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Abstract

Most epidemic models with networks try to capture either spatial or social con-

nections by embedding them into a graph. In this work, we show that these ap-

proaches can be combined into a single model. A stochastic simulation-based

model concept was proposed by the supervisor prof. habil. dr. Mindaugas

Bloznelis. The model encompasses actors moving in a spatial network called

location graph. Furthermore, model also includes a social network, which

determines an increased disease transmission chance between connected ac-

tors. Both networks are realized as random graphs. In addition, epidemic

control measures are examined. Finally, we examine the possibility to apply

this model to Covid-19 data in selected Lithuanian municipalities.

Key words: two-network epidemic model, SIR, random graph



Santrauka

Viena populiariausių epideminio modeliavimo strategijų yra SIR stadijų

epidemijos modelis su tinklu, kuris nurodo erdvinius arba socialinius ryšius.

Šiame darbe pristatomas modelis sujungiantis šias dvi idėjas. Darbo tema ir

modelio idėja buvo pasiūlyta darbo vadovo prof. habil. dr. Mindaugo Blozne-

lio. Modelis yra pagrįstas atsitiktinėmis simuliacijomis, kurių metu individai

juda erdviniame tinkle ir susitikę vienoje vietoje gali užkrėsti vieni kitus. In-

fekcinės ligos plitime taip pat atsižvelgiama į socialinius ryšius - vienas kitą

pažįstantys individai lengviau perduoda infekciją, t.y., užsikrečia su didesne

tikimybe. Abu, erdvinis ir socialinis tinklai, realizuojami kaip atsitiktiniai

grafai. Toliau darbe nagrinėjamos epidemijos kontrolės priemonės. Galiau-

sia, ištiriama galimybė pritaikyti šį modelį Covid-19 duomenims pasirinktose

Lietuvos savivaldybėse.

Raktiniai žodžiai: dviejų tinklų epideminis modelis, SIR, atsitiktinis grafas
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1 Introduction

Throughout human history there have been epidemics of diseases that affected a

considerable number of people in the populations and often caused many deaths

in some areas or all around the world. For example, it is estimated that the 14th

century Black death epidemic has reduced European population by one-third [55].

Later in the 18th and 19th centuries plague outbreaks continued in North Africa,

Egypt, Syria, Greece, China, and other countries resulting in more than ten million

deaths. Due to epidemics having such devastating consequences for societies all over

the world, the study of epidemics and diseases has been an important and relevant

topic throughout history.

The initial study of epidemics mostly concerned with investigation of disease, its

characteristics, and causes [11]. The study naturally progressed towards analysis

of infectious disease data as records of numbers and causes of death have been

collected and published. It was then possible to analyze various causes of death and

estimate the risk of dying from various diseases. Further progress was made with

the introduction of mathematical models for epidemic disease spread, which allowed

to estimate the number of infected individuals in the population, the progression

of the disease spread through time, and finally develop disease control measures,

comparing and estimating their impact and effectiveness.

The topic of epidemic modelling has become especially relevant with the rise of the

new Covid-19 epidemic. With modern technology and medicine, the course of the

epidemic has been thoroughly recorded and there are more technological tools than

ever available for the modelling of the disease. In the initial stages of the disease

there were no vaccines or other pharmaceutical remedies, hence, epidemic modelling

was a crucial tool that helped governments make decisions that could control and

reduce disease spread.

The object of this master thesis is the discrete-time dynamic epidemic model

with location and social networks (the topic of the master thesis and model concept

were suggested by the supervisor prof. habil. dr. Mindaugas Bloznelis). In the

current literature on epidemic models over networks, two approaches are prevalent:

modeling epidemic spread via a social network or a geographical map. The overall
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purpose of this research work is to show that these two modelling approaches can

be combined into one epidemic model that is a more intuitive representation of the

real world.

Aim of the thesis is to develop an epidemic model with location and social net-

works and investigate its dynamics.

Objectives for this work are:

1. Build a new epidemic model that combines location and social networks.

2. Analyze the model elements and their interactions.

3. Introduce infection control measures and assess their effectiveness.

4. Fit built model to real data and compare against other modelling approaches.

The structure of this model is distinct from other models described in literature.

