -149
3P2 45697 -3 53413 1 122240 -20 156100 385223 -257
1D2 94844 114 108737 87 239120 -80 305128 196874 -36
1S0 151841 331 168307 337 313384 654 384130 468947 727

3s3p3

5So
2 323275 349019 537112 -856 613824 698220

3Do
1 415232 444235 -455 648560 -1275 730166 819702

3Do
2 416437 446132 -27 665804 1158 760367 869047

3Do
3 427069 -491 459300 700704 803968 921304

3Po
0 477410 511955 767747 876205 999158

3Po
1 480622 516029 98 779904 28 891918 1018480

3Po
2 482417 2443 517845 -3709 772281 1003297 979622

1Do
2 525573 563884 845815 952487 1144648

3So
1 580681 171 617826 181 884118 274 994084 1116909 159

1Po
1 629950 180 674558 295 1007850 -423 1144829 1296465

50



Continued Table 3.3.2
Ga XVIII Ge XIX Sr XXV Zr XXVII Mo XXIX

LSJ EOur ∆Ea EOur ∆Ea EOur ∆Ea EOur EOur ∆Ea

3s2 3p3d
3Fo

2 593137 628432 882783 872869 1068014
3Fo

3 609509 647253 906676 1008781 1120615
3Fo

4 636683 679642 989440 1117851 1262081
3Po

2 665710 -110 704337 -44 967289 -241 1071526 1190353
3Do

1 677315 -82 716185 -81 971435 -297 1070912 1179034
1Do

2 696963 67 741045 24 1052275 -196 1230113 1319351 -499
3Po

0 701805 -165 746363 1060646 -319 1188087 1329792
3Po

1 707554 -56 752647 -120 1075683 173 1210927 1366114
3Do

2 713226 -34 759307 -123 1091772 -284 1178673 1386247
3Do

3 708435 -153 752681 -111 1064175 -335 1190295 1330469 -571
1Fo

3 770223 237 817220 184 1147847 -131 1282248 1432196 -434
1Po

1 790924 447 839655 405 1184571 295 1325771 1484183

Table 3.3.3: Comparison of lifetimes (s). τl are values from the present calculation in
length form. τMCHF−BP are values from [84].

Ti IX V X Cr XI
Level τl τMCHF−BP τl τMCHF−BP τl τMCHF−BP
3s2 3p2 3P1 1.883 2.023 7.787[ -1] 8.117[ -1] 3.379[ -1] 3.421[ -1]
3s2 3p2 3P2 1.052 1.194 5.346[ -1] 5.925[ -1] 2.901[ -1] 3.147[ -1]
3s2 3p2 1D2 6.508[ -2] 7.186[ -2] 3.479[ -2] 3.796[ -2] 1.921[ -2] 2.073[ -2]
3s2 3p2 1S0 7.445[ -3] 7.934[ -3] 4.212[ -3] 4.436[ -3] 2.463[ -3] 2.564[ -3]
3s3p3 5So

2 5.005[ -7] 5.337[ -7] 2.938[ -7] 3.083[ -7] 1.786[ -7] 1.850[ -7]
3s3p3 3Do

1 1.203[ -9] 1.196[ -9] 9.824[-10] 9.752[-10] 8.155[-10] 8.090[-10]
3s3p3 3Do

2 1.249[ -9] 1.237[ -9] 1.028[ -9] 1.016[ -9] 8.625[-10] 8.502[-10]
3s3p3 3Do

3 1.334[ -9] 1.317[ -9] 1.113[ -9] 1.097[ -9] 9.482[-10] 9.326[-10]
3s3p3 3Po

0 4.368[-10] 4.255[-10] 3.673[-10] 3.578[-10] 3.140[-10] 3.058[-10]
3s3p3 3Po

1 4.425[-10] 4.373[-10] 3.717[-10] 3.695[-10] 3.170[-10] 3.176[-10]
3s3p3 3Po

2 4.693[-10] 4.555[-10] 3.979[-10] 3.864[-10] 3.429[-10] 3.331[-10]
3s3p3 1Do

2 3.179[-10] 3.173[-10] 2.647[-10] 2.626[-10] 2.264[-10] 2.234[-10]
3s3p3 3So

1 2.629[-11] 2.463[-11] 2.348[-11] 2.205[-11] 2.118[-11] 1.996[-11]
3s2 3p3d 3Fo

2 9.485[ -9] 1.088[ -8] 5.825[ -9] 6.511[ -9] 3.729[ -9] 4.071[ -9]
3s2 3p3d 3Fo

3 1.533[ -8] 1.844[ -8] 9.704[ -9] 1.138[ -8] 6.331[ -9] 7.245[ -9]
3s3p3 1Po

1 4.268[-11] 4.454[-11] 3.676[-11] 3.912[-11] 3.199[-11] 3.474[-11]
3s2 3p3d 3Fo

4 6.952[ -2] 5.192[ -2] 3.983[ -2]
3s2 3p3d 3Po

2 2.898[-11] 2.757[-11] 2.590[-11] 2.452[-11] 2.350[-11] 2.220[-11]
3s2 3p3d 3Po

1 3.147[-11] 2.964[-11] 2.760[-11] 2.614[-11] 2.421[-11] 2.304[-11]
3s2 3p3d 1Do

2 2.819[-11] 2.568[-11] 2.529[-11] 2.265[-11]
3s2 3p3d 3Po

0 3.256[-11] 3.038[-11] 2.927[-11] 2.737[-11] 2.652[-11] 2.485[-11]
3s2 3p3d 3Do

1 2.135[-11] 1.987[-11] 1.966[-11] 1.827[-11] 1.836[-11] 1.705[-11]
3s2 3p3d 3Do

2 2.153[-11] 2.007[-11] 1.971[-11] 1.839[-11] 1.825[-11] 1.705[-11]
3s2 3p3d 3Do

3 2.144[-11] 2.003[-11] 1.950[-11] 1.824[-11] 1.788[-11] 1.675[-11]
3s2 3p3d 1Fo

3 1.957[-11] 1.834[-11] 1.787[-11] 1.676[-11] 1.645[-11] 1.545[-11]
3s2 3p3d 1Po

1 2.547[-11] 2.360[-11] 2.312[-11] 2.147[-11] 2.116[-11] 1.970[-11]
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http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A26. In Tables
3.3.3 and 3.3.4 we compare calculated lifetimes in length form with lifetimes
obtained by Froese Fischer et al. with the MCHF Breit-Pauli method [84]. The
latter only accounted for valence electron correlation, which affects the accuracy
of the lifetimes and transition rates, mainly for the low Z ions [86, 87]. In some
sense the differences between the current lifetimes and the lifetimes by Froese
Fischer et al. [84] illustrates the effects of core-valence correlation.

Table 3.3.4: Comparison of lifetimes (s). τl are values from the present calculation in
length form. τMCHF−BP are values from [84].

Mn XII Fe XIII
Level τl τMCHF−BP τl τMCHF−BP
3s2 3p2 3P1 1.531[ -1] 1.507[ -1] 7.218[ -2] 6.904[ -2]
3s2 3p2 3P2 1.673[ -1] 1.780[ -1] 1.022[ -1] 1.068[ -1]
3s2 3p2 1D2 1.089[ -2] 1.164[ -2] 6.311[ -3] 6.679[ -3]
3s2 3p2 1S0 1.484[ -3] 1.529[ -3] 9.185[ -4] 9.368[ -4]
3s3p3 5So

2 1.118[ -7] 1.140[ -7] 7.183[ -8] 7.223[ -8]
3s3p3 3Do

1 6.852[-10] 6.795[-10] 5.805[-10] 5.761[-10]
3s3p3 3Do

2 7.341[-10] 7.213[-10] 6.321[-10] 6.187[-10]
3s3p3 3Do

3 8.206[-10] 8.058[-10] 7.194[-10] 7.055[-10]
3s3p3 3Po

0 2.718[-10] 2.646[-10] 2.376[-10] 2.312[-10]
3s3p3 3Po

1 2.734[-10] 2.765[-10] 2.377[-10] 2.433[-10]
3s3p3 3Po

2 2.990[-10] 2.908[-10] 2.630[-10] 2.561[-10]
3s3p3 1Do

2 1.979[-10] 1.942[-10] 1.763[-10] 1.721[-10]
3s3p3 3So

1 1.926[-11] 1.819[-11] 1.762[-11] 1.669[-11]
3s2 3p3d 3Fo

2 2.474[ -9] 2.643[ -9] 1.692[ -9] 1.773[ -9]
3s2 3p3d 3Fo

3 4.242[ -9] 4.746[ -9] 2.910[ -9] 3.188[ -9]
3s3p3 1Po

1 2.809[-11] 3.113[-11] 2.486[-11] 2.808[-11]
3s2 3p3d 3Fo

4 3.121[ -2] 2.487[ -2]
3s2 3p3d 3Po

2 2.155[-11] 2.034[-11] 1.989[-11] 1.879[-11]
3s2 3p3d 3Po

1 2.129[-11] 2.031[-11] 1.881[-11] 1.795[-11]
3s2 3p3d 1Do

2 2.030[-11] 1.894[-11] 1.822[-11] 1.708[-11]
3s2 3p3d 3Po

0 2.418[-11] 2.271[-11] 2.215[-11] 2.085[-11]
3s2 3p3d 3Do

1 1.734[-11] 1.611[-11] 1.648[-11] 1.535[-11]
3s2 3p3d 3Do

2 1.705[-11] 1.595[-11] 1.533[-11] 1.440[-11]
3s2 3p3d 3Do

3 1.651[-11] 1.549[-11] 1.605[-11] 1.505[-11]
3s2 3p3d 1Fo

3 1.526[-11] 1.434[-11] 1.422[-11] 1.339[-11]
3s2 3p3d 1Po

1 1.950[-11] 1.819[-11] 1.805[-11] 1.688[-11]

In Table 3.3.5 we compare the lifetimes for the 3s23p3d 3Fo
2 and 3s23p3d 3Fo

3

states with values obtained from MCDHF calculations [85] and MR-MP calcula-
tions [96], and with experimental lifetime values from beam-foil measurements
[103]. The current lifetimes are shorter than those of the other calculations, in
better agreement with experiment.

In Table 3.3.6 transition rates for important lines in Fe XIII appearing in EUV

52



Table 3.3.5: Comparison of lifetimes (ns) for 3s23p3d 3Fo
2 and 3s23p3d 3Fo

3 in length
(l) and velocity (v) forms, from calculations and from experiment. MCDHF is from
[85], MR-MP is from [96] and ”Our” is from the present calculations. The experimental
lifetimes are from beam-foil measurements [103].

MCDHF MR-MP Our Exp.
3s23p3d 3Fo

2
(l) (v) (l) (v) (l) (v)

Z = 26 1.94 1.91 2.01 2.01 1.69 1.67
Z = 27 1.29 1.19 1.37 1.35 1.19 1.18
Z = 28 0.92 0.85 0.98 0.97 0.85 0.84
Z = 29 0.67 0.62 0.71 0.71 0.63 0.62

3s23p3d 3Fo
3

Z = 26 3.29 3.32 3.37 3.38 2.91 2.93 3.0 ±0.2
Z = 27 2.18 1.87 2.34 2.30 2.04 2.05 1.8 ±0.2
Z = 28 1.55 1.32 1.67 1.63 1.46 1.47 1.45 ±0.08
Z = 29 1.13 0.96 1.21 1.18 1.06 1.07 1.01 ±0.05

Table 3.3.6: Transition rates for Fe XIII lines between states of 3s23p3d and 3s23p2

configurations (first and second columns, respectively) appearing in EIS, adapted from
[64]. λobs wavelengths from EIS [107], λOur (Å) and AOur are from present calculations,
ACHI from CHIANTI, AAK [88], AK [63], ANIST [81]. The relative differences between
the A values in the length and velocity forms for the present calculation are between 0.1
and 0.3 %.

Transition λobs [107] λOur AOur ACHI [106] AAK [88] AK [63] ANIST [81]
1Fo

3 −1 D2 196.52 196.39 6.675[10] 6.862[10] 8.275[10] 7.3908[10] 6.80[10]
3Do

2−3 P1 200.02 199.95 2.300[10] 2.368[10] 2.761[10] 2.9279[10]
3Po

1 −3 P0 202.04 201.98 4.548[10] 4.643[10] 5.100[10] 4.5491[10]
3Po

0 −3 P1 203.17 203.09 4.515[10] 4.712[10] 5.586[10] 1.6005[10]
3Do

3−3 P2 203.83 203.77 6.276[10] 6.475[10] 7.948[10] 6.9486[10] 6.50[10]
3Do

2−3 P2 203.79 203.73 3.320[10] 3.361[10] 3.566[10] 3.5499[10]
1Do

2−3 P1 204.26 204.17 1.975[10] 2.015[10] 1.540[ 9] 4.9464[10]
3Do

1−3 P2 204.94 204.87 1.259[10] 1.276[10] 1.392[10] 1.1984[10]
3Po

2 −3 P1 209.62 209.53 1.766[10] 1.852[10] 3.252[10] 2.1115[10]
3Po

1 −3 P2 209.92 209.84 6.513[ 9] 7.227[ 9] 1.079[10] 9.3164[ 9]

Imaging Spectrometer (EIS) are presented (see for example [64]). The rates of
the different calculations scatter, but there is a reasonable agreement between
the rates of the present calculations and the rates given by CHIANTI [106]. Our
Table 3.3.6 is an adaptation of Table 1 from [64].

3.3.3 Conclusions

MCDHF and subsequent RCI calculations were performed for states of the
3s23p2, 3s3p3, and 3s23p3d configurations in the Si-like ions Ti IX - Ge XIX,
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Sr XXV, Zr XXVII, and Mo XXIX. Excitation energies, lifetimes and transition
rates are presented. Energies from the RCI calculations are in excellent agree-
ment with observations and computed wavelength are almost of spectroscopic
accuracy, aiding line identification in spectra. Uncertainties of the transition
rates are estimated by δT , as suggested in [80]. For most of the strongest tran-
sitions δT is below 1%. For weaker transitions the uncertainty δT is somewhat
larger, from a few percent up to 10%. We thus argue that the transition rates are
highly accurate and may serve as benchmark for other calculations.
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Chapter 4

Energy spectrum of Er3+ [A3, A4]

Experimental searches of permanent EDM are often performed on heavy ele-
ments, because EDM enhancement factor increase rapidly with atomic number
Z. Calculations of enhancement factors require knowledge of correlation effects
for energy levels in the region of heavy elements. Another reason to explore
Er3+ ion properties is, that Er2O3 coating will be used in fusion reactor blanket
systems for electric insulation and tritium permeation barriers [108], because of
its chemical stability in corrosive liquid coolant and tritium breeders, e.g. liquid
Li or FLiBe. However, neutron damage of the coating is a concern, and lumi-
nescence measurements were proposed as a method for characterizing radiation-
induced defects [109]. It is, therefore, required to elucidate relations between
optical emission spectra of the ground configuration of Er3+ in Er2O3, as ob-
served in the luminescence measurements, and defect structures and degree of
crystallinity. However, even for isolated (free) ions of Er3+, as well as for other
Lanthanoids and Actinoids and their ions, spectroscopic data are not available.
This work addresses the lack of data.

There are several theoretical methods for obtaining the energy spectrum and
transition rates in many-electron atoms and ions, such as: different versions
of the many-body perturbation theory [110] - [112] the configuration interac-
tion method [113], the random phase approximation with exchange [113], the
incomplete variable separation method [114], the multiconfiguration approxi-
mation, etc. Lately, the majority of theoretical ab initio calculations of energy
spectra and transition rates of atoms and ions with open shells have been carried
out using configuration interaction, multiconfiguration Hartree-Fock [82, 115]
or multiconfiguration Dirac-Hartree-Fock (MCDHF) [35] methods.

The energy levels of free Er3+ were obtained by Carter from emission spectra
of a high-current spark [116]. However, most authors [117] - [120] used semi-
empirical methods to obtain spectroscopic data for Er3+. These methods rely on
measurements of Stark components in erbium doped crystals (LaF3, LiYF3 and
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ZnGa2O4) that determine centers of gravity. Then, by using different approxi-
mations such as the Wybourne theory [121] and superposition models [122], the
energy spectrum is derived for the free ion. There are no experimental data for
transition rates.

The basic and novel idea of this work is to study the energy spectrum and the
transition parameters for the [Xe]4 f 11 ground configuration of Er3+ using an ab

initio approach. The calculations are based on MCDHF and RCI [123] methods.
Principles of these methods for energy level and transition rate calculations are
presented in sections 2.2.1 and 2.2.2. Methodologies and strategies used to in-
clude electron correlation effects are described in section 4.1. This is followed
by an evaluation of energy levels and comparison with results of other authors
in section 4.2. The E2 and M1 transition rates, line strengths, and weighted os-
cillator strengths for transitions between states of the ground configuration are
presented in section 4.3 . All results are summarized in section 4.4.

4.1 Configuration state function basis
In this work calculations were done by configuration, i.e. wave functions for all
states belonging to a specific configuration were determined simultaneously in an
EOL calculation [38]. The expansions in expression (2.2.1), defining the ASFs,
were obtained using the active set method [70, 124]. Here CSFs of a specified
parity and J symmetry are generated by substituting orbitals from one or more
reference configurations to orbitals in an active set. By applying restrictions on
the allowed substitutions, different electron correlation effects can be targeted.
To monitor the convergence of the calculated energies and transition parameters,
the active sets are increased in a systematic way by adding layers of correlation
orbitals.

A careful analysis showed that the states of the [Xe]4 f 11 ground configuration
in Er3+ are well described in a single reference configuration Dirac-Hartree-Fock
(DHF) model. Below different strategies for generating the expansions based on
the single reference [Xe]4 f 11 active set method are described.

