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Introduction

Topic relevance

The popularity of proof-of-work cryptocurrencies, such as Bitcoin, is on the rise [HR17]. With
this increase in the number of transactions comes the need for efficient, and subsequently, more
environmentally friendly [KT18], distributed consensus algorithms. IOTA is a distributed ledger
technology that aims to provide fast and efficient transactions which could be used for micropay-
ments in the Internet of Things (IoT) industry [Pop].

IOTA is based on a specialized directed graph referred to as a tangle. The transactions are
represented as vertices in the tangle. Whenever a new transaction is added to the tangle, it is
required to approve two previous unapproved transactions (referred to as tips), which adds two
new edges to the tangle with the new transaction being the tail in those edges and the new trans-
actions being the heads [Pop]. Furthermore, transactions in IOTA follow the unspent transaction
output (UTXO) model – the inputs of a transaction consume unspent outputs of previous trans-
actions [Pop]. This is in contrast with an account-based model where the account balances are
manipulated directly [But+14]. In IOTA’s UTXO model, to use an unspent output, the transac-
tion has to prove ownership of the address the output was sent to; this is done in the unlock block
part of the transaction [Pop].

Native tokenization and smart contracts are both important functionalities for IoT
and are already present in other distributed ledger technologies, such as the Ethereum
blockchain [CCM+20a; CD16]. At the time of writing IOTA’s UTXO model does not support ei-
ther of these features. IOTA’s RFC 38 “Output Types for Tokenization and Smart Contracts” is a
design document that proposes extensions to the IOTA’s UTXOmodel to support native tokeniza-
tion and smart contracts [Pap21]. To allow IOTA to be a multi-asset network, RFC 38 proposes
new output types that would carry user-defined tokens (referred to as native tokens) [Pop]. Addi-
tionally, new types of unlock blocks are proposed, which would allow validation for different token
types, such as non-fungible token (NFT) [Pap21]. The proposed feature block would allow extra
logic to be added to the transactions to achieve functionality similar to a smart-contract [Pap21].

While RFC 38 document describes suggested changes in detail and provides the rationale
behind them, it is left unclear whether the proposed changes are sound as no formal verification
of the modified system is provided. Formal verification of the proposed changes proving that the
modified system is sound and maintains all of the desired properties would increase stakeholders’
confidence in the proposal. Alternatively, an example of a modified system’s undesired behavior
could help expose a vulnerability or unexpected use case or simply identify a bug introduced by
the changes.

The possibility of unexpected bugs being found when smart contracts are involved is not
unfounded. One of the most famous examples of a known attack being exploited is the exploita-
tion of a vulnerability in the TheDAO smart contract, which resulted in more than $50M worth
of Ether being stolen [BDF+16b]. Moreover, a recent large-scale analysis of unique contracts
used on the Ethereum blockchain found that more than eight hundred of them had at least one
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vulnerability [KR18].
There have been numerous attempts at formally verifying distributed ledger technologies.

Abstract models of UTXO based ledgers were defined [Zah18a; Zah18b]. The F* language has
been used to verify smart contracts for Ethereum [BDF+16b]. The Agda language and proof
assistant have been used to formalize the extended UTXO ledger and the BitML calculus [Mel19].
Agda has also been used to formalize the proposal for multi-asset support in Cardano [CCM+20c].
Moreover, some other attempts at formal verification can be found: a Cardano UTXO model
specification written in Isar can be found in Github; a TLA+ specification of the Tendermint
consensus protocol is also in Github [Kon].

One possible way to formally verify the changes proposed in RFC 38 is by using the formal
specification language Isar and proof assistant Isabelle/HOL. The Isabelle tool collection stands
out from other formalization tools by having powerful proof automation instruments such as
Sledgehammer while allowing proofs to be expressed using classical logic [NPW02]. Using Isar,
a formal specification of the IOTA tangle network modified according to the changes suggested
in RFC 38 can be provided. With the help of Isabelle/HOL proof assistant, it can then be shown
that the modified system is functionally correct or that one or more of the desired properties of
the system are not maintained.

Aim and tasks

The thesis aims to prove the functional correctness of the changes proposed in RFC 38. If, in-
stead, the changes are proven to be functionally incorrect, then the cases where undesired behavior
would occur should be demonstrated – for every property that is shown to be no longer main-
tained, the causes of the undesired behavior will be discussed and suggestions will be provided
to the authors of RFC 38.

Subsequently, to achieve the aim of the thesis, the following tasks will be performed:

1. A literature survey – analysis of the state of the art research performed in the field of
formalization of distributed ledger technologies;

2. Analysis of the structure of the IOTA network and the changes proposed in RFC 38 “Output
Types for Tokenization and Smart Contracts”;

3. Using knowledge gathered during the literature survey and analysis of RFC 38, formaliza-
tion of the IOTA EUTXO model with the changes described RFC 38 as well as its desired
properties in Isar;

4. Evaluation of the adequacy of the model created in the previous task by comparing it to
previous attempts discovered while performing the literature survey. This will ensure that
the produced model is relevant and complete;

5. Verification of the formal specification produced by the formalization task using Is-
abelle/HOL;
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6. Analysis of the results of formal verification of the model performed in the previous task,
identification of undesired scenarios, and formulation of suggestions to the RFC 38 authors.

Research methods

Firstly, a literature survey will be performed to identify research papers, textbooks, and other
media to gain a comprehensive view of the research performed in the area of distributed ledger
technologies. Formal modeling will then be performed to produce a model of the system under
discussion. The model’s adequacy will then be evaluated by cross-checking it with the models
produced by previous research in the field. Finally, formal verification will be performed on the
model to check whether it maintains the correctness properties.

Expected results

The expected results of the thesis are:

1. A formal specification of the IOTA EUTXO model modified according to RFC 38 in Is-
abelle/HOL;

2. The results of verification of the formal specification using Isabelle/HOL and suggestions
to the RFC 38’s authors (if any).
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1. Literature review

1.1. An introduction to formal methods

As software becomes more intertwined in our daily lives, so rises the responsibility of software to
be safe, reliable, and secure. While a failure in a food ordering system might cause a headache,
even a rare bug in an airliner’s autopilot software can come at the cost of hundreds of human
lives [HBM20]. Subsequently, methods of verifying software, such as formal modeling, are be-
coming increasingly relevant and even mainstream [Rus07].

Validation and verification of software is a standard step in almost all software development
processes. For critical software, more than half of the development’s cost goes to verification
and validation. Furthermore, fixing an issue that has been discovered late in the development
process is more costly than correcting it in an earlier stage [Cou+07]. Perhaps the most common
software verification and validation method is simulation and testing. In many standard software
development models, such as the V-Model, the testing is performed after the related software
system or component is already developed [BTG83; Rup10]. While simulation and testing aim to
ensure that as many issues as possible are identified and addressed before the software is released,
these methods are often not exhaustive and are labor-intensive. Moreover, finding issues after
the system has already been designed and developed incurs a large overhead – code would need
to be rewritten and a redesign of the related system or component might be required. Formal
methods provide an elegant solution to these problems.

Formal methods are not based on the simulation of a system or the execution of code.
Instead, they are based on a mathematical model and a mathematical analysis of the code. For-
mal methods provide a technique to specify and check the properties of a system mathemati-
cally [Win90]. In a V-Model, all of this can be done after the design stage and before any of the
system’s runtime code has been written. Artifacts created early in the lifecycle of a system such as
outline designs, requirements, and specifications can all be useful for a formal analysis [Rus07].

A formal method is defined as a combination of a formal notation (syntax) and a formal
analysis technique (solver). Two main analysis techniques are often used: model checking and
deductive methods [Win90]. Model checking involves exploring the state space of a model’s
behavior to check whether the system’s properties are maintained in every reachable state. An
example of a language with a model checker is the TLA+ specification language with the TLC
Model Checker [YML99]. Deductive techniques use mathematical reasoning to outright prove
a property of the formal model [Win90]. Examples of formalization tools using deductive tech-
niques include Coq, Isabelle, ACL2, and Ada [HM05; Rus07].

More than half a century has passed since formal methods for software have first been inves-
tigated [Flo93]. Since then, numerous improvements to the usability and tooling of formalization
software have been made [Rus07]. Nowadays, most of the application of formal methods in the
industry of software engineering involves fully automatic but very specialized analysis of individ-
ual program units. Nevertheless, even the use of interactive theorem provers such as Isabelle and
Coq requires a high investment of skill and time, which limits their use to the formalization of
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Figure 1. The V-Model can be easily modified to perform formal verification before engaging in
development. The results of formal verification aid the detailed design of the system. This way
some issues can be found earlier in the lifecycle, and development efforts can be conserved.

critical software or research in academic environments [Rus07].

1.2. Overview of a formalization process

In this section, we discuss a traditional approach to formalizing software. Here we assume that the
formalization team has already collected the appropriate requirements and produced any relevant
design documents.

The goal of the formalization process is to guarantee the behavior of the formalized system.
Unlike with testing and simulation, the aim of formalization is to prove as many relevant properties
of the system without actually writing a complete description of the related system. A complete
description of a system would equate to the executable code of the system, which would negate
the main advantages of using a formal method to abstract away the irrelevant details of a system’s
codebase. Subsequently, choosing the right level of abstraction is one of the first challenges when
creating a formal system specification [AFP+11].

One of the first major steps of the formalization process is obtaining a specification of the
related system [AFP+11]. A specification is an expression of a model of the system in a notation
of a formal method. A specification contains the definition of the desired behavior of the system.
If the specification is entirely abstract, it can be said that it is the description of the intended
behavior as seen by an external observer. Otherwise, the specification is more operational and
can include lower-level details about the system’s behavior, which would only be known to an
internal observer [AFP+11]. While an abstract specification requires less effort to produce, it
might not be rigorous enough to provide insights into the design of the system. On the other
hand, a very detailed specification might be tedious to produce and work with. As such, the right
level of abstraction should be chosen.
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Once the abstraction level of the specification is known, the model of the system can be
produced [Pel19]. The purpose of this model is to be a transitional step between the require-
ments and the specification. This transitional model can be automatically generated from design
documents, written down as an English specification, verbally discussed, or even just implied by
the team performing the formalization. After the model with the desired abstraction level is
established, a matching specification can be produced.

A specification defines the model using mathematical formalisms provided by the selected
formal method’s formal notation (syntax). While different formal methods can use considerably
different ways of expressing the model, some concepts are common among them. Usually, the
system is expressed as a state machine, and writing a specification can involve describing the
following [AFP+11]:

1. The states or the data of the system;

2. The valid transitions between states of the system or predicates specifying when such tran-
sitions can occur;

3. The transformation of data when a transition between two states occurs or how the data
evolves;

4. The predicates used inside the system.

When the specification is complete, it can be verified. A wide range of techniques can be
used to verify a specification [Pel19], the main ones being model checking and formal proofs.
In the case of model checking, some extra effort might be required to configure the parameters
of the model checker, such as constraining the model so that the possible states of the system
are not infinite and can be enumerated. Formal proofs usually require more work to verify, as
a formal proof needs to be constructed. Many formal method tools offer computer-assisted and
interactive ways to produce a proof and help check the proof ’s correctness [AFP+11; Pel19]. The
incompleteness of the specification or other mistakes can also be found during this step, requiring
a return to one of the previous steps before continuing.

Finally, a complete and verified specification can be used to guide the implementation.
However, because of the stark differences between the specification and executable code of the
system, it is often not trivial to obtain an implementation with the behavior of the formal specifi-
cation. Different methods can offer some solutions to this formal relation between specifications and
implementations problem [AFP+11]. Some formal method specifications can be directly executed,
eliminating the problem altogether; others provide opportunities to derive an implementation
from the specification and show the correctness of the derivation [AFP+11]. It is also possible to
trust the judgment of the writers of the implementation to follow the specification closely, which
is a flexible solution but leaves a lot of room for errors.

8



1.2.1. Translating requirements into formal specifications

The creation of a formal specification requires the translation of a system’s requirements into a
formal language. There is no standard requirements language: the system’s requirements can
be communicated verbally, presented as quick sketches “on a napkin”, modeled with UML or
BPMN diagrams, or otherwise stored in an ad-hoc design document [BKC+17; KKU13]. As a
result, the requirements are usually written in natural language, which raises the issue of potential
ambiguity, misunderstanding, or simply overload of information [IO05; KKU13].

There have been numerous attempts at tackling the problem of accurately translating re-
quirements into a formal specification, such as an introduction of a strict requirements language
with a controlled grammar [Sch02], or parsing of the natural language [IO05]. Despite that, there
seems to be no industry standard. Furthermore, it is unclear whether the introduction of a tran-
sitional grammar or automatic translation would solve the issue at hand, as the translation would
need to support the many types of formal notations as output to be useful.

While the automatic translation of requirements is usually not a viable choice, there are
benefits to constructing a transitional model by hand. The transitional model can be a represen-
tation of the main expected properties of the model in a mathematical notation. If the formal
method has already been decided on, the transitional model can attempt to express the system’s
properties in the logic of the formal method, such as classical logic. This model can also serve
as a higher level, abstract, “as seen by an external observer” representation of the system’s in-
tended behavior, which can be useful to reason about the system or share it with a wider audience
because of a mathematical notation’s ubiquity. Moreover, the creation of such a model forces
one to reason about the minutiae of the specified system so that any potential ambiguities can be
addressed at an earlier stage[AFP+11]. Finally, the transitional model can serve as a guideline for
the main specification.

When choosing a formal method that uses deductive techniques, extra attention should be
paid to the class of logic that is being used. There are two main classes of deductive logic used
in formal methods: classical logic and constructive logic. To put simply, classical logic is the
standard logic that is most widely used; constructive logic is a subset of classical logic that focuses
on proving by constructing a proof [Avi00]. In the context of formal methods for software, it
should be noted that constructive logic comes with the upside of possible extraction of efficient
code from the specification [Sas86]. However, constructive logic does not include the law of the
excluded middle and double negation elimination, which are one of the central rules in classical
logic [Avi00]. As a result, a formal method using constructive logic should be chosen if code
extraction from the specification is desired, but otherwise, a formal method using classical logic
might require less effort to work with.

1.3. Blockchains

Blockchain technology is the foundation of IOTA. To understand the motivations behind the
extension of IOTA UTXO, this section describes the possibilities and limits of blockchain tech-
nology and relevant technical decisions made by IOTA that resulted in the current state of the
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IOTA technology.
A blockchain is a mostly immutable ledger of blocks, which is implemented in a distributed

fashion and usually without a central authority [YMR+19; ZXD+17]. Blockchains can be used
in many fields, such as financial services, smart contracts, public services, security services, and,
as claimed by IOTA, as a base for an Internet of Things service [Pop; ZXD+17]. The unique
combinations of properties that a blockchain maintains and the technical challenges it poses have
resulted in blockchain technology being in the spotlight of both researchers and entrepreneurs in
recent years.

Serguei Popov of the IOTA Foundation claims that the blockchain technology was selected
as the underlying base of IOTA to achieve a free and feeless Internet of Things infrastructure,
where both value and responsibilities are shared between its users [PL19]. According to Popov,
a distributed ledger technology can be a decentralized trusted backbone that allows its users to
“trade data, manage access to them, and track responsibilities” to “billions of IoT devices and
data” [PL19].

While nowadays there are many different blockchain solutions, we can still identify some
core components that they have in common: transactions, a distributed ledger, a consensus mech-
anism, and asymmetric key cryptography [PMM+18]. Blockchain nodes communicate with each
other by using transactions – descriptions of atomic actions that change the state. The current state
of the blockchain is represented by these transactions [PMM+18]. The blockchain groups trans-
actions into validated blocks. To regulate the addition of blocks and maintain a consistent state,
a consensus mechanism is used. Besides exchanging information between different nodes of the
system, a consensus mechanism provides security properties that help prevent fraud [PMM+18].
To provide a form of authentication, asymmetric keys are used – users sign their transactions with
a private key which they keep secret, while their public key acts as a public address known to all
participants of the network [PMM+18].

One of the most difficult challenges that a consensus mechanism has to solve when creat-
ing a distributed network is creating an asynchronous, Byzantine Fault-Tolerant system [FLP85].
In simple terms, this means that the network has to remain functional in an asynchronous en-
vironment where messages can get lost or delayed, all while some actors might be irrational or
intentionally malicious. Solutions to this problem are often defined in the terms of the minimum
amount of voting power that is required to break or exploit the system. The proposed solutions to
this problem include approaches such as Proof-of-Work (PoW) and Proof-of-Stake (PoS). Both
of these solutions are based on the idea of having a limited resource act as voting power in the
system. In the case of PoW, processing power (“work”) is the limited resource; in the case of PoS
– it is the amount of currency (“stake”).