Epidemic models with networks are often implemented using a contact network

where vertices of the network represent individuals and edges represent contacts

between individuals through which disease can spread [30, 35, 39, 50]. On the other

hand, the model explored in this work represents actors as independent agents. They

move along a location graph, which represents the spatial aspect of the model, while

the connections with other actors are defined by the social network. The disease is

spread only when actors meet in the same location, which is in the same vertex of the

location graph. Disease transmission chance increases for actors connected in the

social network. This modelling approach more closely resembles real world disease

spread dynamics. Actors just like people move in their environment and infect

one another. People have closer contact with their acquaintances, which results in a

higher disease transmission chance. This model is tailored to communicable diseases

like Covid-19, influenza, chickenpox, etc. but it could be modified to apply to other

types of diseases too.

The epidemic is modelled using the SIR model compartments. SIR is the most pop-

ular epidemic model due to its versatility and suitability for modelling a variety of

different diseases. Even for diseases that could be modelled with more granular com-

partments, SIR is often used due to its good level of abstraction and simplification
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of the disease stages [60, 43, 46, 33, 12].

In this work location and social graphs are synthetic networks, which are generated

as random graphs. Based on literature on Zipf’s law, we make an assumption that

location network vertex degree sequence has a Pareto distribution [1]. For this

reason, we use the configuration model that allows graph generation from a given

vertex degree sequence. The social network is generated using a different method.

We assume that actors form a connection in the social graph if they share common

interests. For this reason, a bipartite graph is created connecting attribute vertices

with actor vertices. Finally, an intersection graph based on the aforementioned

bipartite graph is produced.

Afterwards we introduce epidemic control measures that aim to impede disease

spread. We implement lockdown, social distancing, general preventative measures,

and vaccination. The implementation approach of lockdown and social distancing

are distinctive to this model in a way that only in a model with location and social

networks is possible. We implement lockdown via removal of location network edges

and social distancing via removal of edges from the social network.

This document is structured as follows - literature review section provides an

overview of other research papers on the epidemic modelling topic. The methods

section describes model design and model elements. Influence of model parameters

section studies each of the model parameters and its interaction with model out-

comes. The epidemic control section analyzes various epidemic control measures

and their effectiveness. Comparison with the classical SIR model section provides a

comparison between proposed and classical model. Finally, the data fitting section

shows how proposed and classical model are fit to real Covid-19 data.

Acknowledgment. The master thesis topic, which consists of the idea for the

model with location and social networks, and the concept of studying epidemic

control measures by removing edges in location and social networks were proposed

by the supervisor prof. habil. dr. Mindaugas Bloznelis.

Note. The terms graph and network; node and vertex are used interchangeably in

this work.
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2 Literature review

Epidemic modelling originated in the early 20th century. One of the earliest fun-

damental works were published by W. O. Kermack and A. G. McKendrick in 1927,

later on in 1932, and 1933 [38]. The early epidemic models had three compartments:

susceptible, infected, and recovered or dead. Their papers described a basic com-

partmental model characterized by a population of actors, multiple disease stages

called compartments, and discrete or continuous time. In addition, model intro-

duced a transmission or infection rate and recovery or death rate. Both rates are

affected by the age of infection, which is the amount of time passed from becoming

infected. The model assumed a stable population size and a homogeneous mixing of

the individuals, meaning that the population would be randomly mixed to produce

random contacts between individuals. Thus, each actor could have contact with any

other actor in the population.

The area of epidemic modelling saw further development in the 1950s and 1960s.

During this time, G. Macdonald has introduced the concept of reproduction num-

ber in his paper on malaria ([28] quoted by [47]). The reproduction number is the

expected number of cases generated by an infectee in a population where all indi-

viduals are susceptible to infection. It was discovered that a threshold of one for the

basic reproduction number determines if the infection becomes extinct or infection

becomes an epidemic [11].