In the description of the method 4 f orbital will be considered the only valence
shell. 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 5s, 5p (or [Xe]) will be considered
core shells, even though 5s and 5p have similar binding energies as 4 f . In all
calculations the radial orbitals of the reference configuration were taken from
the initial DHF calculation. The energy functional, on which the orbitals were
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optimised, was the weighted energy average of the two lowest states of [Xe]4 f 11

with J=1/2, the six lowest states with J=3/2, the seven lowest states with, respec-
tively, J=5/2, 7/2, 9/2, the five lowest states with J=11/2, the three lowest states
with J=13/2, three lowest with J=15/2, and finally the lowest state with J=17/2.

1. S V strategy – the CSFs were generated by single (S) substitutions from
the valence (V) shell (4 f shell) to orbitals in active sets characterized by
principal quantum numbers n = 5− 9, and angular symmetries p, f ,h,k

(the orbitals s,d,g, i lead to configurations with opposite symmetry in the
case of S substitutions). In this strategy the inactive core is [Xe]. The RSCF
calculations for each layer of orbitals were followed by RCI calculations,
including the Breit interaction and QED corrections. At all steps only new
orbitals were optimised.

2. SD VV strategy – the CSFs were generated by single and double (SD)
substitutions from the valence (VV) shell to orbitals in active sets charac-
terized by principal quantum numbers n = 5− 7, and angular symmetries
s, p,d, f . In this strategy the inactive core is again [Xe]. The RSCF cal-
culations for each layer of orbitals were followed by RCI calculations, in-
cluding the Breit interaction and QED corrections. At all steps only new
orbitals were optimised.

3. S V+C strategy – the CSFs were generated by S substitutions from the
core (C) shells (5s, 5p shells) and the valence (V) shell to orbitals in active
sets characterized by principal quantum numbers n = 5− 9, and angular
symmetries s− i. In this strategy the inactive core is 1s22s22p63s23p63d10

4s24p64d10. The RSCF calculations for each layer of orbitals were fol-
lowed by RCI calculations, including the Breit interaction and QED cor-
rections. At all steps only new orbitals were optimised.

4. SD VV+CC+CV strategy – the CSFs were generated by SD substitutions
from the core (CC) shells (5s and 5p) and the valence (VV) shell to or-
bitals in active sets characterized by principal quantum numbers n = 5,6,
and angular symmetries s− h. In this strategy the inactive core is as in S
V+C strategy. The radial orbitals were taken from the S V+C strategy and
only RCI calculations, including the Breit interaction and QED corrections,
were done.
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5. SD V+C+CV strategy – the CSFs were generated by S substitutions from
the core (C) shells (5s, 5p or other closed core shells that were opened step
by step as presented in the tables) and the valence (V) shell to orbitals in
active sets characterized by principal quantum numbers n = 5,6, and an-
gular symmetries s− h. Double (D) substitutions were restricted in such
a way, that one substitution would be from the core and another from the
valence shell (CV). The radial orbitals were taken from the S V+C strat-
egy and only RCI calculations, including the Breit interaction and QED
corrections, were done.

In the Table 4.1.1 of the expansion size NCSF (number of CSFs) is displayed for
each strategy.

Table 4.1.1: Summary the expansion size NCSF in different strategies for Er3+.

Strategy open core DHF n = 5 n = 6 n = 7 n = 8 n = 9
SV 41 1229 4 443 7 657 12 200 16 743
SD VV 41 21 153 120 888 302 868
S V+C 5* 41 5 853 18 438 32 120 45 802 59 484
SD VV+CC+CV 5* 41 634 453 4 311 822

5*4d 41 2 230 820
SD V+C+CV 5* 41 10 882 32 155 56 275

5*4d 41 40 517 106 047 187 856 269 665
5*4d4p 41 66 407 174 558 308 987
5*4* 41 77 272 202 141 357 885
5*4*3d 41 134 340 354 974
5*4*3d3p 41 181 369 474 742
5*4*3* 41 198 197 519 450
5*4*3*2p 41 252 756
5*4*3*2* 41 273 079

4.2 Energy level structure
The Er3+ ion has previously not been thoroughly investigated. To the knowledge
of the authors there have been practically no publications with ab initio theoreti-
cal calculations for isolated Er3+. Thus, results based on the different strategies,
including various types of correlations and substitutions to large active sets, need
to be internally compared and benchmarked.

The energy levels from calculations using the S V and SD VV strategies, the
S V+C and SD VV+CC+CV strategies, the SD V+C+CV strategies are shown
in tables 4.2.1–4.2.3. Energies of levels are given in the tables in the form of
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Table 4.2.1: Energy levels and differences from initial approximation (cm−1) for the
[Xe]4 f 11 ground configuration from RCI calculations that include S V and SD VV cor-
relation: LSJ denotes the leading LS term and J value of the level. In the second row the
n of the active set is given.

LSJ DHF S V SD VV NIST
5 6 7 8 9 5 6 7 [81]

4I1
15/2 0 0 0 0 0 0 0 0 0 0

4I1
13/2 6207 6204 13 18 1 1 6255 17 24 6480

4I1
11/2 10155 10168 -6 17 4 3 10168 8 13 10110

4I1
9/2 12965 12998 -42 2 -31 -34 12928 -7 -6 12350

4F1
9/2 19084 18693 -753 -1140 -749 -756 18451 -319 -369 15180

4S1
3/2 23696 23279 -503 -915 -498 -502 22996 -338 -386 18290

2H2
11/2 22402 22484 -371 -281 -363 -375 21975 -171 -211

4F1
7/2 25030 24459 -888 -1451 -880 -880 24347 -377 -429 20400

4F1
5/2 27091 26512 -916 -1486 -907 -910 26376 -390 -444 22070

4F1
3/2 27351 26950 -823 -1214 -813 -820 26741 -372 -425 22410

2G1
9/2 27460 27356 -423 -514 -410 -424 26929 -163 -192

4G1
11/2 31711 31553 -1093 -1243 -1085 -1100 31151 -286 -378

Table 4.2.2: Energy levels and differences from initial approximation (cm−1) for the
[Xe]4 f 11 ground configuration from RCI calculations that include S V+C and SD
VV+CC+CV correlation: 5∗ means, that all shells from the core with n = 5 are open
for SD substitutions, 4d means, that the 4d shell is open for SD substitutions. In the
third row the n of the active set is given. LSJ denotes the leading LS term and J value of
the level.

LSJ S V+C SD VV+CC+CV NIST
5∗ 5∗ 5∗4d

5 6 7 8 9 5 6 5 [81]
4I1

15/2 0 0 0 0 0 0 0 0 0
4I1

13/2 6215 -1 5 6 6 6379 12 6502 6480
4I1

11/2 10133 -2 7 10 9 10268 -35 10332 10110
4I1

9/2 12913 -22 -11 -9 -9 12957 -130 12889 12350
4F1

9/2 17809 -816 -808 -808 -808 17335 -845 16764 15180
4S1

3/2 21904 -564 -554 -553 -553 21459 -836 20650 18290
2H2

11/2 21845 -361 -342 -341 -341 21305 -589 20747
4F1

7/2 23421 -1018 -1007 -1005 -1006 23074 -1026 22511 20400
4F1

5/2 25383 -1038 -1024 -1022 -1022 25013 -1076 24406 22070
4F1

3/2 25780 -914 -901 -900 -900 25364 -1009 24695 22410
2G1

9/2 26768 -314 -297 -294 -294 26376 -593 25891
4G1

11/2 30142 -1156 -1142 -1141 -1141 29604 -1125 28964
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Table 4.2.3: Energy levels and differences from initial approximation (cm−1) for the
[Xe]4 f 11 ground configuration from RCI calculations that include SD V+C+CV corre-
lations: 5∗ means, that all shells from the core with n = 5 are open for SD substitutions
(5∗4∗ - core with n = 5,4 are is open). In the second row the n of the active set is given.
LSJ denotes the leading LS term and J value of the level.

LSJ 5∗ 5∗4d 5∗4d4p 5∗4∗

5 6 7 5 6 7 8 5 6 7 5 6 7
4I1

15/2 0 0 0 0 0 0 0 0 0 0 0 0 0
4I1

13/2 6195 5 12 6305 -47 -27 -45 6322 -31 -10 6323 -32 -10
4I1

11/2 10102 4 14 10165 -2 27 18 10118 35 69 10110 34 69
4I1

9/2 12876 -16 -5 12844 47 78 87 12738 100 139 12724 101 142
4F1

9/2 17773 -820 -814 17100 -416 -413 -329 16796 -306 -294 16768 -311 -295
4S1

3/2 21915 -577 -569 21018 -26 -18 107 20007 219 243 19960 198 227
2H2

11/2 21778 -367 -349 21148 45 70 158 20696 160 203 20632 147 195
4F1

7/2 23368 -1018 -1007 22730 -658 -646 -574 22426 -526 -507 22398 -538 -514
4F1

5/2 25322 -1038 -1025 24642 -654 -637 -556 24244 -500 -474 24200 -520 -490
4F1

3/2 25732 -917 -905 24984 -470 -453 -361 24444 -277 -248 24401 -291 -256
2G1

9/2 26703 -314 -296 26137 118 155 226 25797 220 280 25760 231 296
4G1

11/2 30053 -1151 -1138 29341 -793 -776 -719 29012 -655 -629 28974 -664 -632
Continued ...

LSJ 5∗4∗3d 5∗4∗3d3p 5∗4∗3∗ 5∗4∗3∗2p 5∗4∗3∗2∗ NIST
5 6 5 6 5 6 5 5 [81]

4I1
15/2 0 0 0 0 0 0 0 0 0

4I1
13/2 6326 -25 6329 -17 6328 -17 6328 6328 6480

4I1
11/2 10106 50 10105 61 10104 61 10104 10104 10110

4I1
9/2 12707 128 12704 138 12703 138 12703 12703 12350

4F1
9/2 16698 -252 16679 -252 16678 -253 16678 16678 15180

4S1
3/2 19856 283 19809 284 19807 282 19807 19807 18290

2H2
11/2 20575 199 20553 200 20549 199 20549 20549

4F1
7/2 22320 -465 22301 -463 22300 -465 22300 22300 20400

4F1
5/2 24116 -443 24091 -439 24089 -442 24089 24089 22070

4F1
3/2 24311 -209 24282 -204 24280 -206 24280 24280 22410

2G1
9/2 25699 295 25685 304 25682 305 25682 25682

4G1
11/2 28901 -589 28878 -583 28876 -585 28876 28876

the difference with respect to the n = 5 column. For example, for strategy SD
V+C+CV 5* in n = 7 approximation, the energy of level 4I1

11/2 can be obtained
by taking the energy in column n = 5 (10102 cm−1) and adding the entry dis-
played in column n = 7 (14 cm−1). The tables display the convergence of the
energy levels with respect to the increasing n quantum number of the active sets
of orbitals, and the increasing number of included configurations. In the last
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column of the tables the energies from NIST [81] are given.
As can be seen from the tables the energy levels obtained from different strate-

gies differ considerably from the energies given in the NIST database [81]. The
energies obtained in the S substitutions valence (the S V strategy) and SD substi-
tutions valence-valence (the SD VV strategy) approximations agree poorly with
experiment and the NIST reference data. The energies are converged at n = 6,
and further extension of the active set has little impact. Adding valence-valence
(the SD VV strategy) correlation to the valence correlation leads to an insignif-
icant change for the energy levels (approx. 0.5%). However, if core correlation
is included (the S V+C strategy), the positions of the energy levels approach
the experimental values (approx. 5%). The exceptions are levels 2 and 3, where
even valence and valence-valence correlations (the S V and SD VV strategies)
provide precise predictions. Core-core and core-valence correlations (the SD
VV+CC+CV strategy) for the higher levels change energies by less than 2% (see
Tables 4.2.1-4.2.3).

It should be noted that the order of the 4S1
3/2 and 2H2

11/2 levels depends on
the strategy. It is obvious that in the cases of the S V and SD VV strategies,
independently of the size of the active set, the positions of these levels do not
agree with experiment (see Table 4.2.1). However, after adding core correlation
with an active set n = 6, the positions become correct (see Table 4.2.2). Valence,
core and core-valence correlations, when at least the 4d shell is opened, lead to
the correct positions for these levels already at n = 5 (see Table 4.2.3).

The convergence of the positions of levels 5 and 6 (when increasing the active
sets and opening deeper closed shells) is demonstrated in Fig. 4.2.1 and Ta-
bles 4.2.1-4.2.3. It is seen that calculations with the active set n = 6 that include
SD substitutions from the valence, core and core-valence shells, when only 4d

and 4p substitutions are taken from the core (the SD V+C+CV 4d 4p strategy),
lead to energy level positions close to the experimental ones. In addition, in this
approximation, the order of the 4S1

3/2 and 2H2
11/2 levels agree with the results of

the experiment (see Table 4.2.4). Further increase of the active set or opening of
deeper core shells does not significantly change the results (see Fig. 4.2.1). As a
matter of fact, similar results for the above mentioned levels are obtained in the
SD VV+CC+CV approximation with n = 6 (SD substitutions from the valence,
valence-valence, core, core-core and core-valence shells to orbitals in the active
set n = 6). But in the above mentioned case, the ASFs consist of 4311822 CSFs
whereas in the case of SD V+C+CV 4d 4p only of 174558 CSFs. Hence, core-
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Figure 4.2.1: Convergence of the energy levels 4 f 11 4S1
3/2 (filled symbols) and 4F1

9/2

(empty symbols) in Er3+: a) opening core shells and b) increasing principal quantum
number of the active set in different strategies. In the VV+CC+CV strategy, SD sub-
stitutions were made without restrictions. In the other strategies D substitutions were
restricted in such a way, that one substitution would be from the core and another from
the valence shell.

core, and valence-valence correlations are less important than valence, core and
core-valence.

Table 4.2.4 compares computed energy levels with results from other theories
and experiment. Levels are notated in the form (2S+1)LNr

J where, instead of the
group labels νWU , single character ”numbers” Nr are used [125]. In Table 4.2.4
the level we identified as 2G1

9/2 was originally identified as 2H9/2 in [117] - [119].
The level identifications in Table 4.2.4 are based on an LS composition analysis
(see Table 4.2.5).

SD V+C+CV strategy calculations (see column ’Our’ in Table 4.2.4) with
n = 6 and the core opened for 5∗4∗3∗ substitutions give the positions of the
first three levels in agreement with experiment. For the higher levels the agree-
ment is less satisfactory. Total calculated energy levels are compared with NIST
recommended values presented in the last column of the Table.

Experimental data [117] for centers of gravity of Stark manifolds were ob-
tained by measuring Stark levels of the Er3+ absorption spectrum in LaF3 at 77
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Table 4.2.4: Comparison of calculated (Our) energy levels (cm−1) of the ground con-
figuration in Er3+ with values from semi-empirical (SE) methods and experiment (Exp).
Theoretical energies are compared with NIST database recommended values and the
errors (Err) are reported. All energies are relative to the ground state.

LSJ Our SE Exp NIST Err
[117] [118] [120] [119] [116] [81] (%)

4I1
15/2 0 0 0 0 0 0 0

4I1
13/2 6311 6540 6502 6405 6511 6485 6480 2.6

4I1
11/2 10165 10123 10125 10022 10043 10123 10110 0.5

4I1
9/2 12841 12328 12340 12241 12003 12345 12350 4.0

4F1
9/2 16425 15266 15181 15076 14913 15182 15180 8.2

4S1
3/2 20089 18433 18427 18320 18018 18299 18290 9.8

2H2
11/2 20748 19166 19284 19175 18851 19010

4F1
7/2 21835 20524 20327 20123 20034 20494 20400 7.0

4F1
5/2 23647 22065 21990 21870 21713 22181 22070 7.1

4F1
3/2 24074 22477 22344 22227 21978 22453 22410 7.4

2G1
9/2 25987 24539 24537 24322 23874 24475

4G1
11/2 28291 26615 26447 26327 25929 26376

4G1
9/2 29369 27663 27431 27305

2K1
15/2 29713 27041 27293 27176

2G1
7/2 30255 27994 27877

2P1
3/2 33797 31605 31477

2K1
13/2 34993 32521 32392

4G1
5/2 35584 33315 33178

2P1
1/2 35829 33336

4G1
7/2 35959 28110 33918 33783

2D1
5/2 37550 34794 34641

2H2
9/2 37974 36408 36268

4D1
5/2 42247 38649 38526

4D1
7/2 43125 39205 39067

2I1
11/2 44363 40309 40164

2L1
17/2 44686 40664 40508

2D1
3/2 44985 42199 42802

4D1
3/2 46361 42946 42044

2I1
13/2 46509 42947 42797

4D1
1/2 50552 46808

2L1
15/2 50695 46836 46667

2H1
9/2 51680 46989

2D2
5/2 52987 48873

2H1
11/2 54438 50061

2D2
3/2 58851 54910

2F2
7/2 60100 55055

2F2
5/2 68234 62909

2G2
7/2 72071 64688

2G2
9/2 75942 68765

2F1
5/2 103064 93134

2F1
7/2 107321 96726
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K. Only those lines which persist at 4.2 K were retained. The Stark levels of
4I13/2 were obtained in another way. In this case the center was determined from
fluorescence lines. Most transitions in the spectrum are from the 4I15/2 ground
state Stark components to the Stark components of the excited states. The au-
thors of the paper [118] have extended the measured absorption spectrum in the
same crystal into the ultraviolet region up to 2000 Å. Thus, more excited lev-
els were obtained. Similar experiments were done on other systems. With the
help of small variations of parameters (F2, F4, F6 and ζ ), originally described by
Wybourne [126], the free ion spectrum [117, 118] was determined from the ex-
perimental centers of gravity data. The eigenstates and the corresponding energy
levels [120] were found (in LSJ coupling) by diagonalizing the interaction ma-
trix defined by the spin-orbit and electrostatic energies. The spin-orbit parameter
ζ and the Racah parameters E1, E2, E3 were determined in a fitting procedure in
which centers of gravity were taken from [117] and [118]. Semi-empirical data
for the spectrum in [119] were evaluated by measuring the Er3+ center of gravity
in ZnGa2O4. Energy levels given at NIST [81] were derived from the spectrum
of Er3+ in LaF3 crystal. Experimental data of the free ion Er3+ were obtained
by Carter [116] from emission spectra of a high-current spark. When comparing
theory and experiment it is necessary to consider the fact that for free ions the ab

initio calculations have been performed for the first time in this work.
Table 4.2.5 presents compositions of the ASFs in j j- and LS- coupling schemes

from the SD V+C+CV strategy. The contributions of CSFs to the compositions
are squares of the mixing coefficients expressed in percentages. Quantum ”num-
ber” Nr is also used in the Table. Numbers in parentheses show the J values
of the shell in j j-coupling. For example, the J values of the 4 f 4

− shell can be 4
(see the string 4 f 4

−(4)4 f 7 in the third row) or 2 (see the string 4 f 4
−(2)4 f 7 in the

seventh row). Other J values of the shells in j j-coupling can be found in [125].
For a given set of ASFs with the same J and parity, the CSFs with the largest

contribution were selected. The quantum numbers of these CSFs were used as
the labels for the corresponding ASFs. The corresponding CSFs were removed
from consideration and the procedure was repeated until all ASFs were labeled.
The label for the last ASF may be based on a CSF contribution that is exceed-
ingly small. For example, the level given in the penultimate row of the Table
4.2.5 is designated in LS-coupling as 2G1

9/2, although this CSF contributes only
18% to this level. For each level 99% of the composition was computed, but in
the Table 4.2.5 includes only CSFs with contributions greater than or equal to
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Table 4.2.5: The atomic state functions compositions of some levels in the ground
configuration [Xe]4 f 11 in Er3+ in jj - and LS - coupling.

