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GTalign: spatial index-driven protein
structure alignment, superposition,
and search

Mindaugas Margelevičius 1

With protein databases growing rapidly due to advances in structural and
computational biology, the ability to accurately align and rapidly search pro-
tein structures has become essential for biological research. In response to the
challenge posed by vast protein structure repositories, GTalign offers an
innovative solution to protein structure alignment and search—an algorithm
that achieves optimal superposition at high speeds. Through the design and
implementation of spatial structure indexing, GTalign parallelizes all stages of
superposition search across residues and protein structure pairs, yielding
rapid identification of optimal superpositions. Rigorous evaluation across
diverse datasets revealsGTalign as themost accurate among structure aligners
while presenting orders of magnitude in speedup at state-of-the-art accuracy.
GTalign’s high speed and accuracy make it useful for numerous applications,
including functional inference, evolutionary analyses, protein design, anddrug
discovery, contributing to advancing understanding of protein structure and
function.

In contemporary structural bioinformatics, the advent of advanced
artificial neural network architectures1–3 has ushered in an era where
protein structures are predicted with high accuracy for a myriad
of protein sequences4,5. This surge in structural data has presented
a challenge: the need for efficient and rapid protein structure
comparison to distill meaningful insights from the burgeoning
repositories of three-dimensional protein structures. Such tools
enable the extraction of biologically relevant information, decipher
evolutionary relationships6–8, and contribute significantly to under-
standing functional mechanisms encoded within protein structures9–11.
In this context, the development of computational tools for rapid
large-scale protein structure alignments represents an important step
forward.

The need for efficient tools gave rise to a variety of computational
techniques, each with its own strengths and limitations, aiming to
achieve accurate and rapid comparisons of protein structures. Two
fundamental approaches have emerged: local pattern matching and
rigid-body superposition optimization. Local pattern matching
involves analyzing structures independently, making it suitable for
handling flexible regions like linkers between protein domains. This

approach encompasses various strategies such as optimizing the
match between protein inter-residue distancematrices12 or probability
distributions13, aligning secondary structure elements using double
dynamic programming14 or graph matching15, finding and extending16

or chaining17 aligned fragment pairs with optimal inter-residue dis-
tance matching, and quantifying evolutionary similarity to infer initial
alignments13,18.

On the other hand, methods based on rigid-body superposition
treat structures as rigid bodies and focus on optimizing their local or
global spatial agreement. These methods may involve optimizing
superposition for protein fragments19, iterative superposition at dif-
ferent distance cutoffs20, ormulti-stage fragment-based superposition
optimization21. To achieve accurate pairwise protein alignments, these
methods20,21, and those employing local pattern matching14–18, apply
iterative alignment refinement that includes rigid-body superposition.

While approaches like TM-align21 and Dali22 have been essential in
advancing protein structure comparison, their computational com-
plexity has made them less practical for large-scale applications to
growing protein structure databases. To address this challenge, some
strategies involve preprocessing database structures to compute
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computationally intensive parts in advance15. Alternatively, accelerat-
ing protein structure searches involves conducting searches across
preclustered databases23,24. However, these approaches require
compute-intensive preprocessing and constant updating.

Recently, Foldseek25 has introduced an approach of leveraging a
structural alphabet to reduce the problem to a sequence comparison
and employed k-mer matching to filter out insignificant matches.
Despite its notable speed, Foldseek contends with inherent limitations
in alignment accuracy, underscoring the persistent challenge of
achieving a balance between computational efficiency and accuracy.

We bridge this gap by introducing GTalign (Giga-scale Targeted
alignment), a computational tool designed for extensive protein
structure similarity exploration and alignment. GTalign’s primary
objective is to find an optimal spatial overlay for a given pair of
structures and subsequently derive an alignment from it. In that sense,
GTalign treats each structure as a rigid body and evaluates protein
similarity through the identification of the best superposition, thereby
ensuring an accurate structural alignment. High computational per-
formance is achieved by algorithms developed for low-complexity
superposition search and to harness the power of modern computer
processors and accelerators. Consequently, GTalign combines high
accuracy and fast execution times, offering a solution for accelerated
and accurate structural analyses.

Results and discussion
GTalign approach
For a given protein pair, GTalign employs an iterative process that
involves (i) selecting a subset of atom pairs, (ii) calculating the trans-
formation matrix, (iii) deriving an alignment based on the resulting
superposition, and finally, selecting the alignment that maximizes the
TM-score26—a strategy akin to TM-align21. The first two steps can be
naturally parallelized for speed. However, alignment derivation entails
finding, for each residue, the spatially closest residue of the other
structure after superposition. Preserving sequence order is crucial for
assessing protein topology similarity, and thus, this optimization
typically requires dynamic programming (DP), a standard choice for
solving such problems. Handling positional dependencies while
maintaining sequence order poses challenges to DP implementation
with favorable time complexity. Therefore, this, coupledwith the need
for multiple alignments per structure pair, represents a bottleneck for
large-scale computation despite optimized parallel DP implementa-
tion efforts27.

GTalign tackles this challenge by introducing a spatial index for
each structure, which allows for considering atoms independently and
ensures O(1) time complexity for the alignment problem (Fig. 1a).
Although post-processing is necessary to preserve sequence order, it
has sublinear rather than quadratic time complexity. This methodol-
ogy enables GTalign to effectively parallelize all steps, efficiently
navigating through an extensive superposition space. Coupled with
parallel processing of numerous protein structure pairs, it significantly
accelerates the entire protein similarity search process.

Comprehensive reference-free performance evaluation
We benchmarked GTalign against a set of well-established protein
structure aligners: TM-align21, Dali22, FATCAT28, DeepAlign18, and
Foldseek25. We also evaluated the performance of TM-align’s fast var-
iant (option -fast) and Foldseek variants utilizing both fast
(--tmalign-fast 1; FoldseekTM) and regular (--tmalign-fast 0)
versions of TM-align for aligning protein structures that passed
sequence similarity filters. Various parameterizations of GTalign were
also benchmarked. The --speed option controls the algorithm’s
execution speed, with higher values prioritizing speed over accuracy.
In addition, the --pre-similarity and --pre-score options were
employed for initial similarity screening in the sequence and structure
space, respectively.

Comprehensive evaluations were conducted across four diverse
datasets representing different protein analysis scenarios: (i) SCOPe
2.0829 proteindomainsfiltered to 40%sequence identity, (ii) PDB30 full-
length structures filtered to 20% sequence identity, (iii) theUniProtKB/
Swiss-Prot31 protein structures from the AlphaFold Database4, and (iv)
the HOMSTRAD database32.