It was noted that Kermack’s and McKendrick’s assumption on homogeneous pop-

ulation mixing has defects in modelling the beginning of an epidemic when the

fraction of infected individuals is small. The first work to improve the modelling of

the beginning of an epidemic was by Metz, which introduced a stochastic branching

process as a way to describe infection pattern in the initial stage of an epidemic

([51] as cited in [11]). In the branching process approach, the birth of an individual

would represent the infection of a susceptible individual, and death would represent

the recovery or death. The branching process was a good approximation of epi-

demic spread in the initial stages of the epidemic, and also the final ones [40]. In

addition, the assumption of homogeneous population mixing was substituted by a

new assumption stating that at the beginning of a disease there is a contact network

described as a graph. Here the works of P. Erdös and A. Rényi in the study of
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graphs were of great importance ([23, 24, 25] as cited by [11]). The contact network

is a graph with vertices representing individuals and edges - contacts between indi-

viduals. The disease is transmitted along the edges of the graph from an infected to

a susceptible individual.

The usage of networks in epidemiology has followed the development of network

science in areas of social sciences and graph theory [34]. In 1951 Solomonoff and

Rappaport were the first to relate epidemic models with networks ([66] as cited by

[44]). In 1967, the work of Milgram in an area of social science led to the construction

of a small-world social network and an idea of six degrees of separation ([67] quoted

by [44]). The similarity between the spread of information via social network and

the spread of infectious disease was utilized by Bass, Fisher, and Pry in their study

of new product adoptions ([6, 7] as cited by [44]). Thus, further preparing a way for

network-based diffusion models. In 1977 work by Leinhardt used network analysis

as a tool to describe the spread of ideas and innovations in societies ([42] quoted by

[34]). After that, many papers including Scott (1991), Wasserman and Faust (1994)

have derived measures of the importance of an individual in a network ([63, 71] as

cited by [34]). These measures varied from simple – like vertex degree, which is a

number of connections of an individual, to complex – like betweenness centrality,

which is a number of paths between other actors in which an individual is present.

Using principles laid in social sciences and graph theory many epidemiology papers

analyzed the spread of HIV/AIDS through contact networks ([30, 35, 39, 50] as

cited by [47]). Other papers developed epidemic models considering the spatial

heterogeneity of the population [2, 3, 45, 49]. Later a variety of different networks

were used for epidemic modelling: random networks [13, 53, 54], scale-free networks

[75], multilevel networks [16, 72], and other [47].

The rise of the new epidemic of Covid-19 sparked an interest in the study of epidemic

modelling. A plethora of papers were published on such topics as the spread of

Covid-19 in networks, the impact of mobility on the spread of disease, vaccination

strategies, lockdown, and social distancing strategies, etc. [46, 56, 12, 59, 33, 12].
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2.1 Compartmental models

Compartmental models could be considered the origin of epidemic modelling. The

main idea is that every individual in the population is assigned a compartment.

Then rules are defined on how individuals migrate between different compartments.

Compartmental models are mostly based on systems of ordinary differential equa-

tions, which are deterministic, but by adding a random component, they can also be

based on stochastic processes formulated as discrete-time Markov chain, continuous-

time Markov chain, and stochastic differential equations. Later it was realized that

compartmental models have limitations in fully capturing spatial and differing social

contact effects for disease spread. Currently, most popular epidemic models are not

fully compartmental, but use the same ideas in conjunction with networks.

The SIR model over a network is by far the most popular epidemic model, which is

described in papers by Ruget, Rossi, Pepler [60], Lev and Shmueli [43], Maheshwari

and Albert [46], Szapudi [33], Pizzuti, Socievole et al. [12] to name a few. The model

is characterized by S(t) number of susceptible individuals, I(t) infected individuals,

and R(t) immune or removed individuals [15]. Model assumes that population size

is fixed, therefore, N = S(t) + I(t) + R(t). The model has two parameters: β - an

infection parameter indicating infection rate, and γ - a removal parameter, the rate

at which infected individuals recover and become immune or die. Individuals start

in the susceptible stage, then when infected flow to the infected stage, and lastly

after some time individuals recover to the recovered stage.

Susceptible Infectious Recovered

β γ

Susceptible Infectious

βSI

γI

Susceptible Exposed Infectious

βSI γI

Recovered

Figure 1: The compartmental diagram for the SIR model.

The classical SIR model is defined by the following differential equations [38].

dS

dt
= −βSI

N
,

dI

dt
= βSI

N
− γI,

dR

dt
= γI.