Level j j-coupling LS-coupling
4I1

15/2 74 4 f 6
−4 f 5(15/2)+23 4 f 5

−4 f 6(6) 96
4I1

13/2 75 4 f 5
−4 f 6(6)+ 15 4 f 5

−4 f 6(4) 98
4I1

11/2 42 4 f 4
−(4)4 f 7+23 4 f 5

−4 f 6(6)+18 4 f 6
−4 f 5(11/2) 87+10 2H2

4I1
9/2 29 4 f 4

−(4)4 f 7 + 28 4 f 6
−4 f 5(9/2)+15 4 f 5

−4 f 6(2)+ 71+15 2H2

+13 4 f 3
−(9/2)4 f 8+12 4 f 5

−4 f 6(4)
4F1

9/2 55 4 f 6
−4 f 5(9/2)+22 4 f 5

−4 f 6(4)+12 4 f 5
−4 f 6(6) 69+12 4I1+11 2G1

4S1
3/2 53 4 f 6

−4 f 5(3/2)+31 4 f 5
−4 f 6(4)+12 4 f 4

−(2)4 f 7 74+15 2P1

2H2
11/2 57 4 f 6

−4 f 5(11/2)+24 4 f 4
−(4)4 f 7+12 4 f 5

−4 f 6(4) 53+31 4G1+10 4I1

4F1
7/2 62 4 f 5

−4 f 6(4)+16 4 f 5
−4 f 6(6)+10 4 f 4

−(2)4 f 7 92
4F1

5/2 3 4 f 5
−4 f 6(2)+44 4 f 5

−4 f 6(4)+21 4 f 4
−(2)4 f 7+ 86+10 2D1

+ 19 4 f 6
−4 f 5(5/2)+ 9 4 f 4

−(4)4 f 7

4F1
3/2 36 4 f 5

−4 f 6(4)+30 4 f 5
−4 f 6(2)+14 4 f 6

−4 f 5(3/2) 68+18 2D1+12 4S1

+12 4 f 4
−(4)4 f 7

2G1
9/2 13 4 f 5

−4 f 6(4)+31 4 f 5
−4 f 6(6)+18 4 f 4

−(4)4 f 7+ 18+23 2H2+21 4F1

+13 4 f 3
−(9/2)4 f 8+11 4 f 6

−4 f 5(9/2) +15 2G2+11 4I1

4G1
11/2 62 4 f 5

−4 f 6(6)+17 4 f 4
−(2)4 f 7+10 4 f 4

−(4)4 f 7 64+23 2H2

10%. An exception is the 4F1
5/2 level in j j-coupling. Here we see CSFs with a

3% contribution because levels with larger coefficients were already assigned.
The evaluation of the suitability of the couplings for the classification of en-

ergy spectra is performed using the method described in [127]. The square of
the largest mixing coefficient (in %), averaged over the states of the configura-
tions considered, serves as a numerical parameter Ps describing the suitability of
the coupling scheme. A value of Ps close to 100% indicates that the coupling
scheme is suitable for labeling purposes. The value of Ps is 82% in LS-coupling
and 67% in j j-coupling for the SD V+C+CV strategy with the n = 6 active set
and core shells opened up to n = 3. The values of Ps show that LS-coupling is
more preferable for labeling than j j-coupling.

4.3 Transition parameters
The states of the [Xe]4 f 11 ground configuration undergo M1 and E2 transitions.
The line strengths S, weighted oscillator strengths g f , and transition rates Aki

(s−1), displayed in Table 4.3.1, are computed based on wave functions from
the S V + C strategy with n = 9. The transition rates are all very small (for
this reason, we provided only five of each type of transitions), of the order of
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Table 4.3.1: Transition data for E2 and M1 transitions (S V+C strategy n = 9) between
states in the [Xe]4 f 11 ground configuration: Leading LS term and J for lower level
i, upper level k, wavelength λ (Å), line strength S (length form), weighted oscillator
strength g f (length form), transition rate Aki (length form) (s−1), δT accuracy indicator.
The numbers in brackets indicate the powers of ten.

Levels J λ S g f Aki δT
i k i k

E2
2H1 2F1 9/2 5/2 1857.66 0.4678 1.225[-8] 3.947 0.22323
2H1 2F1 11/2 7/2 1803.91 0.3983 1.139[-8] 2.919 0.14592
2G1 2F1 7/2 5/2 1310.09 0.0490 3.658[-9] 2.370 0.62902
2G1 2F1 9/2 7/2 1175.28 0.0298 3.083[-9] 1.861 0.65372
4G1 2F1 7/2 5/2 1413.64 0.0489 2.904[-9] 1.615 0.61265

M1
4G1 2F2 9/2 7/2 3092.11 0.3182 4.161[-7] 36.29
4D1 2F1 7/2 7/2 1496.03 0.0337 9.101[-8] 33.90
2F2 2F1 7/2 5/2 2227.84 0.0749 1.360[-7] 30.45
4F1 2D1 7/2 5/2 5934.26 1.1740 8.001[-7] 25.26
4G1 2F2 7/2 5/2 2952.02 0.1193 1.634[-7] 20.85

10 s−1 for the M1 transitions, and an order of magnitude smaller for E2. The
parameters for the E2 transitions are given in the length gauge. The quantity δT

was used as an indication of the accuracy (equation 2.2.8). It has been argued
that δT can be used as a rough estimate of the uncertainties of the computed line
strengths, which in this case would translate to uncertainties up to 40%. No other
theoretical/experimental transition data were previously available for Er3+.

4.4 Conclusions
The MCDHF and RCI methods were used to compute the energy spectrum, line
strengths, weighted oscillator strengths, and transitions rates for E2 and M1 tran-
sitions between the states of the [Xe]4 f 11 configuration of Er3+. Influence of
different types of correlation effects on energy levels are presented in Tables
4.2.1 - 4.2.3 and in Fig. 4.2.1. An analysis of these data shows that values of
Er3+ energy levels converge when the core is opened up to 5* 4* 3*, and im-
portant correlations such as SD V+C+CV are included. Compared with NIST
recommended values we see that our ab initio calculations for the energy spec-
trum agree within 9.8% for free ion in SD V+C+CV strategy. By an analysis
of the ASFs compositions of the levels in Er3+, we found that LS-coupling is
preferable to j j-coupling.
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Chapter 5

Parity nonconservation in He-like sequence [A5]

Gorshkov and Labzovskiǐ [32] and Labzowsky et al. [33] have proposed that the
mixed hyperfine and weak-quenching can be used to test parity violation effects.
The one-photon transition 1s2s 1S0 → 1s2 1S0 of He-like ions is considered a
good candidate for these tests and experiments [128] will be carried out at GSI
(Gesellschaft für Schwerionenforschung). Level 1s2s 1S0 can decay due to sev-
eral transitions (see left hand side of the Figure 5.0.1):
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Figure 5.0.1: Schematic diagram of energy levels and transitions for a He-like ion.

• In the first process the 1s2s 1S0 state is mixed with 1s2p 3Po
0 due to weak

interaction between the electrons and the nucleus.

Ψ
(
1s2s 1S0

)
= b0Ψ

(
1s2s 1S0

)
+b1Ψ

(
1s2p 3Po

0
)
. (5.0.1)

The 1s2p 3Po
0 state, in turn, is mixed with 1s2p 3Po

1 and 1s2p 1Po
1 due to

the off-diagonal hyperfine interaction, opening the 1s2s 1S0→ 1s2 1S0 E1
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transition.

Ψ
(
1s2p 3Po

0
)
=

a0Ψ
(
1s2p 3Po

0
)
+a1Ψ

(
1s2p 3Po

1
)
+a2Ψ

(
1s2p 1Po

1
)

; (5.0.2)

• In the second process the 1s2s 1S0 and 1s2s 3S1 states are mixed due to
the off-diagonal hyperfine interaction opening the 1s2s 1S0→ 1s2 1S0 M1
transition. The latter transition has recently been studied by Li et al. [129];

• The third and the dominant 1s2s 1S0→ 1s2 1S0 decay channel is the two-
photon 2E1 transition. Properties of this transition are computed in [130].

The right hand side of the Figure 5.0.1 presents the allowed E1 transitions from
1s2p 3Po

1 and 1s2p 3Po
1 :

• E1 transition due to the off-diagonal hyperfine interaction is not analysed.

• The line strengths of the last process E1 was computed to analyse the ac-
curacy of the wave functions.

Relevant data for the combined weak and hyperfine interaction induced transition
E1 1s2s 1S0→ 1s2 1S0 are however still insufficient and in response to this we
have performed systematic calculations along the He-like isoelectronic sequence
using the relativistic atomic structure package GRASP2K.

5.1 Atomic state expansions
For the generation of the MCDHF expansions (2.2.1) we used the active stets
approach. The energy functional on which the orbitals were optimised is defined
according to an EOL scheme, where a linear combination of 7 lowest atomic
states was used. The combination included two even states with J = 0, one odd
state with J = 0, two odd states with J = 1, one even state with J = 1 and one odd
state with J = 2. CSFs were generated using active sets (AS) of orbitals. CSFs
of the multiconfiguration calculations included single and double substitutions
from the 1s shell. The ASs were labeled by a principal quantum number n and
included s, p, d, f and g orbitals up to n− 1. The active sets were extended to
n = 6 for Z =6-61 and to n = 5 for Z =62-92 ions. At all steps only new orbitals
are optimised.
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Table 5.2.1: Transition energies (cm−1) for 13C and 149Sm from calculations with in-
creasing active sets, including Breit interaction. ∆E1 = E

(
1s2 1S0

)
− E

(
1s2s 1S0

)
,

∆E2 = E
(
1s2s 1S0

)
− E

(
1s2p 3Po

0
)

and ∆E3 = E
(
1s2p 3Po

1
)
− E

(
1s2p 3Po

0
)
. QED

corrections were calculated using active spaces of CSFs formed by the AS4.

As CSFs ∆E1 ∆E2 ∆E3 ∆E1 ∆E2 ∆E3
13C 149Sm

AS2 7 −2439452 4300.3 −12.707 −326570125 −70225.5 −125804
AS3 67 −2453255 1073.2 −12.422 −326591828 −77716.2 −125123
AS4 187 −2454485 194.3 −12.312 −326596149 −79759.3 −124974
AS5 397 −2454842 −3.0 −12.730 −326597470 −80513.8 −124930
AS6 697 −2455131 −107.8 −12.620 −326599124 −81059.4 −124898
QED 187 184 19.2 0.200 471383 83651.8 −105
Total −2454947 −88.6 −12.420 −326127741 2592.4 −125003
Ref.[131] −2455167 −140.2 −12.488 −326137507 4973.3 −124809
Ref.[132] −326136354 3645.0 −124910
Ex.[81] −2455026 −144.4 −12.6

5.2 Convergence of energy levels and transition
data

Table 5.2.1 illustrates the convergence of the transition energies for 13
6C and

149
62Sm ions (transverse Breit interaction is included). As can be seen from the

table, correlation effects have a huge impact on the results for 13
6C, but the QED

contribution to the total value is very small (22% for ∆E2) compared with the
much heavier 149

62Sm (3 226% for ∆E2). QED affects mostly the ∆E2 transition.
As can be seen from the table, results for 13

6C are in good agreement with NIST
database recommended values [81].

Also, it should be mentioned, that for ions with Z =14, 26, 31, 37, 42, 45, 50,
54, 61-63, 91, and 92, Coulomb and Breit interactions give incorrect positions
of excited levels (comparing with data from [131, 132]) and the order is restored
only when QED effects are introduced. For ions Z = 6, 64, 65, 71, 77, and 90,
correct order of excited levels was obtained when Breit interaction was included.
Specific cases are ions with Z = 9 and Z = 22. In the first case the energy levels
are in the correct order at Coulomb level, but order is incorrect at Breit level. The
order is restored when QED effects are included. In the second case (Z = 22) the
order is correct at Coloumb plus Breit level, and QED effects do not influence
the order.

We also calculated the line strengths of the 1s2p 3Po
1 → 1s2 1S0 E1 transitions
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Table 5.2.2: The wavelengths λ (Å) for the 1s2s 1S0 → 1s2 1S0 E1 transition and line
strengths SE1 (5.2.1) (a.u.) for the 1s2p 3Po

1 → 1s2 1S0 E1 transition of He-like ions.

λ (Å) SE1
A
ZX Our Ref.[131, 132] Our Ref. [113]
13

6C 40.728 40.730† 2.8909[-6] 2.8309[-6]
19
9F 16.942 16.940† 1.3343[-5] 1.3219[-5]

29
14Si 6.6851 6.6850 6.9859[-5] 6.9556[-5]
47
22Ti 2.6226 2.6225 2.9941[-4] 2.9855[-4]
57
26Fe 1.8594 1.8584 4.2208[-4] 4.2092[-4]
71
31Ga 1.2950 1.2949 5.0259[-4] 5.0116[-4]
85
37Rb 0.8995 0.8995 4.9500[-4] 4.9352[-4]
97
42Mo 0.6923 0.6923 4.4597[-4] 4.4446[-4]
103
45Rh 0.6001 0.6001 4.1101[-4] 4.0950[-4]

117
50Sn 0.4820 0.4820 3.5342[-4] 3.5177[-4]

131
54Xe 0.4104 0.4104 3.1152[-4] 3.0961[-4]

145
61Pm 0.3174 0.3174 2.4924[-4] 2.4696[-4]

149
62Sm 0.3066 0.3066 2.4187[-4] 2.3915[-4]

151
63Eu 0.2964 0.2964 2.3441[-4] 2.3160[-4]

155
64Gd 0.2866 0.2866 2.2689[-4] 2.2431[-4]

159
65Tb 0.2773 0.2773 2.2037[-4] 2.1727[-4]

175
71Lu 0.2294 0.2293 1.8383[-4] 1.7984[-4]

193
77Ir 0.1922 0.1922 1.5345[-4] 1.4942[-4]

229
90Th 0.1355 0.1355 1.0620[-4] 1.0088[-4]

231
91Pa 0.1321 0.1321 1.0333[-4] 9.7885[-5]

235
92U 0.1288 0.1288 1.0016[-4] 9.4994[-5]

† For calculations of the wavelengths the energy values of
(
1s2s 1S0

)
and

(
1s2 1S0

)
states were

used from [131].

in the Coulomb gauge (Table 5.2.2):

SE1 =
∣∣〈Ψ(1s2 1S0

)
||Q̂1||Ψ

(
1s2p 3Po

1
)〉∣∣2 . (5.2.1)

Line strengths are compared with data from [113] and the difference is at most
5.5%. This shows that wave functions are appropriate for weak and hyperfine
interaction calculations.

For the E1 transition 1s2s 1S0→ 1s2 1S0, as mentioned above, the important
mixing of 1s2p 3Po

0 with 1s2p 3Po
1 is due to off-diagonal hyperfine interaction

and the mixing of 1s2s 1S0 with 1s2p 3Po
0 is due to weak interaction. Mixing

coefficients a1 and b1 of these interactions are given by:

a1 =

〈
Ψ
(
1s2p 3Po

1 F
)
|Ĥh f s|Ψ

(
1s2p 3Po

0 F
)〉

E
(
1s2p 3Po

0

)
− E

(
1s2p 3Po

1

) , (5.2.2)
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Table 5.2.3: Off-diagonal hyperfine interaction matrix elements
〈
|ĥh f s|

〉
1 (a.u.) and

mixing coefficients (a1 and a′1) (5.2.2) due to hyperfine interactions for He-like ions.
For the calculations of a′1 the energy values of

(
1s2p 3Po

0
)

and
(
1s2p 3Po

1
)

states were
used from [131, 132]. The values in brackets were calculated by direct diagonalization
of the atomic Hamiltonian matrix.