The evaluation employed an unbiased and reference-free
approach that reveals alignment accuracy through the superposition
of structures based on the produced alignments (see the section
Alignment accuracy evaluation). We calculated the superposition
score, TM-score26, for alignments produced by each tool. TM-score
ranges from 0 to 1, with 1 representing a perfectmatch. Therefore, the
progression of TM-scores serves as an indicator of a tool’s accuracy.
The range TM-score ∈ [0.5; 1] is particularly important because it
reflects sensitivity, i.e., a tool’s ability to detect proteins sharing the
same fold33.

TM-score can be normalized by the length of either of the two
proteins being compared. We first discuss the results obtained using
theTM-score normalized by the length of the shorter protein. This TM-
score evaluates structural similarity irrespective of the ratio of the two
protein lengths, effectively capturing similarities of smaller proteins or
domains matching regions of larger proteins.

The results (Fig. 1b–d, Supplementary Section S1.1, Supplemen-
tary Fig. S1a, Supplementary Table S1) show that GTalign consistently
outperforms all the aligners in terms of accuracy. GTalign (option
--speed=0) produces up to 7% more alignments with a TM-score≥
0.5 thanTM-align, the secondmost accurate tool (732,024 vs. 683,996,
SCOPe40 2.08 dataset).

This trend persists across the entire TM-score significance range
from 0.5 to 1.0 (Supplementary Table S2). However, there are excep-
tions: GTalign reports 191 fewer alignments than TM-align for TM-
scores ≥0.7 in the PDB20 dataset and 31 fewer alignments for TM-
scores ≥0.8 in the Swiss-Prot dataset. Further investigation revealed
that these differences stem from aligning queries with short proteins
with fewer than 30 residues. For a pair of proteins, GTalign employs
approximate partial sorting to select candidate alignments for detailed
refinement. Alignments for very small proteins or peptides score
similarly, and this approximation can occasionally lead to a suboptimal
final alignment.

While the issue of short proteins is recognized and left for future
resolution, analysis based on the TM-score normalized by the query
length effectively diminishes the significance of alignments between
queries and much smaller proteins. In this evaluation setting (Fig. 2,
Supplementary Fig. S1b, Supplementary Table S3), GTalign demon-
strates superior accuracy over the other aligners again. For example, in
the SCOPe40 2.08 dataset, GTalign (option --speed=0) produces up
to 7%more alignmentswith aTM-score≥0.5 thanTM-align (492,887 vs.
460,847). Disregarding insignificant differences of one alignment,
GTalign exhibits superiority across the full TM-score significance range
(Supplementary Table S4).

GTalign also demonstrates higher accuracy on the HOMSTRAD
dataset (Fig. 3), which contains reference structure alignments
grouped into evolutionarily and structurally related protein families.
These families exhibit relatively high structural similarity, as evidenced
by the TM-score distribution of the reference alignments (Fig. 3).
Therefore, these results highlight GTalign’s utility in improving struc-
tural alignments, even among highly similar proteins. This is further
supported by the greater accuracy of GTalign-produced alignments
compared to the reference alignments, suggesting potential applica-
tions in constructing reference datasets and classifying proteins. A
similar trend was observed previously34.

In addition, we provide structural examples in Supplementary
Figs. S2–S5, each corresponding to one dataset used in our benchmark
study. These examples highlight nontrivial structural similarities
identified by GTalign but overlooked or misaligned by all other
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Fig. 1 | Results. a Illustration of matching protein structures with O(1) time com-
plexity. GTalign explores numerous superpositions in parallel. Upon obtaining a
superposition, the alignment between the query protein (red) and the subject
protein (blue) is generated using the subject protein’s spatial index. This index
allows for the independent retrieval of the nearest residue in the subject protein for
each residue in the query protein, enabling parallel processing. b Benchmarking
results on the SCOPe40 2.08 dataset with 2045 queries and 15,177 database entries.
Parameterized runs of GTalign, TM-align, and Foldseek are included. The left panel
plots the cumulative TM-score (normalized by the shorter protein length) against
the number of top alignments ranked by a tool’s measure (TM-score, Z-score, or P-
value). In the middle panel, the alignments are sorted by their (TM-align-obtained)

TM-score. Vertical lines indicate the number of alignments with a TM-score ≥0.5.
The arrowdenotes the largest difference in thatnumberbetweenGTalign (732,024)
and Foldseek (13,371). The right panel shows the cumulative TM-score plotted
against runtime in seconds. c Benchmarking results on the PDB20 dataset with 186
queries and 18,801 database entries. d Benchmarking results on the Swiss-Prot
datasetwith 40 queries and 542,378 database entries. DeepAlign, Dali, and FATCAT
are excluded due to their long projected execution times. The Foldseek curves
appear truncated due to the total number of hits it produced. The axes scales in
Panelsb–d are chosen to accommodate themaximumvaluesof the cumulative TM-
score and the number of top hits with a TM-score ≥0.5. Source data are provided as
a Source data file.
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Fig. 2 | Alignment evaluation results based on the TM-score normalized by the
query length. a Benchmarking results on the SCOPe40 2.08 dataset with 2045
queries and 15,177 database entries. The left panel plots the cumulative TM-score
(normalized by the query length) against the number of top alignments rankedby a
tool’s measure (TM-score, Z-score, or P-value). In the middle panel, the alignments
are sorted by the TM-align-obtained TM-score. Vertical lines denote the number of
alignments with a TM-score ≥0.5. The arrowhighlights the largest difference in that

number between GTalign (492,887) and Foldseek (10,375). The right panel shows
the cumulative TM-score plotted against runtime in seconds. b Results on the
PDB20 dataset with 186 queries and 18,801 database entries. c Results on the Swiss-
Prot dataset with 40 queries and 542,378 database entries. Excluding DeepAlign,
Dali, and FATCAT due to their long projected execution times. Source data are
provided as a Source data file.
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benchmarked tools. Notably, all showcased examples demonstrate
domains (even from different folds; see a subsection below) or larger
significant structural segments, with insertions and deletions, sharing
the same topology, as confirmed by the TM-scores and structural
alignments. Therefore, Supplementary Figs. S2–S5 exemplify GTalign’s
primary objective of achieving optimal protein spatial superpositions
and detecting subtle yet significant structural similarities.