(1)
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Here S, I, and R denote the number or proportion of individuals that are in sus-

ceptible, infected, and recovered stages of infection accordingly. The γ parameter

describes the length of time d spent by an individual in the infectious state. It is

defined in such a way: γ = 1/d. The parameter β describes the average number of

susceptible individuals one infected actor has contact with and infects.

Apart from SIR compartmental model there is an abundance of other compartmen-

tal models - SI, SIS, SEIRD, SEIRS to name a few. These models often expand on

the classical model by introducing additional disease stages and appropriate tran-

sition parameters. For example, commonly added disease stages are E - exposed,

describing the latent period of the infection, D - deceased stage for individuals that

did not survive the disease, V - vaccinated, to introduce vaccination of susceptible

individuals. Another common modification is allowing recovered individuals to re-

turn to susceptible stage, which is signified by additional letter “S” at the end of

the name.

2.2 Networks in epidemic models

Traditionally epidemics were modelled using compartmental models. However, sim-

ple compartmental models did not account for spatial epidemic spread or non-

homogenous social contacts in the population. Thus, with increasing technological

possibilities, epidemic models are often combined with spatial or social networks

creating a more sophisticated and improved model.

The most commonly compartmental model is enriched by an introduction of social

network. Social networks focus on relationships among social entities, patterns, and

implications of these relationships [71]. Nodes of social networks usually represent

actors and edges relationships between individuals. In epidemic modelling, relation-

ship links between actors are often channels for the transfer of infection from one

individual to another.

Another type of network, which is less commonly used in epidemic modelling, is the

spatial network. Spatial networks are types of networks where nodes and edges of

the graph are embedded in space [5]. Nodes of the spatial network usually repre-

sent locations and edges have weights or costs corresponding to length or distance

between vertices. The spatial networks are more often used in transportation and
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mobility research area, they can often represent agent mobility based on mobile

phone information or they can be a power grid network representing the size and

development level of cities and connections between cities. When used in epidemic

modelling, spatial networks are frequently recreated using some type of data like

geographical information from maps, power grids or using movement information

gathered from mobile phones usage, transportation routes, etc.

2.3 Modelling of epidemic prevention strategies and their

effect on the spread of disease

Two interesting questions in epidemic modelling are how to prevent or stop disease

spread and what is the effect of different prevention strategies. The answers to these

questions are a particularly useful resource for decision making in the area of public

health. From a modelling perspective, it is important to find optimal strategies

for disease prevention that minimizes the number of infected individuals as well as

does not overload the healthcare system, exceed the public budget, or overly restrict

individual mobility, and economic activity.

Vaccination has been the most popular measure for the prevention of infection spread

in epidemic models. Due to limited resources and often no possibility of vaccinating

the entire population at once, the problem is then to find the best targeted vaccina-

tion strategy that allows to first vaccinate part of the population that is the most

vulnerable or that has the highest potential to spread the disease. The majority

of epidemiology literature relies on network topology for vaccination strategy. For

example, vaccinating nodes with the highest degree [75], vaccinating nodes with the

highest betweenness centrality score [61], vaccinating based on local information and

friendship paradox called acquaintance strategies [43], etc.

Apart from vaccination, which is not always possible due to a long vaccine devel-

opment period, even if vaccines are available there might be budget restrictions or

shortage of vaccines, other disease prevention strategies are explored. Lockdown, so-

cial distancing, quarantine can be used to effectively mitigate, and control infection

spread. Social distancing means reducing physical interactions, maintaining two

meters distance from other people, closing offices, schools, and cancelling all group

gatherings. A lockdown is government enforced closure of non-essential services or
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activities, limiting travelling, and requesting people to stay at home. During a lock-

down, only essential services are provided. Quarantine is the isolation of people that

were exposed to the infection or suspected to be exposed.

3 Methods

Our model encompasses the following elements: location network, actors, social

network, and compartmental model for defining infection stages and transitions

between stages.

The process of constructing this model starts with the location graph, which is gen-

erated to resemble a city. The vertices of the graph represent various city locations,

e.g., workplaces, shops, houses, etc., while the edges of the graph denote the con-

nections between locations. The public places in the location graph are visited more

frequently and by a wider variety of individuals as compared to residential locations.