Mixing coefficients
A
ZX I µI

〈
|ĥh f s|

〉
1 a1 a′1 Ref.[33]

13
6C 1/2 0.7024 3.9931[-6] 0.68257[-1] 0.70176[-1]†

(0.69661[-1])
19
9F 1/2 2.6289 5.0943[-5] -0.73246[-1] -0.73905[-1]†

(-0.73308[-1])
29
14Si 1/2 -0.5553 -4.2065[-5] 0.51889[-2] 0.51959[-2]

(0.51957[-2])
47
22Ti 5/2 -0.7885 -1.7482[-4] 0.36554[-2] 0.36607[-2]

(0.36606[-2])
57
26Fe 1/2 0.0906 5.0963[-5] -0.68638[-3] -0.68734[-3]
71
31Ga 3/2 2.5623 1.9132[-3] -0.19709[-1] -0.19735[-1]
85
37Rb 5/2 1.3534 1.6521[-3] -0.17996[-1] -0.18021[-1]
97
42Mo 5/2 -0.9335 -1.7306[-3] 0.34071[-1] 0.34128[-1]
103
45Rh 1/2 -0.8840 -3.0208[-3] 0.39394 0.39577

117
50Sn 1/2 -1.0010 -4.8927[-3] -0.49441[-1] -0.49477[-1]

131
54Xe 3/2 0.6918 3.2932[-3] 0.15025[-1] 0.15037[-1]

145
61Pm 5/2 3.8000 2.5713[-2] 0.49751[-1] 0.49792[-1]

149
62Sm 7/2 -0.6677 -4.5978[-3] -0.80723[-2] -0.80787[-2]

151
63Eu 5/2 3.4717 2.6481[-2] 0.42363[-1] 0.42438[-1] -0.424[-1]

155
64Gd 3/2 -0.2572 -2.2708[-3] -0.33223[-2] -0.33247[-2] 0.335[-2]

(-0.33246[-2])
159
65Tb 3/2 2.0140 1.8855[-2] 0.25311[-1] 0.25328[-1]

175
71Lu 7/2 2.2323 2.5881[-2] 0.21896[-1] 0.21913[-1]

193
77Ir 3/2 0.1637 3.0154[-3] 0.17182[-2] 0.17189[-2]

229
90Th 5/2 0.4600 1.5746[-2] 0.43361[-2] 0.43334[-2]

231
91Pa 3/2 2.0100 7.9272[-2] 0.20739[-1] 0.20721[-1]

235
92U 7/2 -0.3800 -1.3896[-2] -0.34557[-2] -0.34524[-2]

† For calculations of the mixing coefficients the energy values of the
(
1s2p 3Po

0
)

and
(
1s2p 3Po

1
)

states were used from [131].

b1 =

〈
Ψ
(
1s2p 3Po

0
)
|ĤW |Ψ

(
1s2s 1S0

)〉
E (1s2s 1S0) − E

(
1s2p 3Po

0

) , (5.2.3)

where F = I. The calculated off-diagonal hyperfine interaction matrix elements
and corresponding mixing coefficients, with calculated energy values (a1), and
with energy values from [131, 132] (a′1).

Transition energies in the expressions above are calculated including Breit in-
teraction and QED effects. For elements 13

6C, 19
9F, 29

14Si, 47
22Ti, and 155

64Gd the
a1 values were calculated by direct diagonalization of the full atomic Hamilto-
nian and are given in brackets. The differences between these hyperfine mixing
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Table 5.2.4: The matrix element of the weak interaction operator
〈
|ĤW |

〉
(i GF

2
√

2
QW a.u.),

mixing coefficients (b1 and b′1) (5.2.3) due to weak interactions and transition rates A1
(5.2.5) (s−1) of the weak and hyperfine induced 1s2s 1S0 → 1s2 1S0 E1 transitions for
He-like ions. For calculation of b′1 and the energy values of

(
1s2s 1S0

)
and

(
1s2p 3Po

0
)

states were used from [131, 132].

Mixing coefficients
A
ZX

〈
|ĤW |

〉
b1/i b′1/i [131] b′1/i [132] A1

13
6C -1.0652[-1] -0.79193[-11] -0.72709[-11] 0.73669[-17]†

19
9F -6.4268[-1] 0.28717[-11] 0.31168[-11] 0.97443[-16]†

29
14Si -4.3718 0.10812[-10] 0.10838[-10] 0.10840[-10] 0.49881[-15]
47
22Ti -3.1642[ 1] 0.75766[-10] 0.75711[-10] 0.75772[-10] 0.86010[-12]
57
26Fe -6.7191[ 1] 0.16964[ -9] 0.16915[ -9] 0.16944[ -9] 0.59978[-12]
71
31Ga -1.5201[ 2] 0.42552[ -9] 0.42404[ -9] 0.10916[ -7]
85
37Rb -3.5815[ 2] 0.11571[ -8] 0.11497[ -8] 0.19659[ -6]
97
42Mo -6.8249[ 2] 0.25753[ -8] 0.25154[ -8] 0.25463[ -8] 0.68307[ -5]
103

45Rh -9.8340[ 2] 0.41033[ -8] 0.40403[ -8] 0.32719[ -2]
117

50Sn -1.7559[ 3] 0.99788[ -8] 0.94384[ -8] 0.97361[ -8] 0.49228[ -3]
131

54Xe -2.7352[ 3] 0.22861[ -7] 0.20836[ -7] 0.22047[ -7] 0.33255[ -3]
145

61Pm -5.7936[ 3] 0.18088[ -6] 0.15324[ -6] 0.30374
149

62Sm -6.4288[ 3] 0.35220[ -6] 0.18356[ -6] 0.25042[ -6] 0.22931[ -1]
151

63Eu -7.1369[ 3] 0.15427[ -5] 0.31767[ -6] 0.56727[ -6] 0.34753[ 1]
151

63Eu Ref. [33] 0.33[ -6] (0.11071[ 1])
155

64Gd -7.9123[ 3] -0.93326[ -6] 0.85603[ -6] -0.36479[ -4] 0.94663[ 2]
155

64Gd Ref.[33] 0.91[ -6] (0.52931[ -1])
159

65Tb -8.7684[ 3] -0.41622[ -6] -0.52707[ -6] 0.12444[ 1]
175

71Lu -1.6195[ 4] -0.17641[ -6] -0.19130[ -6] 0.17694
193

77Ir -2.9673[ 4] -0.20660[ -6] -0.20689[ -6] 0.17985[ -2]
229

90Th -1.1064[ 5] -0.70008[ -5] 0.32846[ -4] -0.51283[ -5] 0.13538[ 2]
231

91Pa -1.2262[ 5] 0.52550[ -5] 0.11262[ -4] 0.15633[ 4]
235

92U -1.3575[ 5] 0.18517[ -5] 0.14965[ -5] 0.15020[ -5] 0.80784
† For calculations of the mixing coefficients the energy values of the

(
1s2s 1S0

)
and

(
1s2p 3P0

)
stattes were used from [131].

coefficients and coefficients calculated with equation (5.2.2) are less than 1%
and support the applicability of the perturbative expression. It should be men-
tioned that QED does not affect the ∆E3 transition energy (up to 0.9%) and the
a1 mixing coefficient. The magnitude of the mixing coefficients for the 151

63Eu
and 155

64Gd ions are in agreement with values from [33] (-4.24[-2] and 3.35[-3],
respectively). The differences in sign are due to different definitions of the phase
factor in the hyperfine interaction matrix element.

The calculated values of the weak interaction matrix element and correspond-
ing mixing coefficients (b1/i) are presented in the Table 5.2.4. Due to importance
of QED effects for heavy ions [133], transition energies are taken from accurate
calculations by Plante et al. [131], and Artemyev et al. [132]. The first author
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Figure 5.2.1: Z-dependence of weak interaction matrix element.

included QED effects of order (Zα)3 and some terms of (Zα)4, and the second
author evaluated all terms through order (Zα)4.

Figure 5.2.1 displays dependence of weak interaction matrix element (Table
5.2.4, second column) on atomic number Z. The regression analysis yields the
following relation:

〈
|ĤW |

〉
= [−1.2313(1) · e0.1011(1)·Z +1.02(2)] ·106. (5.2.4)

Compared with Plante et al. [131] and Artemyev et al. [132], our calculated
QED contributions to the ∆E2 transition energies are too large. For example,
QED contribution for 117

50Sn in our calculation is 0.2059 a.u., as compared to
0.1818 a.u. [131] and 0.1845 a.u [132] (235%, 197% and 206% of the total tran-
sition energy, respectively). Another example is 229

90Th. For the ∆E2 transition
energy the contribution from QED in our calculation is 1.8573 a.u., as compared
to 1.4259 a.u. [131] and 1.4651 a.u [132]. For 151

63Eu the QED contribution is
15528% of the total ∆E2 transition energy. This means that QED effects not only
change relative positions of levels, but also decrease transition energies and in-
crease mixing coefficients of weak interaction (without QED b1/i =
-0.99347[-8]).
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The values of b′1/i for the 151
63Eu and 155

64Gd ions (0.31767[-6] and 0.85603[-6],
respectively), have been calculated with the same energies as in [33, 131]. Using
these energies there is a good agreement with the values (0.33[-6] and 0.91[-6])
given by Labzowsky [33]. This means that the calculated matrix element of weak
interaction is very close to the one computed by us. However, results obtained
with more accurate energy values [132] differ from the ones in [33].

Table 5.2.5: The matrix elements of off-diagonal hyperfine interaction
〈
|ĥh f s|

〉
2 (a.u.)

and mixing coefficients (a2 and a′2) between the 1s2p 3Po
0 and 1s2p 1Po

1 states. For the
calculations of a′2 the energy values of the

(
1s2p 3Po

0
)

and
(
1s2p 1Po

1
)

states were used
from [131, 132]. A2 is the 1s2s 1S0→ 1s2 1S0 transition rate (s−1) calculated including
the 1s2p 3Po

1 and 1s2p 1Po
1 states.

Mixing coefficients
A
ZX

〈
|ĥh f s|

〉
2 a2 a′2 A2

13
6C 2.8434[-6] 0.22113[-4] 0.74038[-17]

19
9F 3.5348[-5] 0.15284[-3] 0.15341[-3]† 0.98688[-16]†

29
14Si -2.6400[-5] -0.62824[-4] -0.62788[-4] 0.51594[-15]
47
22Ti -7.6697[-5] -0.87001[-4] -0.86937[-4] 0.87039[-12]
57
26Fe 1.7173[-5] 0.13411[-4] 0.13400[-4] 0.60210[-12]
71
31Ga 4.4483[-4] 0.21480[-3] 0.21462[-3] 0.10923[ -7]
85
37Rb 2.4357[-4] 0.66409[-4] -0.66357[-4] 0.19659[ -6]
97
42Mo -1.7726[-4] -0.30703[-4] -0.30680[-4] 0.68307[ -5]

† For calculations of the mixing coefficients the energy values of the
(
1s2p 3Po

0
)

and(
1s2p 1Po

1
)

states were used from [131].

In Table 5.2.4 we display also the values of the weak and hyperfine interaction
induced 1s2s 1S0→ 1s2 1S0 E1 transitions rates:

A(Wi+h f q)E1(1s2s 1S0→ 1s2 1S0)1,2 =

2.02613×1018

λ 3 (2F +1)

{
0 F I

F 1 1

}2

a2
1,2|b1|2SE1. (5.2.5)

The agreement between our values (in parentheses) for the 151
63Eu and 155

64Gd ions
and other theories [33] (1.1979 and 6.21075[-2], respectively) is very good, when
the same energies as in reference [33] were used (see Table 5.2.4).

Due to strong hyperfine induced mixing between the 1s2p 3Po
0 and 1s2p 1Po

1

states for the low-Z ions [52], we also included the 1s2p 1Po
1 state in the calcu-
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Figure 5.2.2: Dependence of mixing coefficient b1/i (absolute value) and transition rates
A(Wi+h f q)E1 on number of neutrons (N). The results calculated using energies from ref-
erences Plante et al. [131] (squares) and Artemyev et al [132] (triangles) are also pre-
sented.

lations. The mixing coefficient a2 can be expressed as follow:

a2 =

〈
Ψ
(
1s2p 1Po

1 F
)
|Ĥh f s|Ψ

(
1s2p 3Po

0 F
)〉

E
(
1s2p 3Po

0

)
− E

(
1s2p 1Po

1

) . (5.2.6)

Off-diagonal hyperfine interaction matrix elements
〈
|hh f s|

〉
2 (a. u.) and mix-

ing coefficients (a2) between the 1s2p 3Po
0 and 1s2p 1Po

1 states are given in Ta-
ble 5.2.5. QED effects are insignificant for the E

(
1s2p 3Po

0
)
− E

(
1s2p 1Po

1
)

transition energy and their influence on the mixing coefficients a2 is less than
0.9%. Comparing transition rate A1 (Table 5.2.4) with A2 (Table 5.2.5), is clear
that contribution of 1s2p 1Po

1 state is quite small (up to 3%).
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Table 5.2.6: Comparison of hyperfine induced M1 (A(h f q)M1), weak and hyperfine in-
duced E1 (A(Wi+h f q)E1) and 2E1 (A2E1) 1s2s 1S0 → 1s2 1S0 transition rates (s−1). For
calculations of the transition rates of weak and hyperfine induced E1 transitions we used
transition energies from [131, 132].

A
ZX A(h f q)M1 [129] A(Wi+h f q)E1 A2E1 [130]
13
6C 2.6534[-8] 0.74038[-17] 3.300[ 5]

19
9F 1.0863[-4] 0.98688[-16] 5.029[ 6]

29
14Si 2.4493[-4] 0.51594[-15] 8.685[ 7]
47
22Ti 1.3010 0.87039[-12]
57
26Fe 3.8221[-1] 0.60210[-12]
71
31Ga 1.9926[ 3] 0.10923[ -7]
85
37Rb 5.5705[ 3] 0.19659[ -6]
97
42Mo 1.5643[ 4] 0.68307[ -5]
103

45Rh 7.9312[ 4] 0.32719[ -2] 1.154[11]
117
50Sn 4.4904[ 5] 0.49228[ -3] 2.164[11]

131
54Xe 3.5483[ 5] 0.33255[ -3] 3.415[11]

145
61Pm 5.1405[ 7]† 0.30374

149
62Sm 1.8321[ 6]† 0.22931[ -1]

151
63Eu 6.7643[ 7] 0.34753[ 1]

155
64Gd 5.5892[ 5]† 0.94664[ 2]

159
65Tb 1.4199[ 7]† 0.12444[ 1] 1.1013[12]

175
71Lu 1.4508[ 8] 0.17694

193
77Ir 3.3463[ 6] 0.17985[ -2]

229
90Th 1.7894[ 8]† 0.13538[ 2] 6.439[12]

231
91Pa 4.7512[ 9]† 0.15633[ 4]

235
92U 1.5277[ 8]† 0.80784 7.265[12]

† These transition rates were deduced via scaling in Z [129].

Figure 5.2.2 reflects the importance of the QED effects to the b/i mixing co-
efficients and transition rates A1 = A(Wi+h f q)E1. Filled circles show results com-
puted with QED, and empty circles — without QED. Also there are results calcu-
lated using energies from references [131] (squares) and [132] (triangles). QED
effects of order (Zα)4 for elements 151

63Eu, 155
64Gd, and 231

91Pa are important for the
mixing coefficients of weak interaction and transition rates A1. Mixing coeffi-
cients b1/i of weak interaction calculated without QED agree only at beginning
of the isoelectronic sequence (Z = 6, 9, 14, 22, and 26).

Table 5.2.6 lists E1 1s2s 1S0 → 1s2 1S0 transition rates (A(Wi+h f q)E1) arising
from weak and off-diagonal hyperfine interactions. A(Wi+h f q)E1 are compared
with transition rates of other 1s2s 1S0→ 1s2 1S0 decay channels: hyperfine in-
duced magnetic dipole transition rates M1 (A(h f q)M1) and rates of two-photon
electric dipole decay 2E1 (A2E1).
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5.3 Conclusions
To sum up, we have calculated weak and hyperfine interaction induced 1s2s 1S0

→ 1s2 1S0 E1 transition rates for the isoelectronic sequence of He-like ions using
the multiconfiguration Dirac-Hartree-Fock and relativistic configuration interac-
tion methods. The comparison of the A1 transition rates with the rates from other
decay channels is presented in Table 5.2.6. The calculated values differ with
respect to previous calculations [33] for the 151

63Eu and 155
64Gd ions due to im-

portance of higher-order QED effects. Results demonstrated that 151
63Eu, 155

64Gd,
229
90Th and 231

91Pa He-like ions are the most promising species for future experi-
ments due to very large values of the transition rates.
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Chapter 6

Theoretical investigations of electric dipole
moments [A6]

In the present work we computed the EDMs in the ground states of three dia-
magnetic atoms, 225Ra, 199Hg, and 171Yb. The purpose of the present work is
fourfold. Firstly, we tested the newly developed programs to evaluate matrix
elements of P,T -odd e-N tensor-pseudotensor (TPT) and pseudoscalar-scalar
(PSS) interactions, the atomic electric dipole moment, the nuclear Schiff mo-
ment (NSM), and the interaction of the electron electric dipole moment (eEDM)
with nuclear magnetic moments. Secondly, we generated the atomic wave func-
tions in several different approaches, in order to test the dependence of the cal-
culated atomic EDMs on options available in the GRASP2K implementation of
the MCDHF method. The approaches depended on the choice of variational
energy functional see section 2.2.1 (Average Level versus Optimal Level, with
different numbers of optimised levels), the choice of wave functions built on
a common orbital set or several separately optimised orbital sets, (in the latter
case biorthogonal transformations of wave functions had to be applied (section
2.2.5)), as well as on specific methods of one-electron orbital generation. All
results of these approaches are discussed in more detail in sections 6.1, 6.2, and
6.3 and presented in Tables 6.2.1, 6.4.1, and 6.5.1. Thirdly, we sequentially
generated several layers of virtual (correlation) orbitals for each of the three el-
ements and observed the effects of electron correlation on atomic EDMs. All
valence and core-valence electron correlation effects were included through sin-
gle and restricted double electron substitutions from core and valence shells to
virtual orbitals. And finally, we provide independently calculated atomic EDMs
in the J =0 ground states of 225Ra, 199Hg, and 171Yb, and compare our results
with those of other authors. Our results, presented in the Tables 6.7.1, 6.7.2,
6.7.3, and 6.7.4, were obtained within the MCDHF method, using the relativistic
atomic structure package GRASP2K [43], which, to the best of our knowledge,
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and with the exception of one paper [134] on the Schiff moment in radium,
has been employed for the first time in the calculations of matrix elements of
P,T -odd e-N tensor-pseudotensor and pseudoscalar-scalar interactions, nuclear
Schiff moment, and interaction of electron electric dipole moment with nuclear
magnetic moments. (Preliminary results of these calculations were presented in
[A8].)

