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Notation
N the set of natural numbers

R the set of real numbers

Z+ the set of nonnegative integer numbers N ∪ {0}

C the set of complex numbers

Zn
+ the set of vectors s̄ := (s1, . . . , sn), where sj ∈ Z+ and 1 ≤ j ≤ n

ℓ(s̄) = 1s1 + · · · + nsn the linear combinations defining the mapping ℓ : Zn
+ → Z+

ℓ−1(m) =
{
s̄ ∈ Zn

+ : ℓ(s̄) = m
}

the pre-image, where m ∈ Z+

Sn the symmetric group of permutations acting on n ≥ 1 letters

σ a permutation in the symmetric group Sn

w = w(σ) the number of cycles of a permutation σ

kj(σ) the number of cycles of length j in a permutation σ

k̄(σ) =
(
k1(σ), . . . , kn(σ)

)
the cycle vector of a σ ∈ Sn

x(m) = x(x+ 1) · · · (x+m− 1) rising factorial if m ∈ N and x(0) := 1

x(m) = x(x− 1) · · · (x−m+ 1) falling factorial if m ∈ N and x(0) := 1

ψn(m) = n!
θ(n)

θ(m)

m! the product of the binomial coefficients

νn,θ(·) the Ewens Probability Measure on Sn, defined by νn,θ({σ}) = θw(σ)/θ(n)

h(σ) = a1k1(σ) + · · · + ankn(σ) a completely additive function, h : Sn → R for anj ∈ R

for brevity we denote aj := anj

hn(σ) = an1k1(σ) + · · · + annkn(σ) a sequence of completely additive functions

Vn,θ(x) = νn,θ

(
hn(σ) < x

)
the distribution function of hn(σ) with respect to νn,θ

En,θhn(σ) the mean value of hn(σ) with respect to νn,θ

V arn,θhn(σ) the variance of hn(σ) with respect to νn,θ

γ̂nr,θ = En,θhn(σ)(r) the rth factorial moment

r.v. random variable

ξj the Poisson r.v. with parameter θ/j

Xn = a1ξ1 + · · · + anξn the linear combination, where ξj , 1 ≤ j ≤ n, are mutually independent

EX the mean value of a r.v. X defined on a probability space {Ω,F , P}

EX(r) the rth factorial moment of a r.v. X

L(X,P ) the Lévy distance of a r.v. X from the set of constants

Pn,θ({s̄}) = n!
θ(n)

∏
j≤n

(
θ
j

)sj 1
sj ! the Ewens Sampling Formula defining a measure on the subsets of ℓ−1(n)

G(s̄) =
∏

j≤n gj(sj) a multiplicative function G : Zn
+ → C

M the set of multiplicative functions G : Zn
+ → C

Mc the set of completely multiplicative functions G : Zn
+ → C, defined by

gj(k) = gk
j , gj ∈ C, for k ≥ 0 and j ≤ n; 00 := 1

Ms the set of strongly multiplicative functions G : Zn
+ → C, defined by

gj(k) = gj(1) for k ≥ 1 and j ≤ n

Mn,θ(G) the mean value of a multiplicative function G with respect to Pn,θ
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S(n, l) Stirling’s number of the second kind

s(n, l) Stirling’s number of the first kind

|A| cardinality of the set A

1{. . . } the indicator function

a ∧ b = min{a, b} if a, b ∈ R

a ∨ b = max{a, b} if a, b ∈ R

u◦ = (1 ∧ |u|) sgn u if u ∈ R

≪ equivalent to O(·)

a ≍ b equivalent to a ≪ b and b ≪ a.
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1 Introduction

1.1 Research problem

The weak convergence of distributions of additive functions defined on the symmetric group with

respect to the Ewens probability measure is investigated in this thesis.

1.2 Actuality

The object of investigation and examined problems refer to probabilistic combinatorics, an important

branch of contemporary mathematics. It has far-reaching applications in theoretical computer

science, statistical physics, mathematical genetics, and other directions of sciences where large

classes of combinatorial structures appear. Facing difficulties to show the existence of any unique

object in a certain class, it is convenient to introduce a probability measure in it. Then it suffices to

show that the probability of examined objects is positive. As a result, the conclusion is done and such

an object exists. When the cardinality of a class is out of reach for computers, and exact methods

to describe properties of individual elements fail, the only way to discover needed information about

a "typical" object in the class is "to take an element at random" and describe it by the probability

means. Nowadays probabilistic combinatorics offers general methods; the development of new ones

is especially desirable, however.

Recent growing interest in random combinatorial structures is very notable. This, in particular,

refers to decomposable structures. Among them, the most popular and important example is per-

mutations. In this work, we analyze permutations which, by definition, are bijective mappings on a

finite set into itself. All permutations of a finite set comprise the symmetric group. A permutation

can be decomposed into cycles which gives the cycle structure vector hiding the most important

properties. To discover them, one defines additive and multiplicative functions. If a permutation is

taken at random, the mentioned functions become sums and product of dependent random variables

(r.vs). In this regard, the objectives of the present work may be attributed to probability theory.

We now give two hints about possible applications. Firstly, we mention that particular additive

functions are good approximations for the logarithm of group theoretical order of a permutation,

which is important in algebra, especially, in the Galua theory. Secondly, in physics, some phenomena

are simulated by random unitary matrices. The permutation matrices corresponding to a symmetric

group are the simplest instances. The real and imaginary parts of logarithm of their characteristic

polynomials are also additive functions. Moreover, many of the trace type functionals over their

eigenvalues also fall within the scope of our theory. In this work, we deal with the asymptotic

distributions of additive functions defined on the symmetric group as the order of the group tends

to infinity. The group is endowed with the weighted probability called Ewens Probability Measure

(EPM). The very motivation comes from the observation that a class of conjugate permutations

can be identified to the common cycle vector of its representatives and the probability of this class

coincides with the Ewens Sampling Formula (ESF) of a vector from the semi-lattice of vectors with

non-negative coordinates. So, the probabilistic theory of permutations under the EPM is equivalent

9



to that of the vectors under ESF. The latter formula was introduced in 1972 by W.J. Ewens to

model the mutation in a population genetics. Nowadays this formula plays a crucial role in other

branches of mathematical statistics. An advance in the theory of random permutations directly has

its interpretation in these theories.

Finally, the actuality of the subject is supported by the mathematical interest to advance the

very theory. The theory of value distribution of additive functions on the symmetric group has

much in common with probabilistic number theory. Having started almost at the same time, the

latter is a bit ahead. The task to fill up the existing gaps in probabilistic combinatorics is also very

actual from mathematical point of view.

1.3 Aims and tasks

The main purpose of the thesis is to investigate the value distribution of additive functions defined

on the symmetric group and to establish general conditions under which the distribution functions

weakly converge to a limit law. In particular, we focus on the following tasks:

• To investigate weak convergence of distributions of completely additive functions, defined on

the symmetric group with respect to the Ewens probability measure.

• To establish necessary and sufficient conditions for the number of cycles with restricted lengths

under which it obeys a limit law.

• To obtain lower bounds for the mean values of multiplicative functions defined on the additive

semigroup Zn
+ with respect to the Ewens Sampling Formula.

• To explore the class of possible limit distributions.

• To obtain the expressions of the power and factorial moments of additive functions defined on

the symmetric group.

1.4 Methods

We apply general methods of probability theory, probabilistic combinatorics, and asymptotic theory

of combinatorial structures. The proofs of the weak convergence of distributions of additive functions

are mainly based on the formulae and properties of factorial moments. The concentration function

and the tail probability estimates are also essential. The generating function method is the basic

technical tool in many proofs. The methodology which has proved to be effective in probabilistic

number theory is adopted in the present work. In particular, this let us to obtain lower bounds for

the mean values of multiplicative functions, to examine the necessity of the convergence conditions.

1.5 Defended propositions

• Propositions on the weak convergence of distributions of completely additive functions defined

on the symmetric group with respect to the Ewens probability measure.
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• Obtained lower bounds for the mean values of multiplicative functions defined on the additive

semigroup Zn
+ with respect to the Ewens Sampling Formula.

• The weak law of large numbers for completely additive functions.

• The range of asymptotic distributions and their instances for additive functions defined on

the symmetric group.

• Formulae of the power and factorial moments of additive functions.

1.6 Novelty

All presented results are new. They extend, generalize and supplement the results on random

permutations obtained so far by many authors. They fill up the existing gap in probabilistic combi-

natorics and correspond to the recent advancement achieved in analogues problems of probabilistic

number theory. The obtained results have been approved in local and international conferences and

exposed in our papers.

1.7 Approbation

Conferences:

• The 50th Conference of Lithuanian Mathematical Society, Vilnius (Lithuania), 2009, "Approx-

imation of the number of components of random structures by Poisson law".

• The 51st Conference of Lithuanian Mathematical Society, Šiauliai (Lithuania), 2010, "Additive

functions on the symmetric group and their factorial moments".

• The 10th Vilnius International conference on Probability Theory and Mathematical Statistics,

Vilnius (Lithuania), 2010, "Additive functions on the symmetric group and their factorial

moments".

• The 52nd Conference of Lithuanian Mathematical Society, Vilnius (Lithuania), 2011, "On

additive functions defined on the symmetric group".

• 27th Journées Arithmétiques, Vilnius (Lithuania), 2011, "On additive functions defined on the

symmetric group".

The results of the thesis were presented at the seminars on Number and Probability Theory of

the Department of Mathematics and Informatics of Vilnius University.

1.8 Principal publications

The main results of the thesis are published in the following papers:

• T. Kargina, Additive functions on permutations and the Ewens probability, Šiauliai Mathe-

matical Seminar, 2(10), 33-41 (2007).
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• T. Kargina, Asymptotic distributions of the number of restricted cycles in a random permu-

tation, Liet. matem. rink. LMD darbai, 50, 420-425 (2009).

• T. Kargina, E. Manstavičius, Multiplicative functions on Zn
+ and the Ewens Sampling Formula,

RIMS Kôkyûroku Bessatsu, B34, 137-151 (2012).

• T. Kargina, Additive functions on the Symmetric group and their factorial moments, 10th

Vilnius International conference on Probability Theory and Mathematical Statistics, Abstracts,

p. 181, Vilnius (Lithuania), 2010.

• T. Kargina, E. Manstavičius, The law of large numbers with respect to Ewens probability,

Annales Univ. Sci. Budapest., Sect. Comp., 40, 2013 (13 pages, to appear).

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Eugenijus Manstavičius

for his regular guidance and help, valuable suggestions and pieces of advice, usual motivation and

concern during my studies through seven years. I also want to thank honestly to my friend Jelena

Salnikova and husband Aleksej Bakšajev for support and useful tips in dissertation writing and

organization process; to my family for their understanding, help and patience.

12



1.9 Historical overview and the state of-the-art in the field

Random permutations implicitly made their appearance in the first edition of Pierre - Rèmond de

Montmort’s Essai d’Analyse sur les Jaeux de Hasard published in Paris in 1708. Pierre’s game is

related to the number of fixed points of a random permutation:

If Pierre had a pack consisting of n cards all of a single suit, then Pierre would win if the

permutation induced by shuffling the cards had at least one fixed point. What is his chance?

Another example, which the most often could be met in books on probability, is the so-called

Hat-Check Problem:

n mathematicians drop off their hats at a restaurant before having a meal. After the meal their

hats are returned at random. The question is what is the chance that no one gets back their own

hat.

W. Feller [23], Chapter IV, gives a number of equivalent descriptions. It is also interesting to

know the distribution of the number of mathematicians who get back their own hats, its mean,

variance and so on. These questions can be formulated in terms of random permutations. To give

some impression on the theory, we start with the main notation.

Let Sn denote the symmetric group of permutations σ acting on n ≥ 1 letters. Each σ ∈ Sn has

a unique representation (up to the order) by the product of independent cycles κi:

σ = κ1 · · ·κw, (1.1)

where w = w(σ) denotes the number of cycles. Set kj(σ) ≥ 0 for the number of cycles in (1.1) of

length j if 1 ≤ j ≤ n and k̄(σ) := (k1(σ), . . . , kn(σ)). Then

w = k1(σ) + · · · + kn(σ).

The vector k̄(σ), called a cycle vector of the permutation σ, satisfies the relation

ℓ(k̄(σ)) := 1k1(σ) + · · · + nkn(σ) = n.

The uniform probability measure on symmetric group Sn is defined by

νn(. . .) = (n!)−1|{σ ∈ Sn : . . .}|.

Thus, in this notation, Pierre’s success in the game coincides with the event {σ ∈ Sn : k1(σ) ≥ 1} and

the solution to the Hat-Check problem is the frequency νn

(
k1(σ) = 0

)
. If n is large, an asymptotic

analysis of the behavior of this and more involved probabilities becomes useful. Afterwards we

assume that n → ∞ without indicating this.

The first probabilistic results on random permutations were obtained in 1942 by V. Goncharov

[27] (see also [28]). Apart from elementary approaches, V. Goncharov applied the generating function

method. In particular, investigating the distribution of the cycle vector, he established the following

relations:

νn(kj(σ) = s) = j−s

s!

⌊n/j⌋−s∑
l=0

(−1)l j
−l

l!
, j ∈ N, s ∈ Z+, js ≤ n,

13



and

νn

(
k̄(σ) = s̄

)
= P

(
ξ̄ = s̄

∣∣ ℓ(ξ̄) = n
)
, s̄ ∈ Zn

+, (1.2)

where ξj , j ≥ 1, are mutually independent Poisson random variables (r.vs) defined in some prob-

ability space (Ω,F, P ) with parameters Eξj = 1/j and ξ̄ = (ξ1, . . . , ξn). The latter is called the

conditioning relation. It implies the fact that the process of cycle counts converges in distribution

to a Poisson process on N with intensity j−1, namely,

(k1(σ), k2(σ), . . . ) d⇒ (ξ1, ξ2, . . . )

Analyzing the statistics w(σ), he found asymptotical values for the mathematical expectation and

the variance:

Enw(σ) = logn+ γ + o(1)

and

Varnw(σ) =
√

logn−
(
π2

12
− γ

2

)
1√

logn
+ o

(
1√

logn

)
,

where γ is Euler’s constant. His central limit theorem gave birth to a new direction of combinatorics.

Goncharov’s theorem. We have(
w(σ) − logn

)
/
√

logn d⇒ N (0, 1).

Here and in what follows N (0, 1) stands for the standard normal r.v.

In the fifties of the last century, P. Erdős and P. Turán did the next step in developing the

random permutation theory. Their target was the group theoretical order Ord(σ), σ ∈ Sn, being

the least natural number m such that σm is the identical permutation. We stress here that an

approximation of log Ord(σ) by the function∑
j≤n

(log j)kj(σ)

for almost all σ ∈ Sn plays a central role in their proofs. Appropriately normalized the latter function

also obeys the normal law. To the historical account on the Erdős - Turán problem presented in

the book [2] one must add the most important latest contribution belonging to V. Zacharovas ([87],

[89]).

S.W. Golomb in [25] (and also collaborating with other authors [26]) found the mean value of the

maximal cycle length in a random permutation. In 1966 L.A. Shepp and S.P. Lloyd [71] initiated

investigations of the order statistics

j1(σ) ≥ j2(σ) ≥ . . . ,

where jr(σ) is the rth length of a cycle appearing in σ. The authors established asymptotic formulas

for the Enjr(σ)m as well as that for the rth shortest cycle length, where r = 1, 2, · · · . They also

obtained the limiting distribution for the lengths. Together with the generating functions, they

use Tauberian theorems. This direction stands a bit further from our interests; therefore, we just

mention that nowadays [2] this is contained in the relation

n−1(j1(σ), j2(σ), . . .
) d⇒ L := (L1, L2, . . . ),

14



where L has the Poisson-Dirichlet distribution PD(1) concentrated on the simplex {(x1 ≥ x2 ≥

· · · ) ∈ [0, 1]∞ : x1 + x2 + · · · ≤ 1}.

W. Feller [22] succeeded in defining a random permutation in a sufficiently rich abstract proba-

bility space. This became the start of the coupling method. The idea was taken into use by A. Rènyi

[69]) who established Goncharov’s theorem by using a Bernoulli representation of kj(σ), j ≤ n, and

applying the Lindeberg-Feller central limit theorem for independent r.vs.

Dealing with random permutations, V.F. Kolchin (1971, [35]; 1986, [36]) proposed to use a

representation in terms of random allocations of particles into cells. In a book [38] there is found

an approximation of the distribution of partial sum

a1k1(σ) + · · · + arkr(σ), (1.3)

by the sum a1ξ1 + · · · + arξr, where aj , j ≤ r ≪ n/ logn, are arbitrary. Actually, this begins

investigations of completely additive functions on permutations. On the other hand, the condition

r ≪ n/ logn makes their result trivial from the point of view of contemporary theory, where r =

o(n) is achieved. The results obtained by Russian authors V.F. Kolchin, B.A. Sevastyanov, V.P.

Chistyakov and others were summarized in the books ([36] - [38]). It were P. Diaconis and J.W.

Pitman (1986, unpublished) and A.D. Barbour [6] who showed that the total variation distance

between the distributions of the vectors k̄r(σ) := (k1(σ), . . . , kr(σ)) and ξ̄r = (ξ1, . . . , ξr) is

ρT V

(
L(k̄r(σ)),L(ξ̄r)

)
≪ r

n
, 1 ≤ r ≤ n.

This extends the above mentioned approximation of (1.3) up to the optimal value r = o(n).

Several papers were devoted to the local limit laws. We just mention the pioneering paper

by L. Moser and M. Wyman (1958, [64]), who dealt with the Stirling numbers of the first kind,

namely, with the frequencies |s(n, k)| = n!νn(w(σ) = k). For a more systematic and deep treatment

including asymptotic expansions and the large deviation probabilities in the local laws, we refer to

H.-K. Hwang’s papers (see, for instance, [32], [33]).