One of the most famous examples of a PoW consensus is the Satoshi Nakamoto consensus
model, which is used in Bitcoin. To prove that a large amount of work has been performed,
a mathematical problem is formulated – a hash matching a very specific condition has to be
found [Ren19]. To put it simply, for a new block to be added to the blockchain, a very large
amount of guesses need to be performed until a satisfactory hash is found. Once a new block
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is added, the mathematical problem is then formulated anew. The act of guessing the new hash
is often referred to as mining, and the special type of entity that performs the mining is called a
miner. The miner who first finds the new hash creates a new block and is rewarded with some
amount of the currency for their work [Ren19].

Block n+1 Block n+2Block n

Blockchain

Current state Found new hash,

create new block

Guessing the hash

Miners

Figure 2. In a Nakamoto Proof-of-Work consensus model, the miners solve a difficult problem of
finding a specific hash. Once a solution is found, the miner creates a new block for the blockchain.
Upon receiving information about the new block, nodes can easily verify that the block is a correct
extension of the blockchain and append it to their ledgers.

Since the blockchain network is distributed and asynchronous, any new information might
propagate slowly. It is possible for two or more miners to find a new hash at around the same
time. What happens, in this case, is that different partitions of nodes have a different state of
the blockchain, because their last blocks have diverged. In a Nakamoto consensus model, this
issue is resolved by one of these branches proving that it has the most combined computational
power [Ren19]. Miners maintain information on all current branches but prioritize creating new
blocks based on the first valid block that they have received. The idea here is that, once a new
hash is found and a new block is created, one of the branches will unambiguously contain proof
of containing the most amount of work – the nodes can then simply accept it as the source of
truth [Ren19].

1.3.1. Account model

The account model is a simple and intuitive way to keep a ledger that contains an account identi-
fier and the account’s balance. The idea behind the account model is to keep a mapping of account
identifiers to the related balance. A transaction in this model is an operation that simply reduces
one account’s balance while increasing another account’s balance by the same amount [Woo+14].
Furthermore, a single atomic transaction can include any number of these reductions and in-
creases, as long as the total balance of all accounts remains the same. A log of transactions can be

11



Block n+1 Block n+2

Block n+2

Block n

Branch

Branch

Block n+1 Block n+2

Block n+2

Block n
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Block n+3

Figure 3. In a Nakamoto Proof-of-Work consensus model, when there is a potential conflict
between two branches with the same amount of work performed (the same length), it is resolved
by waiting for a new block to be created. Once one of the branches is longer than all others, it is
considered to be the source of truth.

kept separately from the ledger and, to find out the current balance of an account, only a simple
lookup is required.

While it is hard to contend with the account model’s elegance in a centralized ledger, some
issues become apparent if we try to apply the account model to a distributed ledger technology.
The account model’s ledger is, by design, a centralized resource. As such, it is important to keep
the ledger’s state updated when making a transaction. And, in the case of distributed ledger
technologies such as blockchain, that can be a slow and expensive process [LFL19]. In general,
the fact that transactions in the account model depend on the global state as input means that,
usually, transactions involving the same account need to be processed sequentially.

1.3.2. UTXO model

The UTXO model is an alternative to the account model for keeping a ledger with account bal-
ances. Unlike the account model, the UTXO model does not store the total balance of an ac-
count. Instead, the ledger is a set of Unspent Transaction Outputs, or UTXOs for short [DPN+18;
MDH+20]. A UTXO has a value amount and an owner. The transaction is then defined as a set
of input UTXOs and output UTXOs, such that the total amount of value does not change. To
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  From: A

  To: B
  Amount: 6

State n State n+1

Account A

Account B

20 coins

10 coins

Account A

Account B

14 coins

16 coins

Transaction

Figure 4. In the account model, the main components of the system state are the account identi-
fiers and their respective balances. Note that the balances of accounts do not necessarily change
with a state transition. In general, it can be assumed that the total value of all balances remains
the same as transactions are applied.

make sure that such a transaction is valid, it is required to know that the input UTXOs have not
been spent before – the total amount of value owned by the participants is of no concern.

State n

Transaction

UTXO-0

UTXO-1

UTXO-2

5 coins
15 coins

10 coins

Address A

Address A

Address B

UTXO-0

UTXO-2

UTXO-3

UTXO-4


5 coins
10 coins

6 coins
9 coins

Address A

Address B

Address B

Address A

State n+1
Inputs: Outputs:
UTXO-1
15 coins
Address A

UTXO-3
6 coins
Address B

UTXO-4
9 coins
Address A

Figure 5. In the UTXO model, the current state is a set of all of the unspent transaction outputs.
In other words, the UTXOs form a directed acyclic graph, and the current state is the set of all of
the leaves of this graph. Note that this current set of UTXOs includes not only the UTXOs that
were created during the latest state transition but also the ones from previous states which have
not been spent.

While the UTXO model might seem confusing at first, we have a real-life analogy that
can help better understand the motivation behind this ledger model. To put it simply, one can
imagine an account model being akin to a bank balance, and a UTXO model as being physical
cash. If we were to go to the market and receive some coins, we can spend them right away
without having to put them into our bank beforehand. When a transaction occurs, we provide
several coins (our input) and request several coins as change (output). Everyone in the market
would observe the transactions and know that our coins are not fake – we were trading with coins
that originated in the market this whole time. There is no need to consult a central authority,
such as a bank, as long as we remain in this closed community. When we would go to a grocery
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store and try to use the coins we received earlier, the store would then need to be aware of the
market’s records to confirm the coins as authentic.

More formally, the blockchain ledger’s state in a UTXO model contains a set of UTXOs
that have not been spent at some given moment. Transactions consume UTXOs as their inputs
and produce UTXOs as their outputs, thus modifying the UTXO set. It is then enough to inspect
only the current UTXO set to validate a transaction – no inspection of the full blockchain is
required [DPN+18]. For a transaction to be valid, some conditions have to be satisfied. To avoid
having to inspect the whole blockchain, UTXOs store all required information for validating a
transaction. Besides the transferred amounts, they contain a locking script: each UTXO can
have some individual conditions that allow it to be used as an input in the transaction, or, in
other words, unlocked. These conditions are referred to as unlock conditions [DPN+18]. One of
such conditions that is often included is the validation of the digital signature of the owner – it
is obvious that only the owner of the UTXO can spend it. In this case, the proof – the digital
signature – is part of the redeemer object provided in the transaction [CCM+20b; DPN+18].

The main benefit of using a UTXO model over the account model is that transactions in
the former can be processed in parallel and independent transactions can be processed in any
order [MPP+22]. This provides a positive effect on the system’s scalability.

1.3.3. Smart contracts

In the UTXO model, the UTXOs can have a condition for spending a UTXO. Usually, this con-
dition is simply the validation of the digital signature of the owner – one can use a UTXO if
they can prove that they own it. However, there is a need for more programmable blockchain
logic. The UTXO model supports some validation logic, but it’s mostly limited to a set of basic
operations [BG20].

In general terms, a smart contract is a protocol for verifying and enforcing contracts on a
blockchain. A smart contract is stored on the distributed ledger technology, it inspects the state
of the ledger, maintains and modifies its internal state, and performs actions such as creating new
transactions in a blockchain. Storing a smart contract as a part of the blockchain comes with the
benefits of a distributed and transparent execution, but also comes with some challenges, such
as security concerns, required amounts of processing power, and the lack of regulation [BG20;
WOY+19]. To address these problems of smart contracts, the solution of using a Layer 2 has
been proposed [WOY+19]. The Layer 2 approach suggests the use of an off-the-chain execution
environment for smart contracts. The blockchain is then only used as a consensus mechanism
and so the execution of smart contracts does not impact the blockchain, providing a high level of
performance and privacy [WOY+19].

In general, the steps for executing a smart contract are [MA19]:

1. Coding the contract – specifying the conditions and the outcomes;

2. Adding the smart contract to the blockchain;
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Block n+1 Block n+2Block n Block n+3

Execution,

state modification,

and state storage

Layer 1

Layer 2

Figure 6. Layer 2 provides an execution environment that is separate from the main chain. It
interacts with the main chain by reading and creating transactions. The main chain, which can
also be referred to as Layer 1, acts as the consensus mechanism. The Layer 2 is the execution
environment for logic based on the main chain’s consensus mechanism. Layer 2 is often used to
execute smart contracts or create other blockchains (sidechains).

3. When the predefined conditions of the contract are met, it executes and produces the
outcomes.

Because of the complexities of implementing a smart contract, especially during step 1, the
use of the account model is often preferred. As the UTXO model is stateless, a smart contract’s
transactions are forced to include any state information in the UTXOs themselves, further com-
plicating the process and introducing overhead. Thus, a hybrid model which uses UTXOs for
balances and accounts for smart contracts is sometimes used [BG20; ZTC+21].

There is a tradeoff between simple scripting systems and more sophisticated, Turing-
complete ones. While a simpler scripting system might not allow for complex logic, it is eas-
ier to use when writing programs and verifying them. Feature-rich languages allow for more
sophisticated smart contracts, but they are more error-prone and harder to secure [ZTC+21].

1.3.4. Native user-defined tokens

Native tokens are types of currency that are natively supported by the blockchain – every cryp-
tocurrency has at least one main native token. However, there is a demand for blockchain tech-
nologies, such as IOTA, to support user-defined native tokens that can be used in user workflows
or managed by smart contracts. While the EUTXO model defines a datum on the UTXO that
can contain arbitrary information including user-defined tokens [CCM+20b], this approach has
several downsides compared to native tokens. These downsides include extra complexity, pro-
cessing cost, and inefficiency – the currency management code has to be replicated instead of
reusing the existing currency management code of the blockchain’s native token [CCM+20a].

A ledger that natively supports user-defined tokens would need to manage the construction
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of these new user-defined tokens, the creation of some amounts of these tokens, and the transfer
of ownership of user-defined tokens [CCM+20a].

1.3.5. Extended UTXO model

The Extended Unspent Transaction Output (EUTXO) model is an attempt to introduce expressive
smart contracts while maintaining the semantic simplicity of the UTXO model [CCM+20b]. In
short, the EUTXO model proposes changes to the UTXO model that allow a certain type of
state machine to be implemented. This increases the expressiveness of the smart contracts while
preserving the main properties of the UTXO model. To achieve this, arbitrary data is added to
UTXO outputs. It has been shown that using this data together with changes to the validation
logic is enough to enable state machine behavior [CCM+20b].

To allow the UTXOmodel to persist state between transactions, the EUTXOmodel proposes
the addition of contract data to the UTXOs and a modification of the validation logic. Recall that
in a regular UTXO model the UTXO consists of two core parts – the amount of value that is
being transferred and the validator script [CCM+20b; DPN+18]. The EUTXO model proposes to
extend this model with the addition of datum – arbitrary contract-specific data that the validator
can inspect. This data can serve as the state of the contract. Another addition is the extension of
the validator. Instead of validating only the value and the redeemer of the transaction, the value,
redeemer, the newly added datum, and the whole transaction are inspected. Thus, the validator
can impose arbitrary validity constraints on a transaction [CCM+20b]. It has been shown that this
extended UTXO model enables the use of state machine behavior in a blockchain [CCM+20b].

1.4. IOTA EUTXO model

The EUTXO model provides the ability for arbitrary validation logic while maintaining the core
UTXO workflow. While having arbitrary validation logic provides a great deal of flexibility, it
can also result in arbitrary transaction validation execution times and arbitrary amounts of used
validation processing power. Most blockchain solutions can solve this problem by providing mon-
etary incentives (bounties) for processing a transaction requiring expensive validation or penalties
to scripts that take a lot of CPU time. However, this ambiguity is an issue for a system that has no
explicit incentives for processing a transaction. IOTA aims to have free transactions by requiring
every node to perform validation to have its own transaction submitted, and as such, lacks the
monetary tools to implement the complete EUTXO model supporting arbitrary state machine
logic. As a result, IOTA chose to support flexible yet hard-coded scripts for output and transac-
tion validation on Layer 1. While this still increases the complexity of validation logic, it remains
bounded.

In essence, IOTA proposes a schema for the EUTXO datum and an extension to the val-
idator to support this schema1. The schema describes new types of information recorded in the
UTXOs, or, in other words, different subschemas intended for different workflows. For easier
comprehension, these types of subschemas and their associated validation rules can be grouped

1https://github.com/lzpap/tips/blob/master/tips/TIP-0018/tip-0018.md
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by their use case: UTXOs that have vastly different transition rules and are referred to as output
types; unlocking conditions for these UTXOs called unlock types; finally, feature types are extra
constraints and functionality not related to unlocking. Each output contains at most one unlock
condition and feature of each type and not all unlock condition and feature types are supported for
each output type. Additionally, to ensure that the state machine data is carried across transactions,
the new chain constraint is introduced.

The new output types proposed by IOTA are:

1. Basic Output: a UTXO used for general transfer of funds with some attached metadata with
optional spending restrictions. The main use cases are on-ledger smart contract invocation
requests, native token transfers, and indexed data storage in the UTXO ledger with the use
of the tag feature.

2. Alias Output: a UTXO representing smart contract invocation chain accounts on Layer 1
that can process requests and transfer funds.

3. Foundry Output: a UTXO that contains the state of and manages user-defined native to-
kens. Use cases include cross-chain asset transfers and asset wrapping (basically, represent-
ing some asset that belongs to one chain on another chain).

4. NFT Output: a UTXO that represents a non-fungible token (NFT) with attached metadata
and proof of origin.

The new unlock types proposed by IOTA are:

1. Address Unlock Condition: an unlock condition that was previously widely used, general-
ized to fit into the unlock type abstraction. This unlock condition does not introduce new
functionality. To satisfy this condition, in simple terms, the transaction has to be signed by
the indicated address.

2. Storage Deposit Return Unlock Condition: an unlock condition that requires a certain
transaction structure to be maintained. A UTXO with Storage Deposit Return Unlock
Condition specified can only be consumed if the transaction deposits a certain amount of
IOTA tokens into the specified address.

3. Timelock Unlock Condition: an unlock condition that requires the system to be in a certain
state. A UTXO that contains a Timelock Unlock Condition can not be consumed before
the specified timelock has expired.

4. Expiration Unlock Condition: an unlock condition that enables the optional transfer of
assets. The sender specifies a time window during which the output can be consumed.
Once the time expires, the sender can regain control of the assets.

5. State Controller Address Unlock Condition: an unlock condition used only by the Alias
Output to control the state of its assets. It is almost equivalent to the Address Unlock

17



Condition. Note that the Alias Output not only has to be unlocked but the UTXO’s state
machine transition constraints have to be satisfied – the state has to be advanced.

6. Governor Address Unlock Condition: an unlock condition used only by the Alias Output
to control the state of its governing, such as the owner’s address. It is almost equivalent
to the Address Unlock. Note that, even when changing a governing property, such as the
owner address, constraints of the UTXO’s state machine transition logic have to be satisfied.

7. Immutable Alias Address Unlock Condition: an unlock condition used by chain-
constrained UTXOs. Similar to the Address Unlock Condition, but requires an Alias Out-
put address.

The new feature types proposed by IOTA are:

1. Sender Feature: a feature that holds the address of the validated sender. A UTXO with this
feature is validated to ensure that it is unlocked by the specified sender.

2. Issuer Feature: a feature analogous to the Sender Feature, but used by the Alias Output
and NFT Output to specify the issuer (creator) address.

3. Metadata Feature: a feature used for storing arbitrary binary data. One use case is storing
smart contract invocation request parameters.

4. Tag Feature: a feature used for providing an index for an output. The tags are expected to
be used as an index when retrieving data.

For a UTXO to function as a state machine, the state of the UTXO must be moved forward
when it is consumed as an input. In the UTXO model, the input UTXOs are essentially burned
and only the value amount is distributed among the output UTXOs. Recall that in the EUTXO
model, the UTXOs have to carry the state machine information inside their datum. Subsequently,
IOTA proposes an extension to the validator called a chain constraint. To put it briefly, the chain
constraint allows the transfer of the UTXO state machine state encoded in the datum across
transactions. The Alias output, Foundry output, and NFT output utilize this chain constraint to
transfer the states of the alias state machine, foundry state machine, and native token amounts
respectively. When a UTXO with a chain constraint is consumed as an input, a respective UTXO
with the subsequent state must be created as an output. The subsequent state is a single valid
state transition of the state in the input UTXO, where the state transition rules are defined for
each output type. Consequently, as each output with a chain constraint produces a successor, a
path, or, in other words, a chain is created in the UTXO graph. Each such chain can be identified
by a unique global identifier.