While GTalign excels in uncovering structural similarities, its
efficiency also sets it apart (Fig. 1b–d). GTalign is up to 104–1424x
faster (618–8454 vs. 879,965 s, Swiss-Prot dataset) than TM-align par-
allelized on all 40 CPU threads. It achieves a 177x speedup (options
--speed=13 --pre-score=0.4) over the fast (-fast) TM-align
version (618 vs. 109,319 s, Swiss-Prot dataset) and is the fastest among
the tools except Foldseek.

Clearly, the sequence prefiltering strategy contributes to Fold-
seek’s high speed. However, this comes at a high price in accuracy and
sensitivity (only 13,371 alignments with a TM-score ≥0.5; SCOPe40
2.08 dataset, Fig. 1b; see also Fig. 2 and Supplementary
Tables S2 and S4). When GTalign is configured to use sequence pre-
filtering (options --speed=13 --pre-similarity=15), a similar

pattern emerges, with runtimes comparable to Foldseek (428 vs. 196 s,
Swiss-Prot dataset) but decreased sensitivity. In contrast, no such
effect is observed for prescreening in the structure space (option
--pre-score; Figs. 1 and 2).

This phenomenon can be attributed to at least two factors. First,
low sequence similarity does not necessarily correlate with low struc-
tural similarity, as demonstrated by the results. Second, the generation
of accurate structural alignments using a single scoring scheme per
protein pairmay lack consistency. To address this, we explored the use
of scores derived from spectral analysis of rotation-invariant two-
dimensional representations of geometric features, such as angles and
distances between residues, in the frequency (Fourier) domain. How-
ever, this approach demonstrated inconsistent results and requires
further investigation. Despite these observations, leveraging pre-
screening in the sequence space can prove valuable for high-similarity
searches.

GTalign offers additional computational advantages by providing
the option to utilize multiple GPUs for computation. This feature was
effectively leveraged for processing the SCOPe40 2.08, PDB20, and
Swiss-Prot datasets, whereGTalign exploited the computational power
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Fig. 3 | Benchmarking results on the HOMSTRAD dataset. Each plot illustrates
the distribution of TM-scores between two tools. The black line indicates identical
distributions. 100 structure pairs for which Dali did not produce any alignment are

excluded from the corresponding plot. “Reference” represents the original align-
ments in the database. Source data are provided as a Source data file.
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of all three Tesla V100 GPUs available on the system. Supplementary
Table S1 provides GTalign runtimes on one, two, and three GPUs,
demonstrating scalability across all benchmarked parametrizations.
Furthermore, the results presented in Supplementary Section S1.2 and
Supplementary Table S5 unveil a noteworthy performance trend: A
more recent desktop-grade GPU consistently outperforms the com-
putational capabilities of the three server-grade V100GPUs, effectively
conveying GTalign’s remarkable performance even when run on a
single, relatively inexpensive GPU.

Alignment accuracy evaluation using RMSD and GDT_TS
TM-score, used to evaluate alignment accuracy in the previous
subsection, is a global measure sensitive to alignment coverage due
to normalization by protein length. Here, we turn to root-mean-
squared deviation (RMSD) and global distance test (GDT)20 for
evaluation.

RMSD, a measure of spatial proximity, is normalized by the
number of aligned residue pairs and is effective at capturing accurately
aligned local protein regions (see Supplementary Fig. S6 in Supple-
mentary Section S1.3 for an example). However, optimizing alignments
based solely on RMSD can yield short aligned fragments that provide
limited insight into structural similarity at the domain or protein level.
Previous approaches14,15,20 sought to find a balance between RMSD and
alignment coverage to generate alignments sufficiently long to assess
structural similarity without being overly divergent.

The GDT score (GDT_TS)20 is another measure of spatial
proximity, calculated at four different distance thresholds (1, 2, 4,
and 8 Å), which does not over-penalize spatially unmatched
residue pairs.

In this section, our RMSD and GDT_TS-based evaluation focuses
on local alignments within alignment boundaries, providing insight
into the extent to which alignments can be shortened to increase local
precision by reducing alignment coverage. The results (Fig. 4) reveal
that even among local alignment methods such as Foldseek (default
parametrization), FATCAT, and DeepAlign, only DeepAlign produces
alignments with lower RMSDs and higher GDT_TS scores than GTalign
(Supplementary Table S6). However, DeepAlign achieves 15% and 18%
lower RMSDs (2.48 and 2.03 vs. 2.91 and 2.47 for the SCOPe402.08 and
PDB20 datasets) with 20% and 17% fewer aligned residues on average
(56.0 and 67.4 vs. 47.6 and 57.1) compared to GTalign (--speed=0).
The average TM-scores of GTalign alignments (Supplementary
Table S1) exceeding those of DeepAlign alignments suggest that the
difference in the number of aligned residues does not imply mis-
aligned pairs. Indeed, Supplementary Table S1 and Supplementary
Table S6 demonstrate that both GTalign and TM-align produce align-
ments that strike a good balance between coverage and precision. On
average, GTalign (--speed=0) achieves lower RMSDs with higher
alignment coverage compared to TM-align. In some cases, this is
achieved by identifying different, more optimal spatial superpositions
(see Supplementary Figs. S2–S4 for examples).

Fig. 4 | Results of local alignment evaluation.Alignment evaluation results for the
SCOPe40 2.08, PDB20, and Swiss-Prot datasets using RMSD (root-mean-squared
deviation, a) and GDT_TS (global distance test) scores (b) normalized by the
number of aligned residue pairs. The panels display the cumulative RMSD and
GDT_TS scores plotted against the number of top alignments ranked by a tool’s

measure (TM-score, Z-score, or P-value). Foldseek alignments were ranked by
Foldseek’s TM-score, resulting in lower RMSDs and higher GDT_TS scores. The
curves of the TM-align and GTalign variants, excluding GTalign --speed=13--

pre-similarity=15, closely match. Source data are provided as a Source
data file.
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Benchmarking against the SCOPe dataset reference
GTalign’s main objective is to achieve an optimal superposition for a
pair of structures for inferring their structural similarity, not rarely
indicating an evolutionary relationship. This section assesses GTalign
and the other tools from an evolutionary standpoint by examining
their ability to replicate SCOPe classification. Importantly, this
benchmark does not measure alignment accuracy or the rate of
accurate alignments (Figs. 1–3) but rather the consistency between a
tool’s ranking of structure pairs and SCOPe classification.

