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ABBREVIATIONS 

 

FSa Fine sand 

grMSa Gravelly medium sand 

grSa Gravelly sand 

grSaFM Gravelly, medium graded, slightly silty-clayey sand 

grSaFP Gravelly, poorly graded, slightly silty-clayey sand 

grSaFW Gravelly, well-graded, slightly silty-clayey sand 

grSaG Gravelly, gap-graded sand 

grSaM Gravelly, medium graded sand 

grSaP Gravelly, poorly graded sand 

MSa Medium sand 

O Organic soil 

saClL-SiL Sandy, low plasticity clay-silt 

SaFM Medium graded, slightly silty-clayey sand 

SaFP Poorly graded, slightly silty-clayey sand 

SaFU Uniformly graded, slightly silty-clayey sand 

saGr Sandy gravel 

saGrM Sandy, medium graded gravel 

saGrW Sandy, well-graded gravel 

SaM Medium graded sand 

SaP Poorly graded sand 

saSi Sandy silt 

saSiL Sandy, low plasticity silt  

SaU Uniformly graded sand 

siFSa Silty fine sand 

SiL Low plasticity silt  

siMSa Silty medium sand 

siSa Silty sand 
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INTRODUCTION 

 

Soils have the ability to let fluid flow through interconnected pores between particles. This 

feature is called permeability (Craig, 2004; Taylor, 1948). The hydraulic conductivity of soil refers 

to how easily fluid can move through the porous medium (Alyamani & Şen, 1993), and the hydraulic 

abilities of soil affect  factors like water storing and soil stability, and have a significant role in many 

fields such as geotechnical design, contaminant migration, and waste disposal (Jang et al., 2011). 

 Hydraulic conductivity can be determined in the field or through laboratory tests. In situ tests 

are usually complex and more expensive than laboratory testing. The disadvantage of laboratory tests 

is that often samples are disturbed, resulting in the loss of their original internal structure. In addition 

to field and laboratory testing, empirical methods have also been developed to estimate and predict 

the hydraulic conductivity of soils. These methods utilize soil properties such as porosity, grain size, 

soil texture and bulk density (Chapuis, 2012). Besides empirical equations, machine learning offers 

an alternative method to predict the hydraulic conductivity of soils. It is especially useful when the 

relationship between soil properties is complex or not linear, or involves multiple parameters  (Li et 

al., 2022); machine learning can use pattern recognition to find relationships between parameters and 

can be trained to predict new results (Nemes et al., 2006; Twarakavi et al., 2009).   

In this thesis, a database of Lithuanian soil samples is created from the soil samples gathered 

by the investigations in the Department of Hydrogeology and Engineering Geology at Vilnius 

University. The database is then used to assess the theoretical hydraulic conductivity of Lithuanian 

soil samples by comparing the saturated hydraulic conductivity values obtained through laboratory 

testing to three empirical formulas and seven machine learning models.  

Study aim: Modelling the theoretical hydraulic conductivity of soil samples using empirical 

formulas and machine learning methods.  

Study objectives:  

• Creating a database for Lithuanian soil samples to use in this study and in the future. 

• Utilizing empirical formulas in calculating hydraulic conductivity and assessing their 

usability and limitations.  

• Tuning machine learning models to find the best parameters to use in hydraulic 

conductivity determination.  

Novelty: In this work, machine learning methods to study the permeability of Lithuanian soil 

samples are used for the first time and compared to classical empirical formulas.  

Thesis structure: This study consists of 45 pages, 31 figures and 8 tables. The work is divided 

into six major parts: Introduction, theoretical framework and previous research history, geological-

hydrogeological setting, materials and methods, results and discussion, and conclusions.  
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1. THEORETICAL FRAMEWORK AND PREVIOUS RESEARCH HISTORY 

 

1.1 Saturated and unsaturated soil  

 

Groundwater can be divided into two main zones: the unsaturated and the saturated zone. The 

unsaturated extends the zone from the ground surface down to the water table. Under the water table 

lies the saturated zone. In the saturated zone, all pore spaces between soil grains are saturated with 

water. In the unsaturated zone, however, the soil pores also contain air. Between the two zones, at the 

water table level, also lies the capillary fringe (Fig. 1). In the capillary fringe zone, the water is drawn 

upward by capillary forces. The thickness of the capillary fringe is soil-dependent; small pore sizes 

usually indicate to a thicker capillary fringe than larger pore sizes (Fitts, 2002; Yolcubal et al., 2004). 

 

 
Fig. 1. A schematic figure of the unsaturated and saturated zones. Modified from (Fitts, 2002, p. 6) 

and (Freeze & Cherry, 1979, p. 40). 

 

The soil samples of the database used in this study were collected from various depths, but their 

testing was conducted under saturated soil conditions. In theory, in the saturated zone the soil-water 

content is constant and doesn’t vary with depth unless the soil is vastly heterogenous. In a uniform 

soil, the soil-water content is equal to the porosity of the soil (Yolcubal et al., 2004). In estimating 

and determining the permeability of the unsaturated zone, the presence of air needs to be considered, 

which makes it a more complex subject than permeability determination of saturated soil. In the 

unsaturated zone, hydraulic conductivity varies depending on the volumetric water content. Pore-

water pressure is not constant and varies with the water content. When water content in the soil 

decreases, the passages for water to travel through are smaller and more indirect. In theory, hydraulic 

conductivity decreases when water content decreases (Fitts, 2002). However, matric suction, meaning 

the difference between pore-air and pore-water pressures, needs to be considered as well, because 

differences in matric suction affect hydraulic conductivity (Fredlund & Rahardjo, 1993).  

Unsaturated permeability will not be further discussed in this thesis, and when “hydraulic 

conductivity” or “K” are mentioned, they refer to saturated hydraulic conductivity.  
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1.2 Darcy’s law and hydraulic conductivity 

 

How water flows underground is dependent on the physical and hydraulic properties of the soil 

in question (Yolcubal et al., 2004). French hydraulic engineer Henry Darcy’s experiments on 

saturated sands in 1856 set the foundation for water flow characteristics and hydraulic conductivity 

determination. Darcy investigated the flow of water through homogenous sands and proved that in 

steady flow conditions the rate of flow is in line with the hydraulic gradient. This empirical principle 

is called Darcy’s law. Darcy’s law is valid in the circumstances of linear flow in sands. Errors happens 

in turbulent conditions of high velocity (Bear, 1972; Freeze & Cherry, 1979; Taylor, 1948). 

Darcy studied the relation of flow rate (Q) and the hydraulic head loss of the column (called the 

hydraulic gradient) (Fig. 2). He concluded that the rate of flow Q through a porous medium is 

proportional to the cross-sectional area (A) of the column and the hydraulic gradient (i) and inversely 

proportional to the length (L). The hydraulic gradient is calculated from the change in hydraulic heads 

(Δh) (Bear, 1972).  

 

 
Fig. 2. A schematic illustration of Darcy’s law. Modified from (Kaliakin, 2017, p. 251). 

 

There are several ways to express Darcy’s law mathematically. One such representation is 

presented in Equation 1 (Hiscock, 2005).  

 

𝑄 =  −𝐾𝐴 
∆ℎ

∆𝑙
  (1) 

 

In this equation, K is hydraulic conductivity, A is the cross-sectional area of the porous medium, 

and ∆h/∆l is the hydraulic gradient (i). To solve hydraulic conductivity by Darcy’s law, the equation 

can be rearranged. This formula is presented in Equation 2.  

  

        𝐾 =  −𝑄 
∆𝑙

∆ℎ 𝐴
    (2) 

 

In Equation 2, K is hydraulic conductivity, Q refers to flow rate, and ∆h/∆l is the hydraulic 

gradient. The negative signs indicate that the flow is towards the decreasing hydraulic head. Hydraulic 

conductivity has the units of length per time, for example, meters per day (m/d) (Hiscock, 2005). 
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To summarize, Darcy’s law is an empirical law that states that the flow of water in a porous 

medium is directly proportional to the hydraulic gradient, and the flow rate decreases to the direction 

of falling hydraulic head. However, Darcy’s law is not valid in every case. It is only valid for laminar 

flow with a low Reynolds number1 instead of turbulent flow. Very coarse soils, for instance, might 

have a turbulent flow (Leppäranta et al., 2017). In groundwater conditions, water flow through porous 

media is often considered to be laminar because water velocities are usually small. Darcy’s law is a 

good measurement of hydraulic conductivity in sands, but in small hydraulic velocities, such as clays, 

it loses accuracy (Yolcubal et al., 2004). Darcy’s law also assumes the soils to be homogenous 

(isotropic), which is often untrue. For instance, soils might have a layered profile due to e.g. 

deposition processes, and these layers, consisting of different soil matrices, have different hydraulic 

conductivity abilities (Leppäranta et al., 2017; Yolcubal et al., 2004). 

In general, coarser and fractured soils have higher hydraulic conductivity values than fine-

grained soils (Hiscock, 2005). 

 

1.3 Soil properties 

 

1.3.1 Permeability  

 

As explained in the beginning of this thesis, all soils are permeable, which means fluid can flow 

around soil particles (Craig, 2004; Taylor, 1948), and hydraulic conductivity is the ability of soil to 

transmit water, measured by the rate at which water can move through the medium (Alyamani & Şen, 

1993). The fluid can be either in liquid or gaseous form, but in hydrogeology, the liquid in most 

scenarios is water (Head, 1994).   

 In some older publications the terms permeability and hydraulic conductivity are used 

interchangeably. In theory, hydraulic conductivity (K) and permeability (k) are proportional to each 

other. Hydraulic conductivity (K) is dependent on both the fluid and the porous medium it flows 

through. The fluid properties are density and viscosity. Permeability (k) is sometimes also called 

intrinsic permeability, since it is dependent only on the characteristics of the medium, not of the fluid 

(Bear, 1972; Freeze & Cherry, 1979; Hiscock, 2005).  

Permeability is not an absolute measure of soil, but instead depends on different factors. The 

affecting factors are grain size distribution, grain shape and texture, void ratio, degree of saturation, 

mineralogical composition, soil fabric, nature of fluid, type of flow and temperature. Grain size, 

shape, texture, and mineralogical composition vary depending on the soil, and void ratio and degree 

of saturation – while also related to soil characteristics – can vary depending on the chosen soil testing 

method. Nature of fluid, type of flow and temperature are connected to the permeating fluid, and soil 

fabric indicates to the soil in situ. The nature of fluid refers to the fluid that is flowing in the soil, and 

the variables are density and viscosity. For water, density and viscosity vary to some extent. Soil 

fabric is an important concept in the determination of permeability because soils are often anisotropic 

and consist of different layers. Intrusions, laminations, and other discontinuities affect permeability; 

hence, laboratory permeability analyses might differ from the actual permeability of the soil in nature, 

since in laboratory methods the original soil fabric is often disturbed (Head, 1994). 