In 1996 E. Manstavičius [45] started to examine integral asymptotic laws of real valued additive

functions. By definition, a function h : Sn → R defined by

h(σ) =
n∑

j=1
ajkj(σ), σ ∈ Sn, (1.4)

where aj ∈ R is called a completely additive function. The number of cycles w(σ) is the simplest

example of such functions. Allowing dependence on n, which will be indicated by the extra index

n, we have sequences of functions. The problem explored in [45] can be formulated as follows:

Under which necessary and sufficient conditions the frequencies νn(hn(σ) − A(n) < x) for some

centralizing sequence A(n) converge weakly to a limit distribution law.

E. Manstavičius [45] found general sufficient convergence conditions to infinitely divisible limit

laws and presented instances when the limit laws lay outside this class. The later published book

[2] contained a chapter dealing only with limit laws having finite the second moments. It is also

notable, that a new analytic method adopting many ideas, which had been proved to be useful in

probabilistic number theory, is developed in the paper [45]. Nowadays, we have a complete answer
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to the formulated problem in the case of the degenerate at the zero point limit law (see [59]) and

if hn(σ) = h(σ)/β(n), where β(n) → ∞ and is slowly oscillating at infinity (see [62]). In its full

generality, the problem is still open.

The motivation to examine general additive functions is not just a desire to generalize the

mentioned Goncharov, Erdős - Turán, Kolchin - Chistyakov theorems. In recent years, even a

stronger need came from investigations of random permutation matrices. Let M := M(σ) :=(
1{i = σ(j)}

)
, 1 ≤ i, j ≤ n and σ ∈ S, be such a matrix taken uniformly, e.i. with the frequency

νn({M}) = νn({σ}) = 1/n!,

Zn(x;σ) := det
(
I − xM(σ)

)
=
∏
j≤n

(1 − xj)kj(σ), (1.5)

be its characteristic polynomial, and let e2πiφj(σ), where φj(σ) ∈ [0, 1) and j ≤ n be its eigenvalues.

The papers by K. Wieand ([84], [85]) and many other authors (see [29], [91]) or many preprints put

in the AMS arXiv (see, for instance, [4] and [34] and the references therein) concern log |Zn(x;σ)|,

ℑ logZn(x;σ) or the linear statistics

Trf(σ) :=
∑
j≤n

f
(
φj(σ)

)
=
∑
j≤n

kj(σ)
∑

0≤s≤j−1

f
(s
j

)
,

where f : [0, 1] → R is a sufficiently smooth function. The last relation, easily seen from (1.5),

is present in [4]. A great portion of the newly announced results fall within the scope of the

above formulated problem. Nevertheless, the authors seldom observe this and prefer to rediscover

properties of the particular statistics.

The recent research of random permutation matrices confirmed the necessity to develop the value

distribution theory of additive functions with respect to weighted measures defined in the symmetric

group. The Ewens probability measure become the most popular among them. Our dissertation is

completely devoted to this objective. Let us add some new definitions.

Let θ > 0 be a fixed parameter. The Ewens probability measure (EPM) on the subsets of Sn is

defined by

νn,θ(A) = 1
θ(n)

∑
σ∈A

θw(σ), A ⊂ Sn,

where x(n) := x(x+ 1) · · · (x+ n− 1) and x(0) = 1 denotes the increasing factorial. For the class of

permutations with the common cycle vector s̄, we have

νn,θ(k̄(σ) = s̄) := 1
{
ℓ(s̄) = n

} n!
θ(n)

n∏
j=1

(
θ

j

)sj 1
sj !
. (1.6)

We stress that the quantity on the right-hand side is the probability ascribed by J.W. Ewens (1972,

[20]) to a vector from the set ℓ−1(n) := {s̄ ∈ Zn
+ : ℓ(s̄) = n}. In other words, he defined the

distribution:

Pn,θ({s̄}) := n!
θ(n)

n∏
j=1

(
θ

j

)sj 1
sj !
, s̄ ∈ ℓ−1(n), (1.7)

which nowadays is known as the Ewens Sampling Formula (ESF). He introduced it in the context

of population genetics to model mutation of a population. The parameter θ then served for the
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mutation rate. The ESF relates the random permutation theory under the EPM with statistical

problems. For a comprehensive account of the latter we refer to book [21].

The connection highly motivated the increasing interest to the value distribution problems in

Sn with respect to the EPM. Check that, similar to the particular case θ = 1, we have [2]

(k1(σ), . . . , kn(σ), 0, . . .) νn,θ⇒ (ξ1, . . . , ξn, ξn+1, . . .).

Here and since now ξj , j ≥ 1, are independent Poisson r.vs. given on some probability space

{Ω, F, P} with Eξj = θ/j. The conditioning relation (1.2) and the total variation distance estimate

remain to hold.

We also observe that an easy combinatorial argument (see [2]) gives the distribution of the cycle

vector and the coincidence:

νn,θ

(
k̄(σ) = s̄

)
= Pn,θ({s̄}),

if s̄ ∈ Ω(n). Thus, dealing with statistics of random permutations expressed via k̄(σ), we may

examine corresponding statistics of random vectors s̄ ∈ Ω(n) = ℓ−1(n) taken with probabilities

(1.7).

The importance of distributions with respect to the EPM on permutations increased after they

had been employed to approximate distributions defined on more general decomposable structures

belonging to the so-called logarithmic class (see [2]). Distribution of additive functions with respect

to EPM was investigated by analytic and probabilistic methods. For instance, deep asymptotic

analysis of the convergence rate in the central limit theorem was done by V. Zacharovas ([87], [89],

[90]). J. Norkūnienė developed strong convergence concept by proving the laws of iterated logarithm

including their functional Strassen versions ([65] - [68]).

Let us discuss the results containing necessary and sufficient convergence conditions. The first

milestone was reached by G.J. Babu and E. Manstavičius [7] in functional limit theorems. They

caught an idea to model the Brownian motion (denoted by W ) by means of the truncated additive

functions going back even to probabilistic number theory (see [40], [43], [44]). Before them, the

number-of-cycles function w(σ) was used by J.M. DeLaurentis and B.G. Pittel [16] in the case θ = 1

and, for arbitrary θ by J.C. Hansen [30], P. Donnelly et al. [17], and R. Arratia and S. Tavaré [3].

We now formulate the result from [7] for general additive functions. Define

Hn := Hn(σ, t) = 1
B(n)

( ∑
j≤y(t)

hj(kj(σ)) −A(y(t))
)
,

where

A(u) :=
∑
j≤u

a(j)
j
θ , B2(u) :=

∑
j≤u

a(j)2

j
θ ,

hj(1) =: aj , and

y(t) := yn(t) = max{u ≤ n : B2(u) ≤ tB2(n)}, t ∈ [0, 1].

Consider the weak convergence (denoted also by ⇒) of the process Hn in the space D[0, 1] equipped

with the supremum norm. Equivalently, one could also examine a linearized version of the process

Hn and deal only with elements of the space C[0, 1].
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Theorem BM. Let h(σ) be a real additive function, hj(1) = a(j), B(n) → ∞. For the weak

convergence

νn,θ ·H−1
n ⇒ W

to hold it is necessary and sufficient that, for each ε > 0,

1
B2(n)

∑
j≤n

a(j)2

j
1{|a(j)| ≥ εB(n)} = o(1). (1.8)

Unfortunately, the Lindeberg-Feller type condition (1.8) is not necessary for the one-dimensional

limit result νn,θ ·Hn(·, 1)−1 ⇒ N (0, 1). The further investigations carried out by these authors estab-

lished necessary and sufficient conditions for the convergence in D[0, 1] equipped with Skorokhod’s

topology to processes with independent increments including stable processes (see [8] - [10] or [15]

and the references therein). The paper [52] solves the problem for sequences of additive functions

if θ = 1. In this case, the sufficiency part sometimes intersects with our results but our approach

is different. Let us stress that the convergence of distributions of processes Hn(σ, t), 0 ≤ t ≤ 1,

contains much more information than that of Hn(σ, 1) and this has been exploited in proving the

necessity of conditions.

The second idea to prove necessity of the convergence conditions also came from probabilistic

number theory. It was J. Šiaulys who, in a series of papers (see [73] - [78]) dealing with number-

theoretic functions, observed that convergence of power or factorial moments hide the needed piece

of information. The idea was further developed by him jointly with G. Stepanauskas in [79] - [83].

E. Manstavičius succeeded in adopting this for random permutations taken with equal probabilities

([55], [56], [59]). The main purpose of our work is to develop this approach in Sn under the EPM.
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1.10 Main results of the thesis

In the first two parts of dissertation we have laid out the results which are more auxiliary for our

further proofs and main problems tackling. The first section is devoted to the moments. General

expressions and estimates of power and factorial moments of completely and strongly additive

functions with aj ∈ R are obtained in it. We present here only main formulae of the moments

to make an impression of their complexity. Let En,θ stand for expectation with respect to νn,θ.

Further, where this is not specified, n, r1, r2, ... ∈ N and 1 ≤ j1, j2, . . . ≤ n. We have

En,θh(σ)k = β̂nk,θ :=
k∑

u=1
θu

∑
r1+···+ru=k

(
k − 1
r1 − 1

)
· · ·
(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju≤n

ar1
j1

· · · aru
ju

j1 · · · ju
ψn(n− j1 − · · · − ju), (1.9)

where

ψn(l) := n!
θ(n)

θ(l)

l!
.

Analogically, an expression of factorial moment γ̂nk,θ := En,θh(σ)(k) is obtained. The formula

contains just aj1(r1) · · · aju(ru) instead of the product ar1
j1

· · · aru
ju

. Here and afterwards x(m) :=

x(x− 1) . . . (x−m+ 1), denotes the falling factorial. So, if aj ∈ {0, 1} for j ≤ n, then

γ̂nk,θ := θk
∗∑

j1≤n

1
j1
. . .

∗∑
jk≤n

1
jk

1{j1 + · · · + jk ≤ n}ψn(n− j1 − · · · − jk), (1.10)

where k ∈ N and the (∗) over the sums replaces the condition aj = 1.

The purpose of the second thesis section is to obtain lower bounds for mean values of the

multiplicative functions defined on additive semigroup Zn
+ with respect to the ESF. They imply

useful estimates of probabilities of random permutations missing some cycles. The results are

analogues to that obtained by P. Erdős, I.Z. Ruzsa [18], and K. Alladi [1] for the number theoretical

functions. So, implementing the already mentioned idea, instead of permutations, we now deal

with random vectors. The main advantage of such imbedding is the fact that Zn
+ has an additive

semigroup structure as well as the partial order defined by s̄ = (s1, . . . , sn) ≤ t̄ = (t1, . . . , tn)

meaning that sj ≤ tj for each 1 ≤ j ≤ n. Moreover, we may exploit the geometry of semi-

lattice Zn
+, say, by introducing the orthogonality of s̄, t̄ ∈ Zn

+, denoted by s̄ ⊥ t̄ and meaning that

s1t1+· · ·+sntn = 0. In this way, we come closer to probabilistic number theory dealing with random

numbers taken from the multiplicative semigroup N (see [40]) having the partial order defined by

division. The semigroup structures and the partial orders in Zn
+ and N play the crucial role in

developing parallel theories. Developing this, we obtained the lower estimates of the mean values

of multiplicative functions related to the so-called small sieve problem in number theory.

Let us recall necessary definitions. A mapping G : Zn
+ → C, G(0̄) = 1, is called a multiplicative

function if G(s̄ + t̄) = G(s̄)G(t̄) for every pair s̄, t̄ ∈ Zn
+ such that s̄ ⊥ t̄. If ēj := (0, . . . , 1, . . . , 0),

where the only 1 stands at the jth place, then the multiplicative function G has the decomposition

G(k̄) =
∏
j≤n

G(kj ēj) =:
∏
j≤n

gj(kj).
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Conversely, given a complex two-dimensional array {gj(k)}, 1 ≤ j ≤ n, k ≥ 0, satisfying the

condition gj(0) ≡ 1, by the last equality, we can define a multiplicative function. If gj(k) =

gj(1) =: gj for all k ≥ 1 and j ≤ n, the function G is called strongly multiplicative and, similarly,

if gj(k) = gk
j and 00 := 1, then G is called completely multiplicative. Denote, respectively, by M,

Ms, and Mc the sets of just introduced multiplicative functions. Observe that if G ∈ Mc and

gj ∈ {0, 1}, then G ∈ Ms and, conversely, the latter together with gj ∈ {0, 1} implies G ∈ Mc. The

multiplicative function

Π(k̄) :=
∏
j≤n

(
θ

j

)kj 1
kj
,

depending on θ, plays a special role in the sequel.

If G ∈ M, then its mean value with respect to Pn,θ is

Mn,θ(G) :=
∑

k̄∈Ω(n)

G(k̄)Pn,θ(k̄) = n!
θ(n)

∑
k̄∈Ω(n)

∏
j≤n

(θ
j

)kj gj(kj)
kj !

= n!
θ(n) [xn]Zθ(x;G), (1.11)

where

Zθ(x;G) =
∏
j≥1

(
1 +

∑
r≥1

(θ
j

)r gj(r)
r!

xjr

)
and [xn]Z(x) denotes the nth coefficient of the formal power series Z(x). We also assume that

M0,θ(G) ≡ 1 for every G ∈ M.

Our interest is in estimates of Mn,θ(G) holding uniformly in G belonging to some subclass of

G ∈ M. If G ∈ Mc and 0 < θ− ≤ gj ≤ θ+ < ∞ for all j ≤ n, then according to the E. Manstavičius

paper [51], we have an asymptotic

Mn,1(G) ≍ exp
{∑

j≤n

gj − 1
j

}
, n ≥ 1. (1.12)

The involved constants in (1.12) depend on θ− and θ+. Afterwards, the constants in these symbols

will be dependent at most on θ.

We observe that, if G(k̄) takes the zero value rather often, the lower estimation of Mn,1(G)

becomes rather involved and, in general, the lower bound as it is stated in (1.12) is false. A

satisfactory result was achieved by E. Manstavičius only for G(k̄) ∈ {0, 1} (see [48] and [50]). Our

results extended them.

We started from an easier problem of estimation the averaged mean values

M̃n,θ(G) := 1
Γn,θ

∑
0≤m≤n

θ(m)

m!
Mm,θ(G), (1.13)

where

Γn,θ :=
∑

0≤m≤n

θ(m)

m!
= nθ

Γ(θ + 1)

(
1 +O

( 1
n

))
, n ≥ 1, θ(0) = 1.

Theorem 1.1. Let θ > 0 and G ∈ Ms be defined via sequence 0 ≤ gj ≤ 1 where 1 ≤ j ≤ n. Then

M̃n,θ(G) ≍ exp
{
θ
∑
j≤n

gj − 1
j

}
.
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The main result of our investigation of the multiplicative function mean values is the following

theorem.

Theorem 1.2. Let θ ≥ 1 and G ∈ Ms be defined via sequence 0 ≤ gj ≤ 1 where 1 ≤ j ≤ n. If∑
j≤n

1 − gj

j
≤ K (1.14)

for some K > 0, then there exist positive constants c0 and c together with a function N : R+ → N

such that

Υ(K) := inf{Mn,θ(G) : n ≥ N (K)} ≥ c0 exp{−ecK}. (1.15)

In the following section of our dissertation we deal with the case when aj ∈ {0, 1}. Then the

functions hn(σ) defined via such aj express the number of cycles with restricted lengths. In this

case, we proved an exhaustive result.

Theorem 1.3. Let hn(σ) be a sequence of completely additive functions with aj ∈ {0, 1} and θ > 0.

The frequencies Vn,θ(x) := νn,θ(hn(σ) < x) converge weakly to a limit law if and only if there exist

finite limits

lim
n→∞

γ̂nm,θ =: γ̂m,θ (1.16)

for every m ∈ N. Moreover, if (1.16) is satisfied, the characteristic function of the limit distribution

is

1 +
∞∑

m=1

γ̂m,θ

m!
(eit − 1)m

, t ∈ R.

General results in the case when θ = 1 were obtained by E. Manstavičius in papers [45], [55],

[56]. The author analyzes the convergence to non-degenerate laws including the Poisson one. In

particular, he established necessary and sufficient conditions under which Vn,1(x) converges. It is

worth to note that sufficient conditions for the existence of an infinitesimal limit law for Vn,1(x)

follow also from the functional limit theorem for partial sum processes defined via sequences of

truncated additive functions (see [52]). If θ = 1, our approach also yields the moments of the limit

law.

The methodology applied in the discussed problem goes back to probabilistic number theory. It

is due to J. Šiaulys (see papers ([77], [78] and others) who examined the general weak convergence

conditions for analogues distributions of values of number-theoretic strongly additive functions.

In the fifth section, we establish a general weak law of large numbers without taking any a

fortiori assumption on the sequence anj . We find necessary and sufficient conditions under which

the frequencies Vn,θ(x) converge to the degenerated at the point zero limit law.

Then we recall the concept of the Lévy distance of the r.v. h(·) from the set of constants

L(h; νn,θ) := inf
{
ε+ νn,θ(|h(σ) − a| ≥ ε) : a ∈ R, ε > 0

}
.

Let u ∨ v := max{u, v}, u ∧ v := min{u, v} and as earlier u◦ := 1 ∧ |u| sgn u if u, v ∈ R,

Un(h, λ) :=
∑
j≤n

θ

j
(anj − λj)◦2ψn(n− j)
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and Un(h) = min{Un(h, λ) : λ ∈ R}. In the sequel, ≪ is used as an analog of O(·), moreover,

dependence on θ in the involved constants is allowed.

Theorem 1.4. If θ ≥ 1 and h(σ) is a completely additive function, then

L(h; νn,θ) ≤ 2
(
1 ∧ (2Un(h))1/3)

and

Un(h) ≪ (1/n) ∨ L(h; νn,θ)

for all n ≥ 1.

We now give the answer to the above question in the case of the degenerate limit distribution

modifying a bit the conditions of the theorem.

Corollary 1.1. Let θ ≥ 1 and hn(σ) be completely additive functions on Sn defined via {aj}, j ≤ n,

in (1.4). The distributions νn,θ

(
h(σ) − A(n) < x

)
converge to the degenerate law at the point zero

if and only if ∑
j<n

(aj − λj)◦2

j
ψn(n− j) = o(1)

for some λ = λn ∈ R and

A(n) = nλ+
∑
j<n

|aj −λj|<1

θ(aj − λj)
j

ψn(n− j) + o(1).