The SCOPe knowledgebase categorizes protein domains into
families, superfamilies, folds, and classes. Families group domains
based on sequence similarity, with those sharing a common ancestor
organized into superfamilies. Folds comprise structurally similar
superfamilies, while classes are arranged by secondary structure con-
tent and organization29.

Figure 5 shows the relationship between the precision and recall
(PR) ofmatching domains of the same SCOPe 2.08 family, superfamily,
and fold for each tool. As discussed in the next subsection, significant
structural similarities extend even across folds and classes. Conse-
quently, Fig. 5a displays the PR curves obtained with false positives
(FPs) as pairs of domains from different folds, excluding well-known
cross-fold relationships across Rossman-like (c.2–c.5, c.27, c.28, c.30,
and c.31) and beta-propeller (b.66–b.70) folds35. In addition, Fig. 5b
shows the PR curves when disregarding cross-fold relationships, with
FPs corresponding to pairs from different SCOPe 2.08 folds.

The results in Fig. 5 and the areas under the PR curves (AUPRCs)
reported in Supplementary Table S7 (Supplementary Section S1.4)

demonstrate that GTalign (variants --speed=0 and --speed=13)
generally outperforms the other tools, except for Dali in the evaluation
that ignores cross-fold relationships at the fold level, where the dif-
ference in AUPRC is <1%. When evaluating sensitivity in identifying
related domains before encountering the first FP (Supplementary
Fig. S7), GTalign shows lower average sensitivity compared to both
TM-align versions at the family and fold levels, and compared to Dali
and DeepAlign at the superfamily level. However, these differences in
the distributions of sensitivity values are statistically insignificant
(Supplementary Table S8).

Figure 5 and Supplementary Table S7 also highlight two observa-
tions. First, GTalign’s performance diminishes when employing
sequence prefiltering (options --speed=13 --pre-similarity=15),
due to overly stringent criteria in filtering out dissimilar structures,
despite relatively high alignment accuracy for pairs passing the filter
(Figs. 1, 2, and 4). Future enhancements may involve refining sequence
prefiltering options.

Second, disregarding cross-fold relationships considerably affects
precision, recall, and AUPRCs, rendering evaluations unstable. Further
discussion on this aspect follows in the subsequent subsection.

Limitations of SCOPe-based evaluation
In the SCOPe classification, the traditional emphasis on organiz-
ing proteins according to their sequence similarity to classified
entries36 reflects a primary focus on evolutionary relationships.
However, structural similarities among proteins extend beyond
evolutionary connections37. Classifying proteins into discrete

Fig. 5 | Weighted precision-recall (PR) curves at the family, superfamily, and
fold levels. The areas under these PR curves are reported in Supplementary
Table S7. a False positives for calculating precision and recall are pairs of structures
from different SCOPe 2.08 folds, with the exception that those pairs belonging to

Rossman-like (c.2–c.5, c.27, c.28, c.30, and c.31) or beta-propeller (b.66–b.70) folds
are ignored35.b False positives correspond to pairs fromdifferent SCOPe 2.08 folds
without exceptions. Source data are provided as a Source data file.
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folds presents challenges due to inherent ambiguity in defining
folds38,39. For example, what level of insertions or deletions can be
considered critical for classifying a domain into a different fold?
A more nuanced perspective suggests that protein fold space may
exhibit both discrete and continuous characteristics37,39. While
high structural or evolutionary similarities may support discrete
fold assignments, lower yet significant similarities imply a con-
tinuous nature of fold space.

Our analysis supports these assertions. Examination of the dis-
tribution of statistically significant TM-scores, obtained by aligning
query and subject structures from the SCOPe40 2.08 dataset using
TM-align, reveals that only highly similar protein domains (TM-score
>0.8) within the same folds outnumber those from different folds
(Fig. 6, Supplementary Fig. S8). Domains from different folds span the
entire TM-score significance range, with all of them deemed errors
(false positives) despite evident structural and topological simila-
rities (Fig. 6).

These insights underscore the limitations of the SCOPe-based
evaluation. While the reference SCOPe-based evaluation provides a
convenient approach for benchmarking structure alignment tools, its
inability to capture the full complexity of protein structure space is
evident.

In conclusion, GTalign provides an efficient solution for searching
vast protein structure datasets at different levels of accuracy. Its high
efficiency is exemplified by a speedup of 6 orders of magnitude over
TM-align when aligning large protein complexes (Supplementary
Fig. S9). GTalign’s cross-platform implementation, user-friendly inter-
face, and high configurability, including the option for clustering
structures (Supplementary Section S1.6), underscore its accessibility
and versatility. Providing orders of magnitude in speedup at state-of-
the-art accuracy, GTalign positions itself as a valuable tool among
existing structure aligners.

Methods
Structure representation
GTalign offers users the flexibility to configure and choose which
protein structure atoms will serve as representatives. By default, pro-
tein structures are represented using alpha-carbon atoms. All experi-
ments conducted with GTalign were performed using alpha-carbon
atoms as representatives.

Algorithm outline
The GTalign software takes as inputs query and subject (referred to as
“reference” in the software) structure databases of arbitrary size. GTalign
processes this data in chunks, aligning batches of query structures with
batches of subject structures, both sorted by length, iteratively until all
possible batch pairs are completed. A similar batch-oriented approach to
processing large databases has been described previously27. Below, we
outline the (sequential) algorithmic steps representing the actions per-
formed on a pair of batch query and subject structures.

Certain steps in the algorithm involve the alignment refinement
procedure described inAlgorithm 10 (RefineBestAlignments) specified
in Supplementary Section S2. Algorithm 10 optimizes TM-scores and
refines alignments by considering differently positioned alignment
fragments of different lengths. It takes three parameters: the numbers
of query and subject structures, where all possible pairs are processed
in parallel, and a gap opening penalty for the COMER2 DP algorithm27

to generate alignments that optimize TM-scores given the super-
positions. The complete outline of the GTalign algorithm is pro-
vided below.
1. Index query and subject structures and store the spatial indices in

a k-d tree data structure.
2. Assign secondary structure states to the structures at each residue

in parallel. This assignment is determined by the coordinates of
five residues centered around the residue under consideration,
with distance cutoffs between residues optimized in ref. 21.