The hydraulic conductivity of different soil types can vary over 13 orders of magnitude (Freeze 

& Cherry, 1979). While soils are heterogenous in nature, some generalisations can be made. Typical 

 
1 Reynolds number Re is a dimensionless parameter that tells whether water flow is laminar or turbulent. Flow is 

considered laminar if Re=1-10  (Fitts, 2002).  
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permeability value for gravel is >10-2 m/s (864 m/d), and for clay <10-8 m/s (0.000864 m/d) (Kaliakin, 

2017). Materials with <10-9 m/s are considered practically impermeable, and soils with 10-9 – 10-5 m/s 

have low or very low permeability, while soils with >10-3 m/s have high permeability (Carter & 

Bentley, 1991). 

 

1.3.2 Grain size distribution  

 

The distribution of grain sizes is one of the most important characteristics of soil. Hydraulic 

conductivity is the measure of the ease of fluid flow through a porous medium. Thus, the composition 

of the porous medium is of interest (Alyamani & Şen, 1993). This composition of soil is typically 

represented by a grain size distribution curve that also demonstrates the gradation of soil (Craig, 

2004). Grain size distribution has an impact on permeability especially when it comes to fine-grained 

particles, because smaller particles have smaller void spaces between them, thus allowing less room 

for water to flow, increasing resistance, and decreasing permeability. The shape and texture of grains 

have an effect as well, because irregularly shaped particles create complex flow paths and are rougher 

on the surface. These factors increase the resistance of flow as well as the gradation level of the soil 

(Fig. 3) (Fitts, 2002; Woessner & Poeter, 2020). In a recent study, the effects of grain size and shape 

on hydraulic conductivity of sands were studied and it was found that sands that had the same 

gradation characteristics but different shapes yielded different values of hydraulic conductivity 

(Cabalar & Akbulut, 2016). 

 

 
Fig. 3. A picture of a well-graded material (left) versus poorly sorted material (right). Modified 

from (Fitts, 2002, p. 26). 

 

Soil parameters often used in the determination of hydraulic conductivity are the so-called Dxx 

values, meaning the grain diameters. The Dxx values correspond to “percentage finer”, meaning that, 

for instance, a D60 particle size means that 60% of the soil is finer than that particular grain size  (Bear, 

1972; Craig, 2004; Freeze & Cherry, 1979). Many empirical formulas to determine hydraulic 

conductivity utilize different Dxx values, most commonly the D10 value (Chapuis, 2012).   

Characteristics relating to grain size distribution and grain diameters are the uniformity 

coefficient (CU) and the coefficient of curvature (CC). These parameters can be calculated with Dxx 

values (Equation 3 and 4) (International Organization for Standardization, 2004). 
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 𝐶𝑈 =
𝐷60

𝐷10
  (3) 

 

 𝐶𝐶 =
𝐷30

2

𝐷10 × 𝐷60
  (4) 

 

The uniformity coefficient CU and the curvature coefficient CC track the gradation value of the 

soil and help quantifying the shape of the grading curve. The limit values for different gradation 

characterizations in the European standard EN ISO 14688-2 are presented in Table 1 below.  

 

Table 1. CU, CC and the shape of grading curve. Modified from (International Organization for 

Standardization, 2004). 

Shape of grading curve CU CC 

Multi-graded >15 1 < Cc < 3 

Medium-graded 6-15 < 1 

Even-graded <6 < 1 

Gap-graded Usually high Any (usually < 0.5) 

 

In theory, in a completely uniform soil where all soil particles are of the same size, the 

uniformity coefficient and curvature coefficient would be 1. The shape of the grading curve can help 

understand soil permeability, as uniform soils might have more straightforward routes for water to 

travel (Woessner & Poeter, 2020). 

 

1.3.3 Void ratio and porosity 

 

Void ratio is one of the most important factors affecting permeability. Permeability increases 

significantly with the increase of void ratio (Dolzyk & Chmielewska, 2014). Void ratio refers to the 

number of void spaces between soil grains. Void ratio (e) is closely tied to porosity (n). Porosity is 

expressed by the ratio of volume of void space to the total volume. Porosity is a dimensionless unit 

often expressed as the range of 0 < n < 1. Void ratio – also dimensionless – is the volume of voids 

divided by the volume of solids. The relationship between porosity n and void ratio e is presented in 

Equations 5 and 6 (Fitts, 2002; Woessner & Poeter, 2020).  

 

𝑛 =  
𝑒

1+𝑒
  (5) 

  

 

𝑒 =  
𝑛

1−𝑛
  (6) 

 

 

If void ratio is now known, porosity can also be calculated using the coefficient of uniformity 

(CU), as presented in Equation 7 (Vukovic & Soro, 1992, as cited in Odong, 2008). 

 

𝑛 = 0.255(1 + 0.83𝐶𝑈  ) (7) 
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In the saturated zone all spaces are filled with water, including voids. This means that in theory 

the water content of soil is equal to the porosity of the soil (Yolcubal et al., 2004). Void ratio and 

porosity are influenced by grain sizes and shapes. Unconsolidated sediments that consist of rounded 

and angular particles have higher porosity values than consolidated sediments (Hiscock, 2005). In 

general, it can be said that the bigger the void spaces, the easier flow. However, high porosity does 

not always equal to high permeability; the voids between soil particles need to be interconnected for 

fluid to be able to flow through (Head, 1994.) 

Soil compaction and soil density affect the available flow path of water, too. If the soil is 

compacted (i.e. the density per unit area is higher), the solids in the soil are packed into a smaller 

volume area and the grains are closer together. This means less pore space and less room for water to 

move. Higher density of soil might indicate lower hydraulic conductivity (Moorberg & Crouse, 

2021). 

 

1.4  Methods for determining hydraulic conductivity 

 

There are multiple ways to measure and determine the permeability of soils. The methods can 

be described as either direct or indirect. Direct measurements indicate to tests conducted in the field 

or laboratory, and indirect methods are comprised of calculations based on soil properties (Head, 

1994). 

 

1.4.1 Direct methods  

 

Hydraulic conductivity can be directly determined in situ with e.g. slug tests or pumping tests 

(Freeze & Cherry, 1979). Two main laboratory tests for saturated hydraulic conductivity 

measurement are the constant-head method and the falling-head method. The constant-head method 

is meant for soils with higher permeability (e.g. sands), and the falling-head test is better for soils 

with lower permeability, like silt and clay (Craig, 2004; Freeze & Cherry, 1979).   

The constant head method is one of the most popular laboratory methods. In the constant-head 

method, the soil sample is placed in a cylinder and let it get fully saturated with water (Fig. 4). The 

sample is then subjected to a steady vertical flow of water under a constant head difference. The 

hydraulic gradient and water flow volume per unit time are measured, and then Darcy’s law can be 

applied to calculate hydraulic conductivity (Craig, 2004).  

 

 
Fig. 4. A schematic picture of the constant-head method. Modified from (Craig, 2004, p. 33). 



13 

 

The falling-head method is usually applied for finer soils. The soil sample is placed inside a 

cylinder and a standpipe is attached to the top of the sample (Fig. 5). The soil is fully saturated with 

water. Then water from the standpipe is sent flowing through the sample soil into the reservoir below. 

The head loss between locations h1 and h2 and the time it takes for water to flow through are recorded 

(Craig, 2004). 

 

 
Fig. 5. A schematic picture of the falling head method. Modified from (Craig, 2004, p. 33). 

 

Sometimes, for laboratory testing, soil samples representing the soil matrix are hard to obtain, 

and they might not properly represent the soil as a whole (Pap & Mahler, 2019). Laboratory tests are 

usually performed on small samples, and - depending on the sampling method and process - the 

samples are disturbed and remoulded, and they lose their original fabric and texture (Fitts, 2002). 

Other disadvantages of laboratory (and field) tests is that they can be costly and time-consuming 

(Boadu, 2000).  

 

1.4.2 Indirect methods  

 

Several indirect methods concerning soil permeability determination have been invented, most 

notably formulas utilizing grain size characteristics and other soil parameters. While these methods 

are theoretical or empirical in nature, some properties of the soil are still required. Without in situ 

investigations the soil texture cannot be tested, but certain geometric properties like porosity can be 

determined experimentally and used as parameters that might reflect the actual geometry of the soil 

matrix (Bear, 1972).  

The correlation between grain size distribution and hydraulic conductivity has been studied for 

over a century, and many empirical determination formulas for hydraulic conductivity make use of 

grain size in the calculations - for example, Hazen, Slichter, USBR, Kozeny-Carman, and Terzaghi 

equations. A reliable permeability estimation method should consider porosity or void ratio and some 

characteristic grain size (Chapuis, 2012). Measuring pores and their diameters instead of diameters 

of grains would be more telling of the hydraulic properties of soil, but pore size distribution is more 

difficult to determine. That is why the estimation of soil hydraulic properties is more commonly based 

on grain size distribution, which is easier to measure (Pinder & Celia, 2006). In recent years, several 

studies have investigated the relationship between grain size and hydraulic conductivity and applied 
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empirical formulas to calculate hydraulic conductivity (see e.g. Chakraborty et al., 2006; 

Salarashayeri & Siosemarde, 2012; Pucko & Verbovšek, 2015; Onwe et al., 2016; Ann et al., 2022).   

However, even these indirect methods, like empirical formulas, require some soil parameters 

for the determination, and some parameters can be complex to acquire. They also have some 

limitations and low accuracy (Singh et al., 2020). Limitations can include, for example, the range of 

applicability of formulas only to certain soil types (Chapuis, 2012).  

Statistical modelling can help determine hydraulic conductivity and other soil properties. In a 

study from 2011, a statistical regression model was made by studying the relationship between 

saturated hydraulic conductivity and grain size parameters (Pliakas & Petalas, 2011), and in another 

study, a statistical hydraulic conductivity model was developed using the effective diameter D10 and 

standard deviation (Chandel et al., 2022). While statistical models are often used to quantify the 

relationship between the input and output parameters, they often have limitations; the relationship 

between the parameters used for the prediction and the soil in question might not stay constant, but 

instead vary (Van Looy et al., 2017).  

This is where machine learning can be more appropriately applied. Machine learning algorithms 

can adapt to the changes in the relationship between several parameters by using pattern recognition, 

and they can be trained to predict new results (Nemes et al., 2006; Twarakavi et al., 2009). In the 

Preface of Introduction to Machine Learning (Alpaydin, 2010, para. 2), one of the problems machine 

learning can help with was described as following: “—when the problem to be solved changes in 

time, or depends on the particular environment. We would like to have general-purpose systems that 

can adopt to their circumstances, rather than explicitly writing a different program for each special 

circumstance”. This statement is true for the problems concerning hydrogeological modelling. Soil 

is often vastly heterogenous, which makes determination and prediction of different parameters, such 

as hydraulic conductivity, difficult especially in larger-scale investigations. 