In 2005, professor E. Manstavičius, motivated by the impressive result of Ruzsa (see [70]) in

probabilistic number theory, proved these assertions for θ = 1. We succeeded to generalize them,

unfortunately, for θ ≥ 1 only. We do believe that the first claim of Theorem 1.4 can be extended

to general additive functions if θ > 0. For this, it would be sufficient to adopt technical ideas going

back also to a number-theoretic paper by A. Biró and T. Szamuely [14]. On the other hand, there

exists an indirect possibility to obtain the upper estimates based upon the inequality

νn,θ

(
|h(σ) − a| ≥ u

)
≪ P 1∧θP

(
|X1 + · · · +Xn ≥ u/3

)
+ 1{θ < 1}n−θ,

where a ∈ R and u ≥ 0 are arbitrary, proved by E. Manstavičius jointly with G.J. Babu [7]. In the

case θ < 1, an appropriate estimate for these independent r.vs yields the upper bound for L(h, νn,θ).

Denote

Ũn(h, λ) := min
λ∈R

∑
jk≤n

(hj(k) − λjk)◦2

jkk!
, θ < 1.

Theorem 1.5. Let θ < 1 and h(σ) be an additive function on Sn. We have

L(h; νn) ≪ Ũθ/(2θ+1)
n (h) + n−θ. (1.17)

In theorems 1.3 and 1.5, one can observe some relation between limit theorems for additive

functions on the symmetric group Sn and those for sums of independent r.s. Obtaining necessary
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and sufficient conditions for the weak convergence of Vn,θ(x) to a non-degenerate limit law, will likely

be more difficult; nevertheless, we demonstrate some achievement in this direction in Section 6 of

our thesis. We now examine the weak convergence of distributions of completely additive functions

with aj ∈ Z to the Poisson limit law.

Let introduce some notation before. Set

aj(m) =


aj if 0 ≤ aj ≤ m,

m if aj > m,

0 if aj < 0

(1.18)

and denote truncated completely additive functions

h(σ;m) :=
n∑

j=1
aj(m)kj(σ).

The principal result of this section is the following theorem.

Theorem 1.6. Let hn(σ) be a sequence of completely additive functions with {aj} ∈ Z, j ≤ n and

θ ≥ 1. The frequencies Vn,θ(x) converge weakly to the Poisson limit law with parameter µ > 0 if

and only if

(i)
∑
j≤n

aj ≤−1

θ

j
ψn(n− j) = o(1), (1.19)

(ii) lim
m→∞

lim sup
n→∞

Enhn(σ;m)(l) = lim
m→∞

lim inf
n→∞

Enhn(σ;m)(l) = µl, (1.20)

for each fixed l ∈ N.

The first attempt to investigate the case when the Poisson limit law with parameter µ > 0 appears

in Vn,1(x) was made by E. Manstavičius. Based on a few ideas originated in probabilistic number

theory, especially upon those proposed by J. Šiaulys ([73] - [76]), he discovered an unexpected

phenomenon (see Theorem 3, [59]), that the influence of long cycles must be negligible and this

implies that counting the cycles with lengths in [εn, n] we can not obtain the Poisson law if anj ∈

{0, 1}. If aj are unbounded, the situation is different. In this regard, we include an example

generalizing that of E. Manstavičius given in his paper [52].

Proposition 1. Let θ ≥ 1, µ ≤ − log(1 − vθ(1)), where

vθ(x) := θ

∫ x

1/2
(1 − u)θ−1 du

u
.

Introduce the sequence 1/2 = d0 < d1 < · · · by

vθ(dm) = e−µ
m∑

k=1

µk

k!
, m ∈ N

and set aj = m if ndm−1 < j ≤ ndm and aj = 0 otherwise. If hn(σ) is a sequence of completely

additive functions defined via these aj, then it posses the Poisson limit law with parameter µ.

As we have mentioned earlier, the flow of new papers and even announcements of already known

results in the field does not stop. We present the next instant related to quasi-Poisson distribution.
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M. Lugo in his paper [42], analyzing the case for θ = 1, rediscovers (the results is contained in [55])

the limiting distribution of the number of cycles of length between γn and δn in a permutation

of order n chosen uniformly at random, for constants γ, δ such that 1/(k + 1) ≤ γ < δ ≤ 1/k for

k ∈ Z. This distribution is supported on {0, 1, . . . , k} and has k moments equal to those of a Poisson

distribution with parameter log δ/γ. In case of the Ewens distribution with θ ̸= 1, M. Lugo raised

the following conjecture.

Conjecture 15[42]. The expected number of cycles of length in [γn, δn] of a permutation of

order n chosen from the Ewens distribution approaches

λ =
∫ δ

γ

1
x

(1 − x)θ−1dx

as n → ∞. Furthermore, in the case where 1/(k+ 1) ≤ γ < δ < 1/k for some positive integer k, the

distribution of the number of cycles converges in distribution to quasi-Poisson(k, λ).

Recall, that a r.v. X has a quasi-Poisson (r, λ), r ∈ N, λ ∈ (0, 1], distribution if EX(k) = λk for

k = 0, 1, . . . , r and X is supported on {0, 1, . . . , r}.

According to our calculations in subsection 7.2, the announced formula for the mean value lacks

the factor θ on the right-hand side. It is much more important, that the limit distribution in the

conjecture is mistaken if θ ̸= 1. It does exist but is not a quasi-Poisson.

The last section of our dissertation is devoted to exploring of other distributions, apart those

we mentioned above, which can appear as limits in Theorem 1.3. We reckon just a few cases. The

factorial moments of a limit distribution satisfy the inequality γ̂k,θ ≤ γ̂k
1,θ, for each k ∈ N. By this

reason, a mixture of Poisson distribution, binomial and geometrical do not belong to the limiting

class. Actually, we owe to J. Šiaulys and G. Stepanauskas [82] who has observed and applied this

simple criteria in number theory.
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2 Moments

In this section, we present exact and asymptotic formulae of power and factorial moments for a

completely additive function h(σ) defined in (1.4) via aj ∈ R, 1 ≤ j ≤ n, with respect to the Ewens

probability measure νn := νn,θ, where θ > 0. The relevant expectation will be denoted by En.

Similarly, in the estimates below, the dependence on θ is allowed but not additionally indicated.

In the sequel, a ≪ b is an analog of a = O(b), the symbol ≍ means that a ≪ b and b ≪ a, where

a, b ∈ R.

Throughout the thesis, we will often apply the following well known asymptotic formulas:

θ(n)

n!
= nθ−1

Γ(θ)

(
1 +O

(
1
n

))
, n ∈ N, (2.1)

and

ψn(n−m) := n!
θ(n)

θ(n−m)

(n−m)!
≍
(

1 − m

n+ 1

)θ−1

, (2.2)

where 0 ≤ m ≤ n.

We will need the following formal equality for the mean value with respect to νn,1 of a completely

multiplicative function

f(σ) :=
∏
j≤n

b
kj(σ)
j , bj ∈ C, 00 := 1,

Lemma 2.1. We have the following formal power series equality
∞∑

n=0

1
n!

{ ∑
σ∈Sn

f(σ)
}
yn = exp

{ ∞∑
j=1

bj

j
yj

}
. (2.3)

It is worth to recall the proof. By Cauchy’s formula, if s̄ = (s1, . . . , sn) ∈ Zn
+ and ℓ(s̄) = n, then

∣∣{σ ∈ Sn : k̄(σ) = s̄}
∣∣ = n!

∏
j≤n

(
1
j

)sj 1
sj !
.

Hence grouping over classes of permutations with the common cycle vector s̄, we obtain

∑
σ∈Sn

f(σ) = n!
∑

ℓ(s̄)=n

n∏
j=1

(
bj

j

)sj 1
sj !
.

Here and afterwards in such sums, the summation is extended over vectors s̄ satisfying the equality

ℓ(s̄) = n. To verify (2.3), it suffices now to compare the coefficients in it at yn and apply the last

equality.

The lemma is proved.
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2.1 Power moments

In this subsection we present exact expressions of the moments of completely additive functions

h(σ) with aj ∈ R.

Denote

β̂nk :=
k∑

u=1
θu

∑
r1+···+ru=k

(
k − 1
r1 − 1

)
· · ·
(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju≤n

ar1
j1

· · · aru
ju

j1 · · · ju
ψn(n− j1 − · · · − jk). (2.4)

Theorem 2.1. For a completely additive function h(σ) = a1k1(σ)+ · · ·+ankn(σ) and every k ∈ N,

we have

Enh(σ)k = β̂nk, (2.5)

where θ > 0.

Proof. We first prove a recurrence relation for βnk :=
(
θ(n)/n!

)
β̂nk. Set βn0 = θ(n)/n! if n ≥ 0.

Moreover, let β0k = 0 if k ≥ 1. Further, let φ0(z) = 1 and

φn(z) = θ(n)

n!
En,θezh(σ)

for z ∈ C. Thus, φ(k)
n (z)|z=0 = βnk.

We have

φn(z) =
∑

σ∈Sn

n∏
j=1

(
θezaj

j

)kj 1
kj !

, z ∈ C.

This leads to the following formal series equalities from Lemma 2.1:∑
n≥0

φn(z)wn = exp
{
θ
∑
j≥1

ezaj

j
wj

}
and ∑

n≥0

φ′
n(z)wn = θ

∑
m≥0

φm(z)wm ·
∑
j≥1

ajezaj

j
wj = θ

∑
n≥0

(∑
j≤n

φn−j(z)ajezaj

j

)
wn.

Hence

φ′
n(z) = θ

∑
j≤n

φn−j(z)ajezaj

j
.

Taking the derivatives with respect to z of the (k − 1)th order, we arrive at

φ(k)
n (z) = θ

∑
j≤n

k−1∑
l=0

(
k − 1
l

)
al+1

j ezaj

j
φ

(k−1−l)
n−j (z).

Consequently,

βnk = θ

k−1∑
r=1

(
k − 1
r − 1

)∑
j≤n

ar
j

j
βn−j,k−r + θ

∑
j≤n

ak
j

j

θ(n−j)

(n− j)!
. (2.6)
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We now apply the mathematical induction. A direct application of (2.4), multiplied by θ(n)/n! with

k = 1 yields

βn1 = θ
∑
j≤n

aj

j

θ(n−j)

(n− j)!
.

Assume that the induction hypothesis (2.4) holds for βn−j,k−r if k−r ≥ 1. Applying this formula

we use the summation indexes r2, . . . and j2, . . . leaving r1 and j1 for the summation in (2.6) with

respect to r and j. So, inserting the assumption into (2.6), we obtain

βnk = θ
k−1∑
r1=1

(
k − 1
r1 − 1

) ∑
j1≤n

ar1
j1

j1

×
k−r1+1∑

u=2
θu−1

∑
r2+···+ru=k−r1

(
k − r1 − 1
r2 − 1

)
· · ·
(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j2+···+ju≤n−j1

ar2
j2

· · · aru
ju

j2 · · · ju

θ(n−j1−···−ju)

(n− j1 − · · · − ju)!
+ θ

n∑
j=1

ak
j

j

θ(n−j)

(n− j)!
.

Interchanging the summation, we arrive at

βnk =
k∑

u=2
θu

∑
r1+···+ru=k

(
k − 1
r1 − 1

)
· · ·
(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju≤n

ar1
j1

· · · aru
ju

j1 · · · ju

θ(n−j1−···−ju)

(n− j1 − · · · − ju)!
+ θ

n∑
j=1

ak
j

j

θ(n−j)

(n− j)!
.

The last sum equals the summand corresponding to u = 1 in the previous sum over u. Joining them

together and multiplying by θ(n)/n!, we obtain (2.5).

The theorem is proved.

A general formula for power moments of an additive function

t(σ) :=
n∑

j=1
tj(kj(σ)),

where tj(k) ∈ R and tj(0) ≡ 0 for 1 ≤ j ≤ n and k ≥ 0 is rather involved. To demonstrate the

complexity, we include also the case of strongly additive functions, which are defined as t(σ) =∑n
j=1 aj1{kj(σ) ≥ 1}, where aj ∈ R. Let us denote:

αnl := n!
θ(n)

l∑
r=1

l!
r!

∑
s1,...,sr≥1

s1+···+sr=l

1
s1! . . . sr!

∑
j1,...,jr≤n

jς ̸=jτ ,1≤ς ̸=τ≤r

as1
nj1

. . . asr
njr

×
r∏

i=1

θ

ji

∑
1z1+···+(n−ℓ(ē))zn−ℓ(ē)=n−ℓ(ē)

zj ≥0,1≤j≤n−ℓ(ē)

∏
i≤n−ℓ(ē)

(
θ

i

)zi 1
zi!

r∏
i=1

ji≤n−ℓ(ē)

1
zi + 1

, (2.7)

where the vector ē = (ej , . . . , en) is defined

ej =

1 if j = j1, . . . , jr,

0 otherwise

(2.8)

Lemma 2.2. Let t(σ) be a strongly additive function, θ > 0, and let αnl be defined above. Then

Ent(σ)l = αnl, (2.9)

for all n ∈ N.
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Proof.

Ent(σ)l = En

( n∑
j=1

aj1{kj(σ) ≥ 1}
)l

=
∑

j1,...,jl≤n

aj1 . . . ajl

×En

(
1{kj1(σ) ≥ 1} . . .1{kjl

(σ) ≥ 1}
)

=
l∑

r=1

l!
r!

·
∑

s1,...,sr≥1
s1+···+sr=l

1
s1! . . . sr!

·
∑

j1≤n

as1
j1

∑
j2≤n
j2 ̸=j1

as2
j2
. . .

∑
jr≤n

jr ̸=j1,...jr−1

asr
njr

×En

(
1{kj1(σ) ≥ 1} · · · 1{kjr (σ) ≥ 1}

)
.

To calculate En

(
1{kj1(σ) ≥ 1} . . .1{kjr (σ) ≥ 1}

)
with pairwise different j1, · · · , jr, we use the

vector ē = (e1, . . . , en), defined in (2.8).

If the vector k̄(σ) is a sum k̄(σ) = ē+ q̄(σ), then by the conditioning relation

En

(
1{kj1(σ) ≥ 1} . . .1{kjr (σ) ≥ 1}

)
= νn({σ ∈ Sn : kj1(σ), . . . , kjr (σ) ≥ 1})

= νn

(
{σ ∈ Sn, ℓ(k̄(σ)) = ℓ(ē) + ℓ(q̄(σ))}

)
= P (ℓ(ξ̄) = ℓ(ē) + ℓ(η̄)|ℓ(ξ̄) = n),

where η̄ = (η1, . . . , ηn) is the random vector with independent coordinates such that ηi = ξi for

i ̸= j1, . . . , jr and P (ηi = k) = P (ξi = k − 1).

Earlier we obtained, that

p(n) := P

(
ℓ(ξ̄) = n

)
= exp

{
−
∑
i≤n

θ

i

}
θ(n)

n!
.

So

P (ℓ(ξ̄) = ℓ(ē) + ℓ(η̄)|ℓ(ξ̄) = n) = p(n)−1 · P (ℓ(ξ̄) = l(ē) + ℓ(η̄), ℓ(ξ̄) = n)

= p(n)−1 · P (ℓ(η) = n− ℓ(ē)) =: p(n)−1 · P ′.

Next, if u := n− l(ē),

P ′ =
∏

u<i≤n

P (ηi = 0)P
(∑

i≤u

iηi = u

)
=

exp
{

− θ
∑

u<i≤n

1
i

}
· P
(∑

i≤u

iηi = u

)
=: exp

{
− θ

∑
u<i≤n

1
i

}
· P ′′.

Now

P ′′ =
∑

z1,...,zu≥0
1z1+···+uzu=u

∏
i≤n

P (ηi = zi)

=
∑

z1,...,zu≥0
1z1+···+uzu=u

exp
{

− θ
∑
i≤u

1
i

} r∏
i=1

ji≤u

(
θ

ji

)zi+1 1
(zi + 1)!

·
∏
i≤u

i ̸=j1,...,jr

(
θ

i

)zi 1
zi!
.

Continuing we obtain

νn({σ ∈ Sn : kj1(σ), . . . , kjr
(σ) ≥ 1}) = p(n)−1 exp

{
− θ

∑
i≤u

1
i

} r∏
i=1

θ

ji

×
∑

1z1+···+uzu=u
zj ≥0,1≤j≤u

∏
i≤u

(
θ

i

)zi 1
zi!

·
r∏

i=1
ji≤u

1
zi + 1

= n!
θ(n) ·

r∏
i=1

θ

ji
·

∑
1z1+···+uzu=u

zj ≥0,1≤j≤u

∏
i≤u

(
θ

i

)zi 1
zi!

·
r∏

i=1
ji≤u

1
zi + 1

.
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So the lth moment equals

Ent(σ)l = n!
θ(n)

l∑
r=1

l!
r!

∑
s1,...,sr≥1

s1+···+sr=l

1
s1! . . . sr!

∑
j1,...,jr≤n

jς ̸=jτ ,1≤ς,τ≤r

as1
j1
. . . asr

jr

×
r∏

i=1

θ

ji

∑
1z1+···+(n−ℓ(ē))zn−ℓ(ē)=n−ℓ(ē)

zj ≥0,1≤j≤n−ℓ(ē)

∏
i≤n−l(ē)

(
θ

i

)zi 1
zi!

·
r∏

i=1
ji≤n−ℓ(ē)

1
zi + 1

.

The Lemma is proved.

Further, in the following sections, we will need an estimate of the variance.

Varnh(σ) = Enh(σ)2 −
(
Enh(σ)

)2

with respect to the Ewens probability measure νn.

Lemma 2.3. If θ ≥ 1, then

Varnh(σ) ≤ 2θ
∑
j≤n

a2
j

j
ψn(n− j) =: 2B2

n(h). (2.10)

Proof. Let x+ denote the nonnegative part of x ∈ R and x− := x+ − x. The sequences {a+
j }

and {a−
j }, 1 ≤ j ≤ n, give the splitting h(σ) = h+(σ) − h−(σ), where h±(σ) are the completely

additive functions defined via a±
j respectively. Thus, by virtue of (x + y)2 ≤ 2x2 + 2y2, it suffices

to prove that Varnh(σ) ≤ B2
n(h) in the case aj ≥ 0 for all j ≤ n.