The three atoms 225Ra, 199Hg, and 171Yb, have been chosen on the grounds
that they have similar valence shell structure. All these elements are diamagnetic,
with closed outer s shell (225Ra 6p67s2, 199Hg 5d106s2, and 171Yb 4 f 146s2). In
the future we will be able to extend these calculations to closed-p-valence-shell
atoms, as well as to any other, closed- or open-shell system.

6.1 Virtual orbital sets
The numerical wave functions were obtained independently for the two parities.
The calculations proceeded in two phases. Spectroscopic (occupied) orbitals
were obtained in the Dirac-Hartree-Fock approximation. They were kept frozen
in all subsequent calculations. Then virtual (correlation) orbitals were gener-
ated in several consecutive steps. At each step the virtual set has been extended
by one layer of virtual orbitals. A layer is defined as a subset of virtual orbitals,
usually with different angular symmetries, optimised simultaneously in one step,
and usually frozen in all subsequent steps. In the present work up to five layers
of virtual orbitals of each of the s, p,d, f ,g symmetries were generated. At each
stage only the outermost layer is optimised and the remaining orbitals (spec-
troscopic as well as other virtual layers) are kept frozen. Virtual orbitals were
generated in an approximation in which all single and restricted double substi-
tutions from valence orbitals and a subset of core orbitals to subsequent layers
of virtual orbitals were included. The restriction was applied to double substi-
tutions in the same manner as in SD V+C+CV strategy of Er3+ ground state
computation (see section 4.1). The valence shells is 7s for even parity ground
state, 7s and 7p for odd parity excited states of radium, 6s and 6p in the cases
of mercury and ytterbium. Five layers of virtual orbitals were generated for Hg,
and four layers for Ra and Yb. The combined contribution of the n = 3 shells
to the hyperfine constants of the 7s7p 1P state was evaluated in paper [135] and
found to be negligible, while the combined contribution of the n = 4 shells was
below 1 percent level. Therefore in the present calculations the innermost core
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orbitals 1s, 2s, 2p, 3s, 3p, 3d of the radium atom were kept closed for electron
substitutions. All other core orbitals, as well as valence orbitals, were subject to
electron substitutions. By similar argument, the innermost core orbitals 1s, 2s,
2p of Hg and Yb were kept closed for electron substitutions.

6.2 Non-orthogonal orbital sets
The matrix elements of all interactions were calculated between the ground state
ns2 (J = 0) and excited states with total angular momentum J = 1 and opposite
parity for 225Ra, 199Hg, and 171Yb. The optimal wave functions for calcula-
tions of EDM matrix elements were obtained in the Extended Optimal Level
form (see section 2.2.1 above), separately for each parity. The wave functions
optimised separately for the ground and excited states are built from indepen-
dent sets of one-electron orbitals. The two sets are mutually non-orthogonal
and they automatically account for relaxation effects involved in calculations of
matrix elements between different atomic states [134, 137]. On the other hand,
the transition energies obtained from wave functions based on separately opti-
mised orbital sets may be less accurate than transition energies obtained from
calculations based on a common set of mutually orthogonal one-electron or-
bitals. The above situation often arises when multiconfiguration expansions are
tailored specifically to include only those electron correlation effects that are im-
portant for one-electron expectation values. For one-electron matrix elements
involved in the present calculations the dominant contributions arise from single
and restricted double substitutions. We have not included the unrestricted dou-
ble substitutions, i.e. the electron correlation effects with dominant contributions
to the total energy, as well as higher order substitutions, since their impact on
EDMs is indirect and usually small [138].

We evaluated the effect of the relaxation of the wave functions by perform-
ing two parallel sets of calculations based on a common orbital set (orthogonal)
and on two separately optimised orbital sets (non-orthogonal), respectively. Ta-
ble 6.2.1 lists the atomic EDM for 225Ra, calculated in several approximations.
The first line (denoted DF in the first column) lists the results obtained with un-
correlated Dirac-Fock wave functions. The following lines provide the results
obtained with different numbers (1-4) of virtual orbital layers included in the
Virtual Orbital Set (VOS). The number of virtual orbital layers in a given VOS
is quoted in the first column. We skipped the ’orthogonal’ calculation with four
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Table 6.2.1: Contributions to the atomic EDM from TPT, PSS, NSM, and eEDM in-
teractions, calculated for 225Ra, using orthogonal (Orth) and non-orthogonal (Non-O)
orbital sets. The number VOS in the first column is the number of virtual orbital layers.
Transition energies are experimental.

TPT PSS NSM eEDM

VOS Orth Non-O Orth Non-O Orth Non-O Orth Non-O
DF −16.3 −15.81 −59.7 −57.87 −6.53 −6.32 −55.6 −46.67
1 −14.5 −15.51 −53.3 −57.09 −6.28 −7.01 −48.1 −43.69
2 −18.8 −19.90 −69.0 −72.95 −7.79 −8.16 −63.5 −58.07
3 −19.9 −20.68 −70.3 −75.83 −8.27 −8.59 −66.9 −60.13
4 −20.28 −74.42 −8.63 −58.45

virtual orbital layers, since the preceding lines show clearly that the effects of
non-orthogonality (i.e. the relaxation of wave functions) are of the order of a few
percent, up to 11% for the interaction of the electron electric dipole moment with
the nuclear magnetic field (eEDM entry in Table 6.2.1).

The calculation of matrix elements in the non-orthogonal case requires a bi-
orthogonal transformation of one-electron orbitals, described in the section 2.2.5.

6.3 Extended Optimal Level calculations
The final values of atomic EDMs, presented in the Tables 6.7.1, 6.7.2, 6.7.3, and
6.7.4, were obtained with the Extended Optimal Level optimisation procedure
described in section 2.2.1 above. At each stage of generation of virtual orbital
sets, a decision had to be made with respect to the number of atomic levels
included in the variational energy functional. Table 6.4.1 presents the contribu-
tions dT PT

at to the atomic EDM of 225Ra from the tensor-pseudotensor interaction
(2.1.17). The contributions from particular atomic states are listed in subsequent
lines. The radial wave functions were optimised within the EOL procedure, with
different numbers of EOL levels: 4, 6, 8, 10, or 12 levels, as indicated in the first
line of the Table 6.4.1. These data were obtained with experimental transition
energies quoted from the NIST database [81].

An inspection of the Table 6.4.1 (the last line, denoted ’Sum All’) indicates
that the dT PT

at expectation value becomes stable when eight or more levels are
included in the Extended Optimal Level energy functional. Analogous decisions
were made for all virtual orbital sets, as well as for the other two elements.
The final calculations were made with varying numbers of EOL levels, between
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2 levels for uncorrelated Dirac-Fock wave functions, with 6-8 levels in most
correlated calculations, and up to 13 levels in one case.

6.4 Orbital contributions
Another interesting conclusion arises from the analysis of contributions of par-
ticular one-electron orbitals generated in the EOL optimisation procedure. The
analysis presented in the Table 6.4.1 was made with only one virtual orbital layer,
because the Extended Optimal Level optimisation procedure described in sec-
tion 2.2.1 above becomes unstable with the increasing numbers of virtual layers
and of EOL levels. However, already at this level of approximation the dominant
contributions come from the singlet 7s7p 1P1 and triplet 7s7p 3P1 excited states.
The states 7s8p 1P1 and 7s8p 3P1, involving 8p orbital, contribute 9% and 3%,
respectively (and their contributions partially cancel due to different signs). All
other states contribute less than one percent each. The following lines present
contributions of singlet and triplet states generated by single or double electron
substitutions from the reference configuration 7s7p to the lowest available or-
bitals 8s, 8p, and 6d. The line denoted ’Sum s-p’ shows the contributions of the
four dominant states generated by single electron substitutions from the refer-
ence configuration. The line denoted ’Sum s-d’ shows the sum of entries from
the preceding two lines of the 6d7p configuration; the line ’s-p+s-d’ shows the
sum of all preceding contributions. The next six lines present the contributions
of higher lying levels, and the line ’Sum D’ shows the sum of the contributions
from these six preceding lines. The last line ’Sum All’ shows the total sum of
all contributions of all states listed in the preceding lines. We present the par-
tial sums (’s-p’, ’s-d’, ’s-p+s-d’, and ’Sum D’) to show their dependence on the
number of EOL levels. The contributions of individual levels are not very stable,
and in particular the small contributions may vary significantly, but the partial
sums are more stable, and the total sum (’Sum All’) is strongly stabilized by the
contributions from the dominant states.

It is interesting to make a comparison of Table 6.4.1 with Table VI from ref-
erence [139]. In the reference [139] the contributions from 7s1/2− 7p1/2 and
7s1/2− 8p1/2 single-particle matrix elements (pairings in their language) are of
comparable sizes, −324.468 and −306.133, respectively, while in our calcu-
lations the relative sizes of the contributions from 7s1/2−8p1/2, with respect to
the contribution from 7s1/2−7p1/2 pairing, are 9% and 3% for singlet and triplet

82



Table 6.4.1: dT PT
at contribution to atomic EDM, calculated with the EOL method for the

1st VOS, using different numbers of optimised levels and experimental transition ener-
gies, in units

(
10−20CT 〈σσσA〉 |e|cm

)
, for 225Ra. Numbers in brackets represent powers

of ten.

Levels 4 6 8 10 12
7s7p 3P −5.00 −4.46 −4.63 −4.59 −4.63
7s7p 1P −1.03[1] −8.80 −8.70 −8.69 −8.57
7s8p 3P 0.39 0.30 0.33 0.44
7s8p 1P −1.12 −0.96 −1.01 −1.24
Sum s-p −1.53[1] −1.40[1] −1.40[1] −1.40[1] −1.40[1]
6d7p 3D 2.53[−3] −7.72[−4] 2.96[−2] −9.30[−2] −6.91[−2]
6d7p 3P 1.98[−1] −3.08[−2] −1.13[−1] 3.55[−2] 7.34[−2]
Sum s-d 2.00[−1] −3.16[−2] −8.33[−2] −5.75[−2] 4.25[−3]
s-p+s-d −1.51[1] −1.40[1] −1.41[1] −1.41[1] −1.40[1]
6d8p 3D −4.79[−2] −9.44[−3] −3.63[−3]
6d8p 3P −1.15[−1] −4.90[−2] −8.36[−2]
7p8s 3P −1.96[−2] −2.20[−2]
7p8s 1P −6.02[−3] −6.31[−3]
6d7p 1P −5.12[−3]
8s8p 3P 1.50[−3]
Sum D −1.63[-1] −8.41[−2] −1.19[−1]
Sum All −1.51[1] -1.40[1] −1.42[1] −1.41[1] −1.41[1]

states, respectively. Also, there are differences with respect to the contributions
of higher symmetry orbitals. For instance, the contribution from d5/2 orbitals is
of the order of 4% (see TABLE VII in reference [139]), while in our calculations
the contributions from d5/2 orbitals are below 1%.

It is difficult to explain these differences, but one possible explanation is due to
differences in optimisation procedures and radial shapes of one-electron orbitals
which resulted from these procedures, as discussed in the section 2.2.1. Different
compositions of particular atomic states are likely consequences of differences in
radial bases. The authors of the reference [139] used Gaussian basis sets, while
in our calculations we use numerical orbitals defined on a grid. We do not have
insight into the details of the calculations presented in the reference [139], but
their Gaussians are likely to be evenly distributed over the entire configurational
space.

Different theories use different methods of construction for atomic states. A
consequence of these differences is the fact, that comparisons of contributions
from particular atomic states or from individual one-electron orbitals are not
meaningful. All excited and virtual orbitals generated in our calculations were
optimised with multiconfiguration expansions designed for valence and core-
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valence electron correlation effects, resulting in virtual orbital shapes with max-
imal overlaps with valence and outer core spectroscopic orbitals. Consequently,
the correlation corrections to the wave function are likely to be larger for the
lower states included in the Extended Optimal Level procedure. We performed
comparison calculations with virtual orbitals generated with three different meth-
ods: the Extended Average Level procedure, as described in the section 2.2.1;
with virtual orbitals generated within the screened hydrogenic approximation;
and virtual orbitals from Thomas-Fermi potential. As described in the sec-
tion 2.2.1, one-electron virtual orbitals generated with the EAL functional are
optimised to minimise the sum of energies of all states. Hydrogenic and Thomas-
Fermi virtual orbitals are not variationally optimised, they just form orthogo-
nal bases. Our comparison calculations indicate, that calculations based on Ex-
tended Average Level, hydrogenic, and Thomas-Fermi virtual orbitals converge
slower than Extended Optimal Level calculations, and the contributions of higher
lying levels are larger, compared to EOL results.

6.5 Transition energies
The summation in equation (2.3.8) runs over all excited states of appropriate
parity and symmetry. The contributions of higher lying levels are gradually de-
creasing, since they are suppressed both by the energy denominators, by de-
creasing values of electric dipole matrix elements, as well as by decreasing over-
laps of one-electron radial orbitals, entering integrals in the equations: (2.1.19),
(2.1.25), (2.3.15), and (2.3.13). In numerical calculations they have to be cut off
at certain level of accuracy. Except where indicated otherwise, the results pre-
sented in the present work were computed with experimental transition energies
in the denominators of the matrix elements in equation (2.3.8). The transition en-
ergies were calculated from the NIST database [81] and we included levels up to
6d7p 3P for 225Ra, 6s8p 1P for 171Yb, and 6s9p 1P for 199Hg. However, several
levels are missing in [81], so we employed an approach, where those transition
energies which were not available, were replaced by the energies calculated with
one of the three different methods: (1) using theoretical energies obtained from
MCDHF approach; (2) with the energy of the upper level replaced by the energy
of the lowest excited state; (3) with the energy of the upper level replaced by the
experimental ionization limit. The choice was made between the above three op-
tions in case of each missing level, based on availability of a reliable theoretical
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energy, or alternatively on the proximity of the lowest excited state or the exper-
imental ionization limit. To verify this approach we performed test calculations,
where all three choices were used together. Table 6.5.1 presents the contributions
from the tensor-pseudotensor interaction to the atomic EDM of radium isotope
225Ra. Transition energies in Table 6.5.1 were taken from: MCDHF RSCF cal-
culation (RSCF), MCDHF RCI calculation (RCI), experimental data (Expt.), ex-
perimental ionization limit (Expt. IL), experimental energy of the lowest excited
level (Expt. 1). The MCDHF RSCF case was a self-consistent-field Extended
Optimal Level calculation, with 2, 6, 8 and 6 EOL levels for DF, 1, 2, 3 and 4
VOS, respectively. The MCDHF RCI case was a configuration-interaction calcu-
lation with 100 levels included. Their differences indicate the deviation incurred
when the number of EOL levels is varied. It should be noted that available ex-
perimental values of the energies of the 7s7p levels were used in all cases in
columns ’Expt.’, ’Expt. IL’, and ’Expt. 1’. The lowest nsnp levels yield the
largest contributions to all EDM matrix elements in the present calculations, and
their energies are available for all elements in question, therefore replacements
were made only for higher lying levels. The number VOS in the first column
of Table 6.5.1 represents the number of virtual orbital layers. These data indi-
cate the sizes of errors, which may arise from replacing experimental transition
energies with experimental ionization limit (Expt. IL) or experimental energy
of the lowest excited level (Expt. 1). As can be seen, the deviation is less than
10% in case of radium. The deviations of the data obtained with calculated
transition energies are larger, due to the nature of the wave functions built from
non-orthogonal orbital sets, as explained in the section 6.2 above.

6.6 Summation over excited states
As mentioned in the section 6.5 above, the summation in equation (2.3.8) runs
over all excited states of appropriate parity and symmetry. In numerical cal-
culations the summation had to be truncated at finite number of terms, and in
the present up to five terms of each symmetry were explicitly evaluated. The
contribution of the remaining part of the sum may be estimated by extrapola-
tion. Let us consider, as an example, the contributions from the Rydberg series
of the triplet states 6snp 3P1 of 199Hg. After explicit, numerical calculation of
large contributions arising from low values of principal quantum number n, the
contributions of higher lying states entering the sum in equation (2.3.8) may be
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Table 6.5.1: Tensor-pseudotensor interaction contributions to EDM, for 225Ra, in units(
10−20CT 〈σσσA〉 |e|cm

)
, calculated with the EOL method and compared with data from

other methods. Transition energies taken from: MCDHF-RSCF calculation (RSCF), ex-
perimental data (Expt.), MCDHF-RCI calculation (RCI), experimental ionization limit
(Expt. IL), experimental value of lowest excited level (Exp. 1). (see text for explana-
tion). The number VOS in the first column is the number of virtual orbital layers.