In chapter 3. Materials and Methods, three empirical formulas and seven machine learning 

models used in this thesis to determine hydraulic conductivity will be introduced.  
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2. GEOLOGICAL-HYDROGEOLOGIAL SETTING 

 

2.1 Soil conditions in Lithuania 

 

Quaternary deposits in Lithuania formed during the last glaciation, during which Lithuania was 

covered by glacial ice, and they are the most common surface formations and extend across the 

majority of the territory (Karmaza & Baltrūnas, 2004). These glacial deposits vary depending on their 

formation processes; moraine loams are the most common surface formation, sand and gravel layers 

have been formed due to melting glacial water, and clays and silts have been layered in glacial lakes. 

Some aeolian sand dunes formed in this time period can be found in Southern Lithuania (Bičkauskas 

et al., 2011). The thickness of the Quaternary deposits can be up to 300 meters, but the average 

thickness is 130 meters. The deposits are the thinnest in the northern part of the country where the 

thickness varies from 10 to 30 meters (Guobyte & Satkunas, 2011). 

Around 60 % of Lithuania’s surface is covered by moraine loams, clays and other low-

permeability soils. The filtration properties of moraine loams are of interest as many infrastructural 

works like roads and railways have been and are being built on top of these soils. Moreover, in 

Northern Lithuania there are karst regions in Biržai and Pasvalys districts, where there are moraine 

loams on top of Devonian sulphate carbonate rocks. Water infiltrating through the moraine loams in 

these areas causes karst processes and sinkholes to develop and progress. Overall, the filtration 

capabilities of soils affect their mechanical properties and foundation stability (Klizas et al., 2015). 

The filtration features in moraine loams and other lithological units in Lithuania have been studied 

extensively in the 21st century  (Klizas & Šečkus, 2007; Klizas, 2014; Klizas et al., 2014; Klizas et 

al, 2015; Klimašauskas et al., 2020). 

 

2.2 Lithuanian soil sample data 

 

For this thesis, a database of Lithuanian soil samples was created. The samples in the database 

have been gathered from multiple locations in Lithuania between 2018 and 2022. The main source of 

information was the internal archive of geological investigations in the Department of Hydrogeology 

and Engineering Geology at Vilnius University. The database was created to integrate sampling data 

in a way that is accessible and functional for this study and further studies concerning soil 

permeability in Lithuania. 

The locations of the samples used in this work can be seen in Fig. 6 and 7.  
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Fig. 6. Sampling site locations. 

 

Fig. 7. Sampling site locations with a surface elevation model. 

The soil parameters in the samples were acquired through laboratory test results and/or 

geological engineering reports that included hydrogeological testing, prepared for different clients 

and projects.  

 

2.3 Soil sample database 

 

The database was created using Microsoft Excel2. While Microsoft Excel is essentially a 

spreadsheet tool, for small to medium-sized datasets it is proved to be usable as a database. It has 

features such as filtering, sorting, and data validation, which are all useful functions in data 

manipulation. Excel’s import and export functions to different data formats ensure easy 

 
2 Microsoft Excel. https://www.microsoft.com/en-us/microsoft-365/excel  
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transformation to other programs. As the data in this study was used in machine-learning via Python, 

Excel was a suitable choice for creating the database.  

The database consists of 246 entries. The entries include, most importantly, hydraulic 

conductivity values and grain size distributions of each sample. The hydraulic conductivity values in 

206 samples were acquired with the International Organization for Standardization (ISO) standard 

for the constant-head method (LST CEN ISO/TS 17892-11:2005, LST CEN ISO/TS 17892-

11:2005/AC:2006 or LST EN ISO 17892-11:2019), and 40 samples were acquired with a KFZ-type 

constant-head filtrometer (Klizas, 2003). The database originally has over 500 samples, but for this 

thesis’ purpose, the data was cleaned of missing or insufficient information entries. 

Besides hydraulic conductivity, several other parameters from the laboratory reports were 

added to the database. These include density of the soil (ρ g/cm3), water content (w), degree of 

saturation (Sr) and void ratio (e). These parameters have values taken before the constant-head testing 

has taken place, and after testing. Water temperature (°C), reference water temperature (°C), and site 

information (site name, coordinates, well number, sample number, depth of sampling) were also 

included. The hydraulic conductivity information in the laboratory reports was presented in meters 

per day (m/d). The tests have been conducted in different water temperatures, but the hydraulic 

conductivity values have been later adjusted to 10 °C.  

 

2.3.1 Hydraulic conductivity values 

 

In the sample entries used for this study, the lowest hydraulic conductivity value is 0.05 meters 

per day (m/d) and the highest is 27.90 m/d. If the conductivity values from constant head and 

filtrometer method are examined separately, the hydraulic conductivity values by the ISO standard 

method vary between 0.05-27.90 m/d, and KFZ filtrometer values range from 0.1 to 15.8 m/d (Table 

2).   

 

Table 2. Hydraulic conductivity data from the database used in this study. 

Method Number 

of 

entries 

Min 

K* 

 

Max  

K 

Average  

K 

Q1* Q2* 

(median) 

 

Q3*  Standard 

deviation 

All 246 0.05 27.90 4.12 0.56 2.50 6.01 4.77 

ISO 

standard 

206 0.05 27.90 3.86 0.48 2.15 5.67 4.78 

KFZ 40 0.10 15.80 5.44 1.73 4.00 8.30 4.54 

* K=hydraulic conductivity in meters per day, m/d 

*Q1= 25 % quartile 

*Q2= 50 % quartile 

*Q3= 75 % quartile 

 

The distribution of hydraulic conductivity is illustrated in Fig. 8. Almost half of all the samples 

have < 2 m/d hydraulic conductivity. The distribution of hydraulic conductivity goes down with the 

number of entries; the least number of samples have the largest hydraulic conductivity of >20 m/d. 

Of the 110 entries that have a hydraulic conductivity of <2 m/d, a more specific distribution is 

presented in the pie chart on the left of the graph. Of the 110 values having a hydraulic conductivity 

of < 2 m/d, more than 50 % fall into the smallest hydraulic conductivity category of 0.05-0.5 m/d. 
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Soils with 0.05 m/d are medium-permeability soils, but 0.5 m/d is already considered a high-

permeability soil (Carter & Bentley, 1991). Hence, the majority of the soils in this database are high-

permeability soils.   

 

 
Fig. 8. Hydraulic conductivity distribution in the database. 

 

In the database, the upper and lower depth of each sample is given (except for three samples 

that did not have depth information). The average thickness of the acquired soil samples is 0.35 

meters, with the smallest sample thickness being 0.1 meters and largest 1.3 meters. The depth of the 

acquired soil samples vary from 0.1 meters to 24.5 meters from ground surface. The average depth 

of sampling is at 8.0 meters. Sampling depth plotted against the number of samples is depicted in Fig. 

9 a. Most of the samples are acquired from 0.1-8.0 meter depth. Average hydraulic conductivity 

values plotted against depth of sampling is depicted in Fig 9 b.  

 

 
Fig. 9. Sampling depth versus number of samples (a) and average hydraulic conductivities versus 

depth of sampling (b). 
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Comparing the average values of hydraulic conductivity to depth (Fig. 9 b) shows that samples 

with smaller hydraulic conductivity have been acquired, generally, from deeper than the ones with 

higher hydraulic conductivity. For example, samples with a hydraulic conductivity of  >25-27.90 m/d, 

on average have been acquired from 2.3 meters while samples with a hydraulic conductivity of <2 

m/d are from 8.3 meters.  

 

2.3.2 Grain size distribution  

 

The grain size distribution of the soil samples has been acquired via sieving or sedimentation, 

as described in ISO 17892-4:2004/2016/2017. In the sieve method, the soil particles are separated by 

different sized sieves. The amount of soil particles retained on each sieve size is weighted, and the 

mass of different-sized soils can be transferred to percentages. The sieve method is applicable in soils 

with less than 10 % of fine soil (silt and clay). For soils containing more than 10% of fines, a 

sedimentation method via a hydrometer was used. A sedimentation method is a process where the 

differences in settling rate of soil is calculated, and this separates the particles sizes (International 

Organization for Standardization, 2016).  

The soils have been classified according to the ISO 14688-2 standard, where their grain size 

distribution and gradation, plasticity and organic content are considered (International Organization 

for Standardization, 2004). In Fig. 10, the number of samples in each soil type have been presented.  

 

 
Fig. 10. Number of samples in each soil classification name.  

 

Almost 60 samples are classified as uniform sands (SaU). The second largest category is silty 

sands (siSa). The third largest category is uniform, slightly silty-clayey sands (SaFU). There are three 
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samples classified as organic soils (O). The organic content is high enough for it to become the 

primary type of the soil, but in the soil type information for these samples, there is additional 

descriptive information: ‘slightly silty-clayey, uniformly graded sand with a little organic matter’, 

‘uniformly graded sand with a mixture of organic matter’, and ‘slightly silty-clayey, uniformly graded 

sand with a little organic matter’.  

All abbreviation meanings can be found in the abbreviation table in the beginning of this 

document. 

 

2.3.3 Other parameters 

 

Other parameters besides hydraulic conductivity and grain size distribution were also given in the 

laboratory reports. These are bulk density of the soil (ρ g/cm3), water content (w), degree of saturation 

(Sr), and void ratio (e). The parameters include values from both before and after hydraulic 

conductivity testing. The minimum, maximum, average, and quartiles Q1, Q2, Q3 as well as standard 

deviation of the parameters in the database are presented in Table 3. 

 

Table 3. Soil sample parameters.  

 
Number of 

samples 

Min 

value 

Max 

value 

Average 

value 
Q1* 

Q2* 

(median) 

Q3* 

 

Standard 

deviation 

e (before 

test) 
156 0.40 1.82 0.74 0.62 0.74 0.83 0.18 

e (after 

test) 
156 0.42 1.83 0.77 0.65 0.75 0.86 0.20 

ρ g/cm3 

(before 

test) 

192 1.23 2.14 1.73 1.61 1.75 1.86 0.17 

ρ g/cm3 

(after test) 
175 1.42 2.20 1.90 1.84 1.91 1.98 0.12 

w (before 

test) 
206 0.002 0.50 0.12 0.05 0.13 0.18 0.08 

w (after 

test) 
205 0.1 0.64 0.26 0.21 0.25 0.30 0.07 

Sr (before 

test) 
156 0.006 1.07 0.43 0.19 0.46 0.64 0.26 

Sr (after 

test) 
156 0.52 1.30 0.90 0.83 0.91 0.98 0.11 

*Q1= 25 % quartile 

*Q2= 50 % quartile 

*Q3= 75 % quartile 
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3. MATERIALS AND METHODS 

 

3.1 Data preparation 

 

Before conducting hydraulic conductivity calculations, some preparatory needed to be done for 

the soil samples. These preparations are introduced in the subchapters below.  