To conclude, the aim of these proposed changes is to have an affordable and scalable de-
centralized application platform, which supports native tokens and smart contracts. While the
proposed changes do not enable the support of a generic state machine in the IOTA EUTXO
model, they provide the needed framework to implement native token support and the most
common smart contract conditions.
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Figure 7. A path of consumed UTXOs with the same chain constraint forms a chain. In the
figure, arrows indicate the creation of an output and the circles are the transactions; gray circles
are transactions that contain a chain constraint. The chain starts when a UTXO with the chain
constraint is created, and it ends when the UTXO with the chain constraint is destroyed; these
actions are usually part of the UTXO’s state transition logic.

1.5. State of the art

In this section, an overview of state-of-the-art software formalization methods in the context of
blockchains is provided. Firstly, we provide an overview of how formal methods are used in the
blockchain industry. Then we move on to discuss some specific examples of UTXO and EUTXO
models being formalized. Finally, we discuss in greater detail an attempt to specify the Cardano
UTXO model in Isabelle/HOL and provide our rationale on whether this work can be used as a
base that can be extended with the proposed IOTA UTXO extensions.

1.5.1. Overview of the use of formal methods in the blockchain industry

Due to the immutable nature of a blockchain, it is vital that any bugs or errors are found as soon
as possible, as otherwise they can become permanent once published to a live network. As such,
there has been considerable interest in using formal verification in the distributed ledger tech-
nology industry, particularly in the verification of blockchain consensus mechanisms and smart
contracts. In general, there are many components of a blockchain system that can benefit from
formal verification, such as cryptographic algorithms, key management mechanisms, cryptocur-
rency wallet clients, and smart contracts [MA19]. In some cases, such as the analysis of Nakamoto
consensus by Ling Ren [Ren19], only a formal analysis is performed without any verification; no
automated proof tools are used. In other cases, such as the InnoChain distributed ledger system,
the whole system stack – the underlying operating system, the consensus mechanism, the local
node logic, the smart contract execution, and the smart contract language – is claimed to be
formally verified [MRV20].

A smart contract is intended to be a flexible solution – a contract that can be programmed in
a free form, allowing its authors to express the conditions of the contract with arbitrary complexity.
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While the smart contract code is often available for inspection, manual review of the smart contract
code is tedious and error-prone; the infamous DAO smart contract was written by experts in the
field of blockchain, and yet it had a critical vulnerability [DMH17]. Subsequently, there have
been numerous efforts to formally verify smart contracts.

One of the ways of formally verifying a smart contract is by automatically translating the
contract code into a formally verifiable language. Bhargavan, Delignat-Lavaud, Fournet, Golla-
mudi, et al. have shown that the smart contracts written in Solidity can be partially translated to
the F* language and verified automatically [BDF+16a]. After the translation, vulnerable patterns
are detected in the code using the F* type checking system and other properties of the translated
system can be verified. Due to syntax limitations, only 46 out of 396 smart contracts were suc-
cessfully verified. In the end, this approach has only been shown to be suitable for simple smart
contracts.

Amani, Bégel, Bortin, and Staples took a slightly different approach by creating a framework
that allows verification of Ethereum smart contract bytecode in Isabelle/HOL [ABB+18]. In
essence, they augmented an existing, thoroughly validated, formal Ethereum Virtual Machine
(EVM) model in Isabelle/HOL; they then split the EVM code into so-called basic blocks. This
allowed them to show that sound program logic proceeds from such blocks down to the level of
instructions. They have also successfully applied their approach to a case study. However, the
produced framework does not support all of the Solidity syntax, such as loops and message calls
to other contracts. Consequently, the verification of bytecode has been shown to have a lot of
promise but is only suitable for verifying simple smart contracts at the moment.

Another way of verifying smart contracts is through the application of model checking.
Nehai, Piriou, and Daumas have demonstrated a way of applying model checking to an application
based on smart contracts and have carried out a case study to illustrate the approach [NPD18]. In
their study, the system was represented by three layers: the Ethereum blockchain, the application
execution environment, and the smart contract. The model of the Ethereum blockchain was
heavily simplified, and the contract code was translated from Solidity to the NuSMV symbolic
model checker input language. The NuSMV input language is claimed to be suitable only for
simple smart contracts, but it is not specified what set of rules is missing to capture the behavior
of complex contracts. Overall, model checking has been shown to be sufficient for formally
verifying simple smart contracts.

Finally, a specific smart contract can be formally verified by manually translating it to a
formal method’s notation. To avoid the formal relation between specifications and implementations
problem, the formal specification can be written in a formal method supporting constructive logic,
allowing the specification code to be extracted to smart contract code. Annenkov, Milo, Nielsen,
and Spitters have shown that smart contract specifications written in the Coq formal verification
language can be extracted to Liquidity and Midlang functional smart contract languages; the
technique was applied to well-known examples of complex smart contracts, such as the DAO
contract and the escrow contract [AMN+21]. The proposed method allows us to write programs
in Coq, test them semi-automatically, verify, and then extract the Coq code to functional smart
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contract languages. In total, while this approach requires some formalization skills and manual
labor, it has been shown that writing specifications manually can be a flexible choice in cases
when the contracts are relatively complex.

1.5.2. Attempts at formalizing the UTXO and EUTXO models

In blockchains based on the UTXO model, any native token or smart contract implementations,
in the end, rely on the correct behavior of the base UTXO ledger. Due to the UTXO model’s
relative simplicity, there might be little value from formal verification. On the other hand, it is
an important step, or even a prerequisite, to formalizing any modifications to the UTXO model,
such as the Extended UTXO model or the IOTA UTXO extensions. During our research, we
have observed more intention of formalizing the EUTXO model than the plain UTXO model. In
this section, some of these attempts are presented and discussed.

Gabbay present an abstract, “idealized”, high-level, but succinct mathematical formalization
of the UTXO and EUTXO models. In their work, they build on the definitions provided by
Chakravarty, Chapman, MacKenzie, Melkonian, Jones, and Wadler and focus on specifying the
blockchain UTXO model as an algebraic structure. It is shown that blockchain segments, or
the so-called chunks of the blockchain, form a partially ordered partial monoid [Gab22]. While
some high-level properties are manually proven, the specifics of blockchains, such as tokens
and monetary policies, are left out. However, the authors claim that the semantics introduced
in the paper can be successfully used for concrete examples of UTXO-based blockchains. The
paper provides an inspiring example of how mathematical analysis can be applied during the
formalization process: the authors construct three categories – the abstract chunk system, the
idealized UTXO, and the idealized EUTXO – and provide functors between them showing that
they form a cycle of categorical embeddings. Many abstract algebraic constructs are used in the
process, for instance, the abstract chunk system is defined as oriented atomic monoids of chunks
that form a category with objects and arrows. All in all, while inspiring, this mathematical model
can be difficult to comprehend without a deep prior knowledge of category theory. The model
is also quite abstract, which means that some implementation details were dropped in favor of
conciseness – while generic, this model might not be specific enough to offer insights into the
properties of a real system.

Atzei, Bartoletti, Lande, and Zunino focus on specifying the Bitcoin transaction model in
a mathematical notation as well as formally proving some specific properties of Bitcoin, such
as no double spending and constant supply [ABL+18]. Unlike the formalization provided by
Gabbay, this model focuses on providing an abstract model that does not require a high level of
mathematical skill to understand and use – it is aimed at programmers. The definitions are more
straightforward, for example, the blockchain is defined as a sequence of timestamped transactions,
and the UTXOs are unspent transactions in the blockchain. No extra layers of abstraction, like
blockchain chunks, are used. The data types are defined loosely and the properties of these types
are defined and proved separately. The theorems are proven manually, no automatic tools seem
to be used. The authors also present an open-source domain-specific language Balzac that can
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be used to write Bitcoin transactions and translate them into standard Bitcoin transactions. To
conclude, we believe that this paper is a good resource for understanding the UTXO model, even
for researchers with a minimal background in mathematics.

The EUTXO model is formalized in Agda by Chakravarty, Chapman, MacKenzie, Melko-
nian, Jones, and Wadler. Unlike in the previously presented works, formal verification is per-
formed in the Agda proof assistant tool which is based on constructive logic; numerous proper-
ties of the EUTXO are proved [CCM+20b]. It is shown that the proposed EUTXO model and
Constraint Emitting Machines – a certain type of state machine that is suitable for execution on a
blockchain ledger – have a weak bisimulation. To put simply, bisimulation means that one system
effectively simulates the states and transitions of the other, and vice versa; weak in this case refers
to the fact that the systems can still have some number of internal actions that are not visible to
an external observer. Moreover, in a following work, the authors build on the Agda specification
to prove that a ledger with custom tokens is strictly more expressive than the original EUTXO
ledger [CCM+20a]. These works demonstrate the power of using a formal method with a proof
assistant, as it allowed the authors to build on previous work and reuse the specification in future
works: the code is available in a ubiquitous text format in an open source repository and can be
easily imported; previous proofs are available and come “for free”, as, using the proof assistant,
it is usually relatively easy to check whether these previously defined proofs are still valid. In the
end, the EUTXO formalization in Agda shows that formalization using a formal method with a
proof assistant such as Agda promises to deliver continuous value in the research of the blockchain
industry.

In the open source community, we have found one UTXO model formalization attempt
without an accompanying paper. The Cardano ledger UTXO specification is an attempt to for-
malize the Cardano UTXO model in Isabelle/HOL by Javier Díaz. The primary motivation of
the model seems to be, judging by its internal name cardano-ledger-high-assurance, to increase
confidence in the Cardano UTXO model’s correctness. The main properties of the system are
proven, for example, the constant supply property and the no double spending property.

1.5.3. Cardano UTXO model specification in Isabelle/HOL

The attempt to formalize the Cardano UTXO model in Isabelle/HOL by Javier Díaz2 is one of
the works that is closest to the aims of this paper. As the plain UTXO model implementation
usually does not significantly differ across different blockchain technologies, perhaps the results
of the Cardano UTXO specification can be built upon and extended to include the IOTA UTXO
extensions.

One of the main issues of effectively using this formalization is the lack of an accompanying
paper – we were not able to find any related documents that would help shed light on some of
the decisions taken when writing the specification. The specification seems to be heavily based
on the finite map structure. There are more than 7 custom abbreviations and notations defined
related to the finite map, which makes the reading of the following code cumbersome. Almost a

2https://github.com/input-output-hk/cardano-ledger-high-assurance/blob/master/Isabelle/UTxO/UTxO.thy
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dozen helper lemmas are defined for the generic finite map, putting into question whether the use
of the finite map was justified for the UTXO model. Because there is no accompanying paper, it
is unclear whether there is a need for better understanding on our side or it is an actual concern.

In the specification, the transaction identifier, the address, and the transaction itself are
defined as abstract types, for which the properties are then defined separately. For instance, it is
defined that an abstract identifier is a type that is countable and has a linear order. It is not clear
why an existing type, such as the natural number type, was not used. The current UTXO set
data type is defined as a map from input UTXOs to output UTXOs. Three main properties of the
UTXO model are proven – no double spending, the money supply is constant, and that applying
a UTXO is the same as adding outputs and subtracting inputs. The proofs are quite long, with
the proof for the money supply property spanning about 300 lines.

In the end, it is not evident to us whether the use of the finite map structure was justified.
Perhaps some extensions to this model were envisioned which would benefit from the use of a
map structure. Overall, we believe that it is beneficial to instead provide a new formalization of
the UTXO model for use in future formalization efforts.

1.6. Overview of Isabelle/HOL

Isabelle/HOL is a tool used for formal proof and interactive theorem proving. It is built upon
higher-order logic (HOL) and belongs to the Isabelle family of proof assistants [NPW02]. Is-
abelle/HOL allows for the development of machine-verifiable, human-readable formal proofs
and specifications.

The main objective of Isabelle/HOL is to establish a mathematical foundation that is rig-
orous and capable of verifying systems, properties, and proofs. Isabelle/HOL assists in modeling
complex systems and reasoning about their behavior, correctness, and security. Isabelle/HOL
has applications in disciplines like mathematics, software engineering, and computer science.

Isabelle/HOL utilizes higher-order logic, which is a type of formal logic that extends first-
order logic by providing the ability to quantify functions and predicates [NPW02]. Thus, it
can represent complex mathematical structures and relationships. To implement higher-order
logic, Isabelle/HOL uses simply-typed lambda calculus, providing a solid foundation for reason-
ing about types, functions, and predicates [NPW02].

1.6.1. Comparison with other proof assistants

There are several other proof assistants that can be considered as alternatives to Isabelle/HOL.
Here we provide a short comparison of Isabelle/HOL with Coq, Agda, and Lean.

Coq: Coq is a proof assistant that combines higher-order logic with dependent types, called
the Calculus of Inductive Constructions (CIC). Compared to Isabelle/HOL, which uses classical
higher-order logic, Coq follows intuitionistic logic, resulting in a more constructive approach to
proofs [BBC+97; Chl13]. While Coq’s expressive type system allows for concise representation
of complex mathematical structures, it can be challenging to learn and use [Tav21]. On the
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other hand, Isabelle/HOL offers a more straightforward approach that allows users to use familiar
mathematical notation and concepts.

Agda: Agda is a proof assistant and dependently-typed functional programming lan-
guage [BDN09; Nor09]. Like Coq, Agda also relies on intuitionistic logic and has a powerful type
system. However, it emphasizes the Curry-Howard correspondence, which connects proofs to
programs, making it more programming-oriented. In contrast, Isabelle/HOL focuses on higher-
order logic, making it more mathematically oriented, similar to traditional pen-and-paper proofs.

Lean: Lean is a proof assistant and functional programming language based on dependent
type theory [dMKA+15; dMU21]. It supports both classical and intuitionistic logic, making it
flexible for users depending on their preferences. Lean’s syntax and features are designed to
make it easier to automate, making it a promising tool for large formalization efforts [dMU21].

In summary, Isabelle/HOL differs from other proof assistants by using classical higher-
order logic and providing a more accessible environment for mathematicians and researchers. In
contrast, other proof assistants, such as Coq and Agda, focus on dependent types and intuitionistic
logic.

1.6.2. Isabelle vs. Isabelle/HOL

Isabelle is a general proof assistant framework that can accommodate various logics, while Is-
abelle/HOL is a specific instance of Isabelle that uses higher-order logic for formalization and
verification [NPW02; Vil21].

Isabelle is a tool that helps to prove theorems and verify formal systems. It can work with
different formalisms and logics, so users can choose the one that best suits their needs [NPW02].
Isabelle/HOL is an instance of Isabelle that uses higher-order logic (HOL) as its underlying logic.
Higher-order logic extends first-order logic by enabling quantification over functions and predi-
cates, which makes it more powerful in capturing complex mathematical structures and relation-
ships [NPW02]. Isabelle/HOL provides a user-friendly environment for formalizing and verifying
systems, properties, and proofs within the context of higher-order logic by leveraging the Isabelle
infrastructure [NPW02; Vil21].

1.6.3. Development environment and automated proofs

Isabelle/HOL provides an integrated development environment (IDE) called Isabelle/jEdit,
which offers a user-friendly interface for writing and verifying proofs [NPW02]. It includes syn-
tax highlighting, code completion, error checking, and various tools for proof development and
management. This environment allows researchers to focus on their work while simplifying the
proof construction process.

Automation plays a crucial role in Isabelle/HOL, as it helps users complete proofs with
minimal manual effort. One notable automation tool in Isabelle/HOL is Sledgehammer, an
automatic theorem prover (ATP) integration system. Sledgehammer connects external ATPs and
satisfiability modulo theories (SMT) solvers with Isabelle/HOL, allowing for automatic proof
discovery. Sledgehammer’s integration allows users to focus on higher-level reasoning [Bla16].
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However, it is important to note that the automatic search for proof can still be time-consuming,
affecting the productivity of researchers as they may need to wait for results before continuing
with their proof development. Choosing the right levels of abstraction and providing concise
models can help mitigate this issue.

1.6.4. Isabelle/HOL syntax overview

Isabelle/HOL’s syntax is designed to resemble traditional mathematical notation, making it easier
for users to express and understand formalizations. Here, we provide a short overview of the
main Isabelle/HOL keywords and constructs.

1 theory IotaUtxo
2 imports Main HOL.Finite_Set
3 begin
4 . . .

5 end

In the above code block, the theory keyword is used to define a new theory named
IotaUtxo. The imports keyword specifies the dependencies, in this case, Main and
HOL.F inite_Set. The scope of the construct is defined by the begin and end keywords.

1 datatype addr = Addr nat
2 type_synonym iota = nat

Here, the datatype keyword is used to define a new data type addr, which is a simple
wrapper around the nat (natural numbers) type. The type_synonym keyword defines a type
alias, iota, which is an alias for nat.