Lemma 2.4 yields

Enkj(σ) = θaj

j
ψn(n− j), Enh(σ) = θ

∑
j≤n

aj

j
ψn(n− j), (2.11)

and

Enh(σ)2 =
∑

i,j≤n

aiajEn

(
ki(σ)kj(σ)

)
=

∑
j≤n

a2
j

(
Enkj(σ) + Enkj(σ)(2)

)
+ θ2

∑
i+j≤n

i ̸=j

aiaj

ij
ψn(n− i− j)

= B2
n(h) +

∑
i+j≤n

aiaj

ij
ψn(n− i− j).

Hence

Varnh(σ) = B2
n(h) +

∑
i+j≤n

aiaj

ij

(
ψn(n− i− j) − ψn(n− i)ψn(n− j)

)
−
∑

i+j>n
i,j≤n

aiaj

ij
ψn(n− i)ψn(n− j)

for θ > 0.

If θ ≥ 1, we have ψn(n− i− j) ≤ ψn(n− i)ψn(n− j). Recalling that aj ≥ 0, j ≤ n, we can omit

negative terms and obtain the desired claim Varnh(σ) ≤ B2
n(h).

The lemma is proved.

Remark. It is worth to recall two results showing the quality of the constant in (2.10). Denote

τn(θ) = sup
{

Varnh(σ)
/
B2

n(h) : h(σ) ̸≡ 0
}
.

We have that τn(1) = 3/2 + O(n−1) and τn(2) = 4/3 + O(n−1) (see [57] and [63]).
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2.2 Factorial moments

In this subsection we present exact expressions of the factorial moments of completely additive

functions h(σ) with aj ∈ R. Particular attention is spared to the case with aj ∈ {0, 1} and their

approximations. We start with a lemma for mixed factorial moments of ki(σ) where 1 ≤ i ≤ r ≤ n.

Lemma 2.4. For (j1, · · · , jr) ∈ Zr
+, l = 1j1 + · · · + rjr and 1 ≤ r ≤ n,

En

{ r∏
i=1

ki(ji)(σ)
}

= ψn(n− l)1{l ≤ n}
r∏

i=1

(
θ

i

)ji

. (2.12)

Proof. This formula was established by Watterson (1974). See (5.6) on page 96 in [2].

Note in particular that, in (2.12),

r∏
i=1

(
θ

i

)ji

= E
r∏

i=1
(ξi)(ji),

where ξi is a Poisson r.v. with Eξi = θ/i, 1 ≤ i ≤ r.

In some applications, a general expression of factorial moments with aj ∈ R is more convenient

than that for power moments presented in Theorem 2.1. Denote

γ̂nk :=
k∑

u=1
θu

∑
r1+···+ru=k

(
k − 1
r1 − 1

)
· · ·
(
k − r1 − · · · − ru−1 − 1

ru − 1

)
×

∑
j1+···+ju≤n

aj1(r1) · · · aju(ru)

j1 · · · ju
ψn(n− j1 − · · · − jk) (2.13)

and

γnk := θ(n)

n!
γ̂nk. (2.14)

Theorem 2.2. For a completely additive function h(σ) = a1k1(σ)+ · · ·+ankn(σ) and every k ∈ N,

we have

Enh(σ)(k) = γ̂nk, (2.15)

where θ > 0.

Proof. Repeat the previous argument for

τn(z) := θ(n)

n!
Enz

hn(σ)

instead of φn(z) (see Theorem 2.1). We omit the further details but present an instant instead.

Corollary 2.1. Let θ > 0, k, n ∈ N and aj ∈ {0, 1}, then for a completely additive function h(σ),

we have

Enh(σ)(k) := θk
∗∑

j1≤n

1
j1

· · ·
∗∑

jk≤n

1
jk

1{j1 + · · · + jk ≤ n}ψn(n− j1 − · · · − jk). (2.16)

Proof. Simplify γ̂nk, using aj ∈ {0, 1}.
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Lemma 2.5. Let θ ≥ 1, h(σ) be a completely additive function with aj ∈ {0, 1} and let γ̂nm be

defined in (2.13) above. Then

γ̂nm ≤ γ̂m
n1. (2.17)

Proof. Firstly we observe that

1{j1 + · · · + jr + jr+1 + · · · + jk ≤ n}

≤ 1{j1 + . . .+ jr ≤ n}1{jr+1 + · · · + jk ≤ n},

where 1 ≤ r ≤ k − 1 and k ≥ 2. Having in mind that

ψn(r) :=
n∏

k=r+1

(
1 + θ − 1

k

)−1
≤ ψn(r)ψn(k − r) (2.18)

for θ ≥ 1, we obtain

γ̂nk ≤ γ̂nrγ̂n,k−r

for each 1 ≤ r ≤ k − 1 and k ≥ 2. Hence the estimate in (2.17) follows.

The lemma is proved.

Now we find the main asymptotical terms of the factorial moments of h(σ) with aj ∈ {0, 1} as

n → ∞.

Lemma 2.6. If θ > 0, k, n ∈ N and aj ∈ {0, 1}, then

Rnk := Enhn(σ)(k) − θk
∗∑

j1≤n

1
j1

· · ·
∗∑

jk≤n

1
{
j1 + · · · + jk < n

}
jk

(
1 − j1 + · · · + jk

n

)θ−1

≪ kn
−(1∧θ)(1 + logk n),

where 1 ∧ θ := min{1, θ}.

Proof. It suffices to deal with the case if θ ̸= 1 and n is sufficiently large. Separating the terms

with j1 + · · · + jk = n and using (2.1) twice, we obtain

Rnk ≪
∑

j1≤n

1
j1

· · ·
∑

jk≤n

1{j1 + · · · + jk < n}
jk

(
n− (j1 + · · · + jk)

)(1 − j1 + · · · + jk

n

)θ−1

+n1−θ
∑

j1≤n

1
j1

· · ·
∑

jk≤n

1{j1 + · · · + jk = n}
jk

=: R′
nk + rnk. (2.19)

Now, in the sums of second remainder, at least one ji ≥ n/k, 1 ≤ i ≤ k. Hence

rnk ≤ k2

nθ

∑
j1≤n

1
j1

· · ·
∑

jk−1≤n

1{j1 + · · · + jk−1 ≤ n− n/k}
jk−1

≤ k2

nθ

(∑
j≤n

1
j

)k−1

≪k
logk−1 n

nθ

for every k ≥ 1. This is better than the expected order.
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For brevity, introduce temporarily the notation J = j1 + · · · + jk and j = jk+1. We will apply

the mathematical induction for either of the sums in the splitting

R′
n,k+1 ≪

∑
j1≤n

1
j1

· · ·
∑

jk≤n

1{J < n}
jk

∑
j≤(n−J)/2

1
j

1
(n− J) − j

+
∑

j1≤n

1
j1

· · ·
∑

jk≤n

1{J < n}
jk

∑
(n−J)/2<j<n−J

1
j

1
(n− J) − j

(
1 − J + j

n

)θ−1

= : R̃′
n,k+1 + R̃′′

n,k+1.

Now,

R̃′
n1 + R̃′′

n1 =
∑

j≤n/2

1
j

1
n− j

+
∑

n/2<j<n

1
j

1
n− j

(
1 − j

n

)θ−1

≪ logn
n

+ 1
nθ

∑
n/2<j<n

(n− j)θ−2 ≪ logn
n

+ 1
n1∧θ

≪ logn
n1∧θ

Assuming that R̃′
nk ≪k (logk n)/n, we have

R̃′
n,k+1 ≪ R̃′

nk logn ≪k (logk+1 n)/n

in either of the cases θ < 1 or θ > 1. Further, if θ > 1, (1 − (J + j)/n)θ−1 ≤ 1; therefore, the same

induction argument can be applied to obtain

R̃′′
n,k+1 ≪ R̃′′

nk logn ≪k (logk+1 n)/n.

If θ < 1, it remains to consider the term R̃′′
n,k+1. Now

R̃′′
n,k+1 ≪

∑
j1≤n

1
j1

· · ·
∑

jk≤n

1{J < n}
jk(n− J)

∑
(n−J)/2<j<n−J

(
1 − J + j

n

)θ−1 1
(n− J) − j

≪k
1

nθ−1

∑
j1≤n

1
j1

· · ·
∑

jk≤n

1{J < n}
jk(n− J)

∑
1≤s<n

sθ−2 ≪ 1
nθ−1 · logk n

n
= logk n

nθ

since the last sum is bounded and the remaining iterated sum has been estimated before dealing

with R′
nk in the case θ > 1.

Collecting all the estimates we complete the proof of the lemma.

So, based on obtained approximation in Lemma 2.6, we can rewrite an expression of the factorial

moments (2.16) in a form:

γ̂nk = θk
∗∑

ji≤n

1≤i≤k

1{j1 + · · · + jk ≤ n}
j1 · · · jk

(
1 − j1 + · · · + jk

n+ 1

)θ−1

+Ok

(
logk n

n

)
, (2.20)

if n ≥ 2.
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3 Multiplicative functions on Zn
+

In this part of the dissertation we deal with multiplicative functions G : Zn
+ → C and their mean

values. We assume for simplicity that G ∈ Ms. Further in Corollaries 3.1 - 3.2 we demonstrate that

an extension to general multiplicative functions can be achieved by some convolution argument.

3.1 Mean values of multiplicative functions on Zn
+

3.1.1 Averaged mean values

In the following theorem, we have estimated the quantity M̃n,θ(G), which is just the mean value

of G with respect to the measure defined via P̃n,θ({s̄}) = Π(s̄)/Γn,θ and supported by the set

s̄ ∈ Zn
+ : 0 ≤ ℓ(s̄) ≤ n. To check this, it suffices to observe that sj = 0 if ℓ(s̄) < j ≤ n and apply an

appropriate combinatorial identity.

Theorem 1.1. Let θ > 0 and G ∈ Ms be defined via sequence 0 ≤ gj ≤ 1 where 1 ≤ j ≤ n. Then

M̃n,θ(G) ≍ exp
{
θ
∑
j≤n

gj − 1
j

}
.

Proof. Estimating from above, we examine an arbitrary G ∈ M such that 0 ≤ gj(k) ≤ 1 for

j, k ≥ 1 with gj := gj(1). Applying (1.11), we obtain

M̃n,θ(G) = 1
Γn,θ

∑
0≤m≤n

[xm]Z(x;G) ≤ 1
Γn,θ

∏
j≤n

(
1 +

∑
r≥1

(θ
j

)r gj(r)
r!

)
.

Since 0 ≤ G(s̄) ≤ 1, the infinite product∏
j≥1

(
1 +

∑
r≥1

(θ
j

)r gj(r)
r!

)
e−θgj/j

converges uniformly in G. Thus the previous estimate implies

M̃n,θ(G) ≪ 1
Γn,θ

exp
{
θ
∑
j≤n

gj

j

}
≪ exp

{
θ
∑
j≤n

gj − 1
j

}
as claimed.

To obtain the desired lower estimate, we define the Möbius function µ(k̄) on Zn
+ related to the

partial order defined by s̄ ≤ k̄ meaning that si ≤ ki for each i ≤ n. If k̄ = (k1, . . . , kn) ∈ Zn
+, then

we set

µ(k̄) =
∏
j≤n

µj(kj), where µj(k) =


1 if k = 0,

0 if k ≥ 2,

−1 if k = 1.

Given G ∈ Ms, we introduce its dual function G∗ ∈ Ms defined by g∗
j = 1−gj for each 1 ≤ j ≤ n.

Then

G∗(k̄) =
∑
t̄≤k̄

µ(t̄)G(t̄) =
∏
j≤n

kj ≥1

(1 − gj), G(k̄) =
∑
t̄≤k̄

µ(t̄)G∗(t̄).
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By (1.11),

Mm,θ(µ2) = m!
θ(m) [xm]

∏
j≥1

(
1 + θxj

j

)
.

Hence, as it has been shown in [51], Mm(µ2) ≍ 1 for m ≥ 0. This implies M̃n(µ2) ≍ 1 for n ≥ 1.

If ℓ(k̄) = m ≤ n and µ2(k̄) = 1, then t̄ ≤ k̄ implies t̄ ⊥ k̄ − t̄ =: s̄. Hence∑
t̄≤k̄

G(t̄)G∗(k̄ − t̄) =
∏
j≤n

kj =1

(gj + g∗
j ) = 1

and

Πn(k̄) = Πn(t̄+ s̄) = Πn(t̄)Πn(s̄).

Consequently,

1 ≪ M̃n,θ(µ2) = 1
Γn,θ

∑
ℓ(k̄)≤n

µ2(k̄)Π(k̄)
∑
t̄≤k̄

G(t̄)G∗(k̄ − t̄)

≤ 1
Γn,θ

∑
ℓ(t̄)≤n

G(t̄)Π(t̄) ×
∑

ℓ(s̄)≤n

µ2(s̄)G∗(s̄)Π(s̄)

= M̃n,θ(G)Γn,θM̃n,θ(G∗µ2) ≪ M̃n,θ(G) exp
{
θ
∑
j≤n

1 − gj

j

}
.

In the last step we applied already proved upper estimate.

The theorem is proved.

3.1.2 Lower estimate of mean values

The main result of multiplicative functions defined in (1.11) is the next theorem. It is very important

and often used as auxiliary in proofs of other theorems.

Theorem 1.2. Let θ ≥ 1 and G ∈ Ms be defined via sequence 0 ≤ gj ≤ 1 where 1 ≤ j ≤ n. If∑
j≤n

1 − gj

j
≤ K (3.1)

for some K > 0, then there exist absolute constants c0 and c together with a function N : R+ → N

such that

Υ(K) := inf{Mn,θ(G) : n ≥ N (K)} ≥ c0 exp{− expcK}. (3.2)

Before starting the proof of the theorem, we make a remark, that the lower bound for n, that

is, the use of n ≥ N (K) in (3.2) is unavoidable. Without such a bound, given K ≥ 1, one can

assure condition (3.1) for some function G ∈ Ms such that gj = 0 for each 1 ≤ j ≤ eK−1. Then

Mn(G) = 0 for each 1 ≤ n ≤ eK−1.

Proof. Let the truncated strongly multiplicative function Gr be defined from G ∈ Ms by

setting gj = 1 for each r ≤ j ≤ n, where 1 ≤ r ≤ n + 1. Then Gn+1 = G, and G1(k̄) ≡ 1. Apart

from the vectors ēj , we introduce ēr = (1, . . . , 1, 0, . . . 0) ∈ Zn
+, where the zeroes start at the r-th,
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r ≥ 1, place. By k̄ ∧ t̄ we denote the vector with the coordinates min{kj , tj} for all 1 ≤ j ≤ n.

Observe that

Gr(k̄) =
∑

t̄≤k̄∧ēr

µ(t̄)G∗(t̄).

If n/2 < j ≤ n and k̄ = ēj + t̄ ∈ Ω(n), then t̄ ∈ Ω(n− j), ēj ⊥ t̄, and

Pn,θ(k̄) = n!
θ(n) Π(ēj)Π(t̄) = n!

θ(n)
θ

j
Π(t̄). (3.3)

Now, if 1/n ≤ δ < 1/2 is arbitrary and r = m := [(1 − δ)n], then, summing over a part of vectors,

we obtain

Mn,θ(Gm) ≥
∑

ℓ(ēj +t̄)=n

m≤j≤n

Gm(ēj + t̄)Pn,θ(ēj + t̄)

= n!
θ(n)

∑
m≤j≤n

θ

j

∑
ℓ(t̄)=n−j

G(t̄)Π(t̄)

≥ θ

n

n!
θ(n) Γ[δn],θ M̃[δn],θ(G)

≥ c1δ
θ exp{−θK}, (3.4)

where K > 0 is as in (3.1). In the last step we used θ(n)/n! ≪ nθ−1 if n ≥ 1 and Theorem 1.1.

Recalling our agreement that M0,θ(Gm) = 1, we observe that (3.4) also holds for 0 ≤ δ < 1/n.

The next identity is crucial in the forthcoming induction argument. We have

Mn,θ(Gr) = Mn,θ(G) + θ
∑

r≤j≤n

g∗
j

j
ψn(n− j)Mn−j,θ(Gj) (3.5)

for an arbitrary G ∈ Ms and n/2 < r ≤ n. Indeed, the formal identity

1 −
s∏

j=1
(1 − αj) =

s∑
j=1

αj

j−1∏
i=1

(1 − αi), s ≥ 1,

implies

Gr(k̄) −G(k̄) = Gr(k̄)
(

1 −
∏

r≤j≤n
kj =1

gj

)
= Gr(k̄)

(
1 −

∏
r≤j≤n

kj =1

(1 − g∗
j )
)

= Gr(k̄)
∑

r≤j≤n
kj =1

g∗
j

∏
r≤i≤j−1

ki=1

(1 − g∗
i ) =

∑
r≤j≤n

kj =1

g∗
jGj(k̄)

for each k̄ ∈ Ω(n). By virtue of (3.3), we obtain the mean value of the last sum:∑
r≤j≤n

g∗
j

∑
k̄∈Ω(n)

Pn,θ(k̄)1{kj = 1}Gj(k̄) = θn!
θ(n)

∑
r≤j≤n

g∗
j

j

∑
t̄∈Ω(n−j)

Gj(t̄)Π(t̄)

= θ
∑

r≤j≤n

g∗
j

j
ψn(n− j)Mn−j,θ(Gj). (3.6)

Combining this with the equality above, we complete the proof of (3.5).

Up to the end of the proof of Theorem 1.2, we fix the notation m = [(1−δ)n], where δ = e−K−C

and C ≥ 1 is a constant to be chosen later. For θ ≥ 1, we have

ψn(n− j) ≤ 1. (3.7)
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Hence and from (4.2) and (3.4) we obtain

Mn,θ(G) ≥ Mn,θ(Gm) − θ
∑

m≤j≤n

g∗
j

j
Mn−j,θ(Gj)

≥ c1e
−θCe−2θK − θ

∑
m≤j≤n

g∗
j

j
≥ α(C)e−2θK , (3.8)

where α(C) := (c1/2)e−θC , provided that

λ :=
∑

m≤j≤n

g∗
j

j
≤ (α(C)/θ)e−2θK .