Fig. 6 | Distributions of TM-scores (>0.5) for domain pairs within the same and
different SCOPe 2.08 folds, presented in bins of width 0.1. TM-scores, normal-
ized by the length of the shorter protein, were calculated by aligning query and
subject structures from the SCOPe40 2.08 dataset using TM-align. Representative
examples of structure pairs from different folds and classes are provided for each

TM-scorebin. These examples, alongwith numerous other significantly structurally
similar pairs fromdifferent folds and classes, are considered errors (false positives)
in the reference SCOPe-based evaluation. Source data are provided as a Source
data file.
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3. Calculate transformationmatrices based on continuous fragment
pairs in parallel for all queries and subjects, their matched frag-
ment pairs, and fragment positions.

4. Apply Algorithm 10 with parameters (nQ, nS, 0) to refine align-
ments obtained from the superpositions found in the previous
step to maximize the TM-score (always normalized by the length
of the shorter protein). nQ and nS are the numbers of query and
subject structures in batches. Here and in the following steps,
keep track of the maximum TM-score and the corresponding
transformation matrix for all query-subject pairs.

5. If the option --add-search-by-ss is specified, apply Algorithm
10 with parameters (nQ, nS, {−0.6, 0}) to refine alignments
obtained from the application of the COMER2 DP algorithm27

using a scoring function based on secondary structure matching
and sequence similarity score40.

6. Apply Algorithm 1 (DeepSuperpositionSearch) to find the most
favorable superpositions through a deep search using spatial
indices. The search depth is controlled with the --speed option.
This step is central to theGTalignmethodbecause it enables rapid
exploration of the superposition space, resulting in accurate
alignments. We provide a detailed specification of Algorithm 1 in
Supplementary Section S2.

7. Apply Algorithm 10 with parameters (nQ, nS, {−0.6, 0}) to refine
alignments obtained from the application of the COMER2 DP
algorithm using a scoring function based on secondary structure
matching and TM-score, given the optimal transformation
matrices obtained so far.

8. Apply Algorithm 10 with parameters (nQ, nS, {−0.6, 0}) to refine
alignments obtained from the application of the COMER2 DP
algorithm using TM-score as a scoring function. Here, the number
of repetitions in Algorithm 10 is configurable (option
--convergence).

9. Produce final alignments using the COMER2 DP algorithm based
on the optimal transformation matrices in parallel for all queries
and subjects.

10. Calculate TM-scores, root-mean-squared differences (RMSDs),
andother alignment-related statistics in parallel for all queries and
subjects.

Steps 1 and 2 prepare data for processing. Steps 3 and 4 identify
protein superpositions by matching continuous protein segments,
similar to TM-align’s initial gapless matching21. These steps are suffi-
cient to capture optimal superpositions of proteins sharing high
structural similarity over a significant fraction of the length of at least
one protein of a pair. Step 5 occasionally improves superpositions
found in the previous steps. Step 6 conducts an extensive super-
position search by matching different protein spatial regions. Steps 7
and 8 represent the refinement of transformationmatrices and related
alignments obtained earlier, meaning that alignment regions typically
do not change or change slightly. Steps 9 and 10 prepare results for
output. All the steps are based on algorithms and data structures
designed to maximize instruction and memory throughput.

Spatial index data structure
To accelerate the superposition search, protein structures are initially
indexed (step 1 of the algorithm outline). Each structure’s index is
stored in a k-d tree data structure, which hierarchically organizes
protein atom coordinates. This organization allows for the retrieval of
the nearest neighbor in the tree for a query atom with specified
coordinates in constant, O(1) time.

Accelerated superposition search using spatial indexing
The accelerated superposition search process (step 6 of the algorithm
outline) leverages spatial indexing to find optimal superpositions for
query and subject proteins within a data chunk. Conducted in parallel

for all query-subject protein pairs in the chunk, this process explores
numerous initial superposition configurations per protein pair
simultaneously.

Initially, the process calculates initial superpositions, or trans-
formation matrices, based on continuous query and subject protein
fragments spanning the entire extent of both proteins. The search
depth, determining the number of superpositions to explore, and the
fragment length depend on the query and subject protein lengths,
with the fragment length not exceeding 100 residues. Regions with
low local secondary structure similarity between query-subject
fragment pairs avoid the calculation and exploration of initial
superpositions.

Upon completing initial superpositions, the shorter protein
undergoes transformation to obtain spatial overlays. Then, alignments
are generated between the shorter protein and the other using the
longer protein’s index in parallel over residues, achieved in constant
time complexity. This routine repeats twice: Initially produced align-
ments refine spatial overlays, followed by repeated alignment pro-
duction using the protein index while ensuring matching protein
secondary structure this time.

The most favorable alignment for the query-subject pair is then
selected based on the highest TM-score. However, alignments
obtained using spatial indices are sequence order-independent.
Therefore, approximate sequence order-dependent TM-scores are
computed from these alignments, with one structure transformed, in
sub-linear time considering a maximum of 512 aligned residues.

Next, a small subset of transformation matrices with the highest
approximate scores is chosen for TM-score calculation using the
COMER2 DP algorithm. Further refinement involves selecting an even
smaller subset of transformation matrices corresponding to the
highest TM-scores to optimize alignments, considering different-
length and differently positioned alignment fragments. Finally, the
best alignment for the query-subject pair is selected and refined
similarly, employing full DP and TM-score optimization.

A detailed specification of this procedure is provided in Supple-
mentary Section S2.

Calculation of rotation matrices
GTalign computes rotation matrices using the Kabsch algorithm41,42.
Solving for the eigenvalues and eigenvectors of a cross-covariance
matrix, K 2 R3 × 3 (R in the original notation), requires double-
precision arithmetic. To render the problem solvable in single preci-
sion, thereby boosting instruction and memory throughput, K is nor-
malized by themean of the absolute values of its elements. It is easy to
show that this operation corresponds to scaling the coordinates of
protein atoms. Effectively, rotation matrices for large proteins can be
considered as obtained using coordinates expressed in nanometers
instead of Angstroms, preventing single-precision arithmetic overflow
and underflow. The resulting rotation matrices exhibit an insignificant
error (on the order of 10−5 on average) with no discernible impact on
superposition and structural alignment while still ensuring high
performance.

Dynamic programming implementation
A previously published algorithm27 was employed to implement the
dynamic programming (DP) algorithms. The time complexity to cal-
culate DP matrices is Oðmaxqlq +maxs

~lsÞ, with a constant factor
dependent on the number of threads running in parallel. (The com-
putation involves ðmaxqlq +maxs

~lsÞ=32 iterations of independent and
parallelized calculations, executed in O(32) time by GPU threads.)
Here, the maximums are taken over the lengths of all query (lq) and
subject (~ls) proteins in a data chunk. In instances where DP matrix
values are only required to update backtracking information, the
memory complexity for DP matrices is OðnQ

P
s
~lsÞ27, with nQ repre-

senting the number of query proteins in the chunk.
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DP matrices are built using a gap opening penalty, while the gap
extension cost is set to 0 unless otherwise specified. For optimizing
memory usage,match scores aremodified beforewriting tomemory—
either by negating them for non-negative alignment scores or sub-
tracting a large constant for potentially negative scores. The reverse
operation is subsequently applied upon reading from memory. This
approach minimizes memory requirements, facilitating greater data
accommodation and parallelization.