225Ra
VOS RSCF RCI Expt. Expt. IL Expt. 1
DF −18.31 −18.31 −15.81 −15.81 −15.81
1 −10.37 −11.81 −15.51 −14.70 −13.92
2 −12.04 −12.58 −19.90 −20.08 −20.45
3 −20.68 −21.22 −22.52
4 −20.28 −21.16 −22.32

Ref. [37](DHF) −3.5
Ref. [37](CI+MBPT) −17.6
Ref. [37](RPA) −16.7
Ref. [139](CPHF) −16.585

evaluated from the asymptotic behaviour of the matrix elements in the numera-
tor and of the transition energy in the denominator. The electric dipole matrix
element scales with principal quantum number n as [51, 140]:

(E0−En)|
〈
0|D̂z|6snp 3P1

〉
|2 ∼ (n∗)−3, (6.6.1)

where n∗ is the effective quantum number of the running np electron in the series
6snp 3P1, i.e. n∗ = (n−δ ), δ being the quantum defect (for the series 6snp 3P1 of
199Hg the quantum defect δ = 4.293). The calculations of the matrix elements of
the P,T -odd interactions involve radial integrals of atomic one-electron orbitals,
and all these integrals include factors in the integrands, which effectively cut
off the integrals outside the nucleus (see equations (2.1.19), (2.1.25), (2.3.15),
and (2.3.13)). Therefore the dominant contribution to each integral comes from
within or in the vicinity of the nucleus. Dirac equation near the origin has power
series solution, and the n-dependence near the origin is as follows [1, 29, 35]:

P(r) ∼ (n∗)−3/2, (6.6.2)

Q(r) ∼ (n∗)−3/2, (6.6.3)

where P(r) and Q(r) are large and small components of radial wave functions,
respectively. The Figure 6.6.1 shows the numerical large components P(r) of the
one-electron np radial orbitals, in the vicinity of the nucleus, for n= 6,7,8,9, ex-
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Figure 6.6.1: Large components P(r) of the one-electron np radial orbitals of the triplet
states 6snp 3P1 (n = 6,7,8,9) of 199Hg. The solid line sections represent the radial
shapes of the orbitals inside the 199Hg nucleus. P(r) in arbitrary units, radial grid in
atomic units. See text for further details.

tracted from the triplet states 6snp 3P1 in 199Hg. The solid line sections represent
the radial shapes of the orbitals inside the 199Hg nucleus. The solid line sections
of these components are monotonic and they scale with n∗ approximately as in
the equation (6.6.2). The small components Q(r) scale similarly. (In the vicinity
of the nucleus the amplitudes of the ’small’ components are large compared to
the amplitudes of the ’large’ components). Therefore the integrands in the ma-
trix elements of the P,T -odd interactions considered in this work also scale with
n∗ of the running np electron as

〈
6snp 3P1|Ĥint |0

〉
∼ (n∗)−3/2. (6.6.4)

The energy denominator in the equation (2.3.8) saturates at the ionisation en-
ergy for large n values along the Rydberg series, therefore the overall n-depen-
dence of subsequent terms in the sum in equation (2.3.8) involves a product of
right-hand sides of the equations (6.6.1) and (6.6.4), which together yield the
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contribution from a particular 6snp 3P1 state dint
at (6snp 3P1) ∼ (n∗)−3. Eventu-

ally, the infinite sum in the equation (2.3.8) may be evaluated in the following
way. The first four terms were explicitly calculated from the numerical wave
functions. The upper bound on the remaining terms was approximately evalu-
ated by Riemann zeta function. The relative correction i.e. the contribution from
the trailing terms (called Riemann zeta tail) divided by the contribution from
the four leading terms, is of the order of 1.5 percent, again with the assumption
that the energy denominators saturated at the ionisation energy. With the above
assumption lifted, the relative correction would be smaller than 1.5%, since the
presence of the energy denominators increases the relative weights of the leading
terms. The matrix elements in equations (6.6.1) and (6.6.4) can be either positive
or negative and not infrequently change sign partway up a series. Sign changes
would of course decrease the relative correction mentioned above.

In order to validate the above reasoning we performed a separate calculation
for 199Hg, where singlet 6snp 1P1 and triplet 6snp 3P1 states of 199Hg were sep-
arately generated for n = 6,7,8,9,10. Let us consider the contribution dT PT

at

(6snp 3P1) to the total atomic EDM from the individual 6snp 3P1 triplet state,
i.e. from one term of the sum on the right hand side of the equation (2.3.8).
When both sides of this equation are multiplied by the energy denominator, what
remains on the right hand side scales with (n∗)−3 of the running np electron:

dT PT
at (6snp 3P1)(E0−En)

3/2 =

2
〈
0|D̂z|6snp 3P1

〉〈
6snp 3P1|ĤT PT |0

〉
∼ (n∗)−3 (6.6.5)

The Figure 6.6.2 shows the relation (6.6.5) in log-log coordinates obtained for
the triplet 6snp 3P1 and the singlet 6snp 1P1 (n = 6,7,8,9,10) states of 199Hg.
The straight line linear fits yield the slope −4.6 for the triplet 6snp 3P1 state
(solid line, circles, blue color), and −7.3 for the singlet 6snp 1P1 state (dashed
line, squares, red color). Both slope values should be compared to−3.0 obtained
from the considerations presented in the previous paragraphs. Analogous linear
fits for other Rydberg series of all three elements, 225Ra, 199Hg, and 171Yb, and
for all four P,T -odd interactions, yield the slopes in the range −3.9 -:- −9.1.
The singlet series exhibit larger slope values, compared to triplet series. The
large values of slope values, the large range of slope values, as well as notice-
able deviations from linear fits, reflect the fact that the slopes are fitted to the
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Figure 6.6.2: Tensor-pseudotensor interaction contributions to EDM in 199Hg, multi-
plied by the energy denominators, as a function of the effective quantum number n∗ of
the np orbitals (n = 6,7,8,9,10) from the triplet 6snp 3P1 (solid line, circles, blue color)
and the singlet 6snp 1P1 (dashed line, squares, red color) individual states of 199Hg. See
text for further details.

calculated data obtained from the leading terms in the equation (2.3.8), corre-
sponding to the lowest atomic levels of a particular Rydberg series. The lowest
levels of a Rydberg series are not truly ’Rydberg’, in the sense that the valence
electrons are not yet completely screened by the electronic core, and they exhibit
strong deviations from Rydberg regularities, due to interelectronic interactions.

Eventually, the upper bounds on the trailing terms in all cases were evaluated
by partial summation of Riemann zeta function. Based on these analyses, we
concluded that the first four terms of each Rydberg series in the equation (2.3.8)
yield 98 percent or more of the series’ contribution to the total atomic EDMs of
all three elements, 225Ra, 199Hg, and 171Yb, and for all four P,T -odd interactions.
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6.7 Uncertainty estimates
Estimates of uncertainty in ab initio calculations are far more difficult and uncer-
tain than the calculations themselves, particularly in situations, where an atomic
property is evaluated, which has not been calculated before within the same ap-
proach for any other element. We can indicate possible sources of uncertainties,
but their sizes are difficult to estimate. The possible sources of uncertainties are
the following.

Table 6.7.1: Tensor-pseudotensor interaction contributions to EDM, calculated with the
EOL method in different virtual sets, in units

(
10−20CT 〈σσσA〉 |e|cm

)
, for 225Ra, 199Hg,

and 171Yb, compared with data from other methods.
225Ra 199Hg 171Yb

VOS Expt. Expt. IL Expt. 1 Expt. Expt.
DF −15.81 −15.81 −15.81 −6.15 −3.31
1 −15.51 −14.70 −13.92 −4.86 −1.94
2 −19.90 −20.08 −20.45 −5.70 −3.71
3 −20.68 −21.22 −22.52 −6.10 −4.03
4 −20.28 −21.16 −22.32 −5.53 −4.24

Ref. [37](DHF) −3.5 −2.4 −0.70
Ref. [141](DHF) −2.0
Ref. [37](CI+MBPT) −17.6 −5.12 −3.70
Ref. [37](RPA) −16.7 −5.89 −3.37
Ref. [141](RPA) −6.0
Ref. [142](RPA) −6.75
Ref. [139](CPHF) −16.585 −3.377
Ref. [143](CCSD) −4.3

6.7.1 Electron correlation effects

In extensive, large-scale calculations the relative accuracy can reach 1-5 percent,
depending on the expectation value in question (see eg. [135, 136]). An estimate
of uncertainty associated with the electron correlation effects can be obtained in
several ways. In the limit of very large number of virtual orbital layers an esti-
mate of uncertainty may be related to oscillations of the calculated expectation
value plotted as a function of the size of the multiconfiguration expansion [136].
In the present work an estimate of the uncertainty was based on the differences
between the data obtained with the largest two multiconfiguration expansions,
represented by 3 and 4 layers of virtual orbitals in Tables 6.7.1, 6.7.2, 6.7.3, and
6.7.4. We abstained from extending the virtual sets beyond fourth layer, because
there are several other possible sources of uncertainty in the present calculations.
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An inspection of the Tables indicates that the differences between the last two
lines range between 0.47% for the Schiff moment of Ra, and 15.77% for the
Schiff moment of Hg (Table 6.7.3). We may assume the latter as an estimate of
uncertainty associated with the neglected electron correlation effects.

Table 6.7.2: Pseudoscalar-scalar interaction contributions to EDM, calculated with the
EOL method in different virtual sets in units

(
10−23CP 〈σσσA〉 |e|cm

)
for 225Ra, 199Hg,

and 171Yb, compared with data from other methods.

VOS 225Ra 199Hg 171Yb
DF −57.87 −21.49 −10.84
1 −57.09 −17.16 −6.31
2 −72.95 −19.94 −12.20
3 −75.83 −21.53 −13.26
4 −74.42 −19.45 −13.94

Ref. [37](DHF) −13.0 −8.7 −2.4
Ref. [37](CI+MBPT) −64.2 −18.4 −12.4
Ref. [37](RPA) −61.0 −20.7 −10.9

6.7.2 Wave function relaxation

As explained in the section 6.2 the effects of wave function relaxation were par-
tially accounted for in the present calculations, by using non-orthogonal orbital
sets for the opposite parities. An inspection of Table 6.2.1 indicates that the un-
certainty which may arise from wave function relaxation effects is of the order
of 10%, although this estimate is based on relaxing only the ASF wave function
of the ground state on one hand, and the ASF wave functions of all excited states
taken together, on the other hand. A more general, albeit far more expensive ap-
proach would be to generate separate atomic state functions for the ground state,
as well as for each excited state, implying non-orthogonality between all ASFs
of both parities.

6.7.3 Energy denominators

As discussed in the section 6.5, the summation in equation (2.3.8) runs over all
excited states of appropriate parity and symmetry. The NIST database [81] is of
course finite, therefore several levels with unknown energies had to be included
in the present calculations. The uncertainty which may arise due to replacements
described in the section 6.5, should not exceed 10% in case of radium atom, and
we expect the same order of magnitude in case of ytterbium and mercury.
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Table 6.7.3: Schiff moment contributions to atomic EDM, calculated with the EOL
method in different virtual sets, in units

{
10−17[S/(|e| fm3)] |e|cm

}
, for 225Ra, 199Hg,

and 171Yb, compared with data from other methods.

VOS 225Ra 199Hg 171Yb
DF −6.32 −2.46 −1.54
1 −7.01 −2.45 −0.88
2 −8.16 −2.23 −1.83
3 −8.59 −2.98 −2.05
4 −8.63 −2.51 −2.15

Ref. [37](DHF) −1.8 −1.2 −0.42
Ref. [37](CI+MBPT) −8.84 −2.63 −2.12
Ref. [37](RPA) −8.27 −2.99 −1.95
Ref. [144](CI+MBPT) −8.5 −2.8
Ref. [145](TDHF) −2.97 −1.91
Ref. [143](CCSD) −5.07

Table 6.7.4: Contributions of electron EDM interaction with magnetic field of nucleus,
to atomic EDM, calculated with the EOL method in different virtual sets, in units (de×
10−4), for 225Ra, 199Hg, and 171Yb, compared with data from other methods.

VOS 225Ra 199Hg 171Yb
DF −46.67 13.41 5.37
1 −43.69 9.58 3.17
2 −58.07 12.22 5.72
3 −60.13 12.80 6.09
4 −58.45 11.45 6.44

Ref. [37](DHF) −11 4.9 1.0
Ref. [146](DHF) 5.1
Ref. [37](CI+MBPT) −55.7 10.7 5.45
Ref. [37](RPA) −53.3 12.3 5.05
Ref. [146](RPA) 13
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6.7.4 Systematic errors

The possible sources of systematic errors include: neglecting the contribution
of the core excitations to the sum over states, truncation of the summation, con-
tribution of the continuum in equation (2.3.8), omission of double, triple, and
higher order substitutions; the effects of Breit interaction; and QED effects. Be-
cause of the singular nature of the P-odd and P,T -odd operators, the contribution
of the core excitations to the sum (2.3.8) can be quite large and tends to decrease
the final result. Table VII in the reference [37] shows the core contributions, of
the order of 10%–20%, and for each of the three elements of interest (Yb, Hg,
Ra) with opposite sign with respect to the final result. The upper bound on the
sum of the trailing terms in the equation (2.3.8) was evaluated in the section 6.6
above, and it is less than 2 percent. The contribution of the continuum is dif-
ficult to estimate, since it is partially accounted for by the virtual set. In the
present work we neglected the explicit summation over continuum, we assumed
that the continuum spectrum contribution may be included into the error budget,
and we computed only the contribution of the bound states. The calculations
of EDMs involve radial integrals of atomic one-electron orbitals, and all these
integrals include factors in the integrands, which effectively cut off the integrals
outside the nucleus, so the contribution to the integral comes from within or in
the vicinity of the nucleus. Therefore an estimate of systematic errors due to
multiple electron substitutions can be made by comparing the EDM calculations
with hyperfine structure calculations, where integrand in the form r−2 appears in
one-electron integrals, which in turn renders the dominant contribution from the
first half of the radial orbital oscillation, i.e. near the nucleus. In certain cases in
the hyperfine structure calculations the effects of double and triple substitutions
can be quite sizeable, of the order of 10-20%, but they often partly cancel and
the net deviation is often smaller than 10% [147, 148]. The effects of quadruple
and higher order substitutions are negligible. The effects of Breit and QED are
usually of the order of 1-2 percent or less for neutral systems.

Based on the above estimates, the relative root-mean-square deviation of the
present calculations yields σ = 25%.
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6.8 Summary and conclusions
Atomic EDMs arising from P,T -odd tensor-pseudotensor and pseudoscalar-scalar
electron-nucleon interactions, nuclear Schiff moment, and interaction of electron
electric dipole moment with nuclear magnetic field, are presented in Tables 6.7.1,
6.7.2, 6.7.3, and 6.7.4, for the J = 0 ground states of 225Ra, 199Hg, and 171Yb.
The matrix elements and atomic EDMs were calculated using recently devel-
oped programs in the framework of the GRASP2K code [43]. One of the ob-
jectives of the present calculations was to test these programs. Therefore the
results are compared with the data obtained by other methods: random phase ap-
proximation (RPA), configuration interaction and many-body perturbation the-
ory approach (CI+MBPT), coupled-cluster single-double (CCSD), and coupled-
perturbed Hartree-Fock (CPHF) theory. These methods are usually more accu-
rate in calculations of properties of closed-shell atoms. We should mention that
in Tables 6.7.1, 6.7.2, 6.7.3, and 6.7.4, we quoted the final results from the refer-
ence [37], corresponding to the CI+MBPT method, as well as their intermediate
results, corresponding to the DHF and RPA methods. Similar distinction applies
to the RPA and DHF methods in the references [141, 146].

An inspection of the Tables indicates that the differences between our results
and the data obtained with the above mentioned methods [37, 141, 142, 144,
145, 146] range between 1.5% for the Schiff moment of Ra (Table 6.7.3), and
22.1% for the tensor-pseudotensor of Hg (Table 6.7.1), all of them within the
error bounds.

Despite the reasonable agreement at the level of the correlated calculations,
very large differences should be noted at the uncorrelated levels, DF (Dirac-
Fock) in our calculations, and DHF (Dirac-Hartree-Fock) in references [37]
and [146]. We used the different symbols to visually differentiate the results
obtained with different numerical codes, but the DF and DHF approximations
are formally identical within the Dirac-Fock theory, and they should yield sim-
ilar values, within numerical accuracies of the Dirac-Fock codes. A possible
explanation of these large differences may be the fact that in our (DF) calcula-
tions the summation in equation (2.3.8) runs over only the two lowest excited
states, singlet nsnp 1P and triplet nsnp 3P, which are generated at the Dirac-
Fock level of the GRASP2K code [43]. On the other hand, in references [37]
and [146] the summation was probably carried over all excited states, which can
be constructed from a suitable set of virtual orbitals. Otherwise we do not have
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an explanation.
Large differences at the level of the correlated calculations should be noted

between our results and the data obtained with the CPHF theory [139]. The dif-
ferences are: 18% for TPT of Ra and 39% for TPT of Hg (see Table 6.7.1). The
largest disagreement appears to be between the result of the present calculations
and the value obtained with the CCSD theory [143] for the Schiff moment of
Hg (see Table 6.7.3). The difference amounts to 102%. It is difficult to explain
some of the above mentioned differences. They may be due to different orbital
shapes, orbital contributions, and relaxation effects, discussed in the sections 6.4
and 6.2, respectively.