1 datatype utxo = UTXO utxoID addr iota
2 | ALIAS utxoID addr iota aliasID

In this code block, the datatype keyword is used to define a new algebraic data type utxo,
which has two constructors: UTXO and ALIAS. Each constructor is followed by its respec-
tive arguments. The UTXO constructor takes three arguments: utxoID, addr, and iota. The
ALIAS constructor takes four arguments: utxoID, addr, iota, and aliasID.

Constructor matching is a powerful technique for defining functions and proofs in a pattern-
matching style. When defining a function or a proof, one can provide separate cases for each
constructor of the data type. In the following utxo_id function definition, constructor matching
is used to define the function’s behavior for both UTXO and ALIAS constructors.

1 text ‹Simple getter.›
2 primrec utxo_id F: utxo ⇒ utxoID where
3 utxo_id (UTXO oid _ _) = oid |
4 utxo_id (ALIAS oid _ _ _) = oid

The text keyword is used to add comments in the theory file. In this case, it describes the
purpose of the following function definition. The primrec keyword defines a primitive recursive
function utxo_id, which takes an input of type utxo and returns a value of type utxoID.
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1 lemma tx_input_not_in_outputs:
2 fixes tx F: tx
3 and i F: utxo
4 assumes a1: tx_valid tx
5 and a2: i ∈ tx_inp tx
6 shows i /∈ tx_out tx
7 using a1 a2 disjoint_iff tx.exhaust tx_inp.simps tx_out.simps tx_valid.

↪→ simps
8 by metis

In this code block, the lemma keyword introduces a new lemma named
tx_input_not_in_outputs. The fixes keyword declares two variables, tx of type tx and i

of type utxo. The assumes keyword specifies two assumptions, a1 and a2, which are required
for the lemma to hold. The shows keyword indicates the goal of the lemma, which is to prove
that i is not an element of tx_outtx. The using keyword lists the facts used in the proof, and
the by keyword indicates the proof method, in this case, metis.

1.6.5. Locales in Isabelle/HOL

A locale in Isabelle/HOL is a collection of parameters and assumptions that provide a context for
proving theorems [Bal03]. To be more precise, locales are a way to define abstract contexts and
structures, which can be instantiated later with specific types, functions, or relations. They provide
a mechanism to reason about abstract properties and assumptions, allowing to prove theorems in
a generic context and reuse the results in specific instances. Locales are used in the Isabelle/HOL
libraries, such as the algebra library.

Mathematically, a locale can be expressed as follows [Bal03]:

∀x1, . . . , xn. [[A1; . . . ;Am] =⇒ C]

Here parameters x1 to xn are fixed, assumptions A1 to Am are made, and the conclusions C are
implied. When writing Isabelle/HOL code, C would correspond to the proofs for lemmas and
theorems that can be proven inside the context of the locale.

A locale can be instantiated by satisfying its parameters and assumptions using a specific
type. Here is an example of a simple locale and its instantiation:

1 locale add_n_locale =
2 fixes n F: nat
3 assumes n_pos: n > 0
4 begin
5
6 lemma add_n_comm: x + n = n + x by . . .

7
8 end
9
10 interpretation add_three_locale: add_n_locale 3 by . . .
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In this example, the locale keyword is used to define a new locale named add_n_locale. The
fixes keyword declares a constant n of type nat. The assumes keyword specifies an assumption,
n_pos, stating that n is greater than 0. The lemma add_n_comm is proved within the context
of add_n_locale, showing the commutativity of addition with n. The interpretation keyword is
then used to instantiate the locale add_n_locale with a specific value, in this case, 3, creating an
instance called add_three_locale.

The number 3 satisfies the assumptions of the add_n_locale because it is a natural number
greater than 0, fulfilling the n_pos assumption. Using the add_three_locale instance, we can
use the lemmas of the parent locale (add_n_locale) instantiated with the specific value of 3. For
example, we can use the add_n_comm lemma from the parent locale to prove the commutativity
of addition with 3, i.e., x + 3 = 3 + x. This allows for the reuse of the proven properties of the
parent locale, making it easier to work with similar concepts and properties without the need to
reprove the same lemmas for different values.

We can further reuse locales by subtyping with+ or sublocale commands [Bal03]. Consider
the following continuation of the previous example:

1 locale add_n_m_locale = add_n_locale +
2 fixes m F: nat
3 assumes m_pos: m > 0
4 begin
5
6 lemma add_n_m_comm: x + n + m = m + n + x by . . .

7
8 end

In this example, the add_n_m_locale extends the add_n_locale using the + symbol. This
creates a new locale that includes all the elements of the add_n_locale and adds additional ele-
ments, such as the constant m and the assumption m_pos. By extending the add_n_locale, the
add_n_m_locale automatically inherits all the lemmas from its parent locale and can define new
lemmas that depend on both n and m.

The sublocale keyword is used to establish a relationship between the locales by explicitly
stating that add_n_m_locale is a subtype of add_n_locale:

1 sublocale add_n_m_locale ⊆ add_n_locale
2 using n_pos by . . .

Using the sublocale command, we can prove that an instance of the add_n_m_locale also
satisfies the assumptions of the add_n_locale. In this case, we prove the n_pos assumption from
the parent locale to show that the sublocale relationship holds.

1.7. Conclusions

Formal methods offer a way to formally verify the properties of a system before any executable
code has been written. While specifying a system in a formal method’s notation requires a degree
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of skill and knowledge, the advantages include confidence in the design, insights into the system,
and the detection of possible defects early in the software lifecycle. Nowadays there are a plethora
of tools that assist the formalization and verification of a system, be it by model checking or proof-
assisted theorem proving.

In the blockchain industry, having native tokens and smart contract support is in high
demand. IOTA proposes a collection of extensions to its UTXOmodel to support these workflows.
While the extended UTXO model proposed by IOTA does not enable the use of a generic state
machine, the introduced output types, unlock conditions, features, and constraints are generic
building blocks that can be used to create native tokens and program common smart contracts
on the blockchain. As with other blockchains, any defects or errors must be found as early as
possible, as they might become permanent once published to a live network. Because the IOTA
blockchain intends to be a critical backbone for other applications and devices, formally verifying
the proposed extensions is worthwhile.

There have been numerous attempts to formalize both the UTXO and EUTXOmodels. The
formalizations vary in the level of abstraction, intended audience, the complexity of notation,
and the goal of formalization. We found significant evidence of extensive analysis of the generic
UTXO and EUTXO models, but most of such works did not focus on the verification of the
models, used abstract constructs, or did not offer a specification that can be used with a proof
assistant or another tool. We have also observed some attempts to specify the UTXO models,
but they either did not have an accompanying paper with explanations and rationale or were
using constructive proofs, which would complicate the proving of properties of the extended
specification. Subsequently, no suitable base for the IOTA UTXO extension formalization was
found. In the end, we believe that it is beneficial to create a formal specification of the UTXO
model using the notation of a proof assistant based on classical logic, such as Isabelle/HOL. This
specification can be partially based on the discussed works, but would still be different enough
and would need to be written from scratch. This specification can then be used as a base and
updated with the UTXO extensions proposed by IOTA and, finally, formally verified.
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2. Modeling UTXO in Isabelle/HOL

2.1. Overview of the UTXO model

In this section, we provide an overview of the UTXO model, focusing on the core components,
including types such as Output, Input, Transaction, and Ledger.

The models in this section assume that there is a single node and subsequently are not
concerned with the consensus mechanism that would exist in a real network. Thus, all of the
actions in such a node, such as application of transactions, are performed sequentially.

The details in the following subsections are generally applicable to many different imple-
mentations. However, it is important to note that specific implementations, such as IOTA, may
refine or extend some of these rules due to their specific requirements or design choices. Readers
should be aware that certain aspects may differ in these individual implementations.

2.1.1. Essential entities of the UTXO model

Output. An output represents a portion of tokens that can be spent by an entity:

Output :


id : UniqueId

unlockConditions : UnlockConditions

amount : N

In the UTXO model, outputs are created as a result of transactions. Each output has a
unique identifier, ensuring that it can be distinctly referenced in future transactions. The unlock
conditions determine the conditions under which the tokens can be spent, such as the owner
entity’s address who has the authority to spend the tokens held in the output. The amount field
is equal to the number of tokens stored in the output.

There can be several types of unlock conditions which require specific types of data to
be present in the output – a reference unlock condition requires an unlock block containing the
index of the previous unlock block, while a signature unlock conditions uses an unlock block with
the hash of the appropriate public key. Here we abstract away the data and logic requirements of
unlock conditions under UnlockConditions : Output → B – a predicate which returns true iff
the unlock block conditions are satisfied.

Transaction. A transaction contains a list of inputs, outputs, and unlock blocks:

Transaction :



id : UniqueId

inputs : Set(Output)

outputs : Set(Output)

unlockBlocks : Set(UnlockBlock)

Inputs represent unspent outputs that are being consumed in the transaction, while outputs rep-
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resent outputs that are expected to be created. Unlock blocks provide the necessary signatures
to authorize the spending of inputs. All of the elements in these collections are unique and do
not depend on any ordering, thus they can be represented by a set of the relevant type. Each
transaction also has a unique identifier to ensure it is traceable within the ledger.

Ledger. The ledger, which we define as a UTXO set, is a set of outputs representing
unspent outputs. This set contains outputs that have not yet been consumed by any transaction:

Ledger : Set(Output)

We define a function ApplyTransaction that computes the next ledger state from the
current state and a transaction. This function updates the ledger by removing consumed outputs
from the UTXO set and adding newly created outputs:

ApplyTransaction : Ledger → Transaction → Ledger

The presented model operates sequentially, simulating a ledger within a single node. As a
result, it abstracts away aspects such as consensus. Thus, behaviors such as consensus are not in
the scope of this framework.

2.1.2. Essential properties of the UTXO model

In this section we provide an overview of the essential properties of the UTXO model. These
properties serve as a basis to derive other properties of the model.

1. Constant Supply: The sum of unspent outputs in the ledger must be constant. This
ensures that tokens are neither created nor destroyed in any transaction:

□
∑

output∈Ledger

output.amount = TotalSupply (1)

Here TotalSupply is the constant total supply of tokens in the system. The temporal
operator □ indicates the fact that the formula holds throughout the Ledger’s lifecycle.

It is worth noting that some UTXO model implementations require mechanisms to change
the total supply of tokens in the system. Inflation or deflation in the UTXO model can be
achieved by using specially designated owner entities. The entities can either release tokens
that were unavailable earlier or accept tokens never to release them back in circulation. Even
so, some implementations choose to allow special kinds of transactions that directly violate
the constant supply property by creating (minting) new tokens or destroying (burning)
tokens in the transaction.

2. Unspent Output Consumption: An output can be consumed by a transaction only if
it is a part of the current ledger state. This ensures that transactions cannot spend outputs
that are not in the ledger:
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∀t ∈ Transaction. ∀o ∈ t.inputs ⇒ o ∈ Ledger (2)

Here Transaction is a valid transaction that is to be applied to the ledger. For a transaction
to be valid all of the outputs that are consumed in the transaction have to be inside of the
ledger.

3. No Double Spending: An output can only be consumed by a single transaction.

The UTXO model is designed to prevent double spending, which is a critical security
concern in digital currency systems. Double spending occurs when a single output is
consumed more than once. In the UTXO model, this is prevented by ensuring that an
output can only be consumed by a single transaction.

∀o ∈ Output. ∃!t ∈ Transaction : o ∈ t.inputs (3)

Here Output refers to the set of outputs that were at some point added to the Ledger

and Transaction is a set of transactions that were previously applied to the Ledger. The
formula states that for each output, there exists exactly a single unique transaction that
consumed it as an input.

From this definition, we can also derive a different expression of this property. Assume that
there are two transactions, t1 and t2 that have a common input o:

o ∈ t1.inputs ∩ t2.inputs (4)

From (3) we know that for each output o, there exists exactly one unique transaction that
consumes it as an input. Let us call the unique transaction tu:

o ∈ tu.inputs (5)

From (4) and (5) we can conclude that t1 and t2 are both equal to tu:

t1 = tu, t2 = tu ⇒ t1 = t2 (6)

Thus, we have deduced an alternative representation of the property:

∀t1, t2 ∈ Transaction. ∀o ∈ t1.inputs ∩ t2.inputs ⇒ t1 = t2 (7)

This formula states that for any two transactions t1 and t2, if they have a common input
o, then the transactions must be identical. In other words, an output can only be used as
an input for a single transaction, which prevents double-spending. The expression in (7)
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can be useful when proving properties related to multiple transactions, such as creating an
equivalence relation.

4. Signature Verification: A transaction must have valid unlock blocks (signatures) for all
inputs. This ensures that only authorized parties can spend the corresponding outputs:

∀t ∈ Transaction.V erifySignatures(t.inputs, t.unlockBlocks) (8)

Here Transaction is a set of transactions that are to be applied to the Ledger.
V erifySignatures is a function that checks the validity of signatures for a given set of
inputs and unlock blocks and ensures that all signatures are valid.

5. Conservation of Value: The sum of input amounts must equal the sum of output amounts
for each transaction. This ensures that the total value of inputs is redistributed among the
outputs, preserving the total supply of tokens:

∀t ∈ Transaction.
∑

i∈t.inputs

i.amount =
∑

o∈t.outputs

o.amount (9)

Here Transaction is a set of valid transactions.

6. Progress: The UTXO model should always allow for the possibility of creating new trans-
actions. This ensures that the system remains operational and that tokens can be transferred
between parties:

∀l ∈ Ledger, ∃t ∈ Transaction. IsV alidTransaction(l, t) (10)

IsV alidTransaction is a function that checks whether a given transaction is valid for the
current ledger state. The progress property asserts that, for any given ledger state, there
exists at least one valid transaction that can be applied. This allows the system to progress
and be functional. In simpler words, it can be said that the system should never get stuck.

2.2. Hashing

Hashing is the application of a hash function to some data. In general terms, a hash function
is a function that maps input data of arbitrary size to an output of fixed size [Con+19; CZ17].
Moreover, the most commonly used hash algorithms, such as Secure Hash Algorithm-256 (SHA-
256), have the following properties [Con+19]:

• Hashing the same data always produces the same output.

• Hashes of two very similar, but different, data sets can be very different.

• While two different data sets can theoretically have the same hash, it is extremely unlikely.
In practice, it is often assumed that no collisions can occur and a hash is unique.
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In a blockchain ledger, the blocks are chained together using an approach of recursive
hashing [Con+19; CZ17]. In this approach, a block’s hash is calculated using both its content and
metadata, which incorporates the hash of the preceding block. Consequently, the hash not only
identifies the block but also connects it to previous blocks. With recursive hashing, even if two
blocks have identical content, their respective hashes will differ due to the inclusion of distinct
previous block hashes in their content.

In the UTXO model, every UTXO has a hash that is assumed to be unique. The hash is
generated when a UTXO is added to the ledger. This hash acts as the UTXO’s identifier [Zah18a].

In this formalization of the UTXO ledger and its extensions, we abstract from the hashing
algorithms and only rely on the properties the hashes provide. The main use of the hashes in this
model is to identify various objects, e.g. transactions, transaction outputs, aliases, and others.
With this in mind, we consider them only as identifiers. Assuming the collisions of the hashes
are impossible, these identifiers are unique. The following subsections describe various ways of
modeling the UTXO model’s unique identifiers.

2.2.1. Type of a unique identifier

There are two main ways to approach modeling the types of unique hashes which act as UTXO
identifiers:

1. Build on existing types. A natural candidate for modeling a unique identifier is Nat – the
type of natural numbers.

2. Defining a new type, e.g. Hash, and assume the needed properties for it.

The first approach is simpler to intuitively grasp. If we assume that the identifier (ID) is a
natural number, then it is trivial to prove that a new, unique value always exists – we can simply
take the successor of the largest natural number that has been used up to this point.

1 type_synonym utxo_id = nat

On the other hand, using Nat as an identifier is not an accurate abstraction. The type of
natural numbers carries with itself the many properties and operations of natural numbers (e.g.
addition, ordering) which are not relevant in the modeling of unique identifiers. This means that
this approach not only does not accurately express the intent of the model but that the irrelevant
properties might be accidentally used in future proofs.

Another consequence of using Nat is that it might also result in a negatively impacted speed
of automated theorem proving in Isabelle.

The second approach to modeling the type of a unique identifier is defining a new type.
Let us define a new type Hash and assume that it is infinite. Assuming that only a finite number
of hashes were used before, we can always acquire a new Hash that we have not yet encountered.

1 typedecl hash
2 type_synonym utxo_id = hash
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While both of these approaches are sufficient for modeling a type of unique hash, we prefer
the latter approach. We believe that defining a new type is a more accurate representation of the
model, as it explicitly defines the properties required by the model and is does not risk accidentally
relying on any extraneous properties of the Nat type.