 

3.1.1 Grain size diameters 

 

The soil samples in the database included grain size distribution charts with absolute grain size 

information. Grain size diameters (Dxx values) are often needed to calculate hydraulic conductivity 

with empirical equations. For this work, Dxx values ranging from D10 to D90 were acquired 

mathematically. From absolute percentages given in the grain size distribution charts, cumulative 

percentages were calculated, as can be seen in an example soil sample in Table 4 and Fig. 11. By 

using a Python code by the Department of Hydrogeology and Engineering Geology at Vilnius 

University, grain sizes were assigned a grain size class and Dxx values were acquired by interpolating 

grain size classes to their corresponding cumulative percentages. In the example soil sample 

distribution in Table 4, the D10 value, where 10% of the soil is finer, falls between grain size classes 

0.06 mm and 0.2 mm. Interpolating 0.06 and 0.2, and their corresponding cumulative percentages 

5.81 and 20.54 together gives a mathematical estimate of the D10 value which, in this case, is 0.0998 

mm.  

 

Table 4. An example soil sample distribution.  

Grain size (mm) Grain size class Absolute % Cumulative % 

<0.06 0.01 5.81 0 

0.06-0.2 0.06 14.73 5.81 

0.2-0.63 0.2 46.23 20.54 

0.63-2.0 0.6 20.18 66.77 

2.0-4.0 2 6.62 86.95 

>4.0 4.75 6.43 93.57 

All 10 100 100 

 

 
Fig. 11. Grain size distribution of an example soil sample. 
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Dxx values can also be manually acquired from the grain size distribution curves, as can be seen 

from Fig. 11. It displays the same soil sample as presented in Table 4 above. Following the grain size 

percentages on the right side of the plot, the D10 value of the soil can be found at the 10 % mark. This 

method, however, does not give precise Dxx values and is a slower, manual method and difficult to 

utilize in large datasets.  

 

3.1.2 Machine learning data 

 

The machine learning method testing was carried out in Jupyter Notebook3. It is an open-source, 

interactive platform where documents containing code, data and visualizations can be shared. Jupyter 

supports various programming languages. The machine learning code for this study was written in 

Python by assistant dr. Vytautas Samalavičius. The code utilizes different libraries and databases, 

such as Pandas, Matplotlib and NumPy. Pandas4 is a general Python library supporting data analysis 

and manipulation and has tools for e.g. reading, writing and merging data, Matplotlib5 is for creating 

Python visualizations and graphs, and NumPy6 supports numerical computing. On top of these, 

specific modules from Scikit-Learn7 were imported. Scikit-Learn is an open-source library for Python 

containing algorithms for different machine-learning analyses.  

In the soil sample information in the database, there are both before and after testing values for 

different soil parameters. The before values were aqcuired before the constant-head hydraulic 

conductivity testing, and after values were measured after hydraulic conductivity testing where the 

soil has been subjected to a steady water flow. For example, bulk density (ρ g/cm3) in one sample 

was 1.68 g/cm3 before the test, and 1.97 g/cm3 after the test. This means that during the constant-head 

hydraulic conductivity testing, the sample underwent some compaction. In the machine learning part 

of the study, the after values were used in the prediction, as they might reflect the soil‘s natural 

behaviour after it has been saturated with water slightly better than the values taken before testing.  

The parameters that were transferred to Jupyter Notebook from the database as .CSV data were: 

water content, soil density, saturation degree, void ratio, Dxx values from D10 to D90, and six grain 

size classes. In the database, there are originally more than ten grain size categories, depicting grain 

size information in a more precise way – for instance, in some samples, the grain size interval 0.06-

0.2 mm is further divided into two classes: 0.06-0.106 mm and 0.106-0.212 mm, and  samples 

containing a large amount of fine grains also have the distribution of fines depicted more closely 

(<0.002 mm, 0.002-0.0063 mm, 0.0063-0.02 mm, 0.02-0.063 mm). For the purpose of this work, the 

grain size distribution information was unified into six classes: <0.06 mm, 0.06-0.2 mm, 0.2-0.6 mm, 

0.6-2 mm, 2-4.75 mm and >4.75 mm.  

The preprocessing of the imported database included data standardization. Standardization 

means that the data is scaled so that all of the parameters and features of the data have the same scale, 

for example from zero to one. The data was standardized to resemble a normally distributed data 

(Gaussian with zero mean and unit variance) (Scikit-Learn, 2024a). 

A specific data column (actual hydraulic conductivity values) in the database was set out as the 

target (output) variable in the machine learning code that the model aims to predict. The database was 

then split into test and train sets, where 25 % were test set values and 75 % train set values. This 

 
3 Jupyter Notebook. https://jupyter.org/ 
4 Pandas. https://pandas.pydata.org/ 
5 Matplotlib. https://matplotlib.org/ 
6 NumPy. https://numpy.org/ 
7 Scikit-Learn. https://scikit-learn.org/ 
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means that, for example, in the case of a dataset consisting of 100 values, 25 samples would be 

reserved for the test set and 75 samples would be reserved for the train set. It is necessary to split data 

into test and train sets to accurately assess the performance of the machine learning model. The train 

set data is used to train the model, while the separate test set data is used to evaluate how well the 

model works on data on data it hasn‘t seen (Alpaydin, 2010).  

 

3.2 Empirical formulas  

 

Empirical equations for hydraulic conductivity determination have been invented for well over 

a century. Most equations utilize grain sizes in the determination process, and, depending on the 

equation, porosity function of the soil, sphericity, and other parameters (Říha et al., 2018). Three 

empirical equations used in this thesis by Hazen, Slichter and USBR will be introduced below.  

 

3.2.1 Hazen  

 

One of the first people to find relation between soil porosity and hydraulic conductivity was 

Allen Hazen (Říha et al., 2018). In 1892 and later in 1911, Hazen developed an empirical formula for 

predicting permeability of saturated sands based on the 𝐷10 particle size (where 10% of the soil is 

finer). Hazen’s equation is based on the observations of loose sands with a uniform texture. While 

the equation was originally developed for the design of sand filters for water purification, it is still 

used to estimate hydraulic conductivity. Hazen’s formula is presented in Equation 8 (Carrier, 2003). 

 

𝐾 = 𝐶𝐻 × 𝐷10
2   (8) 

 

In this equation, K is hydraulic conductivity in cm/s, CH is Hazen’s empirical coefficient, and 

D10 is the effective grain size D10 in centimetres. Hazen found that D10 is the effective size that has 

the most effect on the soil’s hydraulic properties (Wenzel & Fishel, 1942). Hazen’s empirical 

coefficient 𝐶𝐻 is often assumed to be 100, but based on a study, the reported range of coefficient 

values in geotechnical textbooks is 1-1000 (Carrier, 2003). The coefficient depends on the uniformity 

coefficient CU, the shape and chemical composition and compactness of the soil and the purity of it. 

Hazen said that the value of 𝐶𝐻 decreases as the uniformity coefficient CU increases (Hazen, 1905; 

Wenzel & Fishel, 1942). With units in cm/s, the coefficient can be seen to vary from 40 to 150 in 

most sands, where 40 is for finer and 150 for coarser soils (Fitts, 2002).  

Hazen’s empirical coefficient is set for water temperature of 10 C. The coefficient due to 

temperature can be calculated with 𝐶𝐻= (0.7-0.3 T), where T is temperature C (Hazen, 1892). 

The limitations of Hazen’s equation are that it only considers grain size as a hydraulic 

conductivity parameter. The equation is only applicable to grain size D10 of 0.1-3.0 mm and a 

uniformity coefficient CU ≤ 5. Moreover, for the equation to be considered accurate, the sample needs 

to be loose and not compacted (meaning that the void ratio e meets its maximum conditions) (Chapuis, 

2012). 

 

3.2.2 Slichter 

 

In 1899, Charles Slichter determined the hydraulic conductivity of sands with the assumption 

that all grains are spherical and distributed regularly within the soil matrix. His equation of hydraulic 
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conductivity determination includes a coefficient that is based on the correlation of laboratory 

measured porosity and hydraulic conductivity values. The coefficient is a computed value for a given 

porosity and the laboratory-confirmed hydraulic conductivity. As an example, for 26 % porosity, the 

coefficient is 84.3 (Graton & Fraser, 1935; Slichter, 1899). Slichter’s studies showed that same size 

spherical grains can have porosity from 25.95% to 47.64% depending on the compactness of the soil 

(Wenzel & Fishel, 1942). 

Different empirical equations to calculate hydraulic conductivity can be turned into a general 

formula (Vukovic and Soro, 1992, as stated in Odong, 2008). This is presented in Equation 9.  

 

K =
𝑔

𝑣
×  𝐶 ×  𝑓(𝑛)  ×  𝑑𝑒

2
   (9) 

 

In this general formula, K is hydraulic conductivity in m/s, g is gravitational acceleration (9.81 

m2/s, v is kinematic viscosity (m2/s), C is a dimensionless sorting coefficient, f(n) is a porosity 

function and de is the effective grain diameter, for example D10.      

Slichter’s formula, using this general formula, becomes:  

 

𝐾 =  
𝑔

𝑣
 × 1 × 10−2 × 𝑛3.287 × 𝐷10

2   (10) 

  

In this equation, K is hydraulic conductivity in m/s. Slichter’s original coefficient based on 

porosity has been transformed into 1 × 10−2 ×  𝑛3.287. Slichter’s formula is applicable for D10 value 

between 0.01 mm and 5 mm (Odong, 2008). 

 

3.2.3 USBR 

 

The United States Bureau of Reclamation’s (USBR) equation for hydraulic conductivity utilizes 

the effective grain size D20 in the determination. Originally, the USBR equation was presented in a 

table containing approximate permeability coefficients of various soils based on the D20 grain size, 

acquired from field tests. The table presents most examples for sizes from coarse silt to coarse sand; 

gravel, clay and fine silt all have just one example permeability coefficient per each (Justin et al., 

1945; Urumović et al., 2020).  

Utilizing the general equation presented earlier (Equation 9), the USBR formula can be written 

as presented in Equation 11 (Odong, 2008). 