Algorithm efficiency
The high efficiency of the developed algorithms, particularly the spa-
tial indices, is best demonstrated by aligning large protein structures.
For instance, GTalign only took seconds to align and provide a
superposition for two virus nucleocapsid variants, 7a4i and 7a4j
(37,860 residues each), featuring different chain orders on a single
Tesla V100 GPU (Supplementary Fig. S9). In contrast, aligning these
complexes using TM-align took more than three months. Although
TM-align is not typically used for aligning complexes, GTalign’s effi-
ciencymayopen additional possibilities for exploring large complexes
when chain order preservation is important.

Performance improvement potential
GTalign’s efficiency can be further enhanced by considering three
key aspects. First, GTalign currently uses 32-bit floating-point preci-
sion (FP32) operations. Exploring the adoption of 16-bit (FP16) or
even 8-bit (FP8) floating point precision before the final stages of
alignment has the potential to increase the degree of parallelization
by 2 to 4-fold.

Second, the COMER2 DP algorithm, a critical component for
accuracy, is employed several times throughout the structural align-
ment search procedure. Substituting it with spatial matching, as out-
lined in Supplementary Section S2, at all intermediate stages and
reserving it solely for the final alignment stage could result in a sig-
nificant speedup.

Finally, the third aspect involves similarity selection on the coarse
scale. By encoding structures with embeddings and utilizing indexed
vector databases43, GTalign could achieve nearly instantaneous selec-
tion of similar protein candidates and a constant-time database search
and alignment, regardless of the database size.

Prescreening for similarities in sequence and structure space
GTalign allows for an initial screening in the sequence space (option
--pre-similarity) to identify potential similarities before engaging
in more detailed structural analysis. The implementation of this pro-
cedure is based on calculating local ungapped alignment scores

between protein sequences using a sequence similarity score table40

and does not involve dynamic programming. Protein pairs with
alignment scores exceeding a specified threshold progress to the
subsequent stages of structural analysis.

In addition, an initial screening for similarities is available in the
structure space using the --pre-score option. With this option,
protein pairs with provisional TM-scores, obtained in step 4 of the
algorithm outline, lower than a specified threshold are excluded from
further processing.

GTalign software
GTalign incorporates several key features that contribute to its ver-
satility and user-friendly nature. Developed using the OpenMP stan-
dard for CPUs and CUDA architecture for GPUs, GTalign is compatible
with various computing architectures, including NVIDIA Pascal, Tur-
ing, Volta, Ampere, Ada Lovelace, and subsequent GPU architectures.
(The GPU version exhibits a 10–20x increase in speed.) Its indepen-
dence from external packages ensures seamless operation across dif-
ferent compilers (GCC, LLVM/Clang, MSVC) and their respective
versions. GTalign is cross-platform software, with binary packages
precompiled for Linux andWindows x64 operating systems. For other
platforms, users have the flexibility to compile GTalign from its source
code. GTalign usage is straightforward: No structure database pre-
processing is required. Users can effortlessly employ GTalign by
directly providing files, compressed files (gzip), directories, and/or
archives (tar) of protein structures as command-line arguments. This
user-centric design enhances accessibility and facilitates streamlined
integration into diverse computational environments.

Alignment accuracy evaluation
The evaluation of structural alignment accuracy is based on assessing
how accurately the structural alignments of protein pairs translate to
spatial agreement in their respective structures. This self-contained
evaluation is unbiased, as it does not depend on external classifica-
tions, whichmay be constructed using specific sequence and structure
alignment tools.

The superposition of two aligned proteins is evaluated by the TM-
score and RMSD, calculated by the established method TM-align21

using the -I option (Fig. 7). Notably, in this setting, TM-align does not
perform a global superposition search but instead optimizes super-
position constrained by a given alignment, leaving it unchanged.

GDT_TS scores were calculated using the TM-score tool26, with
minimalmodifications to the source code to normalize GDT_TS by the
number of aligned residue pairs. The adapted TM-score code is pub-
licly available.

Fig. 7 | Schematic for benchmarking structure alignment tools. The entire
procedure can be described as follows: (i) Run a structure alignment tool; (ii) Use
TM-align to calculate the TM-score for each produced alignment; (iii) Sort the
alignments by the tool’s measure (e.g., P-value, Z-score, etc.); (iv) In addition, sort
the alignments by the TM-score calculated by TM-align; (v) Finally, calculate the
cumulative TM-score for the results, considering both the sorting by the tool’s

measure and the sorting by the TM-align-obtained TM-score. This provides a
comprehensive measure of how accurately the tool produces alignments and their
rate. It’sworth noting that seemingly subtle differences in cumulative TM-score can
be significant, especially considering the narrow gap between successive TM-
scores; a mere 0.2 difference can distinguish between an accurate and inaccurate
alignment.
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In the benchmarks, alignments are evaluated based on (i) the TM-
score normalized by the length of the shorter protein and (ii) the TM-
score normalized by the query length. The first scenario considers all
structural similarities, including instances where smaller proteins
match regions of larger proteins. The second scenario downgrades the
importance of alignments between the query and a much shorter
subject protein, providing a more favorable position for some meth-
ods (e.g., Dali22) as their measures (e.g., Z-score) reduce the sig-
nificance of such alignments.

SCOPe-based evaluation
This evaluation aimed to assess the ability of the tools tomatch SCOPe
2.0829 domains to families, superfamilies, and folds. True positives
(TPs) at the family, superfamily, and fold level were defined as pairs of
structures from the same family, the same superfamily but different
families, and the same fold but different superfamilies, respectively.
Self-matches were excluded. The sizes of these groups are referred to
as effective sizes. False positives (FPs) were identified as pairs from
different folds.

Precision and recall were calculated as #TP/(#TP + #FP) and #TP/P,
respectively, where P represents the total number of positive pairs. The
number of TPs, #TP, and P for precision-recall (PR) curves were
downweighted by the effective size of family, superfamily, and fold for
respective-level calculations. The number of FPs, #FP, was down-
weighted by the effective fold size. The weighting for counts was
consistent with the approach used in ref. 25.