The difference in traffic is reproduced by having more connections leading to public

places compared to residential areas. Then there are actors or city residents that

occupy these locations. Actors can randomly move to neighboring locations or stay

at the same place in the location graph. Furthermore, we construct a social network,

which represents social links between individuals in the population. The vertices of

the network represent actors and edges mark the social connections between actors.

The last element of this system is the infection and its spread. The epidemic is

modelled using the well-known and widely used SIR model. The model consists of

three compartments: “S” susceptible, individuals who are not infected but could

be infected during contact with a diseased individual; “I” infected, actors who are

sick with the disease; “R” recovered - after some time previously sick actors heal

from the disease and gain immunity to the infection. The classical SIR infection

probability is split into two probabilities. Infection probability 0 < p1 < 1 is used

when actors meet in location graph, however, they are not connected in the social

network. Higher probability 0 < p1 < p2 < 1 is used when actors meet in location

graph, and they are connected in social network. This simulates having a higher

probability of contracting a disease among people that have a social connection.
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3.1 Location graph

In this section we discuss the generation method for location graph. First, we de-

scribe the chosen algorithm, relevant parameters, and assumptions, and then provide

examples of generated location graph.

To generate a location graph, the configuration random graph model was used. The

configuration model provides a way of generating a random graph with specified

vertex degree sequence [4]. Thus, the most important part of the location graph

construction is selecting an appropriate degree sequence.

We generate degrees as realizations of independent and identically distributed ran-

dom variables. To select an appropriate random variable distribution, we look at

literature. In 1913 it was first observed by Auerbach and later refined by Singer and

Zipf that city size distribution follows Zipf’s law [1], i.e., when all cities within a

country are ranked based on their population size, it is observed that the largest city

is twice as big as the second largest, and three times as big as the third largest, etc.

[36]. This relationship is called Zipf’s law and can be expressed as power law (with

exponent between zero and two) or Pareto distribution with shape parameter being

one. Although Zipf’s law is not universal and there are cases when it is violated, for

example, when the number of cities within country is too small like in Singapore, it

is a good empirical rule for sufficiently big data sample that constitutes a whole unit,

i.e. it is sufficiently interconnected and not strongly affected by other neighboring

countries or regions. Also, Jiang et al. [36] observed that Zipf’s law holds not only

for cities within a country but also when comparing countries within continents. If

we assume that Zipf’s law extends to locations within a city in the same way as to

countries within continents then we can argue that location distribution within a

city holds the same Zipf’s law. This allows us to conclude that empirically location

size or degree distribution should follow Zipf’s law or more generally power law.

The degree sequence elements are generated as realizations of independent random

variables having a Pareto distribution. However, Pareto distribution generates non-

integer values or values that are too large for the purpose of degree sequence. Thus,

degree sequence is generated with modifications that ensure that sequence is fit to

be degree sequence.
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Another assumption we make is that real world location network is a connected

graph. However, configuration model can generate graphs that are not connected.

To ensure generated graph connectivity, first, shifted Pareto distribution is used

where minimum generated vertex degree is higher or equal to three, which accord-

ing to Theorem 4.25 (Connectivity of CMn(d)) in [68] ensures graph connectivity

with sufficiently high probability. Secondly, if the generated location graph is discon-

nected, which can happen with probability O(1/n), where n is number of vertices in

the graph, the location graph is re-generated to a maximum of ten times. If after ten

tries the generated graph is disconnected, we take the largest connected component

and use it as a location graph.

The configuration model does not construct simple graphs, i.e., resulting graphs can

have self-loops and multi-edges. These represent a very small share of the graph

edges, and they are redundant in the context of location graph. The self-loops are

equivalent to actors staying in the same vertex of location graph and multi-edges

would translate to higher probability for actor to move to vertex with multi-edge

connection. Hence, we discard them.

Degree sequence generation process:

1. Generating. The degree sequence elements are generated from shifted Pareto

distribution.