 

𝐾 =
𝑔

𝑣
 × 4.8 ×  10−4 × 𝐷20

0.3 × 𝐷20
2  (11) 

 

Another, commonly used way to express the USBR equation is presented in Equation 12 

(Urumović et al., 2020). 

 

𝐾 = 0.36 × 𝐷20
2.3    (12) 

 

In Equation 12, hydraulic conductivity is K in cm/s and D20 is the effective grain size diameter 

expressed in millimetres. The coefficient value 0.36 in Eq.12 is the same value as the general 

equation’s part  
𝑔

𝑣
× 4.8 ×  10−4 when viscosity 0.0131 m2/s is used for 10 C temperature.  
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The range of applicability for the USBR method is medium sands with CU < 5 (Cheng & Chen, 

2007). In the ISO 14688-1 classification, the range for medium-grained sand is 0.2-0.63 mm and for 

sands in general, 0.063-2 mm (International Organization for Standardization, 2004).  

 

3.3 Machine learning methods 

 

Machine learning methods are useful at learning complex and non-linear relationships between 

parameters, which makes them useful in soil sciences (Li et al., 2022). The methods can be either 

supervised or unsupervised. Supervised learning aims to learn a relationship between input 

parameters and output value that is the correct or desired value given by the user (Alpaydin, 2010). 

In the case of hydraulic conductivity determination, the output value is the laboratory-acquired 

hydraulic conductivity. In unsupervised learning, there is only input data.  

The objective of machine learning is the prediction of new cases, not to replicate the existing 

data. The more the algorithm sees test samples – based on which the prediction will be produced – 

the more the underlying function between parameters is known. Generalization is the action of how 

well a model can make accurate predictions on new, unseen data. Underfitting happens when the 

chosen model is too simple and does not represent the real relationship between input and output 

values, and overfitting happens when the model is too complex for the data and the model may not 

learn the existing function between parameters (Alpaydin, 2010). In Fig. 12 a, an illustration shows 

a line that separates two datasets in a precise way, and in Fig. 12 b, the same datasets are separated 

by a simpler, curved line. Despite the few misclassified data points, this type of decision surface 

might generalize data better while the decision surface on Fig. 12 b is prone to overfitting and would 

not generalize new, unseen data as well (Mohri et al. 2018).  

 

  
Fig. 12. Two types of decision surfaces. Modified from (Mohri et al. 2018, p. 8). 

 

In this study, seven different machine-learning regression models were used to assess the 

performance of machine-learning methods in predicting hydraulic conductivity. These models will 

be presented in the subsections below.  

 

3.3.1 Linear regression 

 

Linear regression is the simplest form of regression model. It predicts the desired output value 

as a weighted sum of the input values. The advantage of linear regression models is that the prediction 

procedure is simple and assumes a linear relationship (Molnar, 2022). The straight line depicted in 
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linear regression plots shows the best fit that minimizes the residual sum of squares between the data 

points and predicted values (Scikit-learn, 2024b). The best-fitting line is called a regression line. A 

schematic graph of a linear regressor is depicted in Fig. 13 below. In the figure, the diagonal line is 

the regression line, The red, vertical lines from the datapoints represent the distance from the data 

points to the prediction line – hence, they present the errors in prediction. The best-fitting line aims 

to minimize the sum of squared errors in prediction (Lane, n.d.). 

 

 
Fig. 13. Linear regression model. Modified from (Lane, n.d., p. 464). 

 

Linear regression assumes that the parameters are independent of each other. If the parameters 

are related to each other or portray similar information, the best-fitting line can become sensitive to 

errors as it cannot determine the importance of different parameters. This problem is called 

multicollinearity (Scikit-learn, 2024b).  

 

3.3.2 Ridge regression 

 

Ridge regression is an extension of the linear regression model, and it aims to answer some of 

the problems of the simple linear regression (Hoerl & Kennard, 1970). Linear regression aims to find 

the best-fitting line between independent parameters and the one dependent variable (output) by 

minimizing the sum of squared errors in prediction. If the independent parameters are correlated, the 

model might not be able to predict the importance of parameters correctly. Ridge regression aims to 

control the importance or weight of some parameters over others; it is designed to keep the weights 

of different parameters small (Scikit-learn, 2024b). This is done by adding a penalty to the regression 

coefficients. The penalty makes the regression coefficients smaller and helps with the 

multicollinearity problem of linear regression (Wu, 2021). 

 

3.3.3 Support Vector Regression (SVR) 

 

Support vector regression is an extension of the support vector machine (SVM). The support 

vector machine is a learning system that operates in a high-dimensional space and can produce 

predictions based on a subset of support vectors. The support vector regression model depends on a 

selected portion of the training data, not taking into consideration data points that are too close to the 

prediction values (Basak et al., 2007). SVR works in a n-dimensional space, where n indicates to the 
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number of independent variables used in the prediction (Vapnik, 1995 as cited in Veloso et al., 2022). 

The support vector machine can generalize unseen data well and can work with non-linear data 

(Smola & Schölkopf, 2004). The advantage of SVRs is that they can handle complex data, but if the 

number of features exceeds the number of samples, overfitting of data can happen (Scikit-learn, 

2024d).  

 

3.3.4 K-Nearest Neighbors 

 

K-Nearest Neighbors (KNN) is among the simplest machine-learning algorithms. It is a 

nonparametric method, where a new predicted datapoint is placed closest to a class of existing points. 

The determination of similarity between the samples is based on distance (Hechenbichler & Schliep, 

2004). In Fig. 14, an illustration of the KNN model is depicted. 

 

 
Fig. 14. A schematic model of the KNN algorithm with K=4 and two data classes. Modified from  

Imandoust & Bolandraftar (2013, p. 606). 

 

The number of nearest neighbours is user-defined and the only parameter that is tuned or 

specified in the training of KNN models (Araya & Ghezzehei, 2019). In Fig. 14, a KNN model with 

four neighbors is shown with two different classes of data.  

 

3.3.5 Decision tree  

 

Decision trees are a hierarchical method used for both classification and regression tasks. They 

are non-parametric and sequential and are constructed by dividing data into subsets (Alpaydin, 2010; 

Kotsiantis, 2013). The aim of decision trees is to predict a value of the target variable by learning 

decision rules from the data parameters (Scikit-learn, 2024d). The subsets are further classified into 

decisions based on the values of the input data. The decision tree continues to split and grow until all 

values of the input data are addressed (Fig. 15). The error of the decision tree is calculated by the total 

number of misclassified data points divided by the number of data points (Kotsiantis, 2013). 
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Fig 15. A schematic picture of a hypothetical decision tree. Modified from (Alpaydin, 2010, p. 

197). 

 

The decision tree algorithm aims to generalize and use pattern recognition in the process; it 

determines which questions are the best at separating data into different classes. One of the 

disadvantages is that working with a large dataset - that leads into a large decision tree - may lead to 

bad generalization performance and overfitting (Kotsiantis, 2013). 

 

3.3.6 Random forest 

 

Random forest regression is a method that is derived from decision trees. Random forests are 

ensemble decision trees where, instead of having one decision tree, there are several decision trees 

(Breiman, 2001). The model is called random because the subsets of data are chosen randomly to 

build the tree, and the features that split the data into further branches are also random. Because all 

decisions are made in a random manner, the algorithm can better generalize and avoid overfitting 

(Hastie et al., 2009, Wang et al., 2019). 

A schematic graph of the Random forest prediction is depicted in Fig. 16.  

 
Fig. 16. A schematic picture of the Random forest prediction. Modified from (Sahour et al., 2021, 

p.747). 

 

3.3.7 Gradient boosting  

 

Boosting algorithms are ensemble models, just like random forests. But gradient boosting has 

a different way to approach the model building; it adds new models along the prediction process 

based on the errors of previous models. The aim is to reduce errors (Natekin & Knoll, 2013). Boosting 



29 

 

regression combines the predictions of many weak decision trees to produce one stronger model 

(Hastie et al., 2009). The disadvantage of gradient boosting machines is that they require a lot of 

memory to be able to store all the information, and this can become a problem with large datasets 

(Natekin & Knoll, 2013). 
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4. RESULTS AND DISCUSSION 

 

4.1 Empirical equations 

 

4.1.1 Hazen 

 

The hydraulic conductivity in the soil samples were calculated using Hazen’s empirical formula 

introduced in 3. Materials and Methods. Hazen‘s values for hydraulic conductivity were calculated 

using Equation 8. As the actual, laboratory-acquired values were indicated in meters per day (m/d), 

Hazen‘s values were converted into the same units.   

As presented in Materials and Methods, the value for Hazen’s empirical coefficient is generally 

thought to be 100, but can be changed according to soil type. In this study, hydraulic conductivity 

values were calculated in two ways to investigate how different coefficients change the results. For 

additional coefficient division, values 40, 100 and 140 were chosen – 40 to indicate to fine soils and 

140 to gravelly soils. The soils were divided according to their soil name abbreviations. If si or cl 

(silt, clay) were as a prefix in the name (e.g. siSa – silty sand), the coefficient was set to 40, and if gr 

(gravelly) was a prefix in the name, the coefficient was set to 140. The rest of the samples in-between 

had the value of 100. 

In Fig. 17 is illustrated how actual hydraulic conductivity values acquired via the constant-head 

method correlate with empirical Hazen values. In the graph, the black dotted line is the calibration 

line. In the ideal case where actual hydraulic conductivity values are the same as calculated values, 

the linear regression lines would follow the calibration line. It is shown that Hazen’s equation 

overestimates hydraulic conductivity (K). Also depicted in the figure is the difference in values of 

Hazen’s equation with different coefficients; using a coefficient of 100 to each sample versus using 

a varying coefficient 40, 100 or 140. Hazen’s values with CH100 seem to be slightly closer to the 

actual K values than the ones with a varying coefficient.  

 

 
Fig. 17. Actual hydraulic conductivity values vs. Hazen values. 
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Average hydraulic conductivity corresponding to sampling depth is depicted in Fig. 18 a. In 

laboratory-measured values, hydraulic conductivity decreases with depth consistently. Hazen’s 

values show a similar trend; however, Hazen’s equation overestimates hydraulic conductivity, and 

values between different depths change drastically. In this graph, too, is shown how Hazen’s formula 

with varying coefficients calculates higher values than CH100.  

 

 
Fig. 18. Average hydraulic conductivity values vs. sampling depth (a) and average hydraulic 

conductivity values of samples with CU < 5 vs. sampling depth (b). 

 

In previous research, it is mentioned that the applicability of Hazen’s equation is D10 0.1-3.0 

mm and CU ≤ 5. All the samples in the database have a D10 value that falls in the range, but only some 

of the samples have a sorting coefficient under 5. If we exclude the samples with CU > 5 as well as 

the samples that do not have a depth information, we are left with 191 samples. The average hydraulic 

conductivity of those samples based on depth is depicted in Fig. 18 b. 