Before conducting sensitivity and PR analyses, alignments gen-
erated by the tools were sorted by their significancemeasure. Foldseek
(default parametrization) alignments were sorted by E-value, while
FATCAT alignments were sorted by P-value, and Dali alignments by
Z-score. DeepAlign alignments were sorted by DeepScore. TM-align
and GTalign alignments were sorted by the harmonicmean of the TM-
scores normalized by the query and subject lengths. The harmonic
mean proved superior to the arithmetic mean for TM-align and GTa-
lign alignments due to its ability to reduce significance for structure
pairs with large length differences. However, the arithmetic mean was
more suitable for Foldseek --tmalign-fast 1 and --tmalign-fast
0 alignments, as most of such pairs had already been filtered out.

Secondary TM-scores, referred to as 2TM-scores,were introduced
to rank GTalign alignments in the SCOPe-based evaluation. The 2TM-
score is calculated over the alignment excluding unmatched helices
and provided slightly improved results for fold-level evaluations.
Options to calculate 2TM-scores (--2tm-score) and rank alignments
by the harmonic mean of the TM-scores or 2TM-scores are available
starting with version 0.15.0.

The SCOPe40 2.08 dataset
All protein domains from the SCOPe 2.0829 database filtered to 40%
sequence identity (SCOPe40 2.08), totaling 15,177, were searched with
query protein domains selected randomly, one per superfamily, from
the same SCOPe40 2.08 dataset. Representatives that Dali22 failed to
reformat for its initial structural representation were omitted, result-
ing in a total of 2045 queries.

To ensure consistent structure interpretation between TM-align
and the other tools, the structure files underwent the following chan-
ges: (i) the first model of multi-model files was retained; (ii) the chain
identifier was set to ‘A’ to make a single-chain structure; (iii) residues
were renumbered sequentially; (iv) residues lacking at least one of the
N, CA, C, and O atoms were removed. HETATM records were dis-
regarded when using Foldseek as its interpretation of these records
differed from that of TM-align.

The PDB20 dataset
PDB30 structures filtered using blastclust44 version 2.2.26 to 20%
sequence identity with a length coverage threshold of 70% (PDB20),

totaling 18,801, were queried with 186 CAMEO protein structure
targets45 released over 3months from07/24/2021 through 10/16/2021.
The CAMEO targets and the PDB20 structures maintained no more
than 20% sequence identity.

The structure files were preprocessed to ensure consistent
structure interpretation across the tools: HETATM records and resi-
dues lacking at least one of the N, CA, C, and O atoms were removed.
Also, the first model of multi-model files was retained.

The Swiss-Prot dataset
All UniProtKB/Swiss-Prot31 protein structures (542,378) from the
AlphaFold Database4 were searchedwith 40 proteins representative of
structurally diverse CRISPR-Cas systems46. The selection of the 40
query proteins followed a specific process: First, the 5831 PDB protein
chains associated with CRISPR-Cas systems (downloaded on 10/19/
2023) were clustered at a TM-score threshold of 0.4 with a length
coverage threshold of 40% using GTalign with options --speed=13
--add-search-by-ss --cls-coverage=0.4 --cls-thresh-
old=0.4 --ter=0 --split=2. Subsequently, the top 40 members
from every third singleton cluster, sorted by length, were chosen as
queries, with an average length of 382 residues. The query structures
underwent preprocessing, involving the removal of HETATM records
and residues lacking at least one of the N, CA, C, and O atoms.

The HOMSTRAD dataset
The HOMSTRAD dataset, comprising reference structural alignments
of protein families and accompanying structure files, was obtained
from ref. 34, containing 398 multiple protein structure alignments
from theHOMSTRADdatabase32. (The original data were inaccessible).
For benchmarking purposes, each family’s first protein from the
reference alignments was aligned with every other protein of the same
family, resulting in a total of 1722 pairwise alignments.

Computer system configuration
Unless otherwise specified, all benchmark tests were conducted on a
server equipped with two Intel Xeon Gold 5115 CPUs @ 2.4 GHz (20
hardware threads per CPU), 128GBDDR4 RAM, and three NVIDIA Tesla
V100-PCIE-16GB GPU accelerators, running the CentOS 7 operating
system.

Runtime evaluation
The runtimes of all tools were measured by the Linux time command.

GTalign settings
Unless otherwise specified, all analyses were performed using GTalign
version 0.14.0, compiled with GPU support. For protein pairs in the
HOMSTRAD dataset, alignments were generated with the command

gtalign --qrs=<query_file> --rfs=<subject_file> -o <out
put_dir> --hetatm --dev-min-length=3 --speed=<speed>
--pre-score=0 -s 0 --add-search-by-ss --dev-mem=4096

The command used to process queries for the SCOPe40 2.08,
PDB20, and Swiss-Prot datasets was

gtalign --qrs=<query_dir> --rfs=<db_dir> -o <out-
put_dir> --hetatm --dev-queries-total-length-per-
chunk=1500 --dev-min-length=3 --dev-max-length=<max_-
len> --speed=<speed> -s 0.44 --add-search-by-ss
--nhits=<n_hits> --nalns=<n_hits> --dev-N=3 where
<query_dir> represents the directory of query structures, <db_dir>
denotes the directory or tar archive (Swiss-Prot dataset) containing
subject structures, <max_len> is 5000 for the PDB20 dataset and
4000 for the others, and <n_hits> is 10,000, 4000, and 50,000 for
the SCOPe40 2.08, PDB20, and Swiss-Prot datasets, respectively. The
value of the –speed option, along with the usage of several additional
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options (--pre-score and --pre-similarity), is indicated in
Figs. 1–5 and Supplementary Tables and Figures. When employing the
initial screening in the sequence space (option --pre-similarity),
options -s 0.3 and -c cachedir were specified. The latter was used
unconditionally for the Swiss-Prot dataset. In the SCOPe-based eva-
luation, the --2tm-score option was specified to calculate 2TM-
scores (version 0.15.0).

GTalign calculates and outputs TM-scores normalized by the
length of both proteins in a pair. Consequently, the corresponding TM-
scores were utilized as GTalign’s measures to sort alignments (left
panels of Figs. 1b–d and 2a–c).