2.2.2. Identifier uniqueness

In this model, we abstracted away the hashes to arbitrary identifiers. We don’t derive them from
the actual data of an object, thus we have to guarantee their uniqueness explicitly. The general
approach taken in this model is to always take an identifier that is not used by any object in the
model.

We observed two primary approaches to modeling the uniqueness of an identifier in Isabelle.
The difference lies in how the collection of used identifiers is acquired:

1. The set of already used identifiers can be maintained explicitly as a part of the defined
model. As such a construct would not exist in a real system, it can be considered to be an
artifact of the modeling process.

2. The set of already used identifiers can be modeled as a function of the model state. Such
a function would return a set of all identifiers used in the model state.

The main difference between these approaches is that by tracking the set of already used
identifiers as an explicit set we would consider all the previously used identifiers as still in use,
even if they are not part of the current data in the model. In the latter approach, the function
would return only the identifiers currently in use. Such a set can decrease if objects containing
some identifiers are removed from the model.

In our abstract model, we represent the set of used hashes as a finite subset of identifiers,
which includes the already used ones. We can express this relationship as:

usedHashes : FiniteSet(Hash)

usedInLedger ⊆ usedHashes
(11)

In (11) usedHashes is a finite set of hash values, and usedInLedger denotes the set of
hashes used in the ledger. The second line of the equation shows that usedInLedger is a subset
of usedHashes, which means that all hashes used in the ledger are part of the finite set of used
hashes.

To avoid having to explicitly specify the set of used identifiers as an explicit parameter to
definitions inside the model, the set of used identifiers and their uniqueness can be considered
as an implicit part of the model.

We considered two main ways to provide implicit assumptions to a certain scope of Isabelle
expressions:

1. Defining the assumptions in a type class.

2. Defining the assumptions as a part of a locale.
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2.2.3. Modeling identifier uniqueness using a type class

Using a type class, we can define an assumption for a data structure that we want to add inside
the class. The relevant data types can then become instances of this type class, ensuring that the
assumption is always present. When working with identifiers, we can rely on the fact that the
data types have the type class, which in turn guarantees that the corresponding assumptions are
present and satisfied.

1 class hashed =
2 fixes used_hashes F: ′a ⇒ hash set

In this code block, we define a type class called hashed which requires a function
used_hashes to be implemented for any type ′a that becomes an instance of this class. The
function used_hashes takes an instance of type ′a and returns a set of hashes.

As an example, let’s define a concrete data type MyData with two hash parameters to
demonstrate how structured data can be mapped to a set of hashes:

1 datatype MyData = MyData (MyData_h1 : hash) (MyData_h2 : hash)

Now, we will show how MyData can be an instance of the hashed class. To do this, we
need to satisfy the assumptions of the used_hashes function for the MyData type by defining
used_hashes_MyData.

1 instantiation MyData F: hashed
2 begin
3 primrec used_hashes_MyData F: MyData ⇒ hash set
4 where used_hashes_MyData (MyData h1 h2) = {h1, h2}
5 instance . . .

6 end

In this code block, we use the instantiation keyword to show how the new data type
MyData implements the hashed type class. By convention, the function required by the type
class is named {FunctionName}_{DataType} with the corresponding parameters. In this case,
we define used_hashes_MyData as a function that takes an instance ofMyData and returns a
set containing both hashes h1 and h2. In general, such a function could collect hashes recursively.
The instance keyword is used to prove thatMyData implements the hashed type class.

We can now define a function that accepts a parameter of type hashed instead ofMyData

or any other specific type.
First, let’s define a function called get_unused_hash that takes a parameter of type ′a ::

hashed and returns a hash:

1 definition get_unused_hash F: (′a F: hashed) ⇒ hash
2 where get_unused_hash x = (SOME h. h /∈ used_hashes x)

This function definition uses Isabelle’s SOME keyword to find a hash h that is not in the
set of used hashes for the given hashed object x. The type signature (′a :: hashed) means that
the function takes a parameter of type ′a that is an instance of the hashed class.
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We can apply the get_unused_hash function to an instance ofMyData:

1 value get_unused_hash (MyData h1 h2)

The function will return a hash that is not in the set of used hashes h1, h2 for the given
MyData object. To summarize, we have shown how to define and use a function that accepts a
parameter of type hashed and how it can be applied to a specific data type that implements the
hashed class, such asMyData.

2.2.4. Modeling identifier uniqueness using a locale

The essence of using a locale to define these implicit assumptions is similar to using the type
class. We define the required assumptions, and they are available inside the locale without having
to include them as explicit parameters in definitions. Later, we can show that a particular data
type satisfies the locale (its assumptions) by providing an interpretation – demonstrating that the
concrete type satisfies the assumptions defined in the locale. For a more detailed overview of
locales in Isabelle/HOL, see Section 1.6.5 Locales in Isabelle/HOL.

As an example, let us define a locale hashes with the assumption that it contains an infinite
set of hashes (H) and a finite one (used hashes, U ).

1 locale hashes =
2 fixes H F: hash set
3 and U F: hash set
4 assumes H_inf: infinite H
5 and U_fin: finite U
6 begin
7
8 . . .

9
10 end

Here, the locale fixes two variables H and U , both being sets of hashes. The set H stands
for a set of all possible hashes, and U stands for the set of hashes already used. We define the
assumption for the set of hashes to be infinite byH_inf and for the set of used hashes to be finite
by U_fin.

Note how the locale’s assumption U_fin serves as an alternative to the type class assumption
used_hashes.

In the locale, we can define take_hash:

1 locale hashes =
2 . . .

3 begin
4
5 definition take_hash F: hash set ⇒ hash
6 where take_hash excl ≡ (SOME h F: hash. h ∈ H ∧ h /∈ U ∧ h /∈ excl)
7
8 end
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The take_hash function is designed to find and return an unused hash that is also not in
the exclusion set (excl). The exclusion set allows us to specify additional hashes that should be
avoided, even if they are not yet part of the used hashes set (U ).

Now let us provide an example of how the locale can be implemented using interpretation
and demonstrate the usage of the take_hash function. Suppose we have a concrete data type that
satisfies the assumptions of the hashes locale. We can then use interpretation to show that this
data type is an instance of the locale. In our case, this is done by providing the required infinite
set of all possible hashes and the finite set of used hashes.

1 interpretation my_hashes: hashes all_hashes used_hashes
2 by . . .

We can then use the take_hash function to find an unused hash for our specific data type.
For example, we can retrieve two unique hashes at the same time:

1 definition find_two_unused_hashes F: (hash * hash)
2 where find_two_unused_hashes ≡
3 let
4 (first_hash = my_hashes.take_hash {};
5 second_hash = my_hashes.take_hash {first_hash})
6 in
7 (first_hash, second_hash)

In this definition, the find_two_unused_hashes function returns a pair of unique hashes
that are not part of the used hashes set (U ) and are guaranteed not to intersect with each other.
We first call the take_hash function with an empty exclusion set to obtain the first hash. Then,
for the second call, we pass an exclusion set containing only the first hash to ensure that the
second hash is different from the first one. This way, we can guarantee that the two hashes are
unique and not part of the used hashes (U ).

We have observed that the Isabelle automatic proof system required fewer steps to prove
theorems defined using the locale approach than identical theorems written using type classes.
The authors of Isabelle also prefer using locales instead of type classes, which is apparent in the
Isabelle/HOL abstract algebra library source code.

2.3. Subtyping

2.3.1. Producing a modular and extendable model

The extended ledger we model involves different types of outputs. Specific types of outputs
convey additional restrictions for the ledger and allow the enforcement of the desired behavior.
Examples of such specific output types are Alias and Foundry outputs. The former is introduced
to simulate a sub-chain in a ledger, and the latter is used to implement a specific token with
defined supply rules. We assume such specific outputs conform to all the rules for the regular
UTXO ledger outputs. E.g., apart from the additional features, they have to convey a non-zero
amount of tokens, etc. Thus considering type as a set we have:
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AliasUTXOset ⊆ UTXOset, FoundryUTXOset ⊆ UTXOset,

AliasUTXOset ∩ FoundryUTXOset = ∅ (12)

We build our model based on the Higher Order Logic (HOL). The set of all UTXOs
UTXOset is modeled as a type UTXO. Then we can define functions over these types, e.g.,
to get the amount of a particular UTXO, we define a function amount : UTXO → N.

Subsets of values of a particular type can be considered subtypes in general. However, HOL
doesn’t support subtyping directly.

The UTXO model can be defined using several different Isabelle/HOL constructs. But,
besides the technical details, when producing a UTXO model in Isabelle/HOL, we aimed to
make it easy to interpret and extend by a human. Subsequently, the following subjective metrics
were considered:

1. Separation of model properties and implementation specifics. This separation would ensure
a clean and modular design, making it easier to understand, maintain, and extend the
model.

2. Extensibility. An extensible design will allow us to easily build upon the base UTXOmodel
to incorporate additional features without altering the core definitions.

To address both the technical challenges and subjective concerns mentioned earlier, we
considered the alternatives for defining the UTXOmodel in Isabelle/HOL that are defined further
in this section.

2.3.2. Modeling subtypes as disjoint subsets of different types

This approach defines functions to map subtype values to general types and functions for each
subtype independently.

For example, consider two subtypes, A and B, which are part of a general type, T. Functions
are created to map A and B to T, such as a_to_t : A → T and b_to_t : B → T , and handle
operations on A and B separately. In our model, we consider objects can be of a single subclass
only, meaning they cannot be of type A and B simultaneously. Thus, the subsets are disjoint. We
can express this behavior as:

∀a ∈ A, b ∈ B.a_to_t(a) ̸= b_to_t(b) (13)

In the context of the UTXO model, this approach could be applied to manage different
output types (e.g., Alias and Foundry outputs) and their corresponding operations.

However, while offering modularity, managing multiple mappings can increase complex-
ity. Maintaining the relationship between subtypes and the general UTXO type might require a
complex mapping system, which increases the effort required to maintain and extend it.
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2.3.3. Modeling functions on subtypes as relations

In this approach, functions on subtypes are modeled as relations. Instead of explicitly defining a
function that maps elements of a subtype to their corresponding results, we define a relation that
pairs these elements with their results.

For instance, given a subtype A and a function R, we define a relation Rf that associates
elements of A with their corresponding results.

Rf ⊆ A× B (14)

In the UTXO model, this approach could be applied to model the relationship between
transactions and their corresponding outputs. Let T be the set of transactions and O be the set of
outputs. We can define a relation Rtx_out that associates each transaction with its corresponding
outputs:

Rtx_out ⊆ Transaction× P(Output) (15)

For a transaction t ∈ Transaction and a set of outputs Ot ∈ P(Output), we have (t, Ot) ∈
Rtx_out if the outputs in Ot are created by the transaction t. This relation shows the link between
transactions and their outputs in the UTXO model.

However, maintaining the consistency of these relations might require a lot of effort. For
example, it might be necessary to introduce extra checks and constraints to ensure that each
element in the domain is related to exactly one element in the codomain.

2.3.4. Using quotient types

Quotient types partition a type into equivalence classes and modeling subtypes. It is a method
for organizing elements into distinct groups based on their shared properties or relations.

Suppose we have a type T and an equivalence relation ∼. We can create a quotient type
T/∼ consisting of equivalence classes, effectively representing subtypes.

T/ ∼= {[t]∼ | t ∈ T} (16)

Here a new group T/ ∼ is created by taking all the elements from the original type T and
placing them into equivalence classes [t] ∼ based on the equivalence relation ∼. Each of those
equivalence classes represents a subtype, and the elements within the equivalence class share the
properties defined by the equivalence relation.

In the UTXO model, this approach could be used to group different output types based
on specific properties. For instance, we could define an equivalence relation that groups outputs
according to their restrictions. Overall, this approach may simplify the handling of specific output
types but might require extra effort to define the equivalence relations.
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2.3.5. Using locales

Locales are an Isabelle/HOL construct that provide a way to model subtypes.
Locales allow the separation of essential model properties from the specifics of an implemen-

tation. A locale is a collection of parameters and assumptions that provide a context for proving
theorems. Locales also offer ways to easily extend one another, such as inheriting one locale into
another locale using the + operator or proving that one locale is an extension of another locale
using the sublocale command [NPW02].

∀x1, . . . , xn. [[A1; . . . ;Am] =⇒ Theorems] (17)

This formula states that for all variables x1...xn, in the context of assumptions A1...Am, we
can prove the given theorems. For a more detailed overview of locales in Isabelle/HOL, including
specific examples of subtyping, see Section 1.6.5 Locales in Isabelle/HOL.

By using locales, we receive the benefits of subtyping while keeping separate the essential
properties of the UTXO model from the specifics of implementation. This promotes the model’s
modularity, extensibility, and maintainability, allowing us to focus on the core concepts and
assumptions.

In summary, Isabelle/HOL locales offer a proper balance of modularity, extensibility, and
separation of concerns for defining the UTXO model while utilizing subtyping, making it a more
suitable choice than the alternatives.

2.4. UTXO model in Isabelle/HOL

2.4.1. Overview

In our approach to formalizing the UTXO model in Isabelle/HOL, we divide the specification
into the abstract and implementation layers.

The abstract layer, as described in theAbstractBasicUtxoLedger theory, contains the core
properties of UTXOs, transactions, and the ledger, but does not commit to concrete data types.
This allows us to prove properties of the UTXO model in a generic way, which means that any
valid interpretation of this abstraction will also have these properties.

The implementation layer, as described in the BasicUtxoLedger theory, provides a con-
crete, specific representation of the UTXO ledger, including UTXOs, transactions, and other
entities. We use specific data types to define the ledger.

We show that the implementation model is an interpretation of the abstract model by map-
ping the constructs of the implementation model to their respective abstract representations. By
proving that the assumptions defined in the abstract model hold, we can ensure that the imple-
mentation inherits all the properties of the abstract model. This approach allows us to apply the
proven properties from the abstract model to our implementation, which ensures that it maintains
the desired properties of the UTXO model, such as output uniqueness and conservation of the
total token amount.
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This layered approach of abstract and concrete specifications provides us with a foundation
which is solid, yet modular and flexible. Several smaller specifications can also be easier to
comprehend and analyze than one big specification.

Abstract model. The abstract model is designed to have the fundamental aspects of the
UTXOmodel. We define the abstract UTXOmodel using several locales which represent the basic
entities such as outputs, transactions, and the ledger. Each locale has the essential properties and
operations of these entities. For example, the basic_output locale ensures that each output has
a non-zero amount, and the basic_transaction locale enforces the conservation of total token
amount in a transaction.

Implementation model. In the implementation model, we provide concrete realiza-
tions of the UTXO, transaction, and ledger. We define specific datatypes like UTXO_type and
TX_type to represent unspent outputs and transactions, respectively. Their types are backed by
basic types that might be used in a real-world application. For instance, a TX_type has as set
of UTXO_type representing the input UTXOs, and UTXO_type represents the token value it
carries with the nat type.

The implementation also includes definitions of various functions and predicates, such as
apply_tx for applying transactions to the ledger and tx_valid for checking whether transactions
are valid. These functions are defined in a manner consistent with the abstract model’s properties,
ensuring that the implementation maintains the UTXO model’s integrity.

Note that elements of the implementation model can contain properties of several abstract
elements, thus implementing several abstractions. This allows to consider the properties of the
abstractions separately but then merge them into a fewer, relevant concrete implementations.

Implementation model as an interpretation of the abstract model. By using the
Isabelle/HOL interpretation mechanism (see Section 1.6.5 Locales in Isabelle/HOL), we map the
concrete entities to the abstract model’s locales and assumptions to the and prove that the im-
plementation satisfies all the of the abstract model’s assumptions. This process not only validates
the implementation against the abstract specification but also allows us to inherit all the proven
properties, thus also guaranteeing of correctness for the UTXO implementation model.

2.4.2. Abstract UTXO model specification

TheAbstractBasicUtxoLedger Isabelle/HOL theory file provides a formalization of the abstract
UTXOmodel for a ledger system’s execution inside a single node. The formalization is performed
in a modular way, where each component is encapsulated in a locale. This allows us to construct
the abstract UTXO model step by step.

The theory file defines several locales which model outputs, transactions, the current UTXO
set, and the transaction execution function.

The basic_output locale encapsulates the main properties of an individual output, including
the output itself and the associated amount. It imposes the condition that the amount must be
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Figure 8. In the given graph diagram, six distinct locales are represented as nodes, and the
relationships between them are depicted with directed edges. These locales model various aspects
of the UTXO model. The locales extend one another – for example, locale basic_output_set
models a set of outputs and thus relies on the definition of basic_output.

greater than zero. The basic_output_set locale extends basic_output and represents a finite set
of transaction outputs. It ensures that the output set is not empty, all elements within the set
satisfy the assumptions of basic_output, and that the output identifiers are unique for different
elements of the set.