If we compare Fig. 18 a and 18 b, we can see that the largest overestimations of K values are 

missing from Fig. 18 b where all samples fall within the range of applicability. 

The six most common soil types in the database are uniform sand (SaU), silty sand (siSa), 

uniformly graded, slightly silty-clayey sand (SaFU), poorly graded, slightly silty-clayey sand (SaFP), 

medium sand (MSa) and gravelly sand (grSa). Calculated the average hydraulic conductivity values 

of each of these soil types is depicted in Fig. 19a. The trend is that gravelly sand samples have the 

highest K values, which is plausible since large-grained sands have more pore spaces between grains 
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and thus allow more water to pass through. Silty sand has lowest K values. In silty sand’s case, the 

actual average K value is 0.53 m/d. Hazen (CH 100) yields a value of 0.93 m/d, and with Hazen (CH 

40-140), it is 0.37 m/d. With a varying coefficient, silty sand has the coefficient 40. Calculated with 

this coefficient, we get a value that underestimates the actual K value.  

In Fig. 19 b, only samples that fall within the range of applicability are taken into consideration. 

Besides gravelly sand (grSa), the graph gives similar values to Fig. 19 a. Samples labelled SaU, SaFU 

and MSa all had a CU ≤ 5, but siSa, SaFP and grSa had samples with Cu > 5, and they were excluded 

from this graph.  The average hydraulic conductivity value in gravelly sand is much higher than in 

Fig. 19a, but only five samples named gravelly sand (grSa) fulfil the applicability limits and thus does 

the sampling size in this soil type is not very large. 

 

Fig. 19. Average hydraulic conductivity vs. soil classification (a) and hydraulic conductivity vs. soil 

classification with samples CU < 5 (b). 

 

In Fig. 20, soils are divided into a rough division of three soils – fine, medium and coarse – 

based on their soil type. In the grain size distribution tests performed to the sample soils, some 

samples have a gradation characteristic in the soil type abbreviation and some do not, as well as a 

description of the coarseness of the soil – see, eg. siSa (silty sand) vs, siFSa (silty, fine sand) and 

siMSa (silty medium sand); grSa (gravelly sand), grSaP (poorly graded, gravelly sand) and grSaM 

(medium graded, gravelly sand). In Fig. 19 a and 19 b above, the soil classifications presented are the 

six most common, absolute soil name abbreviations in the database. In Fig. 20, soil classifications are 

bundled together to form three groups. Soils like silt and clay were included in fine soils, as well as 

soils with an prefix silty (e.g. silty fine sand, siFSa). In coarse soils, gravels and soils including the 

prefix gravelly were included (e.g. gravelly sand, grSa).  
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Fig. 20. Average hydraulic conductivity vs. soil types. 

 

Using a constant coefficient CH100 seems to yield slightly better results than varying 

coefficients (Fig. 20). CH(100) still overestimates all actual K values, but with CH(40-140), a 

coefficient of 40 underestimates hydraulic conductivity values while 140 overestimates them. 

 

4.1.2 Slichter 

 

C.S. Slichter’s equation for hydraulic conductivity was presented in Chapter 3. Materials and 

Methods. Slichter‘s values for hydraulic conductivity were calculated using Equation 10, and as the 

actual hydraulic conductivity values were indicated in m/d, Slichter‘s values were converted into the 

same units. 

 The applicability range of Slichter’s formula is 0.01mm ≤ D10 ≤ 5 mm.  All the samples in the 

used in this study fall into this range. Slichter’s values for hydraulic conductivity compared to those 

acquired via laboratory methods can be seen in Fig. 21. The red dotted line in the graph is the 

calibration line. The trend is that Slichter’s equation yields lower values than laboratory-aqcuired 

values. 

 

 
Fig. 21. Actual hydraulic conductivity values vs. Slichter‘s values. 
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Average hydraulic conductivity values depending on depth are presented in Fig. 22. It can be 

seen that Slichter’s equation yields lower K values than actual, laboratory tested K, except for  

between depths >8-10 m and >20-22 m.  

 

 
Fig. 22. Average hydraulic conductivity vs. sampling depth. 

 

While comparing the average hydraulic conductivity values in the six most common soil names, 

the shape of the graph is fairly similar in both Slichter and actual K values (Fig. 23). The biggest 

differences are in coarser soil types like gravelly sand (grSa) and medium sand (MSa). Even with 

finer soil types, Slichter’s equation gives smaller values – e.g. average siSa (silty sand) value is 0.52 

m/d according to the constant-head laboratory test, and 0.46 m/d via Slichter’s method, and SaFU 

(slightly silty-clayey, uniform sand) values are 1.90 m/d and 1.88 m/d, respectively.  

 
Fig. 23. Average hydraulic conductivity vs. soil classifications. 

 

Similar trend can be seen in Fig. 24 (below). All samples have been divided into three types – 

fine, medium and coarse soils. Their average values are depicted in the graph. The actual K results 

are higher than with Slichter’s method.  
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Fig. 24. Hydraulic conductivity vs. soil types. 

 

4.1.3 USBR 

 

The United States Bureau of Reclamation (USBR) equation was presented in Chapter 3. 

Materials and Methods. USBR‘s values for hydraulic conductivity were calculated using Equation 

12, and as actual hydraulic conductivity values were presented in m/d, USBR‘s values were converted 

into the same units. The range of applicability for the USBR equation is medium sands with CU < 5.  

USBR’s values plotted against actual hydraulic conductivity values are presented in Fig. 25. 

The red dotted line in the graph is the calibration line. It can be seen that USBR‘s equation slightly 

overestimates hydraulic conductivity.   

 

 
Fig. 25. Actual hydraulic conductivity values vs. USBR values. 
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Average hydraulic conductivity values plotted against depth is illustrated in Fig. 26 a and 26 b. 

In Fig. 26 a, all samples were used and in Fig. 26 b, the range of applicability was taken into 

consideration, meaning that only medium sands (0.63-0.2 mm) with CU<5 were included. Only 78 

samples could be taken into consideration with these restrictions. In both figures, USBR’s equations 

give the largest overestimations of hydraulic conductivity in the samples acquired from deeper depths. 

However, one of the reasons for such differences might be the small number of samples taken from 

deeper depths as opposed to those taken from 0-12 meters. 

 

 
Fig. 26. Hydraulic conductivity vs depth (a) and hydraulic conductivity vs. depth with samples  

CU < 5 (b). 

 

Average hydraulic conductivity plotted against six most common soil classifications is 

presented in Fig. 27. In this graph, all samples were considered and no graph with the range of 

applicability was made since it would only include medium sands. USBR‘s formula underestimates 

hydraulic conductivity in silty sands (siSa) and slightly silty-clayey, uniform sands (SaFU), and 

uniform sands (SaU), but overestimates K in slightly silty-clayey, poorly graded sands (SaFP), 

medium sands (MSa) and gravelly sands (grSa).  
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Fig. 27. Average hydraulic conductivity vs. soil classification. 

 

In Fig. 28, average hydraulic conductivity values vs. soil types (fine, medium, and coarse soils) 

are illustrated. USBR’s equation yields much higher hydraulic conductivity values in coarse soils 

than in medium and fine soils. In fact, in medium and fine soils, USBR’s equation slightly 

underestimates hydraulic conductivity as opposed to the actual values, but are clearly closer to actual 

values than with coarse soils.  

 

 
Fig. 28. Average hydraulic conductivity vs. soil types. 

 

4.1.4 Comparison of formulas 

 

Hazen’s hydraulic conductivity values were inspected using a fixed coefficient of 100, and a 

varying coefficient 40, 100 or 140 depending on the soil type. Using CH(100), the hydraulic 

conductivity values were slightly closer to the actual K values than with a varying coefficient. 

Slichter’s equation yielded almost consistently lower hydraulic conductivity values than the 

laboratory-tested values. USBR’s formula both underestimated and overestimated hydraulic 

conductivity depending on soil type. 

Hazen’s, Slichter’s and USBR’s hydraulic conductivity values plotted against actual values 

are depicted in a calibration plot below (Fig. 28). The black dotted line in the graph is the calibration 

line. Also R-squared (R2) values are shown. R-squared value shows the variance in the data and 

indicates how well the data fits in the regression model. It ranges from 0 to 1, with 1 being the perfect 

fit (Fahrmeir et al., 2013). Looking at the R-squared values of the empirical formulas, we can see that 

Hazen’s equation gives the highest value (0.3824) and Slichter’s equation the lowest value (0.1855), 
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meaning that Hazen’s equation is – from the three investigated formulas – the best fit for the diagonal 

trendline where actual and calculated hydraulic conductivity values are the same (Table 5).   

 

 
Fig. 28 Actual hydraulic conductivity values plotted against empirical ones. 

 

Table 5. R-squared values of calibration plots. 

Method R2 , linear 

Hazen (CH 100) 0.3824 

Slichter 0.1855 

USBR 0.2533 

 

In hydraulic conductivity tests made for Quaternary gravels in Northeast Slovenia, it was found 

that USBR‘s equation overestimates K values the most. The researchers said that USBR’s values are 

not in line with other empirical methods and, thus, do not compare well. Hazen‘s method yielded the 

highest values, and Slichter’s method yielded the lowest values of hydraulic conductivity. However, 

in their study, the samples were Quaternary gravels, and this means that only Slichter‘s equation 

offers an applicability range where the gravels fall into, which might have affected the results. It was 

also found that Slicther’s empirical equation gave two magnitudes lower values than those acquired 

with field pumping tests (Pucko & Verbovšek, 2015). The results in this thesis match the results by 

Pucko and Verbovšek; Hazen had the highest estimated hydraulic conductivity values and Slichter 

had the lowest.  

Different empirical hydraulic conductivity methods were tested on sand samples in another 

study (Odong, 2008). In this study, the overall results showed that USBR and Slichter gave, in all 

cases, lower values than other methods, and these two methods were seen as inaccurate. Hazen’s 

equation was the second-best most accurate of seven empirical methods Odong (2008). Other studies 



39 

 

have also reported that USBR‘s and Slichter‘s formulas underestimate actual hydraulic conductivity 

(Ann et al., 2022; Cheng & Chen, 2007; Onwe et al., 2016). The observations of these studies of 

Slichter‘s equation underestimating hydraulic conductivity is in line with this thesis‘ results, except 

for USBR that overestimated K in coarser soils.   