If c ≥ 2θ, the bound (3.8) for all K > 0 is better than that given in Theorem 1.2 with N (K) ≡ 2

and c0 ≤ α(C)/θ.

In what follows, we assume that λ ≥ (α(C)/θ)e−2θK . We will bound Υ(K) from below applying

the real type induction on K. To verify the initial step, we argue as in obtaining (3.5). We firstly

notice that∑
k̄∈Ω(n)

Pn,θ(k̄)1{kj ≥ 1} ≤
∑

k̄∈Ω(n)

kjPn,θ(k̄) = ψn(n− j)θ
j

≤ θ

j
,

where the first moment formula found in [2] (p. 96, (5.6)) and inequality (3.7) are used. Using this,

we obtain

Mn,θ(G) =
∑

k̄∈Ω(n)

Pn,θ(k̄)
∏
j≤n

kj ≥1

(
1 − (1 − gj)

)

=
∑

k̄∈Ω(n)

Pn,θ(k̄)
(

1 −
∑
j≤n

kj ≥1

g∗
j

∏
i≤j−1
ki≥1

gi

)

≥ 1 −
∑
j≤n

g∗
j

∑
k̄∈Ω(n)

Pn,θ(k̄)1{kj ≥ 1}

≥ 1 − θ
∑
j≤n

g∗
j

j
≥ 1 − θK

for n ≥ 1. If θK ≤ 1/2, this is better than the desired estimate (3.2) with any c > 0 and c0 ≤ 1.

Let θK > 1/2 and n ≥ 1/δ. We further examine the set Ω′ of vectors k̄ ∈ Ω(n) having a

coordinate kj ≥ 1 for some δn ≤ j ≤ n/2. The indicator function of this set is

1{k̄ ∈ Ω′} = max
{

1{k̄ : kj ≥ 1} : δn ≤ j ≤ n/2
}
.

By virtue of ℓ(k̄) = n, the equality 1{k̄ : kj ≥ 1} = 1 holds for at most 1/δ of j ∈ [δn, n/2]. Hence

1{k̄ ∈ Ω′} ≥ δ
∑

δn≤j≤n/2

1{k̄ : kj ≥ 1}.

If k̄ ∈ Ω′, then k̄ = ēj + t̄, where t̄ ∈ Ω(n− j). Moreover,

G(k̄) = gj

∏
i≤n−j

i̸=j

g
1{ti≥1}
i ≥ gjG(t̄).

Similarly, due to n ≥ j(tj + 1) ≥ δn(tj + 1), we have tj + 1 ≤ 1/δ and

Pn,θ(ēj + t̄) = θ

j(tj + 1)
ψn(n− j)Pn−j,θ(t̄) ≥ c2δ

j
Pn−j,θ(t̄)
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for δn ≤ j ≤ n/2. Here we have applied the estimate θ(r)/r! ≍ rθ−1 if r ∈ N. Hence

Mn,θ(G) ≥
∑

k̄∈Ω(n)

G(k̄)Pn,θ(k̄)1{k̄ ∈ Ω′}

≥ δ
∑

δn≤j≤n/2

gj

∑
t̄∈Ω(n−j)

G(t̄)Pn,θ(ēj + t̄)

≥ c2δ
2

∑
δn≤j≤n/2

gj

j

∑
t̄∈Ω(n−j)

G(t̄)Pn−j,θ(t̄)

= c2δ
2

∑
δn≤j≤n/2

gj

j
Mn−j,θ(G). (3.9)

We now assume that the claim of Theorem 1.2 is proved for K− ∆ =: K− (α(C)/θ)e−2θK , that

is,

Υ(K − ∆) ≥ c0 exp{−ec(K−∆)} (3.10)

and N (K − ∆) is found in the latter. Here c ≥ 2θ and 0 < c0 ≤ min{1, α(C)/θ} are constants. The

task now is to extend this lower estimate for K and define N (K). We apply (3.10) for the mean

values on the right-hand side of (3.9).

If δn ≤ j ≤ n/2, then∑
i≤n−j

g∗
i

i
≤ K −

∑
m<i≤n

g∗
i

i
= K − λ ≤ K − ∆

by our earlier agreement on λ and the definition of m. Set

N (x) = max{eK+C , 2N (K − ∆)}

for K − ∆ < x ≤ K. If n ≥ N (K) and δn ≤ j ≤ n/2, then n− j ≥ N (K − ∆). Hence, by (3.10)

Mn−j,θ(G) ≥ Υ(K − ∆) ≥ c0 exp{−ec(K−∆)}.

Consequently, (3.9) implies

Mn,θ(G) ≥ c0c2δ
2 exp{−ec(K−∆)} ·

∑
δn≤j≤n/2

1 − g∗
j

j

≥ c0c2δ
2 exp{−ec(K−∆)}

(
− log(2δ) − C1

δn
−K

)
≥ c0c2δ

2 exp{−ec(K−∆)}
(
C − log 2 − C1

)
where C1 > 0 is an absolute constant. The choice of C = (log 2 + C1 + 1)/c2 is at our disposal. It

gives

Mn,θ(G) ≥ c0δ
2 exp{−ec(K−∆)}.

Now, if

e−2K−2C exp{−ec(K−∆)} ≥ exp{−ecK} (3.11)

for all K ≥ 1/(2θ) and for some sufficiently large c ≥ 2θ, from the last inequality, we obtain the

desired estimate (3.2) with this very c.
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Inequality (3.11) is equivalent to

ecK
(
1 − e−c∆) ≥ 2K + 2C.

Assuming that c ≥ θα(C)−1, we see that the last inequality follows from

ecK
(

1 − e−e−2θK
)

≥ 2K + 2C.

Furthermore, due to xe−x ≤ 1 − e−x for x ≥ 0, this is implied by

e(c−2θ)Ke−e−2θK

≥ 2K + 2C

and, further, by

e(c−2θ)Ke−1 = e2K+2C exp{(c− 2θ − 2)K − 2C − 1} ≥ 2K + 2C.

It is evident that the last inequality holds for all K ≥ 1/(2θ) if (c−2θ−2)/(2θ) ≥ 2C+1. Therefore,

to assure this and validity of the previous cases, it suffices to chose

c = max{θα(C)−1, 2 + 4θ(C + 1)}.

The theorem is proved.

3.1.3 Lemmata

To prove the corollaries stated below, we need some auxiliary lemmas.

Lemma 3.1. Assume that

χj(z) =
∑
n≥2

cnjz
n, j ≥ 1,

are entire functions satisfying |cnj | ≤ Cn
2 /n! for all j ≥ 1 and n ≥ 0, where C2 > 0 is a constant.

Then

[zk]
∏
j≥1

(
1 + χj(zj/j)

)
≤ C3

k2 , k ≥ 1,

where C3 is a positive constant depending on C2 only.

Proof. This is essentially Lemma 6 from [33], where the case of χj(z) not depending on j has

been examined. The proof in more general case goes by the repetition of the same argument.

Lemma 3.2. Let F (k̄) be a complex valued multiplicative function defined via fj(s) such that

|fj(s)| ≤ 1 for all j ≥ 1 and s ≥ 1. Define the completely multiplicative function G(k̄) by setting

gj = fj(1), j ≥ 1. If Z(z;F ) and Z(z;G) are the corresponding generating functions, then

[zk]H(z) = [zk]
(
Z(z;F )/Z(z;G)

)
≪ k−2, k ≥ 1. (3.12)
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Proof. We write

H(z) =
∏
j≥1

e−θgjzj/j

(
1 +

∑
s≥1

θsfj(s)
jss!

zsj

)
=:
∏
j≥1

(
1 + χj(zj/j)

)
.

Here

χj(z) =
∑
n≥2

θnzn

n!
∑

r+s=n
r,s≥0

(
n

r

)
(−gj)rfj(s) =:

∑
n≥2

cnjz
n

are entire functions. Moreover, |cnj | ≤ (2θ)n/n!. By Lemma 3.1, this implies (3.12).

The lemma is proved.

Lemma 3.3. Let G ∈ Mc be as in Theorem 1.2 and 2 ≤ T ≤
√
n be arbitrary. Then there exist

positive constants c3 and R1(K) such that

Mn,θ(G) = Γ(θ)
2πi

∫ 1+iT

1−iT

ez

zθ
exp

{
θ
∑
j≤n

gj − 1
j

e−zj/n

}
dz + O

(
R1(K)T−c3

)
.

Proof. This is a corollary of Proposition in [11]. Checking its proof, one could find an

expression of R1(K).

Lemma 3.4. Suppose G ∈ Mc be as in Theorem 1.2. Then

Mm,θ(G) −Mn,θ(G) ≪ n−c4R2(K) (3.13)

uniformly in n−
√
n ≤ m ≤ n. Here R2(K) = max{R1(K), eθK}.

Proof. We apply twice the integral representation given in the last lemma and compare the

integrands. Let z = 1 + it, t ∈ R, |t| ≤ T , and 2 ≤ T ≤
√
n, then∑

j≤n

gj − 1
j

e−zj/n −
∑
j≤m

gj − 1
j

e−zj/m ≪ 1√
n

+
∑
j≤m

1
j

∣∣∣1 − e−zj(n−m)/mn
∣∣∣

≪ T logn√
n

for n−
√
n ≤ m ≤ n. If T ≤ n1/3, this and Lemma 3.3 imply

Mm,θ(G) −Mn,θ(G) ≪ T (log T ) logn√
n

exp
{
θ
∑
j≤n

1 − gj

j

}
+R1(K)T−c3 .

Now we chose T = n1/4 to complete the proof of (3.13).

The lemma is proved.

3.1.4 Lower probability estimates

Let J ⊂ {1, . . . , n} and Ω(n; J) = {k̄ ∈ Ω(n) : kj = 0 ∀ j ∈ J}.

Corollary 3.1. Let θ ≥ 1, K > 0, and J be such that∑
j∈J

1
j

≤ K < ∞. (3.14)

Then

Pn,θ

(
Ω(n;J)

)
≥ c0 exp

{
− ecK

}
for n ≥ N (K). Here c, c0, and N (K) are the same as in Theorem 1.2.

39



Proof. Apply Theorem 1.2 for the strongly multiplicative indicator function G(k̄) defined via

gj = 0 if j ∈ J and gj = 1 otherwise.

The next corollary involves two types of sifting (one with respect to the indexes and another

with respect to the value of coordinates) of the vectors from Ω(n). We also observe that in the

Corollary 3.2, the indicator function of the examined event is not strongly multiplicative. Its proof

is based on the convolution argument combined with auxiliary lemmas, presented above.

Corollary 3.2. Let θ ≥ 1, K > 0, and J be as in Corollary 3.1. Denote I = {1, . . . , n} \ J . Then

there exists a positive constant R(K) such that

Pn,θ

(
k̄ ∈ Ω(n; J) : ki ≤ 1 ∀ i ∈ I

)
≥ R(K), (3.15)

provided that n ≥ N1(K) is sufficiently large.

Proof. The indicator of the event in (3.15) is the multiplicative function F (k̄) defined by

fj(k) =


0 if j ∈ J,

0 if j ∈ I and k ≥ 2,

1 otherwise.

Introduce also the multiplicative indicator function G ∈ Mc ∩ Ms so that gj = fj(1) where j ≤ n.

The corresponding generating functions satisfy the following relation

Z(z;F ) = Z(z;G)H(z),

where, by Lemma 3.2, hk := [zk]H(z) ≪ k−2 for k ≥ 1.

Applying Lemma 3.4, we obtain

Mn,θ(F ) =
( ∑

k≤
√

n

+
∑

√
n<k≤n

)
hkMn−k,θ(G)

=
(
Mn,θ(G) + O

(
n−c4R2(K)

)) ∑
k≤

√
n

hk + O
( ∑

√
n<k≤n

1
k2

)
= H(1)Mn,θ(G) + O

(
n−c4R2(K)

)
+ O(n−1/2).

By definition,

H(1) =
∏
j∈I

e−1/j
(

1 + 1
j

)
≥ 2
e

∏
j≥2

(
1 − 1

j2

)
= 1
e
.

Inserting this and the estimate obtained in Corollary 3.1 into the previous inequality, we complete

the proof.

Corollary 3.2 is proved.
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4 Cycles with restricted lengths

In this section we answer the question about general conditions under which the distributions

Vn(x) := Vn,θ(x) converge weakly to a limit distribution law with respect to EPM. We observe,

that under the condition anj ∈ {0, 1} the additive function h(σ) is just the number of cycles with

restricted lengths of a random permutation σ ∈ Sn. Further, the dependence on θ is allowed but

not additionally indicated.

4.1 Lemmata

The following lemma concerns the concentration function

Qn(u) := sup
{
νn

(
|h(σ) − x| < u

)
: x ∈ R

}
, u ≥ 0.

Denote

Dn(u) := min
λ
Dn(u;λ) := min

{∑
j≤n

u2 ∧ (aj − λj)2

j
: λ ∈ R

}
.

Lemma 4.1. For arbitrary θ > 0, we have

Qn(u) ≪ u
(
Dn(u)

)−1/2
. (4.1)

Proof. In case, when θ = 1, the lemma is proved in [53]. To prove the inequality, we use

1
n!

∣∣∣∣ ∑
σ∈Sn

f(σ)
∣∣∣∣ ≤ C1 exp

{
− C min

|u|≤π

n∑
j=1

1 − ℜ(b(j)aiuj)
j

}
,

where

f(σ) =
n∏

j=1
b(j)kj(σ), b(j) = e2πihj(1)t,

t ∈ R, 1 ≤ j ≤ n and 00 := 1.

For θ > 0, we have [49]

1
θ(n)

∑
σ∈Sn

eithn(σ)θw(σ) ≤ C2 exp
{
C min

|u|≤π

n∑
j=1

1 − ℜ(b(j)aiuj)
j

}
,

where C > 0 depends mostly on θ. Thus, in the general case, further estimation of the concentration

function remains the same.

The lemma is proved.

The previous lemma is used to obtain lower estimates of the further needed frequencies. Let

J ⊂ {j : j ≤ n} be an arbitrary nonempty set, maybe, depending on n, and J = {j : j ≤ n} \ J .

Lemma 4.2. Let θ ≥ 1, K > 0, and J be such that∑
j∈J

1
j

≤ K < ∞. (4.2)

Denote

µn(K) = inf
J
νn(kj(σ) = 0 ∀j ∈ J),
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where the infimum is taken over J satisfying (4.2). For a sufficiently large n0(K), there exists a

positive constant c(K), depending at most on θ and K, such that

µn(K) ≥ c(K)

if n ≥ n0(K).

Proof. The claim is Corollary 3.1 of Theorem 1.2 (see section 3.).

Lemma 4.3. Let J satisfy (4.2), n0(K) be as in Lemma 4.2, and

I ⊂
(
(J × {1}) ∪ {(j, k) ∈ N2 : k ≥ 2}

)
∩ {(j, k) ∈ N2, jk ≤ n− n0(K)}

be an arbitrary subset of ordered pairs of natural numbers. Define

S̃n :=
∪

(j,k)∈I

Sj,k
n ,

where

Sj,k
n :=

{
σ ∈ Sn : kj(σ) = k, ki(σ) = 0 ∀i ∈ J \ {j}, kl(σ) ≤ 1 ∀l ∈ J \ {j}

}
.

Then

νn(S̃n) ≫K

∑
(j,k)∈I

(θ
j

)k 1
k!

(
1 − jk

n

)θ−1
, (4.3)

provided that n ≥ 2n0(K).

Proof. We use (1.2) to obtain

νn(Sj,k
n ) = P

(
ξj = k, ξi = 0 ∀i ∈ J \ {j}, ξl ≤ 1 ∀l ∈ J \ {j}

∣∣∣ ℓ(ξ̄) = n
)
.

Set Q(m) = P
(
ℓ(ξ̄) = m

)
for 0 ≤ m ≤ n. Then, if j ∈ J ,

Q(n)νn(Sj,k
n ) = 1

k!

(
θ

j

)k

P

(
ξi = 0 ∀i ∈ J, ξl ≤ 1 ∀l ∈ J,

∑
i̸∈J
i≤n

iξi = n− jk

)
. (4.4)

Denote Jm := J ∩ [1;m] and Jm := {j : j ≤ m} \ Jm for 0 ≤ m ≤ n. Observing that ℓ(ξ̄) = n− jk

implies ξi = 0 for each n− jk < i ≤ n, we obtain

Q(n)νn(Sjk
n ) =

(θ
j

)k 1
k!

exp
{

− θ
∑

n−jk<i≤n

1
i

}

×P
(
ξi = 0 ∀i ∈ Jn−jk, ξl ≤ 1 ∀l ∈ Jn−jk,

∑
i≤n−jk

iξi = n− jk

)

=
(θ
j

)k 1
k!

exp
{

− θ
∑

n−jk<i≤n

1
i

}
Q(n− jk)

×νn−jk

(
ki(σ) = 0 ∀i ∈ Jn−jk, ξl ≤ 1 ∀l ∈ Jn−jk

)
Here we again use (1.2). By Cauchy’s equality,

Q(n) = P
(
ℓ(ξ̄) = n

)
=

∑
s1,...,sn≥0

ℓ(s̄)=n

∏
i≤n

e−θ/i
(θ
i

)si 1
si!

= θ(n)

n!
exp

{
−
∑
i≤n

θ

i

}
.
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Inserting this into the previous equality, using (1.2) and Lemma 4.2, we obtain

νn(Sjk
n ) ≥ c(K)

(θ
j

)k 1
k!

θ(n−jk)

(n− jk)!
n!
θ(n) ≫K

(θ
j

)k 1
k!

(
1 − jk

n

)θ−1
(4.5)

provided that n− jk ≥ n0(K).