The basic_UTXO_DB locale represents an unspent transaction output database, which
relies on a basic_output_set. It enforces the uniqueness of the UTXOs within the database and
requires the sum of amounts in the database to be greater than zero.

The basic_UTXO_ledger locale depends on basic_UTXO_DB, modeling the properties
of a ledger system operating under the UTXO model. It ensures that the total amount of assets
remains constant, the UTXO database remains unique after applying transactions, and no double-
spending occurs.

Lastly, the basic_UTXO_ledger_and_transaction locale combines the
basic_UTXO_ledger and basic_transaction locales, capturing the properties of a ledger
system and a transaction operating together under the UTXO model. It assumes the transaction
to be valid within the context of the ledger, e.g., the transaction inputs are a subset of the
unspent outputs in the ledger.

The diagram in 8 highlights the relationships between these locales. The basic_output_set
locale extends the basic_output locale, while the basic_transaction and basic_UTXO_DB

locales rely on the basic_output_set locale. The basic_UTXO_ledger locale depends on
the basic_UTXO_DB locale. The basic_UTXO_ledger_and_transaction locale incorporates
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both the basic_transaction and basic_UTXO_ledger locales.
As can be seen in Figure 8, the locales build upon each other to produce the final specifi-

cation. Technically, such reuse of locales is achieved by defining assumptions requiring the fixed
variables of one locale to belong to another specific locale. Consider the following simplified
example of the basic_UTXO_ledger locale:

1 locale basic_UTXO_ledger =
2 fixes DB F: ′o set
3 and utxo_id F: ′o ⇒ ′oid
4 and utxo_amt F: ′o ⇒ nat
5 and apply_tx F: ′o set ⇒ ′t ⇒ ′o set
6 assumes basic_UTXO_DB DB utxo_id utxo_amt
7 and . . .

8 begin
9 . . .

10 end

In this example, the basic_UTXO_ledger locale is built on top of the basic_UTXO_DB

locale through the assumption basic_UTXO_DB DB utxo_id utxo_amt. This assumption re-
quires that the fixed variablesDB, utxo_id, and utxo_amt satisfy the assumptions and constraints
defined in the basic_UTXO_DB locale. This approach can be considered as an alternative to
extending the locale using +, as in basic_UTXO_ledger = basic_UTXO_DB + ... .

In conclusion, the hierarchical structure and modular design of locales in the
AbstractBasicUtxoLedger Isabelle/HOL theory file allowed us to create a concise represen-
tation of the UTXO ledger system.

2.4.3. Implementation UTXO model specification

An implementation model provides a formally verified implementation of one or more abstract
models. By proving the necessary properties within a specific context, we make sure that our
model is not only theoretically sound but also practically viable. The BasicUtxoLedger theory
in Isabelle/HOL represents the concrete implementation of the abstract UTXO model. This
section details how the abstract entities like outputs, transactions, and the ledger are instantiated
with specific data types and functions to reflect a realistic UTXO ledger system.

1 type_synonym UTXO_id_type = hash
2 type_synonym addr_type = nat
3 type_synonym amount_type = nat
4
5 datatype UTXO_type = UTXO (UTXO_id: UTXO_id_type) (UTXO_addr: addr_type) (

↪→ UTXO_amount: amount_type)
6
7 datatype TX_type = TX (inp: UTXO_type set) (out: UTXO_type set)

The implementation introduces concrete data types to represent the key components of the
UTXO ledger:
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• UTXO_id_type: A unique identifier for each UTXO, represented as a hash type.

• addr_type: Represents the address associated with a UTXO, which is a natural number in
this model.

• amount_type: Represents the token amount of a UTXO, also a natural number.

TheUTXO_type datatype encapsulates these elements to define a UTXOwith an identifier,
address, and amount. Similarly, the TX_type datatype represents transactions with sets of input
and output UTXOs.

1 definition tx_valid F: UTXO_type set ⇒ TX_type ⇒ bool where
2 tx_valid db tx =
3 (UTXO_set_valid (inp tx)
4 ∧ UTXO_set_valid (out tx)
5 ∧ nonzero_outputs tx
6 ∧ inputs_in_db db tx
7 ∧ inp_out_same_amount_sum tx
8 ∧ inputs_not_in_outputs tx
9 ∧ outputs_not_in_db db tx)

Several functions and predicates are defined. Notably, tx_valid determines the validity
of a transaction based on several criteria, such as input presence, output uniqueness, and the
conservation of token amounts.

To validate the implementation, we interpret the abstract locales in the context of the con-
crete data types and functions. This involves proving the assumptions hold and that properties
defined in the abstract model hold true when applied to the implementation. For example, the
concrete_basic_UTXO interpretation asserts that ledger in the implementation preserves the
total token amount and prevent double-spending, as specified in the abstract model.

1 interpretation concrete_basic_UTXO:
2 basic_UTXO_ledger DB UTXO_id UTXO_amount apply_tx
3 proof . . .

To summarize, the BasicUtxoLedger theory provides a formally verified implementation
of the UTXO ledger model. By proving the necessary properties within a specific, concrete con-
text, we ensure that our overall UTXO model is not only theoretically sound but also practically
viable.

2.4.4. Verification of UTXO model properties

In this section, we show that three main properties of the UTXO model hold for our formaliza-
tion: constant supply, unspent output consumption, and no double spending. We use a series of
theorems within the locale using_basic_utxo_ledger to demonstrate that these properties hold
in the context of the implementation UTXO model that we have created.
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Here we demonstrate only the high-level definitions of these proofs, which rely on other
lower-level definitions. We do not provide the full definitions of the properties as they would be
too verbose. For instructions on accessing the full codebase, see Appendix A.

Constant Supply. The constant supply property ensures that the total amount of tokens
in the system remains unchanged before and after transactions are applied. This property is
formally verified in Isabelle/HOL as follows:

1 theorem constant_supply:
2 shows sum_amount DB = sum_amount (apply_valid_transaction)
3 by (simp add: apply_tx_amt_constant tx_valid)

This theorem shows that the sum of amounts in the ledger database DB remains constant
when a valid transaction is applied, adhering to the property outlined in Equation 1.

Unspent Output Consumption. This property ensures that only outputs present in the
ledger can be consumed by transactions:

1 theorem unspent_outputs_consumption:
2 shows ∀u ∈ inp tx. u ∈ DB ∧ u /∈ apply_valid_transaction
3 using apply_valid_transaction_def apply_transaction_to_db_def

↪→ inputs_not_in_outputs_def tx_valid tx_valid_def inputs_in_db_def
4 by auto

This theorem states that all inputs in a valid transaction are in the ledger and are no longer
present in the ledger after applying the transaction, which corresponds to Equation 2.

No Double Spending. This property prevents the same outputs from being spent more
than once:

1 theorem no_double_spending:
2 assumes tx_valid DB tx1
3 and tx_valid (apply_transaction_to_db DB tx1 inp out) tx2
4 shows inp tx1 ∩ inp tx2 = {}
5 using apply_transaction_to_db_def assms(1) assms(2) inputs_in_db_def

↪→ outputs_not_in_db_def tx_valid_def
6 by fastforce

This theorem ensures that no two distinct transactions can share an input. It first assumes
that two valid transactions can be applied in sequence and then shows that these two transac-
tions cannot share any inputs, thus maintaining the no double spending property as described in
Equation 7.

Signature Verification, Conservation of Value, Progress. These properties were not
explicitly proven in our work. Signature verification lies outside of this work’s scope, as we were
not aiming to model cryptographic protocols of distributed ledgers. Conservation of value was
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used as an assumption of the model, so proving it in this work’s context would be a tautology. The
proof of the progress property was deemed not essential and is left as an opportunity for future
work.

In summary, we have successfully verified three essential properties of the UTXO model
using our formalization in Isabelle/HOL. The results show that our implementation model ad-
heres to the rules of the UTXO model. Below, we provide a table summarizing the outcomes of
each property’s verification. The following table summarizes the results of our verification, high-
lighting both the results of our research as well as opportunities for future work to build upon
it.

No. Property Verification Result
1 Constant Supply Successfully Verified
2 Unspent Output Consumption Successfully Verified
3 No Double Spending Successfully Verified
4 Signature Verification Out of Scope
5 Conservation of Value N/A
6 Progress Not Verified

Table 1. Summary of verification results for UTXO model properties

3. Modeling IOTA EUTXO in Isabelle/HOL

3.1. Scope of modeling

In the IOTAUTXOmodel, several extensions are introduced to the standard UTXOmodel. These
extensions are designed to enhance the functionality of UTXOs, allowing for more complex types
of transactions and stateful contracts. In our work we focus on two main extensions – Alias and
Foundry outputs. The proposed NFT output type was not formalized, as it was deemed to be
similar to the Foundry output. All of the proposed unlock conditions, as well as all of the proposed
feature types are not formalized in our work due to the fact that they are not required to prove
the essential properties of Alias and Foundry.

The table below summarizes the scope of our modeling.

No. Component Modeling Status
1 Basic Output Modeled
2 Alias Output Modeled
3 Foundry Output Modeled
4 NFT Output Not Modeled
5 Unlock Types Not Modeled
6 Feature Types Not Modeled

Table 2. Scope of the modeling of the proposed IOTA EUTXO extensions
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3.2. Formalizing the IOTA UTXO extensions

3.2.1. Entities of the IOTA EUTXO model

Alias Output. The Alias Output has several fields that control its behavior and describe
its state. Formally, an Alias Output, AliasOutput, can be represented as:

AliasOutput :



id : UniqueId

unlockConditions : UnlockConditions

amount : N

aliasId : UniqueId

governor : Address

Where aliasId : UniqueId is a hash uniquely representing the Alias during the stateful
transformations and governor : Address is the identifier of the entity that has the authority to
govern the Alias Output.

Note that an AliasOutput inherits all of the properties of a regular UTXO Output, as
described in Section 2 Modeling UTXO in Isabelle/HOL. Subsequently, this is an equivalent
representation of the above:

AliasOutput : Output×

 aliasId : UniqueId

governor : Address

Moreover, we can generalize even further:

AliasPart :

 aliasId : UniqueId

governor : Address

AliasOutput : Output× AliasPart;

Given these definitions, we can modify the Transaction definition:

TransactionWithAlias :



id : UniqueId

inputs : Set(AliasOutput)

outputs : Set(AliasOutput)

unlockBlocks : Set(UnlockBlock)

Given that the properties that we analyze in this work rely only on the fields in AliasPart,
we can apply logic analogous to the AliasOutput generalization we have performed above. Hav-
ing defined AliasOutput : Output×AliasPart, we can further split the definition into compo-
nents that we can reason about independently:
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TransactionAliasParts :

 aliasInputParts : Set(AliasPart)

aliasOutputParts : Set(AliasPart)

TransactionWithAlias : Transaction× TransactionAliasParts

Notably, we do not retain the relationship from an AliasPart to the respective Output, as
they are independent in terms of operations and properties of the UTXO model – an operation or
a property definition will only reference either AliasPart or the Output part of the transaction,
but not both.

Similarly, a LedgerWithAlias would contains the AliasParts:

LedgerWithAlias : Set(AliasOutput)

≡ Set(Output)× Set(AliasPart)

≡ Ledger × Set(AliasPart)

The ledger’s state transition function, ApplyTransactionWithAlias, is, respectively:

ApplyTransactionWithAlias :

LedgerWithAlias → TransactionWithAlias → LedgerWithAlias

Foundry Output. The Foundry Output is used to manage the state and supply of user-
defined native tokens within the IOTA EUTXO model. It allows the creation, transfer, and
burning of native tokens on the ledger. Each Foundry Output inherits all properties of a basic
UTXO Output and additionally manages token balances.

The native tokens are expected allowed to be persisted on any Output, thus we need to
augment the existing Output definition:

NativeTokenPart :

 id : UniqueId

tokenBalances : Map(TokenId → N)

Output :


id : UniqueId

unlockConditions : UnlockConditions

amount : N

×NativeTokenPart;

Here tokenBalances is a map where each TokenId is associated with a quantity (N),
representing the balance of native tokens that are bound to this Output. Note that the
NativeTokenPart contains the id property, as the NativeTokenPart is not uniquely iden-
tified by the amounts of tokens in the tokenBalances.

The new Output definition is expected to be used for all other UTXO types that extend the
basic Output, such as the Alias Output.

A Foundry Output, denoted as FoundryOutput, is an extension of the basic UTXOOutput
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model. We define it formally as:

FoundryOutput :



id : UniqueId

unlockConditions : UnlockConditions

amount : N

tokenBalances : Map(TokenId → N)

foundryId : UniqueId

In this model foundryId represents a unique identifier for the Foundry Output. This
is a stateful property that is maintained during ledger transformations by following the chain
constraint rules. This identifier is equal to the native token type this Foundry is managing.

Due to the inheritance of the Output properties, we can simplify the above model to:

FoundryPart :
{
foundryId : UniqueId

FoundryOutput : Output× FoundryPart;

Note that the new Output definition includes the tokenBalances property. Subsequently,
FoundryOutput also has tokenBalances, which can include both the token type that is managed
by this Foundry and other token types.

Transactions that involve Foundry Outputs are called TransactionWithFoundry. These
transactions allow minting, transferring, and burning native tokens and are defined as follows:

TransactionWithFoundry :



id : UniqueId

inputs : Set(FoundryOutput)

outputs : Set(FoundryOutput)

unlockBlocks : Set(UnlockBlock)

We can further generalize this definition and define a way to extend an existing Transaction
with Foundry rules:

TransactionFoundryParts :



foundryInputParts : Set(FoundryPart)

foundryOutputParts : Set(FoundryPart)

nativeInputs : Set(NativeTokenPart)

nativeOutputs : Set(NativeTokenPart)

TransactionWithFoundry : Transaction× TransactionFoundryParts

Here we opt to use the FoundryPart and NativeTokenPart to represent the Foundries
and native token sets participating in the transaction, respectively. The validity of a
FoundryTransaction relies on the proper management of token quantities. Token amounts

49



must remain constant unless the transaction explicitly includes a Foundry Output for the token
type being minted or burned.

In a similar structure to the LedgerWithAlias, a LedgerWithFoundry contains
FoundryParts and integrates native tokens across various outputs:

LedgerWithFoundry : Set(FoundryOutput)

≡ Set(Output)× Set(FoundryPart)× Set(NativeTokenPart)

≡ Ledger × Set(FoundryPart)× Set(NativeTokenPart)

The state transition function for a ledger that includes Foundry Outputs,
ApplyTransactionWithFoundry, is defined as follows:

ApplyTransactionWithFoundry :

LedgerWithFoundry → TransactionWithFoundry → LedgerWithFoundry

Combining Alias and Foundry Outputs. The Alias and Foundry models can be ef-
fectively used together. In this section we demonstrate how these models can be combined in a
single model.

We first define the BasicOutput type, which is an extension of the Output type with the :

BasicOutput :



id : UniqueId

unlockConditions : UnlockConditions

amount : N

tokenBalances : Map(TokenId → N)

To define IotaExtendedOutput, we then allow three distinct types of outputs:

IotaExtendedOutput : BasicOutput+

(BasicOutput× AliasPart)+

(BasicOutput× FoundryPart);

Which we further simplify using the definitions of AliasOutput and FoundryOutput:

IotaExtendedOutput : BasicOutput+

AliasOutput+

FoundryOutput;

Here IotaExtendedOutput is a sum type – an instance of the IotaExtendedOutput can
either be a BasicOutput, an AliasOutput, or a FoundryOutput.
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Using IotaExtendedOutput for transactions allows the model to support transactions that
simultaneously handle Alias and Foundry outputs:

TransactionIotaExtended :



id : UniqueId

inputs : Set(IotaExtendedOutput)

outputs : Set(IotaExtendedOutput)

unlockBlocks : Set(UnlockBlock)

The ledger in this combined model is simply a set of the extended outputs:

LedgerIotaExtended : Set(IotaExtendedOutput);

Finally, the state transition function is then be defined as:

ApplyTransactionIotaExtended :

LedgerIotaExtended → TransactionIotaExtended → LedgerIotaExtended

3.2.2. Properties of the IOTA EUTXO model

The focus of IOTA UTXO extensions is to introduce statefulness to the UTXO model. Thus,
the main new properties that the IOTA EUTXO defines are related to the transition of state
throughout the lifetime of a ledger. Specifically, new transaction validity rules are introduced to
allow for new data continuity and governance rules.