 

4.2 Machine learning 

 

In this part of the study, seven different regression models were used to determine hydraulic 

conductivity. The performance of these models was tracked by investigating their mean absolute error 

(MAE), standard deviation (SD) and R-squared (R2) values. Mean absolute error (MAE) shows the 

average error in the model in units that relate to the variable that is being studied. Mean absolute error 

is calculated by summing the absolute values of errors before dividing the total error by the number 

of data points included (Willmott & Matsuura, 2005). The R-squared value is also called the 

coefficient of determination. Value of 1 makes a perfect fit between the predicted and actual values. 

R2 is calculated by subtracting the sum of squared errors (Alpaydin, 2010).  

To acquire the best results, four important points needed to be inspected:  

 

• R2 value of the test set should be high. 

• R2 value of the trained set should be higher than the test set.  

• R2 standard deviation value should be as small as possible. 

• MAE (mean absolute error) should be as small as possible. 

 

Multiple tests were performed by changing the parameters included in the testing and observing 

their results. The available parameters were water content, soil density, saturation degree, void ratio, 

Dxx values from D10 to D90, and six grain size classes: <.0.06 mm, 0.06-0.2 mm, 0.2-0.62 mm, 0.6-

2 mm, 2-4.75 mm, >4.75 mm. The entries that had hydraulic conductivity testing done via the ISO 

standard were included in the machine learning testing (208 samples). 

After numerous tests, it was found that the best results are obtained by focusing on the grain 

size distribution and Dxx values. In general, using the distribution of smaller grain sizes (grain size 

classes <0.06 mm, 0.06-0.2 mm and 0.2-0.62 mm) yielded better results than coarser soils. Using 

<0.06 mm and 0.06-0.2 mm categories together gave better prediction results than using either 

category separately. However, including the next grain size class (0.2-0.62 mm) in the prediction 

gave worse results – hence, using <0.06 mm and 0.06-0.2 mm together was regarded the best grain 

size category to take into consideration. These findings back up the results of previous research where 

the importance of smaller grains in the hydraulic abilities of a soil matrix has been studied.  

By using these two best-working soil classes and pairing them with Dxx values, in almost every 

Dxx category from D10 to D90, there was at least one model that had high R2 value for the test set, 

higher R2 value for the train set, and a low R2 standard deviation. Using several Dxx values together 

gave better results than using only one.  

Highest correlation and prediction in the testing was found by including the following 

parameters: <0.06 mm, 0.06-0.2 mm, water content, D60 and D70. By using these parameters, the 

dataset was divided into a test set of 52 samples and a train set of 156 samples. The numerical values 

of this test can be found in Table 6 below. The highest prediction was obtained with Random forest, 

followed by Gradient boosting; both of these models gave a R2 value of over 0.40 for the test set 

along with higher train set values and a low standard deviation between the two. Looking at Table 6,  



40 

 

we can see that while ridge and linear regression models gave relatively high correlation for the test 

set, linear models couldn‘t predict new datapoints correctly.   

 

Table 6. Prediction results using parameters: 0.06 mm, 0.06-0.2mm, water content, D60, D70. 

Model MAE 

(test set) 

MAE 

(train set) 

MAE  

(SD) 

R2  

(test set) 

R2  

(train set) 

R2  

(SD) 

Random forest 2.28 2.43 0.25 0.47 0.51 0.10 

Gradient 

boosting 

2.32 2.46 0.23 0.44 0.48 0.08 

K-neighbors 3.04 2.70 0.28 0.11 0.35 0.10 

Ridge 2.42 3.10 0.13 0.39 0.15 0.29 

Linear 2.40 3.13 0.11 0.38 0.14 0.29 

SVR 2.45 2.70 0.48 0.18 0.19 0.10 

Decision tree 2.67 2.97 0.46 0.15 0.09 0.19 

 

Visual graphs for Random forest and Gradient boosting regression models for the same test can 

be found in Fig. 29 a and 29 b. In both models, the train set follows the calibration line relatively 

well. Visual graphs for all of the models performed in this test can be found in Appendix 1.  

 

 
Fig 29. Random forest (a) and Gradient boosting (b) regression models of the best-fitting test. 

 

A recent research studied six machine-learning models to predict staurated hydraulic 

conductivity, and found that Random forest and Gradient boosting models worked the best (Adjuik 

et al., 2023). A research studying supervised machine learning methods to model hydraulic 

conductivity and 3D hydrostratigraphy also found that Random forest algorithm gave the best results 

(Tilahun & Korus, 2023), and another research compared different machine learning methods to an 

empirical model to find the best-performing models for hydraulic conductivity, and found that 

Random forest performed the best (Singh et al., 2021). These studies are in line with this thesis’ 

results: Random forest yielded the highest correlation results along with Gradient boosting algorithm 

in most tests. As explained in Chapter 3.3 Machine learning methods, random forest and gradient 

boosting algorithms apply the mechanisms of a regular decision tree, but are developed further; 

random forests gather several decision trees and average their results (Wang et al. 2019), and gradient 

boosting creates new models based on the errors of previous models (Natekin & Knoll, 2013). The 
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abilities of these models to reduce errors in the prediction process is likely the reason why they work 

better than the other models in this study, as well.  Decision tree was the worst at predicting new data 

in the test introduced in Table 6 (test set R2 0.15, train set 0.09). Looking at Fig. 30, it can be seen 

that the trained datapoints follow the calibration line perfectly. This means that while the model can 

find the relationship between predicted and actual values, it cannot predict the real, underlining 

function between the two and is subjected to overfitting – hence the low R2 value.    

 

 
Fig. 30. Decision tree regression model of the best-fitting test. 

The second-best performance was achieved with the same parameters as in the abovementioned 

test, only water content parameter was excluded. The results of the test can be seen below in Table 7. 

It is similar to the test with the highest values: Random forest and Gradient boosting algorithms were 

the best match. K-Neighbors could also predict hydraulic conductivity, but did not reach as high R2 

values as the other two best models. 

Table 7. Prediction results using parameters: <0.06 mm, 0.06-0.2mm, D60, D70. 

Model MAE 

(test set) 

MAE 

(train set) 

MAE 

(SD) 

R2 (test 

set) 

R2 (train set) R2 (SD) 

Random forest 2.34 2.38 0.32 0.45 0.48 0.10 

Gradient 

boosting 
2.34 2.51 0.26 0.36 0.44 0.11 

K-Neighbors 2.72 2.82 0.33 0.24 0.31 0.10 

Linear 2.44 3.14 0.12 0.38 0.19 0.22 

Ridge 2.45 3.11 0.13 0.38 0.20 0.22 

SVR 2.57 2.77 0.42 0.14 0.16 0.08 

Decision tree 2.72 3.02 0.66 0.29 0.05 0.19 

 

In empirical equations, like the ones presented in this thesis, often effective diameter D10 (or in 

USBR’s case, D20) is used in the prediction because it has been proven in empirical tests that the 

diameter with 10% grains passing tells about the hydraulic abilities of soil the best. This is because it 

is thought that the finer grains in the soil matrix control the available void spaces and thus, the 
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available progression route for water (Rehman et al., 2022). In this study, using D10 as a parameter 

along with grain size information did give relatively good R2 values for the test sets, but not for the 

train sets. For example, when examining only the grain size category <0.06 mm, using D10 as a 

parameter gave R2 0.57 for the test set, and 0.31 for the train set. Similar trend could be detected in 

all grain size categories, except with grain size class >4.75 mm (R2 test set 0.27, train set 0.51) and 

<0.06 mm + 0.06-0.2 mm (R2 test set 0.31, train set 0.43), where the train set values were higher.   

One recent study proposed a new mathematical prediction model for hydraulic conductivity, 

where a new gradation coefficient utilizing D10, D30, D50 and D60 as well as void ratio is taken into 

account. The study found the new equation to work better than existing empirical equations (Arshad 

et al., 2020). In this thesis’ case, using larger Dxx values gave better prediction in every grain size 

category, and using several Dxx values at once were better at predicting hydraulic conductivity than 

using only one. Using all Dxx values (from D10 to D90) along with grain size categories did give 

relatively high prediction values, too, however they did not exceed the test with the highest values 

presented earlier in Table 6. These findings highlight the fact that single grain diameter values might 

necessarily not depict the whole soil and several parameters are needed to produce more accurate 

results of the whole soil matrix. 

Using other soil parameters than Dxx and grain size classes (void ratio, saturation degree, bulk 

density, CU and CC) did not predict well, despite the fact that, for instance, CU and CC tell about the 

gradation of the soil, and void ratio has been found to be an important soil parameter when assessing 

hydraulic conductivity. The parameters yielded relatively good results with the test set values, but did 

not perform well with the train set and could not predict new samples. One possible reason for this 

could be the size of the data and more notably, the number of samples available to use. 208 samples 

were included in the machine-learning part of the study. In the best-performing machine-learning 

model introduced earlier, 52 samples were used as a test set, and 156 new samples were trained. 

Adding several parameters might make the test sets even smaller, because not all samples in the 

database included every soil parameter. For example, using grain size information, D10 and void ratio, 

the test set size drops to 40 samples and train set to 118 samples. If the database was bigger and, thus, 

there were more test set values to use, the algorithms could perhaps better learn the underlying 

function. Grain size distribution and Dxx values were the only parameters that were available in every 

sample. The relationship between hydraulic conductivity and other parameters than grain size 

distribution and Dxx might be more complex and need a larger dataset to find the correlation. 

 

4.3 Comparison of results  

 

The hydraulic conductivity determination results from both empirical equations and machine-

learning are depicted below in Table 8. Their best achieved results are presented by their respective 

R2 values. From the empirical equations, Hazen‘s formula performed the best. Machine learning 

methods exceeded the R2 values of empirical equations in various different tests. The best achieved 

correlation was found when using grain size categories 0.06 mm and 0.06-0.2 mm, water content, D60 

and D70. The best-performing model was Random forest.  
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Table 8. R-squared values of calibration plots. 

 

 

 

 

 

 

 

The regression models of the methods presented in Table 8 are presented in Fig 31. 

 
Fig. 31. Best-performing machine-learning model (a), Hazen‘s method (b), USBR‘s method (c), 

Slicther‘s method (d). 

 

From Fig. 31 a, it can be  seen that in the Random forest regression model, new trained values 

follow the calibration line fairly well, which means the algorithm can predict new samples with 

success. What is noteworthy is that the regression line in the machine learning model is for the test 

set, not for the train set. Hazen‘s equation (Fig. 31 b) overestimates actual K values the most, but still 

yields the best correlation from the three empirical equations. USBR‘s (Fig. 31 c) equation also 

slightly overestimates values, and Slichter‘s formula (Fig. 31 d) underestimates them.  