If j ∈ J , instead of (4.4), we have

Q(n)νn(Sj,k
n ) =

(θ
j

)k 1
k!
P

(
ξi = 0 ∀i ∈ J ∪ {j}, ξl ≤ 1 ∀l ∈ J \ {j},

∑
i̸∈J
i≤n

iξi = n− jk

)
.

Repeating the previous argument, from this we obtain (4.5) with c(K + 1) instead of c(K).

The sets Sj
n for j ∈ I are pairwise disjoint, summing up (4.5) over (j, k) ∈ I, we complete the

proof of the lemma.

Proposition 4.1. Assume that Tn(x) ⇒ F (x), where F (x) is a distribution function having a

positive jump at a point x = x0. Then∑
j≤n

1{aj ̸= 0}
j

≤ CF < ∞, (4.6)

where CF is a positive constant depending on F .

Proof. Since the limit law has an atom, we obtain a lower estimate of the concentration function

Qn(u) ≥ c > 0 for every u > 0 if n is sufficiently large. Now applying Lemma 4.1, we have

Dn(u, λ) ≪ u2 which includes (4.6) with aj − λj, where λ = λn ∈ R, instead of aj . If J := {j ≤ n :

aj ̸= λj} and

hn(σ) = λℓ(k̄(σ)) +
∑
j∈J

(aj − λj)kj(σ) =: λn+ ĥn(σ),

then, by Lemma 4.2,

νn(hn(σ) = λn) = νn(ĥn(σ) = 0) ≥ νn

(
kj(σ) = 0 ∀ j ∈ J

)
≥ c1 > 0.

Hence if λn → ∞ for some subsequence of n → ∞, at least c1 of the probability mass disappears

at infinity. This contradicts to the assumption of theorem. Hence λ ≪ n−1. Now the inequality

(x+ y)2 ≤ 2x2 + 2y2, x, y ∈ R implies

Dn(1, 0) ≤ 2Dn(1, λ) + 2
∑
j≤n

1 ∧ (λj)2

j
≪ 1 + λ2n2 ≪ 1.

The latter estimate contains (4.6).

The proposition is proved.

4.2 Convergence of factorial moments

Theorem 1.3. Let hn(σ) be a sequence of completely additive functions with aj ∈ {0, 1} and θ > 0.

The frequencies Vn(x) converge weakly to a limit law if and only if there exist finite limits

lim
n→∞

γ̂nm =: γ̂m (4.7)

for all m ∈ N. Moreover, if (4.7) is satisfied, the characteristic function of the limit distribution is

1 +
∞∑

m=1

γ̂m

m!
(eit − 1)m

, t ∈ R.
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Proof. Sufficiency. Condition (4.7) of the theorem implies

γ̂n1 ≤ C < ∞,

if n ≥ 1, where C > 0 depends on θ only. Further we use (4.7) and the expression

Ene
ithn(σ) = 1 +

L∑
m=1

γ̂nm

m!
(eit − 1)m +O

(
γ̂n,L+1

(L+ 1)!
|eit − 1|L+1

)
. (4.8)

To estimate the reminders, we now prove that

γ̂nm ≤ C1γ̂n,m−1,

where C1 > 0 does not depend on m ≥ 1.

Let recall the formula of the factorial moments γ̂nm with aj ∈ {0, 1}

γ̂nm = θm
∗∑

j1≤n

1
j1

· · ·
∗∑

jm≤n

1
jm

1{j1 + · · · + jm ≤ n}ψn(n− j1 − · · · − jm).

Denote J := j1 + . . .+ jm−1 and majorise the most inner sum over jm =: j, so using cθ(n)/n! ≤

(1 + n)θ−1 ≤ C2θ
(n)/n! we obtain

∗∑
j≤n−J

1
j

θ(n−J−j)

(n− J − j)!
= θ

∗∑
j≤n−J

1
j
ψn(n− j)ψn−j(n)

θ

θ(n−J−j)

(n− J − j)!

≤ C2

θc2 γ̂n1 ≪ C2C

c2 =: C1

By induction γ̂nm ≪ Cm
3 , where C3 = max {C,C1}. So applying the latter evaluation we obtain

that

Ene
ithn(σ) = 1 +

L∑
m=1

γ̂m

m!
(eit − 1)m +O

(
C3

L

(L+ 1)!

)
+ oL(1),

where either of the estimates is uniform in t ∈ R and the second one depends on L ≥ 1. Taking

now n → ∞ and L → ∞, we complete the proof of convergence of the characteristic function and

find the formula of its limit. This implies the weak convergence of Vn(x).

Necessity. Let Vn(x) converges weakly to a limit distribution P (ϕ < x), where ϕ is a random

variable taking values in the set Z+. Using the proposition 4.1, we

γ̂n1 ≪
∗∑

j≤n

1
j

(1 − j

n+ 1
)θ−1 ≪ 1,

for n ≥ 1.

Then applying that γ̂nm ≪ C3
m, we obtain

sup
n

Enhn(σ)(m) ≪ Cm
4

for every m ≥ 1 and with some positive constant depending on θ.

From the weak convergence of frequencies Vn(x) we obtain convergence of factorial moments.

Theorem is proved.
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4.3 Laws with a finite support

Corollary 4.1. Let m ≥ 2 be fixed, θ > 0 and hn(σ) be a sequence of completely additive functions

with aj ∈ {0, 1}. The frequencies Vn(x) converge weakly to a limit distribution Fϕ(u) with a finite

support {0, 1, 2, . . . ,m− 1}, where ϕ is a r.v. if and only if

lim
n→∞

∗∑
j≤n/m

1
j

= 0, (4.9)

lim
n→∞

γ̂nk = lim
n→∞

θk
∗∑

n/m<j1≤n

1
j1
. . .

∗∑
n/m<jk≤n

1
jk

1{j1 + · · · + jk ≤ n}

×
(

1 − j1 + · · · + jk

n+ 1

)θ−1
= γ̂k (4.10)

for each 1 ≤ k ≤ m. Moreover, the characteristic function of the limit distribution Fϕ(u) has the

form

1 +
m−1∑
k=1

γ̂k

k!
(eit − 1)k

, t ∈ R

Proof. Necessity. Let Vn(x) converge weakly to a limit distribution Fϕ(u) of a random variable

ϕ. According to the Theorem 1.3,

lim
n→∞

γ̂nk = γ̂k

exist for each k ≥ 0 and are equal to the factorial moments of Fϕ(u). Since the support is finite,

γ̂k = 0, if k ≥ m. Let us prove condition (4.9) of the corollary. From the formula of the mth

factorial moment (2.20), we have

0 = lim
n→∞

θm
∗∑

ji≤n

1≤i≤m

1{j1 + · · · + jm ≤ n}
j1 · · · jm

(
1 − j1 + ...+ jm

n+ 1

)θ−1

.

Let 0 < ε < 1/m and take jr ≤ n(1 − ε)/m for each 1 ≤ r ≤ m, then

(
1 − j1 + ...+ jm

n+ 1

)1−θ

≥

ε
θ−1, if θ ≥ 1,

1, if θ < 1.

Then (
θ

∗∑
j≤n(1−ε)/m

1
j

)m

× min{1, εθ−1} = o(1),

if n → ∞.

On the other hand, ∑
n(1−ε)/m<j≤n/m

1
j

≪ log 1
1 − ε

≪ ε.

Consequently,
∗∑

j≤n/m

1
j

≪ oε(1) + ε

for each 0 < ε < 1
m . So this implies condition (4.9) of the corollary.
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For proving the second condition (4.10), it is sufficient to apply the mathematical induction. It

is obvious that 1/(2m) < 1 − j/(n+ 1) ≤ 1 if j ≤ n/m; therefore by (4.9),

γ̂n1 = θ
∗∑

j≤n

1
j

(
1 − j

n+ 1

)θ−1

+ o(1) =
∑

n/m<j≤n

1
j

(
1 − j

n+ 1

)θ−1

+ o(1).

Now we prove that, if equality (4.10) is true for any k, 1 ≤ k ≤ m−1, so it is true for k+1 ≤ m−1.

The argument is seen in the case k = 2. The summation region for j1 and j2 in γ̂n2 is the

"triangle" {j1, j2 : ji + j2 ≤ n}. Condition (4.9) takes out the square {j1, j2 ≤ εn := n/m} from it.

The remaining region to be cut of consists of two symmetric triangles, one of which is

{j1, j2 : ji ≤ εn, εn < j2 ≤ n, ji + j2 ≤ n}.

For θ ≥ 1, we have
∗∑

j≤εn

1
j

∗∑
εn<i≤n−j

1
i

(
1 − i+ j

n+ 1

)θ−1

≪
∗∑

j≤εn

1
j

log n− j

εn

≪ε

∗∑
j≤εn

1
j

= oε(1).

In the case θ < 1, it suffices to show that the inner sum of the latter expression is bounded:
∗∑

εn<i≤n−j

1
i

(
1 − i+ j

n+ 1

)θ−1

≤ 1
nθ−1

∗∑
εn<i≤n−j

1
i
(n+ 1 − i− j)θ−1 ≤ 1

εn−θ

∑
1≤k≤n

kθ−1 ≪ε 1.

In this way, we can eliminate the summation over j1, . . . , jm−1 one of which is larger than εn.

Then the factorial moments attain the form given in the Corollary. We omit the remaining details.

Sufficiency. From the equalities (4.9) and (4.10) follows (4.7) for each fixed l = 1, 2, . . . ,m− 1.

So to complete the proof of sufficiency of the Corollary 4.1, we just apply the Theorem 1.3.
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5 Weak law of large numbers

In this section we answer the question about necessary and sufficient conditions for the weak law of

large numbers if the parameter is not less than one. Firstly we present some observations.

In virtue of
1
2

∑
s1,...,sr≥0

∣∣νn

(
k1(σ) = s1, . . . , kr(σ) = sr

)
− P (ξ1 = s1, . . . , ξr = sr

)∣∣ = o(1), if r = o(n)

one could expect that the conditions are close to that for the sums of independent r.vs Xj := ajξj ,

j ≤ n. The instance of λℓ(k̄(σ)) ≡ λn, with an arbitrary sequence λ := λn ∈ R shows that this is

not the case, however. This sequence of functions obeys the degenerated limit law at the point zero

if centralized by λn, while the corresponding sum of Xj does not in general. This shows that an

additive function can have a deterministic summand to be extracted in the first step of the problem

solving. If we are successful in doing this, the difference

h(σ) − λℓ(k̄(σ)) =
n∑

j=1
(aj − λj)kj(σ),

demonstrates closer behavior in some stochastic sense to the sums of independent r.vs (aj − λj)ξj ,

j ≤ n. That have been established to be true if permutations are taken with equal probabilities

or even according to a generalized Ewens measure, provided that the influence of long cycles is

negligible (see [62], [15]). If the latter does not hold and θ ̸= 1, more bias appears. As it is

seen in the below formulated result, this gives an extra factor (1 − j/n)θ−1 in the conditions. A

quantitative result is demonstrated in the Theorem 1.4 of this section. The proof of this theorem

is based upon the number theoretical ideas originated by I.Z.Ruzsa in [70] and also adopted in

probabilistic combinatorics by E.Manstavičius in the case θ = 1 (see [59]).

Further the dependence on θ is allowed but not additionally indicated.

5.1 Lemmata

Lemma 5.1. Let θ ≥ 1, ξj, 1 ≤ j ≤ n be independent Poisson r.vs. with Eξj = θ/j, h(σ) be an

additive function, b ∈ R, and u ≥ 0. Then

νn(|h(σ) − b| ≥ u) ≪ P

(∣∣ n∑
j=1

hj(ξj) − b
∣∣ ≥ u/3

)
. (5.1)

Proof. See [47].

Applying (5.1) and formula E|X|l = l
∫∞

0 |u|l−1P (|X| ≥ u)du twice, then using Rosenthal’s

inequality for power moments of Xn − EXn, we obtain the following result.

Corollary 5.1. Let θ ≥ 1. For arbitrary l ≥ 2, we have

En|hn(σ) −A(n;h)|l ≪l

( ∑
jk≤n

(
θ

j

)k h2
j (k)
k!

)l/2

+
∑

jk≤n

(
θ

j

)k |hj(k)|l

k!
,

where A(n;h) is either of the sums

A1(n;h) :=
∑

jk≤n

(
θ

j

)k
hj(k)
k!

, A2(n;h) :=
∑
j≤n

(
θ

j

)
hj(1).
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5.2 Estimate of Lévy distance

Let us recall some notation. The Lévy distance of the r.v. h(·) from the set of constants

L(h; νn) := inf
{
ε+ νn(|h(σ) − a| ≥ ε) : a ∈ R, ε > 0

}
.

Let u ∨ v := max{u, v}, u ∧ v := min{u, v} and as earlier u◦ := 1 ∧ |u| sgn u if u, v ∈ R,

Un(h, λ) :=
∑
j≤n

θ

j

(
aj − λj

)◦2
ψn(n− j)

and Un(h) = min{Un(h, λ) : λ ∈ R}. In the sequel, ≪ is used as an analog of O(·), moreover,

dependence on θ in the involved constants is allowed.

Theorem 1.4. If θ ≥ 1 and h(σ) is a completely additive function, then

L(h; νn) ≤ 2
(
1 ∧ (2Un(h))1/3)

and

Un(h) ≪ (1/n) ∨ L(h; νn)

for all n ≥ 1.

Proof.

The upper estimate. Recall that ℓ(k̄(σ)) = n for each σ ∈ Sn. Hence L(h; νn) = L(h−λℓ; νn) for

every λ ∈ R. Without loss of generality, we further assume that λ = 0 and set Un(h, 0) = Un(h) =: δ.

If δ = 0, then aj = 0 for each j ≤ n and L(h, νn) = 0. If δ ≥ 1/2, the trivial upper bound in Theorem

1.4 holds. It remains the case with 0 < δ < 1/2.

Define

h′(σ) =
∑
j≤n

aj1{|aj | < 1}kj(σ), h′′(σ) = h(σ) − h′(σ).

Observe that, by virtue of (2.11),

νn

(
h′′(σ) ̸= 0

)
≤

∑
j≤n

1{|aj | ≥ 1}νn

(
kj(σ) ≥ 1

)
≤

∑
j≤n

1{|aj | ≥ 1}Enkj(σ)

≤
∑
j≤n

1{|aj | ≥ 1}θ
j
ψn(n− j). (5.2)

Lemma 2.3 implies

νn

(∣∣h′(σ) − Enh
′(σ)

∣∣ ≥ ε
)

≤ 2ε−2B2
n(h′).

Now,

νn

(∣∣h(σ) − Enh
′(σ)

∣∣ ≥ ε
)

≤ νn

(∣∣h′(σ) − Enh
′(σ)

∣∣ ≥ ε
)

+ νn

(
h′′(σ) ̸= 0

)
≤ 2ε−2B2

n(h′) +
∑
j≤n

1{|aj | ≥ 1}θ
j
ψn(n− j) ≤ 2ε−2Un(h).
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For ε = (2δ)1/3 we achieve the minimum of ε + 2ε−2δ. Thus, L(h; νn) ≤ 2(2δ)1/3 in the case

0 < δ < 1/2. Recalling the previous trivial bound we complete the upper estimation in Theorem.

The lower estimate. If L(h; νn) ≥ c > 0 for some constant c, the task is trivial. Now, let

δ := 2L(h; νn) < c for a constant c < 1/2 to be chosen later. We have that

νn(|h(σ) − a| ≥ δ) ≤ δ

for some a ∈ R and

Qn(δ) ≥ νn(|h(σ) − a| < δ) ≥ 1 − δ ≥ 1/2.

Hence, by Lemma 4.1,∑
j≤n

a2
j

j
1{|aj | < δ} ≤ Cδ2,

∑
j≤n

1{|aj | ≥ δ}
j

≤ C. (5.3)

Here we would have used aj(λ) instead of aj = aj(0) for some λ ∈ R. Justifying this simplification,

we recall that L(h; νn) = L(h− λn; νn) = δ/2 for every λ; therefore, we could further deal with the

shifted function h(σ, λ). Thus, taking λ = 0 had no effect on the generality. Afterwards, having in

mind that ψn(n− j) ≤ 1 if θ ≥ 1, we will include this quantity as a factor of the summands in (5.3).

Set âj = aj if |aj | < δ and âj = 0 otherwise, and denote ǎj = aj − âj for j ≤ n. Further, define,

as in (6.2), two completely additive functions ĥ(σ) and ȟ(σ) via âj and ǎj respectively.

We now use Lemma 4.2 with J = {j ≤ n : |ǎj | ≥ δ}, K = C, and

I =
{

1 ≤ j ≤ n− n0(C), |ǎj | ≥
√
δ
}
,

where n > 2n0(C). If S̃n is defined as in Lemma 4.2, then

νn(S̃n) ≥ c1
∑

j≤n−n0(C)

1
j
ψn(n− j)1{|aj | ≥

√
δ} =: c1α.

The completion of this sum over n − n0(C) < j ≤ n would contribute not more than C2/n with

some C2 > 1 for n ≥ 2n0(C). Hence if α ≤ Mδ, where M ≥ 1 is arbitrary, then taking into account

the first estimate in (5.3) with
√
δ instead of δ, we had the desired claim in the form

Un(h) ≤ θ(Cδ +Mδ + C2n
−1) ≪ n−1 ∨ δ.

Since now we assume that α ≥ Mδ, where M > c−1
1 is a constant to be chosen later. This

gives νn(S̃n) ≥ c1Mδ. Further we examine the values of the additive functions when σ ∈ S̃n. If

σ ∈ Sj
n, then ȟ(σ) = aj , where |aj | ≥

√
δ. So, |ȟ(σ)| ≥

√
δ for each σ ∈ S̃n. Hence, if σ ∈ S̃n and

|h(σ) − a| < δ, then |ĥ(σ) − a| ≥
√
δ − δ and

νn

(
|ĥ(σ) − a| ≥

√
δ − δ

)
≥ νn

(
σ ∈ S̃n

)
− νn

(
|h(σ) − a| ≥ δ

)
≥ (c1M − 1)δ. (5.4)

Denote

Ŝn =
{
σ ∈ Sn : kj(σ) = 0 ∀ j ∈ J

}
.