Let X be a random variable with Pareto distribution. The cumulative distri-

bution function of X is

FX(x) =


1 − x−a x ≥ 1,

0 x < 1,

and probability density function

fX(x) =


a

xa+1 x ≥ 1,

0 x < 1,

where a is shape and a > 0. Hereinafter, we denote random variable that

follows Pareto distribution as specified above with notation X ∼ Pareto(a).
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Then the degree sequence is generated from the realization of X + 2.

2. Resampling. Since degree of the vertex is defined as the number of adjacent

vertices [41], the degree of any vertex cannot exceed the total number of ver-

tices in the graph. Thus, for undirected graph without loops with n vertices,

the maximum degree of the vertex is n − 1. Any sequence elements exceeding

n − 1 are resampled from the same Pareto distribution.

3. Rounding. Since vertex degree is a natural number, all sequence elements

are rounded to the natural number.

4. Sum is even. The handshaking lemma [41] states that the sum of the de-

grees of the vertices V in a graph G = (V, E) equals twice the number of edges

E, that is ∑v∈V deg(v) = 2|E|. This lemma implies that the sum of degrees

is an even number. Generating sequences from a distribution may result in

sequences where the sum of elements is not an even number. So, this mod-

ification ensures that the sum of sequence elements is an even number. In

cases when the sum is not even, then one is added to the first element of the

sequence (y0 = y0 + 1) and thus making the sum of sequence elements even.

5. Is graphical. The last step is done to assess if the generated sequence is

indeed a vertex degree sequence and there exists a graph that can realize such

degree sequence [27]. Sequences that cannot be realized as a degree sequence

of a graph is called non-graphic and sequences that can be realized is called

graphic. In this step we use Erdős–Gallai theorem 1 (see below) to ensure

that generated sequence is graphical. If the generated sequence fails to be

graphical, a new sequence is generated in its place starting from the first step.

Theorem 1 (Erdős–Gallai theorem [18]) A non-increasing sequence [di]n1 of

non-negative integers is a degree sequence if and only if D = [di]n1 is even and

the inequality
k∑

i=1
di ≤ k(k − 1) +

n∑
i=k+1

min(di, k)

is satisfied for each integer k, 1 ≤ k ≤ n.

Lastly, some examples of generated location graph are showed in the figure below.
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Figure 2: Location graphs with 100 vertices realized using different degree sequences.

It is apparent that lower Pareto parameters result in degree sequences with larger

degree values and thus generating graphs with few strongly interconnected vertices.

Whereas higher Pareto parameters result in most degrees being close to the minimum

value of three, thus resulting in graphs that are less interconnected. In reality,

different a value can represent different density cities, where high density cities

would have a low a value, for example, a = 0.5, and cities with lower density would

have higher a value like 3 or higher.

3.2 Social network

In this section we discuss the generation method for social graph. We describe the

chosen algorithm, relevant parameters, and assumptions.

We construct a social network as a random intersection graph obtained from a

random bipartite graph [8]. The vertices of the underlying bipartite graph can be

divided into set V = {v1, ..., vn}, which contains vertices representing actors, and

set W = {w1, ..., wm}, which contains vertices representing attributes. Attributes

can be understood as common hobbies, common interests, or other activities like

the same place of education, work, etc. that form connections between people.

Actors and attributes are linked with probability based on actors’ activity level and
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attributes attractiveness. Then actors are connected in the social network if they

have at least one hobby, interest, or activity in common.

The following steps describe the process of constructing social network in detail [8]:

1. Constructing a random bipartite graph

A random bipartite graph H = (V, W, Eh) with vertices consisting of n actors

V = {v1, ..., vn} and m attributes W = {w1, ..., wm} is generated with the

following steps.

(a) Generating weight sequences.

For each actor vi ∈ V generate a weight xi > 0 and for each attribute

wj ∈ W generate a weight yj > 0. The weight of an actor represents

its activity level, that is how likely an actor is to participate in many

hobbies, have many interests, and activities. The weight of an attribute

represents the attractiveness of an attribute to actors.

(b) Probability matrix.

The probability to connect actor vi with attribute wj is expressed as

pij = min

(
xiyj√
nm

, 1
)

,

where xi > 0 is weight representing actor activity level, yj > 0 is weight

representing attribute attractiveness, n and m are the number of actors

and attributes.