TM-align settings
Parallel processing of all queries for each dataset was achieved by
iteratively running 40 instances of TM-align21 version 20220412 simul-
taneously. For the HOMSTRAD and three other datasets, each process
instance was executed with the following options, respectively:
<query> <subject_file> -het 1 and <query> -dir2 <db_dir>
<lst_file> -het 1. Here, <query> represents a query file, <db_dir>
is a directory of subject structurefiles, and <lst_file> is a list file of all
subjects. For the Swiss-Prot dataset, -outfmt2was included to reduce
disk spaceusage. The fast version (TM-align -fast) utilized anadditional
option, -fast.

Dali settings
The standalone version DaliLite.v522 was employed in the benchmark
tests. Prior to initiating searches, structure files underwent reformat-
ting to an initial representation using the command import.pl
--pdbfile <struct_file> --dat <dir> --pdbid <id>. In this com-
mand, <struct_file> refers to a structure file, <dir> is a directory for
reformatted structures, and <id> is an assigned structure identifier.
Reformatting failed for 104 and 525 subject structures from the
SCOPe40 2.08 and PDB20 datasets, respectively. The time taken for
reformatting was excluded from runtime evaluations.

For parallelizing searches, 40 process instances were executed
using the command dali.pl --np 40 --query <query_list> --db
<sbjct_list> --dat1 <query_dir> --dat2 <db_dir> --outfmt
alignments. In this command, <query_list> and <sbjct_list>
represent the list files of query and subject structures, respectively,
while <query_dir> and <db_dir> indicate the directories of (refor-
matted) query and subject structures. Dali’s Z-score served as the
sorting measure, arranging the alignments in descending order
based on it.

For the HOMSTRAD dataset, reformatting was not used, and
alignments were directly generated with the command dali.pl
--pdbfile1 <query_file> --pdbfile2 <subject_file> --dat1
<query_dir> --dat2 <subject_dir> --outfmt alignments.

DeepAlign settings
All query-subject structure pairs in each dataset underwent parallel
processing through the iterative execution of 40 simultaneous
instances of DeepAlign18 version v1.4 Aug-20-2018 (https://github.
com/realbigws/DeepAlign), using the command DeepAlign <quer-
y_file> <subject_file>.

DeepAlign outputs the TM-score normalized by the length of the
shorter protein, which was used as its measure for sorting alignments
in the corresponding evaluations (left panel of Fig. 1b, c). When eval-
uating alignments based on the TM-score normalized by the query
length, DeepAlign’s DeepScore was utilized as its measure to sort the
alignments (left panel of Fig. 2a, b).

FATCAT settings
FATCAT 2.028 searches were conducted iteratively for all queries in
three datasets using the rigid structural alignment setting. The com-
mand FATCATSearch <query_file> <sbjct_list> -i2 <db_dir>

-r -o <output_file> -m was utilized, with <sbjct_list> and
<db_dir> representing the list file and the directory of subject
structures, respectively. For each query, FATCAT automatically initi-
ated parallel processes corresponding to the number of processors in
the system, in this case, 40. FATCAT’s P-value served as the sorting
measure, i.e., the alignments were sorted in ascending order based on
it. It is noteworthy that FATCATdisregards HETATM records, and thus,
these records were also omitted during alignment accuracy evaluation
with TM-align.

For the HOMSTRAD dataset, alignments were generated with the
following command: FATCAT -p1 <query_file> -p2 <subject_file>
-r -o <output_file> -m.

Foldseek settings
Foldseek25 version d1d1b868a571a9a0c62ae50b07139ebdd224f879
was used (downloaded on 6/25/2023). All queries in the SCOPe40 2.08,
PDB20, and Swiss-Prot datasets were parallelized using the following
command:

foldseek easy-search <query_dir> <db_dir> <output_file>
<tmp_dir> --threads 40 --max-seqs 4000 --format-output
query,target,evalue,qtmscore,ttmscore,alntmscore,
rmsd,qstart,qend,qlen,tstart,tend,tlen,qaln,taln

In this command, <query_dir> denotes the directory of query
structures, <db_dir> indicates the directory or tar archive (Swiss-
Prot dataset) containing subject structures, and <tmp_dir> is a tem-
porary directory. For the Swiss-Prot dataset, the option value –max-
seqs 20000 was specified. Foldseek was additionally parameterized
with the options --alignment-type 1 and --tmalign-fast 0 to
enable the use of the fast (Foldseek --tmalign-fast 1) and regular
(Foldseek --tmalign-fast 0) versions of TM-align for alignment
production.

As Foldseek generates TM-scores, the TM-score normalized by
the length of the shorter protein was employed as the sorting
measure for alignments in the left panel of Fig. 1b–d. When evalu-
ating alignments based on the TM-score normalized by the query
length (Fig. 2a–c), E-value and the average TM-score (Foldseek
--tmalign-fast 0/1), a recommended metric25, were utilized as mea-
sures to sort the alignments in ascending and descending order,
respectively.

For the HOMSTRAD dataset, the command was modified to spe-
cify individual query and subject structure files instead of their direc-
tories. Also, the option –threads was set to 1, and the additional
options --prefilter-mode 2 and -e 1e6 were included.

Figure preparation
Molecular graphics images were generated using UCSF Chimera47

version 1.14. Plots were created using the ggplot2 package48 in R49,
versions 3.6.0 and 4.3.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SCOPe 2.08 PDB-style files with coordinates for the SCOPe40
2.08 dataset are available at https://scop.berkeley.edu/downloads/.
The PDB files for the PDB20 dataset are available at https://www.rcsb.
org/downloads. The archive of the Swiss-Prot protein structures is
available at https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/
swissprot_pdb_v4.tar. The HOMSTRAD dataset, originally obtained
from http://yanglab.nankai.edu.cn/mTM-align/benchmark, is avail-
able at https://github.com/minmarg/gtalign-evaluation. The bench-
mark data generated in this study have been deposited in the Zenodo
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database (https://doi.org/10.5281/zenodo.11148017). Source data are
provided with this paper.

Code availability
The source code and software packages of GTalign are available at
https://github.com/minmarg/gtalign_alpha, and the corresponding
releases are archived on Zenodo: https://zenodo.org/records/
10433420 (version 0.14.0; https://doi.org/10.5281/zenodo.10433420)
and https://zenodo.org/records/10433419 (versions >0.14.0; https://
doi.org/10.5281/zenodo.10433419)50. The lists of structure identifiers,
as well as scripts and programs for structure preprocessing, bench-
marking, and producing graphs, are available at https://github.com/
minmarg/gtalign-evaluation.
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