By Lemma 4.2, we also have νn(Ŝn) ≥ c2 > 0 if n > n0(C).
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Hence and the fact that h(σ) = ĥ(σ) if σ ∈ Ŝn we obtain

νn(|ĥ(σ) − a| < δ) ≥ νn(σ ∈ Ŝn : |h(σ) − a| < δ)

≥ c2 − νn(|h(σ) − a| ≥ δ) ≥ c2 − δ ≥ c2/2 (5.5)

if δ < c ≤ c2/2, where, as we have agreed, the choice of c is at our disposition.

It is known (see, e.g. [59]) that, for a real random variable X, we have that VarX ≥ 1/2p1p2d
2

if P (X ∈ A) ≥ p1, P (X ∈ B) ≥ p2, and d = inf{|x − y| : x ∈ A, y ∈ B}, where A,B ⊂ R. This,

(5.4), and (5.5) yields

Varnĥ ≥ (1/4)(c1M − 1)c2δ(
√
δ − 2δ)2 ≥ (1/16)(c1M − 1)c2δ

2

if δ < c < 1/16 and n ≥ 2n0(C).

On the other hand, by Lemma 2.3 and (5.3), we have

Varnĥ ≤ 2B2
n(ĥ) ≤ 2θCδ2

which contradicts to the previous inequality if M and n are sufficiently large. Consequently, the

estimate Un(h) ≪ n−1 ∨ δ is proved for n > 2n0(C). For 1 ≤ n ≤ 2n0(C), it is trivial.

The theorem is proved.

5.3 Necessary and sufficient conditions

Corollary 1.1. Let θ ≥ 1 and h(σ) be completely additive functions on Sn defined via {aj}, j ≤ n,

in (6.2). The distributions νn

(
h(σ) −A(n) < x

)
converge to the degenerate distribution at the point

zero if and only if ∑
j<n

(aj − λj)◦2

j
ψn(n− j) = o(1)

for some λ = λn ∈ R and

A(n) = nλ+
∑
j<n

|aj |<1

θ
aj − λj

j
ψn(n− j) + o(1).

Proof. It suffices to apply the well known equality ψn(n− j) = (1 − j/n)θ−1(1 + O((n− j)−1)
)

if 0 ≤ j ≤ n− 1 and the fact that, in the weak law of large numbers, the centralizing sequence A(n)

is uniquely determined up to an error o(1).

As it has been yet mentioned the first claim of the Theorem 1.4 we can extend to general additive

functions if θ > 0. The lower estimate, if θ < 1, raises much more difficulties. To overcome them,

one needs effective lower estimates for the mean values of multiplicative functions defined on the

symmetric group. The approach applied in the results of Theorem 1.1 - Theorem 1.2 of the present

note is of little help.
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5.4 Estimate of Lévy distance in the case θ < 1

In this subsection, we analyze Lévy distance for general additive functions

h(σ) :=
∑
j≤n

hj

(
kj(σ))

)
, hj(k) ∈ R, hj(0) = 0.

Define

hj(k, λ) = hj(k) − λjk, λ ∈ R.

Denote

Ũn(h, λ) := min
λ

∑
jk≤n

hj(k, λ)◦2

jkk!
, θ < 1.

For convenience, we introduce sums of independent r.vs

Yn =
∑
j≤n

hj(ξj , λ), Ỹn =
∑
j≤n

ĥj(ξj , λ),

where

x̂ =

x if |x| < 1,

0 if |x| ≥ 1.

Theorem 1.5. Let θ < 1 and h(σ) be an additive function on Sn. We have

L(h; νn) ≪ Ũθ/(2θ+1)
n (h) + n−θ. (5.6)

Proof. Using G.J. Babu and E. Manstavičius result [7], we estimate

L(h; νn) ≪ inf
{
ε+ P θ

(
|Yn − a| ≥ ε

3

)
+ n−θ : a ∈ R, ε > 0

}
= inf

{
ε+ P θ

(
|Yn − Ỹn + Ỹn − a| ≥ ε

3

)
+ n−θ : a ∈ R, ε > 0

}
≪ inf

{
ε+ P θ

(
|Yn − Ỹn| ≥ ε

6

)
+ n−θ : ε > 0

}
+ inf

{
ε+ P θ

(
|Ỹn − a| ≥ ε

6

)
+ n−θ : a ∈ R, ε > 0

}
Let estimate separately the probability:

P

(
|Yn − Ỹn| ≥ ε

6

)
(5.7)

According to the definition of x̂, the function ĥj(ξj , λ) is equal to the function hj(ξj , λ), if |hj(ξj , λ)| <

1, 1 ≤ j ≤ n. Then the probability (5.7):

P

(
|Yn − Ỹn| ≥ ε

6

)
≤
∑
j≤n

P (|hj(ξj , λ)| ≥ 1)

=
∑
j≤n

∑
1≤k≤n

|hj (k,λ)|≥1

e−θ/j

(
θ

j

)k 1
k!

≤
∑
jk≤n

|hj (k,λ)|≥1

(
θ

j

)k 1
k!

≤ Ũn(h),

so

P

(
|Yn − Ỹn| ≥ ε

6

)
≤ Ũn(h). (5.8)
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Coming back to the estimation of the distance L(h; νn) and using (5.8), we obtain:

L(h; νn) ≪ inf
{
ε+ P θ

(
|Ỹn − a| ≥ ε

6

)
+ n−θ : a ∈ R, ε > 0

}
+ Ũθ

n(h).

Applying the Chebyshov lemma and using the sum of averages
∑

j≤n Eĥj(ξj , λ) instead of central-

izing constants a ∈ R, we obtain

inf{ε + P θ

(
|Ỹn − a| ≥ ε

6

)
+ n−θ : a ∈ R, ε > 0} + Ũθ

n(h)

= inf
{
ε+ P θ

((
Ỹn − a

)2

≥ ε2

36

)
+ n−θ : a ∈ R, ε > 0

}
+ Ũθ

n(h)

≤ inf
{
ε+

[
36
ε2

∑
j≤n

E
(
ĥj(ξj , λ) − Eĥj(ξj , λ)

)2]θ

: ε > 0
}

+ n−θ + Ũθ
n(h)

≤ inf
{
ε+ Ũθ

n(h)
ε2θ

: ε > 0
}

+ n−θ + Ũθ
n(h).

Let us find such ε under which
{
ε+ Ũθ

n(h)
ε2θ : ε > 0

}
earns the minimum value. It is possible, if

ε = Ũθ
n(h)
ε2θ

,

ε = Ũθ/(2θ+1)
n (h).

Entering such ε to the latter inequality, we obtain

inf{ε + Ũθ
n(h)
ε2θ

: ε > 0} + n−θ + Ũθ
n(h)

= Ũθ/(2θ+1)
n (h) + Ũ

2θ2+θ−2θ2
2θ+1

n (h) + n−θ + Ũθ
n(h)

≪ Ũθ/(2θ+1)
n (h) + Ũθ

n(h).

So we have that

L(hn; νn) ≪ Ũθ/(2θ+1)
n (h) + Ũθ

n(h) + n−θ.

Consequently,

L(hn; νn) ≪ Ũθ/(2θ+1)
n (h) + n−θ.

The theorem is proved.
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6 Weak convergence to the Poisson law

In this section, we will demonstrate the weak convergence of the distributions of completely additive

functions hn(σ) with aj ∈ Z to the Poisson limit law. The establishing necessary and sufficient

conditions for arbitrary function are likely more difficult than in case of degenerate limit law. This

was the main reason to examine integer valued functions. In what follows, the dependence on

θ is allowed but not additionally indicated and as earlier h(σ;m) denotes the truncated additive

functions.

6.1 Necessary and sufficient conditions

Theorem 1.6. Let hn(σ) be a sequence of completely additive functions with aj ∈ Z, j ≤ n, and

θ ≥ 1. The frequencies Vn(x) converge weakly to the Poisson limit law with parameter µ > 0 if and

only if

(i)
∑
j≤n

aj ≤−1

θ

j
ψn(n− j) = o(1),

(ii) lim
m→∞

lim sup
n→∞

Enh(σ;m)(l) = lim
m→∞

lim inf
n→∞

Enh(σ;m)(l) = µl,

for each fixed l ∈ N.

Proof. Necessity. I. Firstly we will prove estimate (i) of the theorem. Set

J− := {j : j ≤ n, aj ≤ −1},

J+ := {j : j ≤ n, aj ≥ 1}

and J = J− + J+. Define

Sj
n = {σ ∈ Sn : kj(σ) = 1, ki(σ) = 0 ∀i ∈ J \ {j}}

and note that h(σ) = aj ≤ −1 for all σ ∈ Sj
n with j ∈ J−. We observe, that according to Proposition

4.1, we have∑
j≤n

aj ̸=0

θ

j
≤ K(µ) < ∞. (6.1)

Now we can apply Lemma 4.3 for n ≥ n0(K) with K = K(µ) and so obtain

o(1) = νn(h(σ) ≤ −1) ≥ νn

( ∪
j≤n−n0(K)

j∈J−

Sj
n

)
≫ c(K)

∑
j≤n−n0

j∈J−

1
j

(
1 − j

n+ 1

)θ−1
.

Since the sum over n− n0(K) ≤ j ≤ n of 1
j

(
1 − j

n+1

)θ−1
is negligible, this implies condition (i) of

the theorem.

We finish this part by a remark. By Theorem 2.2 and condition (i), for each ε > 0,

νn(
∣∣∣∣h(σ) −

∑
j≤n

a+
j kj(σ)

∣∣∣∣ ≥ ε) ≤
∑
j≤n

aj ≤−1

νn(kj(σ) ≥ 1)

≤
∑
j≤n

aj ≤−1

Enkj(σ) =
∑
j≤n

aj ≤−1

θ

j
ψn(n− j) = o(1), (6.2)
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we see that the weak convergence of the distributions Vn(x) to the Poisson limit law is also satisfied

for the nonnegative functions h(σ) with a+
j , 1 ≤ j ≤ n. So, further, this allows us consider only the

case, where aj ≥ 0 for all j ≤ n.

II. In this step we prove that

lim sup
n→∞

∑
j≤n

aj ≥m

θ

j

(
1 − j

n

)θ−1
≪ µm

m!
, m ∈ N. (6.3)

Use Lemma 4.3 for I = {1} × {j ≤ n, aj ≥ m} and

S̃n =
∪

j≤n−n0(K)
j∈I

{
σ ∈ Sn : kj(σ) = 1, ki(σ) = 0 ∀i ∈ J \ {j}

}
,

where n0(K) ∈ N is sufficiently large. So applying Lemma 4.3 we obtain

νn(h(σ) ≥ m) ≥ νn(S̃n) ≫ c(K)
∑

j≤n−n0(K)
aj ≥m

1
j

(
1 − j

n+ 1

)θ−1
.

Adding the negligible sum of 1
j

(
1 − j

n+1

)θ−1
over [n− n0, n] and using

eµµ
k

k!
+ o(1) = νn(h(σ) = k), (6.4)

we complete the proof of (6.3).

III. Observe from the weak convergence of the frequencies Vn(x) to Poisson limit law, it follows

that

Enh(σ;m)(l) ≪l m
l, l ∈ N. (6.5)

Indeed, according to the definition and (6.3), we have

θ
∑
j≤n

aj ≥1

aj(m)
j

≤ m
∑
j≤n

aj ≥1

θ

j
≪ m,

θ
∑
j≤n

aj ≥1

a2
j (m)
j

≤ m2
∑
j≤n

aj ≥1

θ

j
≪ m2.

Consequently, (6.5) follows from the Corollary of Lemma 5.1, where k = 1 and instead of h, we have

h(σ;m).

IV. In the last step, we will prove that

lim
m→∞

lim sup
n→∞

Enh(σ;m)(l) = lim
m→∞

lim inf
n→∞

Enh(σ;m)(l) = µl.

Split

Enh(σ;m)(l) =
∑

σ∈Sn

(
1{h(σ;m) ≤ m− 1} + 1{m ≤ h(σ;m) ≤ ml+2}

+1{h(σ;m) > ml+2}
)
h(σ;m)(l) · θ

w(σ)

θ(n) =: R1(l, n,m) +R2(l, n,m) +R3(l, n,m).

Let ρm,l(n) be some remainder term which approaches to zero for any fixed l and θ ≥ 1 when n → ∞

and, then m → ∞.
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In the sum R1(l, n,m), we have h(σ;m) = h(σ), thus having in mind (6.4),

R1(l, n,m) =
m−1∑
k=1

k(l)νn(h(σ) = k) =
m−1∑
k=1

k(l)e
−µµ

k

k!
+ ρm,l(n)

= µl −
∑
k≥m

e−µµ
k

k!
+ ρm,l(n) = µl +O

(
µm

m!

)
+ ρm,l(n).

So

lim
m→∞

lim sup
n→∞

R1(l, n,m) = lim
m→∞

lim inf
n→∞

R1(l, n,m) = µl. (6.6)

Analogically, if m ≥ 2l,

R2(l, n,m) ≤
ml+2∑
k=m

k(l)νn(h(σ) ≥ k) ≤
ml+2∑
k=m

µl+2

(k − l)(k − l − 1)
+ ρm,l(n)

≪ 1
m

+ ρm,l(n).

We obtain

lim
m→∞

lim sup
n→∞

R2(l, n,m) = lim
m→∞

lim inf
n→∞

R2(l, n,m) = 0. (6.7)

At the end, having in mind (6.5), for m ≥ k,

R3(l, n,m) ≤ 1
ml+2 − l

Enh(σ;m)(l+1) ≪ m−1.

Consequently,

lim
m→∞

lim sup
n→∞

R3(l, n,m) = lim
m→∞

lim inf
n→∞

R3(l, n,m) = 0. (6.8)

The expected condition (ii) follows from the expressions (6.6)-(6.8).

Sufficiency. By condition (i) and estimate (6.2), it suffices to consider nonnegative functions

hn(σ). Using the Taylor expansion, we have that

Ene
ith(σ;m) = 1 +

L∑
l=1

Enh(σ;m)(l)

l!
(eit − 1)l +O

(Enh(σ;m)(L+1)

(L+ 1)!
|eit − 1|L+1

)
,

uniformly for |t| ≤ T for each fixed T > 0 and L ∈ N. According to the condition (ii), we obtain

Ene
ith(σ;m) = 1 +

L∑
l=1

µl

l!
(eit − 1)l +O

(
2LµL

(L+ 1)!

)
+ ρm,L(n). (6.9)

In other words,

lim
m→∞

lim sup
n→∞

∣∣∣∣Ene
ith(σ;m) −

L∑
l=0

µl

l!
(eit − 1)l

∣∣∣∣ ≪ 2LµL

(L+ 1)!

for every L ≥ 1. On the other hand, since

lim sup
n→∞

∑
j≤n

aj >m

θ

j

(
1 − j

n

)θ−1

≤ 1
m

lim
r→∞

lim sup
n→∞

∑
j≤n

θaj(r)
j

(
1 − j

n

)θ−1

= µ

m
,

if m ≥ 1, then

En|eith(σ;m) − eithn(σ)| ≪ νn(h(σ) ̸= h(σ;m)) ≤ νn(∃j : aj > m, kj(σ) ≥ 1)

≤
∑
j≤n

aj >m

νn(kj(σ) ≥ 1) ≤
∑
j≤n

aj >m

θ

j
ψn(n− j) = ρm(n).
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The last two approximations imply

lim sup
n→∞

∣∣∣∣Ene
ithn(σ) −

L∑
l=0

µl(eit − 1)l

l!

∣∣∣∣ ≪ 2LµL

(L+ 1)!
.

It remains to take L → ∞.

The theorem is proved.

6.2 Corollaries

Corollary 6.1. Let hn(σ) be a sequence of completely additive functions defined in (1.4) with

aj ∈ {0, 1}, 1 ≤ j ≤ n. The frequencies Vn(x) converge weakly to the Poisson limit law with

parameter µ > 0 if and only if
∗∑

j≤εn

θ

j
= µ+ o(1) (6.10)

and, for each fixed 0 < ε < 1
∗∑

εn<j≤n

θ

j
ψn(n− j) = o(1). (6.11)

Proof. Sufficiency. We only need to check the condition (ii) of the theorem. In other words, we

have to establish the convergence of the factorial moments γ̂nl. From conditions (6.10) and (6.11)

we see that the expression of the factorial moments

γ̂nl = θl
∗∑

j1,...,jl

1{j1 + · · · + jl ≤ n}
j1 · · · jl

(
1 − j1 + · · · + jl

n+ 1

)θ−1

+O

(
logl n

n

)
we can change by

θl
∗∑

j1,...,jl≤εn

1{j1 + · · · + jl ≤ n}
j1 . . . jl

(
1 − j1 + · · · + jl

n+ 1

)θ−1

+ o(1) = µl + o(1).

Then

γ̂nl = µl + o(1).

Necessity. According to the condition (ii) of the theorem, we have

γ̂n1 =
∗∑

j≤n

θ

j

(
1 − j

n+ 1

)θ−1

+O

(
logn
n

)
= µ+ o(1).

Moreover,

γ̂nl = µl + o(1), (6.12)

for any l ≥ 1. Consequently, having in mind the inequality (2.18), we have

o(1) = γ̂l
n1 − γ̂nl = θl

∗∑
j1,...,jl≤n

1{j1 + · · · + jl ≤ n}
j1 . . . jl

[
ψn(n− j1) . . . ψn(n− jl) − ψn(n− j1 − · · · − jl)

]

+θl
∗∑

j1,...,jl≤n

1{j1 + · · · + jl > n}
j1 . . . jl

ψn(n− j1) . . . ψn(n− jl) ≥ θl

( ∗∑
n/l<j≤n

1
j
ψn(n− j)

)l

,
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for any l ≥ 1 and taking 0 < ε < 1, we have
∗∑

εn<j≤n

1
j
ψn(n− j) = o(1).

So we obtain (6.11).

The Corollary is proved.