Method Model R2 

Machine learning Random forest 0.47 (test set) 

0.51 (train set) 

Hazen (CH 100) Linear 0.38 

USBR Linear 0.25 

Slichter Linear 0.19 
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Overall, the results acquired from empirical formulas and machine-learning testing narrate the 

fact that regression models performed by machine learning can determine hydraulic conductivity 

better than Hazen’s, USBR’s or Slichter’s empirical formulas. This indicates that machine-learning 

methods can better adapt to the heterogeneity of soils and a varying soil matrix. The disadvantage of 

empirical formulas is that they should be used within their ranges of applicability and not all formulas 

fit all soils, and the formula should fit the soil in question (Chapuis, 2012).  

The values of coefficient of determination (R2) in the studies done in this thesis were not very 

high; even with the best-fitting prediction model, only a value of 0.51 was reached. There are multiple 

possible reasons for this, most notably the size of the database. The number of samples used in the 

machine learning part of this thesis is 208 samples. The fewer there are data points that can be used 

for prediction, the bigger the probability for error.  

A recent research studied different predictive methods for saturated hydraulic conductivity of 

soils, assessed the quality of laboratory tests, and explained the most important mistakes that can 

happen during testing that affects the results of parameters and thus the prediction of K (Chapuis, 

2012). In all fields where numerical information is handled and used in studies, the origin of said 

information should be critically examined. Especially in large databases where data has been gathered 

from numerous different tests, the validity of those tests should be considered.  In the case of this 

thesis, for example the Dxx values that were used are purely mathematical estimations aqcuired from 

interpolating cumulative grain size percentages instead of laboratory testing and thus might be a little 

different from the actual grain diameters.  

Sometimes using soft computing tools (including machine learning) are not as transparent as 

using empirical formulas; sometimes machine learning algorithms work in a way that is difficult to 

transform into understandable, representative rules. The transparency of the function behind machine 

learning models is something that needs to be considered in the future of machine learning prediction 

(Naeej et al., 2017). After all, using machine learning modelling in e.g. hydraulic conductivity 

determination is to help get accurate information based on attainable soil parameters in a way that is 

more flexible than traditional methods, but studying the relationships between different parameters 

shouldn’t be overshadowed by the more complex deduction processes of machine learning.  

In the future, the database of Lithuanian soil samples can be further developed by adding new 

soil samples to create a wider database that can be used not only for studying hydraulic conductivity 

but for multiple hydrogeological and engineering practises and widen the range of possibilities of 

study based on e.g. regionality, depth and deposition processes.   
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CONCLUSIONS 

 

1. From the three empirical equations used in this study (Hazen, Slichter, USBR), Hazen’s 

equation performed the best. However, the overall values of R2 still remained relatively low (R2 <0.4). 

The disadvantage of most empirical equations is their limited applicability range to certain soil types 

and grain sizes.  

2. Machine learning methods performed better than empirical equations in both the test set 

and train set. Random forest and Gradient boosting algorithms performed the best from the seven 

models used. The highest achieved R2 values for the test set and train set were 0.47 and 0.51, 

respectively.   

3. Grain size information of fine soils and grain size diameters (Dxx values) proved out to 

be the best parameters in the prediction of K in the case of this database. Other available parameters 

could, in many cases, find relatively good R2 results for the test set values, but could not successfully 

produce new predictions.  

4. Overall, the low coefficients of determination (R2) might be due to the small number of 

samples available (246 samples inspected in the empirical equations, 208 inspected in the machine 

learning part). It is recommended to further expand the database of Lithuanian soil samples to 

establish a wider resource for future investigations of soil permeability in Lithuania.  
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SUMMARY 

 

VILNIUS UNIVERSITY 

FACULTY OF CHEMISTRY AND GEOSCIENCES 

 

EVELIINA KUKKA-MAARIA VANHALA 

Theoretical hydraulic conductivity determination of Lithuanian soil samples 

 

Hydraulic conductivity is the ability of soil to transmit water and is measued by the rate which 

water can move through the porous medium. The hydraulic conductivity of soil is affected by 

numerous factors like soil physical properties and grain size, and has a significant role in fields like 

geotechnical design, contaminant migration and waste disposal. It can be determined directly in situ 

or through laboratory tests. Indirect methods include empirical formulas and machine learning 

modelling. Both utilize physical soil parameters in the determination of hydraulic conductivity. 

Machine learning is useful in the sense of computational capacity to process data that it can more 

easily find relationships between multiple parameters as well as produce new predictions by using 

complex algorithms, while empirical formulas require manual data processing. 

This thesis investigates theoretical hydraulic conductivity determination methods of Lithuanian 

soil samples. The primary objectives of this study are creating a database for Lithuanian soil samples 

and assessing theoretical hydraulic conductivity methods by comparing them to laboratory-acquired 

values. The study is conducted by using three empirical formulas from Hazen, Slichter and USBR 

and tuning seven machine learning regression models to find the best parameters to use in the 

determination of hydraulic conductivity. The regression models used in the study are linear and ridge 

regression, support vector regression (SVR), K-Nearest Neighbors (KNN), Decision tree, Random 

forest and Gradient boosting.   

The results reveal that from the three empirical formulas, Hazen‘s formula performs the best 

while Slichter‘s formula has the lowest correlation to actual hydraulic conductivity values. However, 

the overall accuracy of these empirical formulas remains low. From the six machine learning models, 

Random forest performed the best in multiple different tests and by using different parameters. The 

highest correlation is achieved by using grain size information of fine soils, grain size diameters D60 

and D70, and water content. Overall, the machine learning models performed better than the empirical 

formulas. The results reveal that the machine learning models can adjust to the heterogenous nature 

of soils and find patterns between multiple soil parameters. 

The overall correlation of both empirical formulas and machine learning models remain 

relatively low, and the main reason for this might be due to the small size of the database entries. It 

is encouraged to keep updating the soil sample database to gain a wider resource for future 

investigations of soil permeability in Lithuania.  

Keywords: hydraulic conductivity, groundwater, empirical formulas, machine learning. 
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SANTRAUKA 

 

VILNIAUS UNIVERSITETAS 

CHEMIJOS IR GEOMOKSLŲ FAKULTETAS 

 

EVELIINA KUKKA-MAARIA VANHALA 

Teorinis filtracijos koeficiento nustatymas Lietuvos gruntų mėginiuose 

 

Filtracijos koeficientas nusako grunto gebą praleisti vandenį per porėtą terpę. Gruntų filtracijos 

koeficientas turi įtakos daugeliui veiksnių, tokių kaip grunto fizikinės savbės, granuliometrinė 

sudėtis. Šis parametras yra plačiai naudojamas tokiose srityse kaip geotechninis projektavimas, 

teršalų migracija, bei įvairių atliekų poveikio aplinkainustatymui. Filtracijos koeficientas gali būti 

nustatytatomas tiesiogiai in situ arba atliekant laboratorinius tyrimus.. Netiesioginiai metodai apima 

empirines formules ir mašininio mokymosi modeliavimą. Filtracijos koeficientui apskaičiuoti 

naudojami fizinikiniai grunto parametrai. Skaičiavimai empirinėmis lygtimis reikalauja daug rankinio 

darbo su duomenimis ir galiausiai turi būti supaprastinti į lygtis. Mašininis mokymasi privalumas yra 

galimybė kompiuterizuoti skaičiavimus ir rasti ryšius tarp kelių parametrų ir sukurti naujas 

prognozes, naudojant sudėtingus algoritmus. 

Baigiamajame darbe nagrinėjami teoriniai filtracijos koeficiento skaičiavimo metodai 

naudojant Lietuvos grunto mėginius. Pagrindiniai šio tyrimo tikslai – sukurti Lietuvos gruntų mėginių 

duomenų bazę ir įvertinti teorinius filtracijos koeficiento skaičiavimo rezultatus, lyginant juos su 

laboratorijoje gautomis reikšmėmis. Tyrimas atliktas naudojant Hazen, Slichter ir USBR empirines 

formules, bei derinant šešis mašininio mokymosi regresijos modelius, kad būtų rasti tinkamiausi 

parametrai, kuriuos galima naudoti modeliuojant. Tyrime naudojami regresijos modeliai: tiesinė ir 

keterinė regresija, atraminių vektorių regresija (SVR), artimiausių kaimynai (KNN), sprendimų 

medžio, atsitiktinio miško ir gradiento didinimo regresijos. 

Rezultatai rodo, kad iš trijų empirinių formulių Hazen formulė veikia geriausiai, o Slicther 

formulė turi mažiausią koreliaciją su faktinėmis hidraulinio laidumo vertėmis. Tačiau bendras šių 

empirinių formulių tikslumas išlieka mažas. Iš šešių mašininio mokymosi modelių atsitiktinio miško 

algoritmas tiksliausiai nustatė teorines vertes atliekant kelis skirtingus testus ir naudojant skirtingus 

parametrus. Geriausi statistiniai rodikliai pasiekti naudojant smulkaus grunto grūdelių dydžio 

informaciją, grūdelių dydžio skersmenis D60 ir D70 bei drėgnį. Mašininio mokymosi modeliai tiksliau 

nustatė filtracijos koeficientą nei empirinės formulės. Rezultatai rodo, kad mašininio mokymosi 

modeliai gali prisitaikyti prie nevienalyčio grunto pobūdžio ir rasti modelius tarp kelių grunto 

parametrų. 

Bendra empirinių formulių ir mašininio mokymosi modelių koreliacija išlieka santykinai žema, 

o pagrindinė to priežastis gali būti mažo duomenų imti, todėl tokio pobūdžio tyrimai turėtų būti 

tęsiami plečiant duomenų bazę.  

Raktiniai žodžiai: filtracijos koeficientas, požeminis vanduo, empirinės formulės, mašininis 

mokymasis. 
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APPENDICES 

 

1. The best-fitting machine learning test 
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APPENDIX 1 

THE BEST-FITTING MACHINE LEARNING TEST 

 

Used parameters in the test: <0.06 mm, 0.06-0.2mm, water content, D60, D70.
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Model MAE 

(test 

set) 

MAE 

(train 

set) 

MAE 

(SD) 

R2 

(test 

set) 

R2 

(train 

set) 

R2 

(SD) 

Random 

forest 

2.28 2.43 0.25 0.47 0.51 0.10 

Gradient 
boosting 

2.32 2.46 0.23 0.44 0.48 0.08 

K-

neighbors 

3.04 2.70 0.28 0.11 0.35 0.10 

Ridge 2.42 3.10 0.13 0.39 0.15 0.29 

Linear 2.40 3.13 0.11 0.38 0.14 0.29 

SVR 2.45 2.70 0.48 0.18 0.19 0.10 

Decision 
tree 

2.67 2.97 0.46 0.15 0.09 0.19 