Another objective of the present calculations was to test the methods of wave
function generation, as described in more detail in the section 2.2.1, and of multi-
configuration expansions designed to account for valence and core-valence elec-
tron correlation effects. A reasonably good agreement of our results with the data
obtained within the RPA and CI+MBPT methods [37, 141, 142, 144, 145, 146]
seems to indicate that the multiconfigurational model employed in the present
calculations accounts for the bulk of the electron correlation effects. With ade-
quate computer resources, these calculations may be extended in the future and
include also core-core electron correlation effects, as well as the contribution of
the core excitations to the sum over states in equation (2.3.8). Based on the expe-
riences with other atomic properties, as well as on the present EDM calculations,
we expect that the accuracy of the EDM calculations may be improved by a fac-
tor of ten, with respect to the current relative root-mean-square deviation of the
order of 25%. Several refinements are possible with respect to the methods used
in the present work. To account more accurately for the electron relaxation, sep-
arate wave functions for the leading contributors to EDM may be generated. A
more general, albeit far more expensive approach would be to generate separate
ASFs for the ground state, as well as for each excited state, relaxing orthogo-
nality of the orbital sets between all ASFs of both parities. The upper bound on
the tail of the sum over bound states in the equation (2.3.8) can be lowered by
generating one or more virtual orbital layers. The evaluation of the sum in equa-
tion (2.3.8) over the continuum part of the spectrum can in principle be carried
out fully numerically.

The expectation values dint
at were calculated with theoretical (if reliable), and

experimental (if available) transition energies, as explained in the section 6.5.
In fully correlated calculations theoretical transition energies would have to be
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evaluated with all single and unrestricted double substitutions. They would be
computationally much more expensive than those presented her, but possible
with the currently available massively-parallel computers. Electron correlation
effects can also be accounted for using the partitioned correlation function in-
teraction (PCFI) method [149], that allows contributions from single and unre-
stricted double substitutions deep down in the atomic core to be summed up in a
very efficient way. In the near future we will be able to perform fully ab initio

calculations for atoms with arbitrary shell structures. We are currently testing
the latest version of the GRASP package [43], with angular programs providing
full support for arbitrary numbers of electrons in open spdf shells.
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Chapter 7

Z-dependence of electric dipole moment in
homologous sequence [A7]

The primary objective of the present Chapter is the calculation of EDM for the
superheavy element copernicium [150, 151]. We evaluated the contributions to
the atomic EDM induced by four mechanisms [19]: tensor-pseudotensor and
pseudoscalar-scalar interactions, nuclear Schiff moment, and electron electric
dipole moment interaction with the nuclear magnetic field. In each case we show
that there is an order of magnitude increase of atomic EDM between mercury and
copernicium. The second objective of the Chapter is to derive the Z-dependence
of atomic EDM. We show that numerical EDM results are consistent with an
exponential Z-dependence along the group 12 elements.

7.1 MCDHF wave functions
We calculated the wave functions of five diamagnetic atoms of group 12, and
subsequently the EDMs in the ground states of the entire homologous series,
69
30Zn, 111

48Cd, 199
80Hg, 285

112Cn, and 482
162Uhb. The numerical representations of the

wave functions were generated with the relativistic atomic structure package
GRASP2K, based on the MCDHF method. Electron correlation effects were
evaluated with methods described in our previous papers [A6, A8]. Core-valence
and valence-valence correlations were included by allowing single and restricted
double substitutions to five sets of virtual orbitals.

The full description of numerical methods, virtual orbital sets, electron substi-
tutions, and other details of the computations can be found in previous Chapter
6 or in [A6]. However, compared with [A6], the double electron substitutions
were extended from the nsnp to the (n−1)dnsnp shells in the present work (see
section 7.3 below for details).
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7.2 EDM calculations
A calculation of an atomic EDM requires evaluation of the matrix elements of
the static dipole D̂z, and the matrix elements of the Ĥint interactions, which in-
duce an EDM in an atom [36]. Here Ĥint represents one of the four interactions
mentioned in the Chapter 2, E0 and Ei are energies of ground and excited states,
respectively. The full description of the EDM theory underlying the presents
calculations can be found in Chapter 2, and in references therein.

The summation in equation (2.3.8) involves an infinite number of bound states,
as well as contributions from the continuum spectrum. The sum over the bound
spectrum was evaluated by explicitly calculating contributions from the lowest
five odd states of each symmetry using numerical wave functions. Then the
method of ’Riemann zeta tail’, described in section 6.6, was applied to sum up
the contribution from the remaining bound states. To this end we showed that a
summation over a Rydberg series, when extrapolated to large values of the prin-
cipal quantum number n of the running electron (and where the energy denomi-
nator saturates at the ionisation energy) converges to the Riemann zeta function.
The explicit numerical summation accounts for 98 percent of the whole sum,

Table 7.2.1: TPT interaction contributions to EDM in different virtual sets, in units(
10−20CT 〈σσσA〉 |e|cm

)
, for 69Zn, 111Cd, 199Hg, and 285Cn, compared with data from

other methods. See text for explanations and details.
69Zn 111Cd 199Hg 285Cn

VOS Th SE Th SE Th SE Th Th2 Th3
DF −0.07 −0.07 −0.35 −0.36 −7.29 −6.15 −59.86 −61.50 −66.66
1 −0.08 −0.09 −0.39 −0.45 −4.13 −4.86 −48.53 −50.95 −53.95
2 −0.09 −0.11 −0.45 −0.54 −4.66 −5.23 −58.38 −58.92 −62.96
3 −0.10 −0.12 −0.47 −0.57 −4.84 −5.53 −59.31 −64.53 −68.76
4 −0.10 −0.12 −0.48 −0.59 −4.79 −5.64 −57.67 −61.04 −65.26
5 −0.11 −0.12 −0.49 −0.60 −4.84 −5.64 −57.51 −60.75 −64.98

Ref. [37](DHF) −2.4
Ref. [141](DHF) −2.0
Ref. [37](CI+MBPT) −5.12
Ref. [37](RPA) −5.89
Ref. [141](RPA) −6.0
Ref. [142](CPHF) −6.75
Ref. [143](CCSD) −4.3

and we evaluated the upper bound on the rest (the infinite tail) of the sum by
exploiting regularities of the Rydberg series. The relative correction, i.e. the to-
tal contribution from the trailing terms (called Riemann zeta tail) divided by the
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total contribution from the five leading terms, is of the order of 1.5 percent for
mercury 199Hg, and below 2 percent for copernicium 285Cn. We neglected the
Riemann zeta tail correction for the other three elements (69Zn, 111Cd, 482Uhb).
The contribution from the continuum is difficult to estimate, since it is partially

Table 7.2.2: PSS interaction contributions to EDM in different virtual sets, in units(
10−23CP 〈σA〉 |e|cm

)
, for 69Zn, 111Cd, 199Hg, and 285Cn, compared with data from

other methods. See text for explanations and details.
69Zn 111Cd 199Hg 285Cn

VOS Th SE Th SE Th SE Th Th2 Th3
DF −0.13 −0.14 −0.94 −0.96 −25.47 −21.49 −199.52 −252.66 −274.11
1 −0.15 −0.17 −1.05 −1.21 −14.54 −17.16 −199.52 −209.13 −221.73
2 −0.19 −0.23 −1.19 −1.46 −16.38 −18.39 −240.22 −242.15 −259.07
3 −0.20 −0.24 −1.25 −1.53 −17.01 −19.47 −244.96 −266.95 −284.65
4 −0.20 −0.24 −1.28 −1.58 −16.84 −19.84 −237.56 −251.33 −268.95
5 −0.22 −0.24 −1.30 −1.60 −17.02 −19.85 −236.88 −250.07 −267.78

Ref. [37](DHF) −8.7
Ref. [37](CI+MBPT) −18.4
Ref. [37](RPA) −20.7

Table 7.2.3: Schiff moment contributions to atomic EDM in different virtual sets, in
units

{
10−17[S/(|e| fm3)] |e|cm

}
, for 69Zn, 111Cd, 199Hg, and 285Cn, compared with

data from other methods. See text for explanations and details.
69Zn 111Cd 199Hg 285Cn

VOS Th SE Th SE Th SE Th Th2 Th3
DF −0.04 −0.04 −0.18 −0.19 −2.86 −2.46 −17.73 −17.26 −19.53
1 −0.05 −0.06 −0.21 −0.26 −1.95 −2.45 −13.64 −12.96 −14.53
2 −0.06 −0.07 −0.25 −0.32 −2.11 −2.42 −17.05 −15.96 −17.78
3 −0.06 −0.08 −0.27 −0.34 −2.21 −2.58 −20.09 −22.66 −24.58
4 −0.06 −0.08 −0.28 −0.35 −2.19 −2.62 −17.75 −18.02 −19.95
5 −0.07 −0.08 −0.28 −0.35 −2.22 −2.63 −17.62 −17.77 −19.71

Ref. [37](DHF) −1.2
Ref. [37](CI+MBPT) −2.63
Ref. [37](RPA) −2.99
Ref. [144](CI+MBPT) −2.8
Ref. [145](TDHF) −2.97
Ref. [143](CCSD) −5.07

accounted for by the virtual set [152]. In the present work we computed only the
contribution of the bound states. We neglected the explicit summation over con-
tinuum, and assumed that the continuum spectrum contribution were included
into the error budget. The evaluation of the sum over the continuum part of the
spectrum could in principle be carried by an extrapolation, based on the fact, that
the oscillator strength density is continuous across the ionization threshold [153],
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Table 7.2.4: Contributions of electron EDM interaction with magnetic field of nucleus,
to atomic EDM in different virtual sets, in units (de×10−4), for 69Zn, 111Cd, 199Hg, and
285Cn, compared with data from other methods. See text for explanations and details.

69Zn 111Cd 199Hg 285Cn
VOS Th SE Th SE Th SE Th Th2 Th3
DF 0.13 0.14 −0.62 −0.63 16.04 13.41 314.03 324.40 350.09
1 0.11 0.09 −0.64 −0.71 8.47 9.58 254.78 269.22 283.51
2 0.13 0.13 −0.69 −0.81 9.63 10.64 305.55 309.48 328.86
3 0.14 0.14 −0.72 −0.85 9.99 11.30 305.13 329.18 349.47
4 0.14 0.14 −0.73 −0.87 9.90 11.53 300.39 318.41 338.60
5 0.13 0.11 −0.75 −0.88 10.00 11.50 299.67 317.11 337.40

Ref. [37](DHF) 4.9
Ref. [146](DHF) 5.1
Ref. [37](CI+MBPT) 10.7
Ref. [37](RPA) 12.3
Ref. [146](RPA) 13

and above mentioned regularities carry over to the continuum spectrum.
The electronic matrix elements in equation (2.3.8) are not isotope-specific.

However, the atomic wave functions do exhibit a (rather weak) dependence on
the atomic mass of the element of interest, through the nuclear electrostatic po-
tential, which depends on the nuclear charge density distribution, which in turn
depends on the nuclear mass number, through the equation (2.2.3). Therefore, all
numerical results in Tables 7.2.1, 7.2.2, 7.2.3, and 7.2.4 were obtained for spe-
cific isotopes, such as 199Hg and 285Cn, and they do exhibit a (negligibly weak)
dependence on atomic masses.

7.3 Mercury
The calculations for 199Hg were performed in a similar manner as those pre-
sented in the previous Chapter 6. The results from DF and from calculations
with the first two layers of virtual orbitals (i.e. the first three lines in Tables 7.2.1,
7.2.2, 7.2.3, and 7.2.4) are in fact identical with the results in Chapter 6. Further
calculations differ in the scope of the double electron substitutions, which were
extended from 6s6p to 5d6s6p shells.

The results of the calculations are presented in Tables 7.2.1, 7.2.2, 7.2.3,
and 7.2.4. The number of virtual orbital sets (VOS) is listed in the first column
of each table (see subsection 6.1 definitions and for the details of the calcula-
tions). The line marked ’DF’ (Dirac-Fock) in the VOS column represents the
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lowest-order approximation, with zero sets of virtual orbitals. It should be noted
that the values in the Tables marked ’DF’ and ’DHF’ are not equivalent. Those
marked ’DF’ were obtained in the present calculations with only the two lowest
excited states included in the summation in equation (2.3.8). The results marked
’DHF’, obtained with MBPT methods, involved summation over the entire spec-
trum of virtual orbitals, using various methods to construct the virtual orbital
set [37, 141, 146]. Neither ’DF’ nor ’DHF’ include electron correlation effects
and therefore they are relevant only for the purpose of evaluating the contribu-
tions of electron correlation for the expectation values of interest.

A larger number of VOS represents in principle a better approximations of
the wave function. The line marked ’5’ in the VOS column represents the final
approximation, with five sets of virtual orbitals (MCDHF-VOS.5, represented
by red circles in Figure 7.5.2). The difference between VOS.4 and VOS.5 may
(cautiously) be taken as an indication of accuracy. For each element the calcu-
lated values of the energy denominators in equation (2.3.8) were used to evaluate
the atomic EDMs. These fully theoretical EDM values are marked ’Th’ in Ta-
bles 7.2.1, 7.2.2, 7.2.3, and 7.2.4. Semiempirical EDM values (marked ’SE’ in
the Tables) were also evaluated for 69Zn, 111Cd, and 199Hg, with the energy de-
nominators taken from the NIST database [81]. Level identifications were made
with the atomic state functions transformed from j j-coupling to LSJ coupling
scheme, using the methods developed in [154, 155].

7.4 Copernicium
Three different sets of energy denominators for 285Cn were used. Those from
the present calculations are marked ’Th’. For comparison purposes we com-
puted also the EDMs with the energy denominators taken from two other the-
oretical papers [156, 157]. The results in column marked ’Th2’ were obtained
with the energy denominators taken from [156], who used a large-scale MCDHF
method. The authors of [156] evaluated also the ionization limit of copernicium
and their calculated ionization energy was used in our evaluation of EDMs for
those levels which were not reported in [156]. The energy denominators in the
columns marked ’Th3’ were taken from reference [157], where the energy spec-
trum was computed with two methods: CI+MBPT and CI. We gave priority to
the CI+MBPT results; the CI results were used when CI+MBPT data were not
available; for the remaining levels the energy denominators were replaced by the
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calculated ground state ionization energy. The accuracy of our calculated energy
values, as well as those from the references [156] and [157], is better than 20%
for the lowest excited levels of mercury.

The mass number 285 for the element Cn was chosen due to predictions that
heavier isotopes are more stable than the lighter ones [158, 27]. The lifetimes of
several known isotopes of Cn are counted in minutes [159], which make them
amenable to atom traps, and subsequent spectroscopy. It is predicted that still
heavier isotopes of Cn, with mass numbers in the range 290–294, may have
half-lives counted in years [27].

We observed a similar pattern of contributions from individual electronic states,
as described in section 6.4. The triplet 6snp 3P1 and the singlet 6snp 1P1 states are
the dominant contributors to atomic EDM in the 199Hg spectrum. For the 285Cn
case the dominant contributions arise from the lowest states of 1,3P1 symmetries,
i.e. 7snp 1P1, 7snp 3P1. Altogether they contribute in excess of 98% of the total
EDM. The remaining Rydberg states contribute less than 2 percent. Instead of
an explicit error analysis for the calculations of EDM for 285Cn we applied a
comparison with mercury. Estimates of the magnitudes of EDMs induced by
the TPT, PSS, NSM, and eEDM mechanisms in mercury, have been performed
with several theoretical methods [37, 142, 143, 145]. With one or two excep-
tions [143, 160], they all agree within reasonable error bounds — of the order
of 10–20 percent (see Section 6.7). The results of the MCDHF calculations for
mercury, both in present Chapter as well as in Chapter 6, are well within these
bounds. We expect that the present calculations for 285Cn, performed with the
same MCDHF model as those for 199Hg, would also fit within error bounds of
similar size.

7.4.1 Unhexbium

In addition to the calculations described above we have done uncorrelated DF
calculations for 482

162Uhb and for 9
4Be. There are several theoretical predic-

tions [161] - [163] which suggest that the heaviest homologue in the Zn-Cd-Hg-
Cn-Uhb group would not be element E162 (Unhexbium), but E164 (Unhexqua-
dium). Due to a very large spin-orbit splitting of the 8p shell, the relativistic
8p1/2 shell becomes occupied before the 7d shell is filled [163]. Therefore, at
the end of transition metals in the row eight of the periodic table appears the
element E164, with the ground configuration [Cn]5g186 f 147d107p68s28p2, with
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all inner shells closed, and with two electrons in the 8p1/2 shell (the 8p1/2 shell
is, in fact, also closed). However, the presence of the 8p shell would complicate
the calculations of EDMs, and, more importantly, it would complicate compar-
isons along the homologous series. Therefore we have deliberately chosen a
(doubly artificial) isotope 482

162Uhb, of element E162, with electron configuration
[Cn]5g186 f 147d107p68s2.

7.5 Z-dependence
Atomic properties depend in various ways on the atomic number Z, both in
isoelectronic sequences [82, 164, 165, 166], as well as along homologous se-
quences [51, 167]. In many cases approximate analytic relations were de-
rived [51, 82, 166, 167], and several atomic observables exhibit a polynomial
or power dependencies on the atomic number Z.