Continuity of State (Chain Constraint). An essential property of the Alias Output
and Foundry Output is their continuity within the ledger’s history. This is also referred to as the
chain constraint. The property ensures that once a stateful output is created, it has a continuous
existence across the ledger until explicitly deleted and removed from the ledger. For more on the
motivation of the chain constraint in the IOTA EUTXO, see Section 1.4 IOTA EUTXO model.

For the sake of simplicity, let us assume that the stateful output in question is an Alias
Output. Subsequently, the continuity can be mathematically defined as:

∀l1, l2 ∈ LedgerWithAlias, t ∈ TransactionWithAlias.

IsV alidAliasTransacton(l1, t)

∧ l2 = ApplyTransactionWithAlias(l1, t)

∧ a ∈ t.aliasInputs

→ a ∈ l2 ∨ TransactionDeletesAlias(t, a)

(18)

The formula asserts that for any two ledger states, l1 and l2, and a transaction t, if t is a valid
Alias transaction in the context of l1, and l2 is the result of applying t to l1, i.e., l2 is the next state
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of the ledger l1, then for every Alias Output a consumed as an input in t, one of two conditions
must hold in the subsequent ledger state l2:

1. The Alias Output a must continue to exist in l2 ledger.

2. The transaction t explicitly deletes the Alias Output a, indicating a deliberate end to its
lifecycle within the ledger.

This formulation ensures that Alias state is either consistently carried forward during ledger
state transitions, thus preserving its continuity, or it is explicitly removed.

While the statement (18) represents the essence of Alias continuity, it does not explicitly
state that the Alias outputs form a single continuous range, or a chain, of ledger state transitions.

A less strict statement can be a more robust way to represent the same concept. Sup-
pose we have a continuous, ordered history of a single ledger LedgerWithAliasHistory ⊆
LedgerWithAlias, where li ∈ LedgerWithAliasHistory represents the ith ledger state. Then
we can express the property in question as an invariant:

∀lA, lB ∈ LedgerWithAliasHistory, a ∈ AliasParts(lA).

(A ≤ B) ∧ (a ∈ AliasParts(lA))

→ (lA = lB) ∨ ∃lA+1, . . . , lB−1

∧ ∀i ∈ {A+ 1, . . . , B − 1}.a ∈ AliasParts(li)

(19)

In this expression:

1. lA and lB are two specific states in the ledger history, withA ≤ B indicating that lA precedes
or is equal to lB.

2. The Alias Output a is present in the ledger state lA.

3. It is asserted that if lA and lB share the same Alias Output a, then either lA and lB are
the same state, or there exists a sequence (or chain) of ledger states starting from the state
immediately following lA, denoted as lA+1, lA+2, . . . , lB, which leads up to lB−1.

4. Each state in this sequence also contains the Alias Output a.

This representation ensures that once an Alias Output is added to the ledger, it is either
present in the following state or is deleted.

Foundry Total Supply Consistency. An essential property specific to the Foundry
Output in the IOTA EUTXO model is the consistency of the total supply of native tokens. This
property ensures that the total number of each type of native token remains constant unless ex-
plicitly modified through transactions mint or burn tokens.
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∀l1, l2 ∈ LedgerWithFoundry, t ∈ TransactionWithFoundry,

f1 ∈ FoundryOutputs(l1), f2 ∈ FoundryOutputs(l2).

IsV alidFoundryTransaction(l1, t)

∧ l2 = ApplyTransactionWithFoundry(l1, t)

∧ f1.foundry_id = f2.foundry_id

→ f2.supply = f1.supply + tmint(f1)− tburn(f1)

(20)

In this expression:

1. l1 and l2 represent two specific states in the ledger history, where l2 is the state resulting
from applying a transaction t to the state l1.

2. f1 and f2 are specific Foundry Outputs within the states l1 and l2 respectively, both asso-
ciated with the same foundry identified by foundry_id.

3. The transaction t is validated as a proper Foundry transaction in the context of the ledger
state l1 by IsV alidFoundryTransaction(l1, t).

4. The terms tmint(f1) and tburn(f1) represent the amount of native tokens minted and burned,
respectively, associated with the foundry f during the transaction t.

The equation states that for any transaction t, if a foundry output f1 in ledger l1 transitions
to f2 in ledger l2 (identified by the same foundry_id), the new supply f2.supply in l2 is the
original supply f1.supply adjusted by the tokens minted (tmint) and burned (tburn) specific to
that foundry_id within the transaction t.

Note that, according to the property, any minting or burning of native tokens would require
the update of the respective foundry. Thus, The foundry itself must participate in the transaction
in order to transition its state and update its total supply property.

Alternatively, this property can also be expressed with the following invariant:

∀l ∈ LedgerWithFoundry, f ∈ FoundryOutputs(l).

→ f.supply =
∑

o∈Outputs(l)

o.tokens[f.foundry_id] (21)

The equation states that, for each ledger state l containing Foundry Outputs f , the supply
of native tokens f.supply is equal to the sum of those specific tokens across all ledger outputs o.

3.3. IOTA EUTXO model in Isabelle/HOL

In this section we describe our overall approach to modeling the IOTA EUTXO model in Is-
abelle/HOL as well as our current progress formalizing the model.
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3.3.1. Modeling UTXO extensions in Isabelle/HOL in a modular way

At a high-level view, the overall approach is to loosely, informally, tie the IOTA EUTXO model
as described in RFC 38 to a concrete specification of the IOTA EUTXOmodel – an Isabelle/HOL
locale called IotaUtxoLedger. It would then be shown that the IotaUtxoLedger locale satisfies
the properties of the BasicUtxoLeger – a locale modeling the base UTXO model.

The modular approach allows flexibility in the specification, enabling future extensions or
modifications to be added with less effort. This is important for keeping the model relevant and
practical as distributed ledger and formal method technologies progress and evolve.

Figure 9. A high-level view of the locales used in the specification. The nodes represent the
locales and the edges show that the source locale implements the destination locale.

This high-level structuring also allows a clear separation of concerns, allowing
different aspects of the EUTXO model to be modeled independently. Moreover,
AbstractIotaUtxoLedger can itself be composed of a “basic” UTXO ledger component (such as
AbstractBasicUtxoLedger), an Alias ledger component, a Foundry ledger component, and so
on.

3.3.2. Abstract Alias UTXO

Alias Output Set. We begin by defining the alias_output_set locale, which represents
a collection of Alias outputs.

1 locale alias_output_set =
2 fixes alias_outs F: ′ao set
3 and aid F: ′ao ⇒ ′id
4 assumes aliases_unique: fset_unique alias_outs aid

In this locale, alias_outs is the set of Alias outputs, and aid is a function that retrieves
the unique identifier of each Alias output. The key assumption here is aliases_unique, which
ensures that each Alias output in the set has a distinct identifier.

Alias Transaction. Next, we define the alias_transaction locale, encapsulating the be-
havior and constraints of transactions involving Alias outputs.
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1 locale alias_transaction =
2 fixes inp_alias_outs F: ′ao set
3 and out_alias_outs F: ′ao set
4 and aid F: ′ao ⇒ ′id
5 assumes inp_valid: alias_output_set inp_alias_outs aid
6 and out_valid: alias_output_set out_alias_outs aid

Here, in_alias_outs and out_alias_outs represent the sets of Alias outputs used as inputs
and outputs in a transaction, respectively. The assumptions inp_valid and out_valid ensure that
these sets adhere to the Alias output set constraints that we defined above, such as aliases_unique.

Alias Ledger. The alias_ledger locale represents the state of the ledger containing Alias
outputs.

1 locale alias_ledger =
2 fixes ledger F: ′ao set
3 and aid F: ′ao ⇒ ′id
4 assumes unique_ids: fset_unique ledger aid

The ledger is a set of Alias outputs, and aid is a function that retrieves the unique identifier
of each Alias output. The unique_ids assumption ensures that each Alias output in the ledger
has a distinct identifier.

Alias Transaction in Ledger. The alias_transaction_in_ledger locale combines the
alias_transaction and alias_ledger locales to model transactions that operate on the Alias
ledger.

1 locale alias_transaction_in_ledger =
2 alias_transaction +
3 alias_ledger +
4 assumes inp_in_ledger: inp_alias_outs ⊆ ledger
5 and out_ids_not_in_ledger:
6 fset_intersect out_alias_outs ledger aid ⊆ fset_intersect

↪→ inp_alias_outs out_alias_outs aid
7 begin
8
9 definition apply_transaction where
10 apply_transaction = (ledger - inp_alias_outs) ∪ out_alias_outs
11
12 lemma apply_transaction_preserves_validity:
13 shows alias_ledger (apply_transaction) aid

The inp_in_ledger assumption ensures that all input Alias outputs used in the transaction
are present in the ledger. The out_ids_not_in_ledger assumption states that the Alias identifiers
in the transaction outputs that are already in the ledger must be a subset of the identifiers in both
the transaction inputs and outputs. This constraint prevents the creation of new Alias outputs
with identifiers that already exist in the ledger.
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The apply_transaction definition describes the state transition of the ledger when a trans-
action is applied. It removes the input Alias outputs from the ledger and adds the output Alias
outputs.

Finally, the apply_transaction_preserves_validity lemma shows that applying a valid
Alias transaction to a valid Alias ledger results in a new valid Alias ledger state.

3.3.3. Foundry UTXO

Foundry Output Set. We begin the formal definition with the foundry_output_set
locale, representing a collection of Foundry outputs. Each output in this set manages a unique
set of native tokens, identified by a unique identifier.

1 locale foundry_output_set =
2 fixes foundry_outs F: ′fo set
3 and fid F: ′fo ⇒ ′fid
4 and total_supply F: ′fo ⇒ nat
5 assumes foundries_unique: fset_unique foundry_outs fid
6 and fin: finite foundry_outs

In this locale, foundry_outs is the set of Foundry outputs, fid retrieves the unique iden-
tifier for each Foundry output, and total_supply – the total number of native tokens that the
Foundry claims to be in circulation in the ledger. The assumption foundries_unique ensures
that each output in the set has a distinct identifier. The fin assumption ensures that we are
working with a finite set of outputs.

Native Output Set. To represent the native tokens being carried by other outputs, we
define a Native output type:

1 locale native_utxo_set =
2 fixes native_utxos F: ′nuo set
3 and id F: ′nuo ⇒ ′nid
4 and tokens F: ′nuo ⇒ (′fid ⇀ nat)
5 assumes utxos_unique: fset_unique native_utxos id
6 and fin: finite native_utxos

In the locale native_utxo_set, native_utxos is a set of Native outputs, id it the unique
identifier for each Native output, and tokens is a map from token IDs to a natural number rep-
resenting their amount. The assumption utxos_unique ensures that each output in the set has
a unique identity. The fin assumption ensures that we are working with a finite set of Native
outputs.

Foundry Transaction. We then define the foundry_transaction locale, encapsulating
the behavior and constraints of transactions that involve Foundry outputs.

1 locale foundry_transaction_definitions =
2 fixes inp_foundry_outs F: ′fo set
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3 and out_foundry_outs F: ′fo set
4 and inp_native_outs F: ′nuo set
5 and out_native_outs F: ′nuo set
6 and fid F: ′fo ⇒ ′fid
7 and id F: ′nuo ⇒ ′nid
8 and tokens F: ′nuo ⇒ (′fid ⇀ nat)
9 and total_supply F: ′fo ⇒ nat
10 assumes inp_valid: foundry_output_set inp_foundry_outs fid
11 and native_utxo_set inp_native_outs id
12 and out_valid: foundry_output_set out_foundry_outs fid
13 and native_utxo_set out_native_outs id
14 and foundry_not_present_input_output_tokens_equal
15 and foundry_ids_persisted
16 and foundry_present_total_supply_updated

Within this locale:

• inp_foundry_outs and out_foundry_outs represent the sets of Foundry outputs as inputs
and as the outputs of the transaction, respectively.

• inp_native_outs and out_native_outs are the sets of Native outputs in the transaction.

• fid, id, tokens, and total_supply serve the same purposes as in the previous locales.

The assumptions made within this locale ensure that the transaction is correct:

• inp_valid and out_valid confirm the validity of Foundry output sets, using the definitions
we defined earlier. Analogous assumptions are defined for Native outputs.

• foundry_not_present_input_output_tokens_equal ensures that the tokens are consistent
in the transaction when if the respective Foundry is not a part of the transaction.

• foundry_ids_persisted ensures that the Foundry identifiers are maintained across the
transaction.

• foundry_present_total_supply_updated verifies that the total supply of tokens is cor-
rectly adjusted for foundries in the transaction, accounting for cases such as minting or
burning of native tokens.

Based on the definitions in the foundry_transaction locale, we define the properties
and operations, such as token minting, transferring, and burning within transactions. These
rules are expressed in the definitions for foundry_not_present_input_output_tokens_equal
and foundry_present_total_supply_updated that we have used in the assumptions for the
foundry_transaction locale.

1 definition foundry_not_present_input_output_tokens_equal where
2 foundry_not_present_input_output_tokens_equal ≡ ∀token_id. token_id /∈

↪→ fset_map inp_foundry_outs fid −→
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3 input_tokens token_id = output_tokens token_id
4
5 definition foundry_present_total_supply_updated where
6 foundry_present_total_supply_updated ≡ ∀token_id. ∀fi ∈ inp_foundry_outs.

↪→ fid fi = token_id −→
7 (

8 (∃fo ∈ out_foundry_outs. fid fo = token_id ∧ total_supply fo =
↪→ total_supply fi + output_tokens token_id - input_tokens token_id)

9 ∨ ¬(∃fo ∈ out_foundry_outs. fid fo = token_id)
10 )

The property foundry_not_present_input_output_tokens_equal ensures that if a to-
ken ID is not present among the Foundry outputs in the input set, then the number of
native tokens for that ID remains unchanged in the transaction output. Otherwise, the
foundry_present_total_supply_updated property ensures that for every token ID associated
with Foundry outputs involved in the transaction, the total supply of tokens is accurately up-
dated – the Foundry output with the same token ID in the transaction output set has the total
supply updated to reflect the amounts of respective native tokens minted and burned during the
transaction.

These definition ensure that token quantities are transformed correctly: either they remain
constant or are updated only if their respective Foundry output is part of the transaction inputs.

Foundry Ledger. The foundry_ledger locale represents the state of the ledger contain-
ing both Foundry and Native outputs.

1 locale foundry_ledger =
2 fixes fo_ledger F: ′fo set
3 and nuo_ledger F: ′nuo set
4 and fid F: ′fo ⇒ ′fid
5 and id F: ′nuo ⇒ ′nid
6 and total_supply F: ′fo ⇒ nat
7 and tokens F: ′nuo ⇒ (′fid ⇀ nat)
8 assumes foundry_output_set_valid: foundry_output_set fo_ledger fid

↪→ total_supply
9 and native_utxo_set_valid: native_utxo_set nuo_ledger id tokens
10 and total_supply_consistent: ∀f ∈ fo_ledger. total_supply f =

↪→ sum_nuo_tokens nuo_ledger tokens (fid f)

The fo_ledger and nuo_ledger represent the sets of Foundry and Native outputs in the
ledger, respectively. The functions fid, id, total_supply, and tokens serve the same purposes as
described in the previous locales.

The assumptions ensure that the ledger state is valid:

• foundry_output_set_valid and native_utxo_set_valid ensure that the Foundry and Na-
tive output sets in the ledger are valid, as per the definitions in their respective locales.
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• total_supply_consistent ensures that for each Foundry output in the ledger, its total supply
matches the sum of the corresponding native tokens held in the Native outputs.

Foundry Transaction in Ledger. The foundry_transaction_in_ledger locale com-
bines the foundry_transaction and foundry_ledger locales to model transactions that operate
on the Foundry ledger.

1 locale foundry_transaction_in_ledger =
2 foundry_transaction inp_foundry_outs out_foundry_outs inp_native_outs

↪→ out_native_outs fid id tokens total_supply +
3 foundry_ledger fo_ledger nuo_ledger fid id total_supply tokens
4 for fid F: ′fo ⇒ ′fid
5 and id F: ′nuo ⇒ ′nid
6 and total_supply F: ′fo ⇒ nat
7 and tokens F: ′nuo ⇒ (′fid ⇀ nat)
8 and inp_foundry_outs out_foundry_outs F: ′fo set
9 and inp_native_outs out_native_outs F: ′nuo set
10 and fo_ledger F: ′fo set
11 and nuo_ledger F: ′nuo set
12 +
13 assumes inp_in_ledger: inp_foundry_outs ⊆ fo_ledger ∧ inp_native_outs ⊆

↪→ nuo_ledger
14 and foundry_ids_persisted: fset_intersect out_foundry_outs fo_ledger fid

↪→ ⊆ fset_intersect inp_foundry_outs out_foundry_outs fid
15 and out_not_in_ledger: fset_intersect out_native_outs nuo_ledger id = {}

The additional assumptions ensure that the transaction is valid within the context of the
ledger:

• inp_in_ledger ensures that all input Foundry and Native outputs used in the transaction
are present in the ledger.