Corollary 6.2. Let hn(σ) be completely additive functions with aj ∈ Z, 1 ≤ j ≤ n that∑
j≤n/2
aj ̸=0

θ

j
ψn(n− j) = o(1) (6.13)

The frequencies Vn(x) converge weakly to the Poisson limit law with parameter µ > 0 if and only if

the condition (i) of the Theorem 1.6 is satisfied and

lim
m→∞

lim sup
n→∞

∑
n/2<j≤n

aj >m

θ

j
ψn(n− j) = 0 (6.14)

and, for each k ≥ 1,∑
n/2<j≤n

aj =k

θ

j
ψn(n− j) = µk

k!
e−µ + o(1). (6.15)

Proof. Necessity. From Theorem 1.6 we have (i) and also having in mind Proposition 4.1,

we can analyze only the case, when aj ≥ 0. Let, as above, j, j1, . . . ≤ n and s, l, r1, . . . , rs ∈ N.

According to the expression of factorial moments (2.13), we have

Enh(σ;m)(l) =
l∑

u=1
θu

∑
r1+···+ru=l

(
l − 1
r1 − 1

)
· · ·
(
l − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju≤n

aj1(m)(r1) · · · aju(m)(ru)

j1 · · · ju
ψn(n− j1 − · · · − jl) (6.16)

The condition (6.13) allow us to assume that aj = 0 for any j ≤ n/2, so in the equality (6.16)

we analyze the case, when ji ∈ (n/2;n]. Consequently, the condition (ii) in Theorem 1.6 could be

rewritten in such a form:

lim
m→∞

lim sup
n→∞

∑
n/2<j≤n

θ
aj(m)(l)

j

(
1 − j

n+ 1

)θ−1

= lim
m→∞

lim inf
n→∞

∑
n/2<j≤n

θ
aj(m)(l)

j

(
1 − j

n+ 1

)θ−1

= µl,

for l ≥ 1. On the other hand,

lim sup
n→∞

∑
j≤n

aj >m

θ

j

(
1 − j

n+ 1

)θ−1

≤ 1
m

lim
r→∞

lim sup
n→∞

∑
n/2<j≤n

θ
aj(r)
j

(
1 − j

n+ 1

)θ−1

= µ

m
(6.17)

We also have

lim
m→∞

lim sup
n→∞

∣∣∣∣ ∑
n/2<j≤n

(eitaj(m) − 1)θ
j

(
1 − j

n+ 1

)θ−1

− exp{µ(eit − 1)} − 1
∣∣∣∣ = 0

57



uniformly for |t| ≤ T for each fixed T > 0.

Further,∣∣∣∣ ∑
n/2<j≤n

(eitaj(m) − 1)θ
j

(
1 − j

n+ 1

)θ−1

−
∑

n/2<j≤n

(eitaj − 1)θ
j

(
1 − j

n+ 1

)θ−1∣∣∣∣
≪

∑
j≤n

aj >m

1
j

(
1 − j

n+ 1

)θ−1

.

Now, from the two last estimations, having in mind (6.17), we have

∑
n/2<j≤n

(eitaj − 1)θ
j

(
1 − j

n+ 1

)θ−1

= exp{µ(eit − 1)} − 1 + o(1)

=
∞∑

k=1

µk

k!
(eit − 1)k + o(1).

Integrating this equality multiplied by e−itk on the interval [−π, π], we obtain (6.15).

Sufficiency. By (6.14) it suffices to prove that

lim
m→∞

lim sup
n→infty

∣∣∣∣ ∑
n/2<j≤n

aj ≤m

(eitaj − 1)θ
j

(
1 − j

n+ 1

)θ−1

− 1 − exp{µ(eit− 1)}
∣∣∣∣ = 0.

This clearly follows from (6.15).

The Corollary is proved.
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7 Examples

Here we present some examples of distributions which occur as limit laws for Vn(x). Let L be the

class of such laws.

In the following subsection, we examine a case when Poisson law appears as limit distribution

for the frequencies Vn(x) of completely additive functions hn(σ) with aj ∈ Z+ and cycles’ lengths

j ∈ J ⊂ (n/2, n], where J ⊂ {j : j ≤ n}. In particular, there will be established an area of parameter

µ > 0, under which hn(σ) posses the Poisson limit law Πµ.

At the beginning, we present the following lemma for the moment generating function.

Lemma 7.1. If aj ̸= 0 for j ∈ J ⊂ (n/2, n] and aj = 0 elsewhere, then the moment generating

function

Enz
h(σ) = 1 + θ

∑
j∈J

zaj − 1
j

ψn(n− j)

= 1 + θ
∑
j∈J

zaj − 1
j

(
1 − j

n

)θ−1
+ o(1), |z| ≤ 1.

Proof. We obtain from the formula (2.3):∑
n≥0

φn(z)wn = exp
{
θ
∑
j≥1

zaj

j
wj

}
that

Enz
h(σ) = n!

θ(n) [wn]
(

1
(1 − w)θ

exp
{
θ
∑
j∈J

zaj − 1
j

wj

})
,

where [wm]f(w) means the mth coefficient of a power series f(w). Expanding the exponential

function we easily find the nth one.

To obtain the asymptotical formula, it suffices to approximate ψn(n− j).

The lemma is proved.

In further calculations of moments and factorial moments, we need a tool for the remainder

terms estimate. The following inequality will serve us.

Koksma - Hlawka inequality. If f : [0, 1] → R is differentiable and |f ′(t)| is integrable,

then ∣∣∣∣ 1n
n∑

k=1

f

(
k

n

)
−
∫ 1

0
f(t)dt

∣∣∣∣ ≤ 1
n

∫ 1

0
|f ′(t)|dt. (7.1)

This inequality is very convenient in cases, if we have monotonic function f or its derivative is

bounded. In the first case, the derivative is of the same sign, so the integral on the right-hand side

of the inequality (7.1) does not exceed |f(1) − f(0)|.

Checking the fact of weak convergence of the distributions Vn(x) with aj ∈ {0, 1}, we must have

in mind inequality (2.17) γ̂nl ≤ γ̂l
n1 from Lemma 2.5.
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7.1 The Poisson distribution on long cycles

At the beginning, we need an easy calculus exercise.

Lemma 7.2. Let θ ≥ 1 and x ∈ [1/2, 1]. The function

vθ(x) := θ

∫ x

1/2
(1 − u)θ−1 du

u

is strictly increasing in x and 0 = vθ(1/2) < vθ(1) ≤ v1(1) = log 2 < 1.

Proof. Apply calculus.

Proposition 1. Let µ ≤ − log(1 − vθ(1)), where

vθ(x) := θ

∫ x

1/2
(1 − u)θ−1 du

u
.

Introduce the sequence 1/2 = d0 < d1 < · · · by

vθ(dm) = e−µ
m∑

k=1

µk

k!
, m ∈ N.

and set aj = m if ndm−1 < j ≤ ndm and aj = 0 otherwise. If hn(σ) is a sequence of completely

additive functions defined these aj, then it posses the Poisson limit law with parameter µ.

Proof. Lemma 7.2 assures that the sequence dm is correctly defined. Indeed, the values on the

right-hand side

e−µ
m∑

k=1

µk

k!
< 1 − e−µ ≤ vθ(1).

Now the claim is evident.

Using Lemma 7.1 and definition of aj , we calculate the characteristic function

Ene
ithn(σ) = 1 + θ

∑
n/2<j≤n

eitaj − 1
j

(
1 − j

n

)θ−1
+ o(1)

= 1 +
∞∑

m=1
(eitm − 1)

∑
ndm−1<j≤ndm

θ

j

(
1 − j

n

)θ−1
+ o(1),

where t ∈ R. For the inner sum, we apply the Koksma-Hlawka approximation formula (7.1) and,

having in mind uniform in n convergence, proceed

Ene
ithn(σ) = 1 +

∞∑
m=1

(eitm − 1)[vθ(dm) − vθ(dm−1)

+O
(
(dm − dm−1)n−1)] + o(1)

= 1 +
∞∑

m=1
(eitm − 1)e

−µµm

m!
+O

(
1
n

∞∑
m=1

(dm − dm−1)
)

+ o(1)

= exp
{
µ(eit − 1)

}
+ o(1)

uniformly in t ∈ R.

The proposition is proved.
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7.2 The quasi-Poisson distribution

Here we examine the quasi-Poisson distribution in relation with the proposed conjecture of M. Lugo

(see [42]). For reader’s convenience we quote it.

Conjecture 15 The expected number of cycles of length in [γn, δn] of a permutation of n chosen

from the Ewens distribution approaches

λ =
∫ δ

γ

1
x

(1 − x)θ−1dx (7.2)

as n → ∞. Furthermore, in the case where 1/(k+ 1) ≤ γ < δ < 1/k for some positive integer k, the

distribution of the number of cycles converges in distribution to quasi-Poisson(k, λ).

Now we will show that it is actually mistaken.

Proposition 2. M. Lugo conjecture 15[42] is false.

Proof. Define the sequence of sets of natural numbers

Jn = N ∩
(
n/3, n/2

]
and take aj = 1 if j ∈ Jn and aj = 0 elsewhere. The factorial moments of the additive function

defined via these aj are equal to

γ̂n1 =
∑

j∈Jn

θ

j
ψn(n− j) = θ

∫ 1/2

1/3
(1 − u)θ−1 du

u
+O

(
logn
n

)
, n ≥ 2.

γ̂n2 =
∑

i,j∈Jn

1{i+ j ≤ n} 1
ij
ψn(n− i− j) = θ2

∑
n/3<i≤n/2

1
i

∑
n/3<j≤n/2

1
j
ψ(n− i− j).

The inner sum of the latter equality, having in mind Koksma-Hlawka approximation, equals∑
n/3<j≤n/2

1
j

(
1 − i

n+ 1
− j

n+ 1

)θ−1

=
∫ 1/2

1/3

1
u

(
1 − i

n+ 1
− u

)θ−1

du+O

(
1
n

)
.

Using Lemma 7.1, we continue the calculations of γ̂n2:

γ̂n2 = θ2
∫ 1/2

1/3

1
uv

(1 − u− v)θ−1dudv +O

(
log2 n

n

)
, n ≥ 2.

Analogically, we obtain

γ̂2
n1 = θ2

∫ 1/2

1/3

1
uv

(1 − u)θ−1(1 − v)θ−1dudv +O

(
logn
n

)
.

Checking the inequality (2.17), we compare the integrands of the last two equalities and see that

(1 − u)(1 − v) > 1 − u− v, i.e.

γ̂n2 < γ̂2
n1.

So, we conclude that the first claim of M. Lugo conjecture, mentioned above, is not true because

of a lack of the parameter θ on the right-hand side of the formula. The second claim is also mistaken

if θ ̸= 1, i.e. according to the Theorem 1.3 and the latter checking, the limit distribution really

exists, but it is not the quasi-Poisson.

The proposition is proved.
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7.3 Bernoulli distribution

We now demonstrate that the Bernoulli distribution Be(p), if the parameter p is small enough, can

appear as a limit if θ ≥ 1 and aj ∈ {0, 1}.

Check that γ̂1 = p and γ̂l = 0 if l ≥ 2. Let vθ(x) be the function defined in Proposition 1 on

[1/2, 1].

Proposition 3. For every p ≤ vθ(1), find α such that vθ(α) = p and let hn(σ) be the sequence of

additive functions defined via

aj =

1 if n/2 < j ≤ αn,

0 otherwise.

Then the limit distribution of hn(σ) is Be(p).

Proof. Check that 1/2 < α ≤ 1 and by the Koksma-Hlawka approximation

γ̂n1 = θ
∑

n/2<j≤αn

1
j
ψn(n− j) = vθ(α) + o(1) = p+ o(1).

On the other hand, γ̂nl = o(1) for every l ≥ 2.

The proposition now follows from Theorem 1.3.

7.4 Binomial distribution

Let Z be a random variable distributed according to the binomial distribution B(p,M) with param-

eters p ∈ (0, 1) and M ∈ N, that is,

P (Z = k) =
(
M

k

)
pk(1 − p)M−k, k ∈ {0, 1, . . . ,M}.

The factorial moments are equal EZ(l) = M(l)p
l if l = 1, 2, . . . ,M and EZ(l) = 0 if l = M + 1,M +

2, . . . .

We now present a construction of additive functions obeying a binomial asymptotic distribution.

For simplicity, we confine ourselves to a particular case.

Proposition 4. If θ = 1 and

0 < p ≤ (log 2)/
√

2 = 0.490...,

then the distribution B(p, 2) ∈ L.

Proof. It is important to note that

2EZ(2) = (EZ)2 (7.3)

if M = 2.
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The idea of our construction goes back to G.Stepanauskas and J.Šiaulys’ number-theoretical

paper [83]. Let 0 < α ≤ log 2 and 0 < β ≤ log(3/2) be temporary parameters. Define the sequence

of sets of natural numbers

Jn = N ∩
(

(n/3, (n/3)eα] ∪ (2n/3, (2n/3)eβ ]
)

and take aj = 1 if j ∈ Jn and aj = 0 elsewhere. The factorial moments of the additive function

defined via these aj are asymptotically equal to

γ̂n1 =
∑

j∈Jn

1
j

= α+ β + o(1) ≤ log 3 + o(1),

γ̂n2 =
∑

i,j∈Jn

1{i+ j ≤ n} 1
ij

=
( ∑

n/3<j≤(n/3)eα

1
j

)2

= α2 + o(1),

and γnl = 0 if l ≥ 3. By virtue of (7.3), we have to require that

2α2 = (α+ β)2.

Hence

α = (
√

2 + 1)β.

Given p satisfying the condition of Proposition, we can choose β and, consequently, α so that

2p = α+ β = (
√

2 + 2)β ≤ log 3.

Now, taking β = (2 −
√

2)p and α = p
√

2, due to the condition on p, we have finished.

The proposition is proved.

7.5 Outside the class of limit laws

Let L be the class of limit laws which do not occur as limit laws for distributions Vn(x). Again, we

exploit the observation due to J.Šiaulys and G. Stepanauskas [82] concerning the relations between

the first two factorial moments (see Lemma 2.5).

7.5.1 Mixture of the Poisson distribution

We begin with a mixed Poisson distribution Πλ,τ , where 0 < β < 1 and λ, τ > 0. Let Y have such

a distribution, then its factorial moments

EY(l) = βλl + (1 − β)τ l, l = 1, 2, . . .

Proposition 5. If λ ̸= τ , then Πλ,τ ∈ L.

Proof. If Πλ,τ ∈ L, then by Lemma 2.5, we have

EY(2) ≤
(
EY
)2
.

Solving this, we obtain that the equality λ = τ must be satisfied. The contradiction proves the

proposition.
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7.5.2 Geometrical distribution

Let G be a r.v. having the geometrical distribution Γβ :

P (G = b) = (1 − β)βb, b = 0, 1, 2, . . . ,

where the parameter β ∈ (0, 1), and the factorial moments

EG(l) = l!
(

β

1 − β

)l

.

Proposition 6. If β ∈ (0, 1), then Γβ ∈ L.

Proof is trivial.
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8 Conclusions

• Treatment of the moments of additive functions defined on the symmetric group endowed with

the Ewens probability measure is available via the conditional moments of sums of independent

random variables.

• Sharp estimates of the mean values of multiplicative functions defined on the additive semi-

group Zn
+ with respect to the Ewens Sampling Formula can be obtained by the small sieve

method cultivated in probabilistic number theory.

• For the number of cycles with restricted lengths of a random permutation, the weak conver-

gence of distributions under the Ewens probability measure is equivalent to the convergence

of all factorial moments.

• The weak convergence of distributions of integer-valued additive functions to the Poisson law is

equivalent to the convergence of all factorial moments of an appropriately truncated function.

• The Poisson, Bernoulli, quasi-Poisson distributions belong to the class of limiting distributions

for additive functions, while the non-degenerate mixed Poisson, geometric, and binomial do

not.

• The methodology developed in probabilistic number theory can be adopted in the theory of

random permutations.
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9 Reziumė

Disertacijoje nagrinėjamos atsitiktiniu̧ keitiniu̧ problemos yra priskirtinos tikimybinei kombina-

torikai. Gauti rezultatai aprašo visiškai adityviu̧ju̧ funkciju̧, apibrėžtu̧ simetrinëje grupėje, reikšmiu̧

asimptotinius skirstinius Evenso tikimybinio mato atžvilgiu, kai grupės eilė neaprėžtai didėja. Išvestos

adityviu̧ju̧ funkciju̧ laipsniniu̧ ir faktorialiniu̧ momentu̧ formulės. Funkciju̧, išreiškiančiu̧ atsitiktinio

keitinio ciklu̧ su bet kokiais apribojimais skaičius, atveju rastos būtinos ir pakankamos ribiniu̧

tikimybiniu̧ dėsniu̧ egzistavimo sàlygos. Išsamiai išnagrinėtas konvergavimas i̧ Puasono, quasi-

Puasono, Bernulio, binominio ir kitus skirstinius, sukoncentruotus sveiku̧ju̧ neneigiamu̧ skaičiu̧

aibėje. Rezultatai apibendrinti sveikareikšmiu̧ visiškai adityviu̧ju̧ funkciju̧ klasėje. Darbe i̧rodytas

bendras silpnasis didžiu̧ju̧ skaičiu̧ dėsnis, rastos būtinos ir pakankamos adityviu̧ju̧ funkciju̧ seku̧

pasiskirstymo funkciju̧ konvergavimo i̧ išsigimusi̧ nuliniame taške dėsni̧ egzistavimo sa̧lygos.

Sprendžiamos problemos yra susietos su tikimybiniais vektoriu̧, turinčiu̧ sveika̧sias neneigiamas

koordinates, uždaviniais. Adicinėje tokiu̧ vektoriu̧ pusgrupėje išnagrinėti multiplikatyviu̧ju̧ funkciju̧

vidurkiai tikimybinio mato, vadinamo Ewenso atrankos formule, atžvilgiu. Gauti tikslūs viršutinieji

ir apatinieji i̧verčiai. Iš ju̧ išplaukia svarbios atsitiktiniu̧ keitiniu̧ tikimybiu̧ savybės.

Disertacijoje plėtojami faktorialiniu̧ momentu̧ ir kiti kombinatoriniai bei tikimybiniai metodai.
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