Atomic enhancement factors of the PT -odd interactions in neutral atoms scale
with nuclear charge as dat ∼ α2Z3. The factor Z3 arises from an estimate of the
strength of the electric field in the vicinity of an atomic nucleus (see chapter 6.2
of the reference [1]), but it has been pointed out that on top of the Z3 enhance-
ment of the PT -odd interaction there is another enhancement factor, arising from
relativistic contraction of the electronic wave function [1, 29, 54, 56, 168, 169,
170]:

Kr ≈
(

Γ(3)
Γ(2γ +1)

)2(2ZrN

a0

)2γ−2

. (7.5.1)

Z-dependence of atomic EDMs induced by the P,T -odd Ĥint interactions is
governed by the Z-dependence of three factors in equation (2.3.8): matrix ele-
ment of the P,T -odd Ĥint operator, matrix element of the electric dipole D̂z oper-
ator, and the energy denominator (E0−Ei). The matrix elements of the electric
dipole D̂z operator are constrained by the Thomas-Reiche-Kuhn rule. In case of
the elements of group 12 they are further constrained by the Wigner-Kirkwood
sum rule (see chapter 14 of the reference [51]). The two lines, ns2 1S0 — nsnp 3P1

and ns2 1S0 — nsnp 1P1, dominate the Wigner-Kirkwood sum in all five elements,
making the matrix element of D̂z approximately constant along the homologous
series. Transition energy denominators in the equation (2.3.8) do not depend
on Z along the homologous series [167], except for small variations due to shell
contractions, shell rearrangements, etc (excluding the Uhb element, with its large
spin-orbit splitting mentioned in the section 7.4 above).
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Therefore, the dominant role in establishing the Z-dependence of atomic EDMs
along the homologous sequence is taken by the Ĥint operators. Following the
analysis in chapter 8 of the reference [1], it can be shown that in the vicinity of
a point-like atomic nucleus the large Pnκ and small Qnκ radial components of a
one-electron wave function may be expressed as

Pnκ(r) =
κ

|κ|
(κ− γ)

(
Z

a3
0ν3

)1/2 2
Γ(2γ +1)

( a0

2Zr

)1−γ

(7.5.2)

Qnκ(r) =
κ

|κ|
(Zα)

(
Z

a3
0ν3

)1/2 2
Γ(2γ +1)

( a0

2Zr

)1−γ

, (7.5.3)

where κ is the angular momentum quantum number, γ2 = κ2−α2Z2, α is the
fine structure constant, ν is the effective principal quantum number, and a0 is the
Bohr radius. The radial integrals involved in the calculations of matrix elements
of Ĥint include the integrands of the combinations of the large Pnκ and small
Qnκ radial components, of the type (PaPb±QaQb) or (PaQb±PbQa). All these
integrals include factors in the integrands which effectively cut off the integrals
outside the nucleus (see Chapter 2), and eventually Z-dependence of the atomic
EDM in the form

dat ∼
(

Zk

a3
0ν3

)(
2

Γ(2γ +1)

)2(2ZrN

a0

)2γ−2

(7.5.4)

is obtained, where k depends on a particular form of the integrand and where
rN is the effective cut off radius. The right hand side of the equation (7.5.4) is
displayed in Fig. 7.5.1. All four combinations (PaPb, QaQb, PaQb, and PbQa)
of the one-electron wave function factors from equations (7.5.2) and (7.5.3) are
represented as functions of atomic number Z. The index a represents ns1/2 or-
bitals, the index b represents np3/2 orbitals. The nuclear radius rN has been
computed using rN = r0 ·A1/3, where r0 = 1.25 fm. The relation of atomic mass
A to atomic number Z has been evaluated from the neutrons to protons ratio
N/Z = 1+A2/3aC/2aA, derived from the Bethe-Weizsäcker formula [171], with
aC = 0.711 and aA = 23.7. The empty circles in the Fig. 7.5.1 show positions of
the four elements (Zn, Cd, Hg, Cn). Neglecting a weak Z-dependence through
the gamma function 2/Γ(2γ +1), for small values of Z the polynomial factor Zk

determines the functional form of the dependence on Z while for large values
of Z the exponential factor (2ZrN)

2γ−2 takes over. It can be shown numeri-
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Figure 7.5.1: Z-dependence of the atomic EDM. The right hand side of the equa-
tion (7.5.4), calculated from (absolute values of) one-electron wave function factors
PaPb, QaQb, PaQb, and PbQa. The factors were generated from the equations (7.5.2)
and (7.5.3), and evaluated at r = rN , as functions of atomic number Z. See text for
details.

cally, as can bee seen in the Figure 7.5.1, that the polynomial Zk shape domi-
nates up to about Z = 60, then in the range 60 < Z < 120 the function dat(Z) is
approximately exponential, and eventually the approximation breaks down, be-
cause the analytic approximation in equations 7.5.2 and 7.5.3 is valid only within
the atomic number Z range, where bound solutions of the Dirac equation exist
(Z ≤ 137 for point-like nuclei).

The analysis above has been made under the assumption of a point-like Cou-
lomb field in the Dirac radial equation. The finite sizes of nuclei entered only
when the equation (7.5.4) was evaluated. For extended nuclei the solution of
the Dirac equation depends on the specific form of the nuclear charge distribu-
tion [35, 172, 173]. Flambaum and Ginges [56], and Dzuba et al [174] assumed
uniform distribution of the electric charge inside a sphere (with the normaliza-
tion factors from [29]), and obtained enhancement factors of a similar form as in
equations (7.5.1) and (7.5.4), for angular symmetries s1/2, p1/2, and p3/2.

In the present work the numerical calculations for the homologous series of
the group 12 of the periodic table (69

30Zn, 111
48Cd, 199

80Hg, 285
112Cn, and 482

162Uhb) were
performed with extended nuclear model (2.2.3), for which bound solutions of the
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Dirac-Fock equations exist up to Z = 173 [175]. The dependence of EDMs on
atomic number Z along group 12 of the periodic table is presented in Fig. 7.5.2.
The red circles represent our final results, calculated within the MCDHF-VOS.5
electron correlation model described above. The blue pluses represent the un-
correlated DF results. The green plus in the upper right corner represents the
EDM value for Uhb. Due to very large spin-orbit splitting of the 8p shell, (see
section 7.4 above), the Uhb energy denominators are distinctively different from
those of other members of the homologous series. To compensate for this split-
ting, we also computed the EDMs for Uhb with energy denominators taken from
Cn. The latter value is represented by the square in Fig. 7.5.2. The solid line is
fitted to the four (Zn, Cd, Hg, Cn) final results. The dashed line is fitted to the
four uncorrelated DF results. The Uhb results were excluded from the fitting.
The regression analysis yields the following relations:

dT PT = [−1.22(8)·e0.0766(6)·Z −5(6)] ·10−22

dPSS = [ −30(1)·e0.0813(3)·Z−8.54(1)] ·10−26

dNSM = [−1.77(7)·e0.0626(3)·Z +2(2)] ·10−19

deEDM/µ = [ 2.74(8)·e0.0841(2)·Z −15(9)] ·10−6 ,

(7.5.5)

where the numbers in parentheses represent RMSE deviations. The third line of
the equation (7.5.5) is displayed in Fig. 7.5.2.

Similar regression analysis can be done for the semi-analytic relations pre-
sented for the point-nucleus case in the equation (7.5.4) and in the Fig. 7.5.1, but
restricted to the range of atomic numbers 30≤ Z ≤ 112, covered by the four ele-
ments (Zn, Cd, Hg, Cn). The analysis yields dPSS ∼ e0.017·Z and dNSM ∼ e0.022·Z ,
somewhat smaller exponents than those presented in the equation (7.5.5).

The deviation of the EDM value for the element E162 from the fitted function
in Figure 7.5.2 may be explained by several possible mechanisms: rearrange-
ments of the valence shells, i.e. relativistic contraction of the 8s and 8p1/2 shells,
which results in the above mentioned large spin-orbit splitting of the 8p shell;
variation of transition energy denominators, induced by shell rearrangements;
contribution of QED effects, which could be quite sizeable near the end of the
periodic table at Z = 173 [175, 176]. However, the most likely explanation is
the breakdown of the exponential approximation near the end of the periodic ta-
ble. The analytic approximation in equations 7.5.2 and 7.5.3 is valid only within
the atomic number Z range, where bound solutions of the Dirac equation exist
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Figure 7.5.2: Atomic EDM (absolute values) induced by the NSM as a function of
atomic number Z. Red circles = MCDHF-VOS.5 results with 5 virtual orbital sets. Blue
pluses = uncorrelated DF results (0 sets). The lines are exponential functions fitted to
the four points, representing Zn, Cd, Hg, and Cn. Solid red line = fit to MCDHF-VOS.5
results. Dashed blue line = fit to uncorrelated DF results. The lines are extrapolated be-
yond Z = 112. The two symbols in the upper right corner represent Uhb (excluded from
the fitting). Green plus = DF result for Uhb with calculated Uhb energy denominators.
Green square = DF result for Uhb with energy denominators taken from Cn. The sizes
of circles represent approximately the relative accuracy of the MCDHF-VOS.5 calcula-
tions. See text for details.

(Z ≤ 137 for point-like nuclei, Z ≤ 173 for extended nuclei). The element E162
is close to the end of the periodic table at Z = 173, where determination of a
numerical wave function, even at the Dirac-Fock level, may be problematic or
impossible, and one might expect a question whether perturbation theory still
works in QED for elements close to Z = 173 [175].

At very short distances Z-dependence algebra is dominated by the cutoff radii
rN (related to the sizes of the nuclei), and by the power series solutions for Pnκ

and Qnκ at the origin [35]. The power series coefficients for Pnκ and Qnκ depend
on the nuclear potential (again related to the sizes of the nuclei), and are con-
strained by orthogonality of the one-electron functions with the same symmetry.
The dominant contributions to the matrix elements of the Ĥint operators come
from the valence ns2 orbitals in the ground state, and from the lowest np1/2 and
np3/2 orbitals in the excited states.
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Figure 7.5.3: Atomic EDM induced by TPT, PSS, NSM, and eEDM as functions atomic
number Z. Empty circles represents data obtained with MCDHF method [A6,A7]. Data
from [A7] were used for Hg. Red circles represents data from random phase approxi-
mation [37]. Solid lines show trends along homologous sequence. Dashed lines connect
two noble gases (Xe, Rn) and two closed-shell ns2 elements (Yb, Ra).

Our computed EDM enhancement factors for all mechanisms are presented in
figure 7.5.3, and compared with data obtained from random phase approximation
[37]. Small differences with respect to random phase approximation for Yb, Ra,
and Hg, may be explained by differences in correlation effects accounted for
in the two calculations, as described in the section 6.7. One should not draw
conclusions based only on two points, but the results obtained for two noble
gases (Xe,Rn), and two closed-shell ns2 elements (Yb,Ra) exhibit similar slopes
as those for group 12 elements.

The left graph in the Fig. 7.5.4 shows the coefficient p0 of the lowest order
polynomial in the series expansion at the origin of the large component P of the
radial function of the valence orbitals (ns, np1/2, np3/2) of the elements from the
group 12 (plus beryllium). The quantum number n assumes the values 2, 4, 5, 6,
7, 8 for Be, Zn, Cd, Hg, Cn, Uhb, respectively. The right graph in the Fig. 7.5.4
shows the atomic EDMs induced by the TPT, PSS, NSM, and eEDM mecha-
nisms, as functions of atomic number Z for the elements of the group 12 (plus
Be). For the purpose of this comparison, all values in Fig. 7.5.4 were obtained in
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Figure 7.5.4: Left: power series coefficients p0 of valence orbitals as functions of atomic
number Z. Blue squares = np3/2; red diamonds = ns; green circles = np1/2; n = 2, 4, 5, 6,
7, 8 for Be, Zn, Cd, Hg, Cn, Uhb, respectively. Right: atomic EDM (in arbitrary units on
logarithmic scale) induced by NSM (red squares), TPT (blue circles), eEDM (magenta
stars), and by PSS (green diamonds), as functions of atomic number Z. All lines in both
graphs are drawn only for the guidance of the eyes. See text for details.

the Dirac-Fock approximation, without account of electron correlation effects,
and with the extended nuclear model (2.2.3). Analogously to the point nucleus
case (represented by the equation (7.5.4)), the function dat(Z) is approximately
exponential in the range 60 < Z < 120, i.e. for heavy and superheavy elements
relevant from the point of view of the EDM searches. Both graphs in Fig. 7.5.4
show similar Z-dependencies as those in Figure 7.5.1, i. .e. the polynomial shape
up to about Z = 60, then approximately exponential in the range 60 < Z < 120,
and eventually the exponential approximation breaks down near the end of the
extended Periodic Table of Elements [163, 175] at Z = 173. When comparing
the shapes of the curves in the left and right graphs, one has to bear in mind
that radial integrals in matrix elements of the Ĥint operators involve valence ns2

orbitals in the ground state, and np1/2 and np3/2 orbitals in the excited states.
The apparent similarity of the np1/2 and np3/2 curves in the left graph and the
four curves in the right graph is a numerical confirmation of the dominant role
of power series coefficients in the matrix element of the Ĥint operators, as well
as of the proportionality relations between matrix elements, established in [174].
Beryllium does not belong to the group 12 (which results in the visible deviation
of Be from the fitted function) but was included in Fig. 7.5.4 to indicate that the
dominant role of power series coefficients, as well as the proportionality rela-
tions [174], are not limited to one group of elements. The other deviations from
linearity in the Figure 7.5.4 are induced by electron correlation effects, whose
contributions differ from element to element due to shell rearrangements.
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7.6 Conclusions
The main conclusion of the present thesis is the suggestion for setting up an
EDM experiment on a superheavy element, which would result in an order of
magnitude increase of sensitivity, compared to a homologous heavy element.
Such homologous pairs include (but are not limited to) Yb–No, Hg–Cn, Tl–Nh,
Po–Lv, At–Ts, Rn–Og, Fr–E119, Ra–E120. The names recently approved by
IUPAC: Nihonium (113-Nh), Tennessine (117-Ts), and Oganesson (118-Og). If
the exponential Z-dependence derived in the present work is assumed for all
above homologous pairs, an increase of sensitivity by a factor 8-30 should be
expected. The best limit on the EDM of a diamagnetic atom comes from 199Hg,
for which d(199Hg)< 3.1×10−29e·cm (95% C.L.) has been reported [15]. Our
calculations indicate that for the Hg–Cn pair the increase of sensitivity would be
57.5/4.8, 236.9/17.0, 17.6/2.2, and 299.7/10.0 for TPT, PSS, NSM, and eEDM,
respectively. Over the last 50 years the precision of EDM experiments has been
improving by about an order of magnitude per decade [2, 15, 17, 177, 178, 179].
On this timescale an experiment on Cn would be equivalent to time travel into
the future over a distance of about ten to twenty years.
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Chapter 8

The main conclusions

All computation were performed using multiconfiguration Dirac-Hartree-Fock
(MCDHF) [44] and relativistic configuration interaction methods (RCI) [42],
implemented in the GRASP2K package [43].

1. For the 15 lowest states of nitrogen-like ions the mean relative energy dif-
ferences are around 0.04% (NIST database) for the four ions Cr XVIII,
Fe XX, Ni XXII, and Zn XXIV. This translates into wavelengths that are
accurate to within ±10 mÅ and thus of spectroscopic accuracy. The high
accuracy carries over also to higher states. Differences between two gauges
for electric dipole transition rates within lower states are 1.9% on average.
We thus argue that the rates for 39 488 transitions of type E1, E2, and M1
are highly accurate and may serve as benchmark for other calculations.

2. Energies of Si-like ions Ti IX - Ge XIX, Sr XXV, Zr XXVII, and Mo XXIX
are in excellent agreement with observations (up to 0.03%) and computed
wavelengths are almost of spectroscopic accuracy, aiding line identifica-
tion in spectra. Differences between two gauges for majority of stronger
transitions are below 1%, and for weaker transitions they are larger, from
a few percent up to 10%. We thus argue that the transition rates are highly
accurate and may serve as benchmark for other calculations.

3. The analysis of Er3+ energy levels shows that values converge, when the
core is opened up to shells with n = 3, and important valence, core, and
core-valence correlations are included. With this strategy an accuracy up
to 9.8% was achieved, compared to NIST database.

4. Our results demonstrated that 151
63Eu, 155

64Gd, 229
90Th, and 231

91Pa of He-like
ions are the most promising for future experiments, due to high values of
the transition rates induced by weak interaction and off-diagonal hyperfine
structure.
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5. The disagreement between calculations of electric dipole moments, arising
from tensor-pseudotensor interaction varies from 4% for Hg (compared to
coupled-cluster method in single-double approximation) up to 24% for Hg
(compared to random phase approximation).

6. The discrepancy between calculations of electric dipole moments, arising
from pseudoscalar-scalar interaction, varies from 4% for Hg 22% to for Yb
(in both cases compared to random phase approximation).

7. Calculated electric dipole moment, arising from nuclear Schiff moment
completely agrees with data from CI+MBPT (configuration interaction and
many-body perturbation theory approach) (disagreement is 0% for Hg) and
disagrees with data from random phase approximation (14%, also for Hg).

8. A reasonably good agreement was obtained for electric dipole moment,
arising from electron electric dipole moment interaction with nuclear mag-
netic moment (eEDM), against data from CI+MBPT (configuration inter-
action and many-body perturbation theory approach) (5% for Ra), but no
so good against data from random phase approximation (22% for Yb).

9. The results of atomic electric dipole moment calculations show, that multi-
configuration Dirac-Hartree-Fock method, our suggested electron correla-
tion strategies, as well as programs written for this project are suitable for
testing parity and time-reversal symmetries in atomic theory.

10. For the Hg–Cn pair our calculations indicate an increase of enhancement
factors for an atomic electric dipole moment, 57.5/4.8, 236.9/17.0, 17.6/2.2,
and 299.7/10.0, for tensor-pseudotensor, pseudoscalar-scalar, nuclear Schiff
moment, and electron electric dipole moment, respectively.

11. Setting up an electric dipole moment experiment on a superheavy element
would result in an order of magnitude increase of sensitivity, compared to
a homologous heavy element. Such homologous pairs include (but are not
limited to) Yb–No, Hg–Cn, Tl–Nh, Po–Lv, At–Ts, Rn–Og, Fr–E119, and
Ra–E120.
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