• foundry_ids_persisted ensures that the Foundry identifiers in the transaction outputs that
are already in the ledger must be a subset of the identifiers in both the transaction inputs
and outputs. This constraint prevents the creation of new Foundry outputs with identifiers
that already exist in the ledger.

• out_not_in_ledger ensures that the Native outputs in the transaction outputs are not al-
ready present in the ledger.

The locale also defines the apply_transaction_foundry and
apply_transaction_native_tokens functions, which describe the state transitions of the
Foundry and Native output sets in the ledger when a transaction is applied.

1 definition apply_transaction_foundry F: ′fo set where
2 apply_transaction_foundry = (fo_ledger - inp_foundry_outs) ∪

↪→ out_foundry_outs
3
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4 definition apply_transaction_native_tokens F: ′nuo set where
5 apply_transaction_native_tokens = (nuo_ledger - inp_native_outs) ∪

↪→ out_native_outs

The locale also includes several lemmas that prove the consistency of the total supply after
a transaction is applied:

• total_supply_consistent_if_foundry_not_present ensures that if a Foundry output was
not part of the transaction inputs, its total supply remains consistent with the sum of the
corresponding native tokens in the updated Native output set.

• total_supply_constant_if_foundry_in_transaction ensures that if a Foundry output is
present in the transaction outputs, its total supply is updated to reflect the minted and
burned native tokens from Native outputs.

Finally, the apply_transaction_preserves_validity lemma proves that applying a valid
Foundry transaction to a valid Foundry ledger results in a new valid Foundry ledger state

1 lemma apply_transaction_preserves_validity:
2 shows foundry_ledger apply_transaction_foundry

↪→ apply_transaction_native_tokens fid id total_supply tokens

3.3.4. Implementation model

While we chose to make the abstract models modular, we believe that the implementation model
should instead try to be closer to the model of an implementation that would be used in a real-life
scenario. Thus, we define a single ledger representing the IOTA EUTXO model’s ledger.

UTXO Data Types. We begin by defining the data types that represent different kinds
of UTXOs in our model, including the Alias UTXOs.

1 datatype BasicT = Basic (basic_id : hash) (basic_amount : nat) (native_tokens
↪→ : (hash ⇀ nat))

2 datatype AliasT = Alias (alias_id : hash)
3 datatype FoundryT = Foundry (foundry_id : hash) (total_supply : nat)
4
5 datatype UTXO = BasicU BasicT
6 | AliasU BasicT AliasT
7 | FoundryU BasicT FoundryT

In this definition, BasicT represents the basic structure of a UTXO, including its identifier
(a hash, as described in Section 2.2 Hashing) and amount. The native_tokens contains the
map native token IDs to their respective amounts. AliasT is a specific type for Alias UTXOs,
encapsulating attributes unique to Alias outputs, such as alias_id. Similarly, the FoundryT

type encapsulates the foundry_id and total_supply properties relevant to Foundry UTXOs. The
UTXO datatype then combines these to form a unified representation of UTXOs in the ledger,
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allowing for BasicT , AliasT , and FoundryT types. More formally, UTXO is a sum type with
three constructors – BasicU , AliasU , and FoundryU .

Using the data types defined above, we provide definitions for the implementation of a
transaction and ledger:

1 datatype TransactionT = TransactionT (tx_inp: UTXO set) (tx_out: UTXO set)
2 type_synonym Ledger = UTXO set

Note that the defined types are still quite abstract, because we have not specified any con-
straints on them that would be applied in a real-life scenario. To give a specific example – while
the Ledger definition might look correct at first glance, the definition above does not ensure that
the Ledger is finite, which, in real-life, it would definitely be. Because data types in Isabelle/HOL
do not provide a way to specify constraints such as preconditions or postconditions, we can use a
locale to constrain our types:

1 locale iota_utxo_ledger_implementation = hashes +
2 fixes DB F: Ledger
3 and AliasDB F: AliasT set
4 and FoundryDB F: FoundryT set
5 and ValidTransaction F: TransactionT
6 assumes db_valid: DB_valid DB
7 and AliasDB = take_alias DB
8 and FoundryDB = take_foundry DB
9 and tx_valid: transaction_valid DB ValidTransaction

The iota_utxo_ledger_implementation locale serves to represent the environment con-
straints that are required for an accurate definition of a UTXO model implementation. Note that,
while the locale feature is used here, we use it to represent a different concept than when we used
a locale to define a contract of an abstraction (for example, the locale alias_output_set) – in
this case, we use it as an environment with implicit assumptions instead of a building block with
properties that can be used outside of it.

UTXO Operations and Ledger State. We define functions that interact with the data
types described above. apply_tx represents the application of a transaction to the ledger, resulting
in a new ledger state:

1 definition apply_tx F: Ledger ⇒ TransactionT ⇒ Ledger where
2 apply_tx DB tx = (DB - tx_inp tx) ∪ tx_out tx

Here, apply_tx takes the current ledger state DB and a transaction tx, and computes the
new ledger state by removing the inputs and adding the outputs of the transaction. This mimics
the implementation of this functionality in a real-world system.

Tying Implementation to Abstract. The final step in our implementation model is to
tie these concrete representations back to our abstract model. This means demonstrating that our
implementation adheres to the properties and constraints defined in the abstract locales.
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For instance, we need to show that transactions involving Alias UTXOs in our implemen-
tation respect the rules set out in the alias_transaction locale. This requires verifying that Alias
UTXOs in the transaction inputs and outputs are unique and follow the state transition rules:

1 definition take_alias F: UTXO set ⇒ AliasT set where
2 take_alias utxos = {a. ∃b. AliasU b a ∈ utxos}
3
4 definition AliasDB F: AliasT set where
5 AliasDB = take_alias DB
6
7 interpretation concrete_iota_alias_ledger: alias_ledger AliasDB alias_id
8 by . . .

We define take_alias to represent the Alias UTXOs in our ledger and then prove that
these Alias UTXOs together with the alias_id property “getter” function of AliasT form a valid
alias_ledger.

Once the interpretation is proven, we can then use the properties of the alias_ledger. In
the following snippet, we use the unique_ids property of alias_ledger, referenced through the
name of the fact concrete_iota_alias_ledger that we proved above, to show that the identifiers
in AliasDB are unique:

1 theorem alias_uniq:
2

∧a1 a2. a1 ∈ AliasDB ∧ a2 ∈ AliasDB ∧ alias_id a1 = alias_id a2 =⇒ a1 =
↪→ a2

3 by (meson concrete_iota_alias_ledger.unique_ids fset_unique_def)

Besides Alias, an analogous interpretation is made for the foundry_ledger. We demon-
strate that the foundry outputs and basic outputs of the ledger form a valid foundry_ledger
locale:

1 interpretation concrete_iota_foundry_ledger: foundry_ledger FoundryDB (

↪→ take_basics DB) foundry_id basic_id total_supply native_tokens

To summarize, by establishing these connections from the abstract model to the implemen-
tation model, we ensure that our implementation is not only theoretically sound but also can be
practically implemented.

3.3.5. Verification of IOTA EUTXO model’s properties

In our formalization of the IOTA EUTXO model, we have formalized and successfully verified all
three main properties of the base UTXO model as well as three additional properties specific to
the IOTA EUTXO model – Alias chain constraint, Foundry chain constraint, and Foundry total
supply consistency.

Base UTXO properties. The three main properties of the base UTXO model were
proven to hold for the IOTA EUTXO model: constant supply, unspent output consumption,
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and no double spending. These properties are proven in a way analogous to the base UTXO
implementation, so we do not go into further detail and instead refer the readers to the respective
base UTXO model’s property verification section.

1 theorem constant_supply:
2 shows sum_amount DB = sum_amount (apply_valid_transaction)
3
4 theorem unspent_outputs_consumption:
5 shows ∀u ∈ tx_inp ValidTransaction. u ∈ DB ∧ u /∈ apply_valid_transaction
6
7 theorem no_double_spending:
8 assumes transaction_valid DB tx1
9 and nextDB = (apply_tx DB tx1 tx_inp tx_out)
10 and transaction_valid nextDB tx2
11 shows tx_inp tx1 ∩ tx_inp tx2 = {}

Alias Chain Constraint. Alias continuity is ensured through a chain constraint mech-
anism, which guarantees that an Alias output, once created, maintains a continuous existence
across the ledger states until it is explicitly removed.

1 theorem alias_continuity:
2 assumes alias ∈ AliasDB
3 and inputs = (tx_inp ValidTransaction)
4 and outputs = (tx_out ValidTransaction)
5 and nextDB = apply_valid_transaction
6 shows alias ∈ take_alias (nextDB) ∨ transaction_removes_alias alias

↪→ inputs outputs

This theorem states that if an alias is part of the current ledger, after a valid transaction is
applied, the alias either remains in the database or is explicitly removed, adhering to the specified
chain constraints as formalized in Equation 18.

Foundry Chain Constraint. Similarly, the Foundry chain constraint ensures the con-
tinuity of Foundry outputs.

1 theorem foundry_continuity:
2 assumes foundry ∈ FoundryDB
3 and inputs = (tx_inp ValidTransaction)
4 and outputs = (tx_out ValidTransaction)
5 and nextDB = apply_valid_transaction
6 shows foundry ∈ take_foundry (nextDB) ∨ transaction_removes_foundry

↪→ foundry inputs outputs

In an analogous way to the Alias continuity, this theorem states that if a foundry is a part
of the current ledger, then applying valid transaction will result in a ledger that either has the
foundry state maintained, or the transaction had explicitly removed the foundry. This property
is similar to the Alias chain constraint and aligns with the requirements as expressed in the more
generalized chain constraint model (see Equation 18).

63



Foundry Total Supply Consistency. The Foundry total supply consistency property
ensures that the total supply of native tokens defined in their respective Foundry outputs remains
accurate across all transactions.

1 theorem foundry_native_token_amount_constant:
2 assumes nextDB = apply_valid_transaction
3 and f ∈ (take_foundry nextDB)
4 shows total_supply f = ledger_total_token_sum nextDB (foundry_id f)

This theorem asserts that for any Foundry output present in the ledger after a transaction,
the total supply of its native tokens aligns with the sum of the respective native token amounts
across the whole ledger. This theorem aligns with the model we have defined in Equation 21.

To summarize, we have successfully verified the basic properties of the base UTXO model
as well as three properties of the IOTA EUTXO model. Below, a table is provided to clarify which
properties have been formalized and verified.

No. Property Verification Result
Base UTXO Properties

1 Constant Supply Successfully Verified
2 Unspent Output Consumption Successfully Verified
3 No Double Spending Successfully Verified
4 Signature Verification Out of Scope
5 Conservation of Value N/A
6 Progress Not Verified

IOTA EUTXO Properties
7 Chain Constraint Alias Successfully Verified
8 Chain Constraint Foundry Successfully Verified
9 Foundry Total Supply Consistency Successfully Verified

Table 3. Summary of verification results for IOTA EUTXO model properties

3.3.6. Comparison with Cardano UTXO model

The Cardano UTXO model is an Isabelle/HOL theory file which formalizes the base UTXO
model. The formalization defines the key components, transition rules, and properties of the
UTXO model. For more information about the Cardano UTXO model, see Section 1.5.3.

One of the main differences between our and Cardano’s models is the modeling of sequences
of transactions. In our work, the history of the ledger, or, in other words, the sequence of trans-
actions that has been applied to the ledger, is not modeled. This decision was made because
the modeling of the sequence of transactions was not required for proving the properties that are
verified in this work. The Cardano model, however, defines the effect of a transaction sequence
on the system state. Furthermore, the Cardano model defines UTXO transaction fees – amounts
of tokens that are consumed when a transaction is applied. In our work, we have not modeled
the transaction fees explicitly, as the fee collection is equivalent to having another output with a
small amount of tokens in the transaction.
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The formalization defines and proves three key properties of the UTXO system:

1. No Double Spending: In a valid transaction sequence, the inputs of all transactions are
disjoint, ensuring that no UTXO is spent more than once. This property is identical to the
no double spending property verified in our UTXO and IOTA EUTXO models.

2. Ledger is Outputs minus Inputs: The UTXO set at any point is equivalent to the differ-
ence between the outputs and inputs of all transactions applied so far. As our models do not
track the history of transactions applied to the ledger, we have not verified this property.
Instead, we used the assumption that the input and output token sums in a transaction are
equal to verify other properties.

3. Constant Money Supply: The total money supply (sum of all UTXO values and fees)
remains constant as transactions are applied, demonstrating the conservation of value in the
system. This property, with the exception of the fee tracking, is equivalent to the constant
supply property we have verified in our UTXO and IOTA EUTXO models.

In summary, the Cardano UTXO model is not as comprehensive as the UTXO and IOTA
EUTXOmodels presented in this work. Nevertheless, it offers insights in managing ledger history
as transaction sequences and calculating transaction fees.
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Results

This work has verified the functional correctness of the changes proposed in RFC 38 by formaliz-
ing the essential parts of the IOTA EUTXO model and verifying it using the Isabelle/HOL proof
assistant. In this work, we:

1. Provided mathematical formalizations for the UTXOmodel, the IOTA EUTXOmodel, and
their respective properties.

2. Produced Isabelle/HOL specifications matching the mathematical formalizations of the
models and their properties.

3. Successfully verified the correctness of the base UTXOmodel’s properties: constant supply,
output consumption, and no double spending.

4. Successfully verified the IOTA EUTXO model’s properties: the chain constraint for Alias
outputs, chain constraint for Foundry outputs, total supply consistency for Foundry out-
puts.

5. We presented a framework for formalizing distributed ledger technologies in a modular
way using the Isabelle/HOL locale feature. Moreover, we have demonstrated a convenient
approach to modeling unique identifier uniqueness in Isabelle/HOL using locales.

The results of our research were published at the “Lithuanian MSc Research in Informatics
and ICT” conference [DP24].

Conclusions

In this work, we have demonstrated that:

1. The IOTA EUTXO Alias and Foundry output type extensions are sound. This gives con-
fidence in the correctness of the UTXO extensions proposed by IOTA.

2. There is a streamlined way to model the IOTA EUTXO output types by analyzing only
subsets of the model. We used this approach to cope the complexity of the Isabelle proofs,
which comes from the increasingly large amount of cases that need to be considered when
introducing new features.

3. While our work focuses specifically on the IOTA EUTXO model, our modular formal-
ization approach could be used to help verify the correctness of other distributed ledger
technologies that are based on the UTXO model.
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Appendices

A. Isabelle/HOL Codebase Walkthrough

The Isabelle/HOL codebase accompanying this thesis is available in GitHub3. This appendix
provides an overview of the repository’s structure and the purpose of each file.

The codebase is organized into three main directories: abstract, implementation, and
shared.

The abstract directory contains the abstract definitions of the UTXO ledgers:

• AbstractBasicUtxoLedger.thy: Contains the abstract definition of a basic UTXO ledger.

• AbstractIotaAliasUtxoLedger.thy: Contains the abstract definition of an IOTA Alias
UTXO ledger.

• AbstractIotaFoundryUtxoLedger.thy: Contains the abstract definition of an IOTA
Foundry UTXO ledger.

The implementation directory contains the concrete implementations of the UTXO
ledgers and their properties:

• BasicUtxoLedger.thy: Contains the concrete implementation of a basic UTXO ledger.

• BasicUtxoLedgerProperties.thy: Contains the essential properties of the basic UTXO
ledger.

• IotaUtxoLedger.thy: Contains the concrete implementation of an IOTA UTXO ledger.

• IotaUtxoLedgerAlias.thy: Extends IotaUtxoLedger.thy and contains the concrete im-
plementation of an IOTA Alias UTXO ledger.

• IotaUtxoLedgerFoundry.thy: Extends IotaUtxoLedger.thy and contains the concrete
implementation of an IOTA Foundry UTXO ledger.

• IotaUtxoLedgerProperties.thy: Contains the essential properties of the IOTA UTXO
ledgers.

The shared directory contains shared definitions and utilities used across the project:

• FiniteNatSet.thy: Contains helper lemmas used throughout the other files.

• Hash.thy: Contains the definition of a unique hash identifier.

To explore the codebase, we recommend to start by examining the base UTXO model
specification in BasicUtxoLedger.thy and its properties in BasicUtxoLedgerProperties.thy.
For the IOTA EUTXO model specification, refer to IotaUtxoLedger.thy and
IotaUtxoLedgerProperties.thy.

3https://github.com/EdvardasDlugauskas/iota-eutxo-isabelle
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