(c) Connecting actors with attributes.

With previously calculated probabilities we connect actors with attributes

and obtain a realization of random bipartite graph H.

2. Retrieving social network G = (V, E) from bipartite graph H.

The social network G is retrieved from bipartite graph H by connecting all

actors vi and vk that share the same attribute wj in graph H.

It is apparent that the sequences of weights determine the geometry of the social

network. From empirical studies it is observed that connections in the social network

are following the power law. Thus, it is most intuitive to use Pareto distribution
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to generate the weight sequences. However, differently from location graph, we will

not use shifted Pareto distribution, since social network can be both connected and

disconnected graph. Then the actor weight sequence {xn} is generated from realiza-

tions of X ∼ Pareto(α) and attribute weight sequence {ym} from Y ∼ Pareto(β).

Lastly, it is important to use parameters α > 1 and β > 2. Otherwise, generated

social network can have some actors that are connected with all other actors in the

network. This is unwanted graph structure considering that it is not realistic that

few actors have the potential to infect all other actors when modelling epidemic

spread.

Note that lower α and β values result in graph with more edges and higher values

yield fewer connections (see Figure 3 for few examples).

Figure 3: Social network with 50 vertices realized using different α and β values.

3.3 Model simulation

Once all model components are built, we can start simulating epidemic spread in

networks. All model parameters are summarized in the table below.

Category Parameter Description

Location network number of ver-

tices

Number of vertices in a location network.

a Pareto parameter for generating degree se-

quence.

Social network number of

attributes

Number of attributes in an underlying bi-

partite graph.

α Pareto parameter for generating actor

weight sequence.
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β Pareto parameter for generating attribute

weight sequence.

General number of actors Number of actors in the simulation.

initial number of

infected actors

Number of actors that are infected at the

start of the simulation.

Simulation p1 Infection probability for one infected actor

to transmit disease to susceptible actor in

case when actors are not connected in the

social network.

p2 Infection probability for one infected actor

to transmit disease to susceptible actor in

case when actors are connected in the so-

cial network.

tr Time it takes to recover from infection.

Table 1: Model parameters.

Model initialization process:

1. Generate location graph.

2. Generate social graph.

3. For each actor, allocate infection stage and starting vertex in the location

graph. Infected stage is randomly assigned to selected number of actors; the

rest of the actors are assigned to susceptible stage. The starting location is

selected randomly from all vertices in the location graph.

Model simulation process:

1. Spread infection. When infected actors meet susceptible actors in the same

vertex of location graph, infected actors can spread the infection to susceptible

individuals.

Let susceptible actor a in location vertex v meet m1 infected actors that are

not connected in the social network, i.e., they are strangers to actor a, and

m2 infected actors that are connected in the social network, i.e., they are ac-
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quaintances to actor a. Each of m1 actors has the probability p1 to infect a,

while each of m2 actors has the probability p2. We assume that for actor a

each disease transmission event from different infected individuals is indepen-

dent. Then probability for actor a to get infected from m1 strangers and m2

acquaintances is1:

pa := P({actor a gets infected}) = 1 − P({a does not get infected}) =

1 − P({a does not get infected from strangers} ∩ {a does not get

infected from acquaintances}) = 1 − (1 − p1)m1(1 − p2)m2

2. After tr time moments counting from the time of infection, infected actors

recover from infection and move to recovered stage.

3. All actors with equal probabilities move to neighboring vertices or stay at the

current location in the location graph. For example, if actor a is in vertex

v, which has a degree equal to 3 then actor a has 1/4 probability to stay in

the current location and 1/4 probability to move to one of the neighboring

locations.

The simulation process is repeated the desired number of times with each repetition

time moment is increased by one.

The model simulation contains stochastic elements like random movement of actors,

infection events, and even generation of graphs that represent location and social

networks. Thus, the same initial parameters can yield varying simulation outcomes.

To see a full range of model outcome possibilities we will perform Monte Carlo

simulations. Monte Carlo simulations are used as it is not possible to use other

approaches. The process is simple - select model inputs and then simulate the

model with selected inputs many times. This provides an overview of all different

model simulation outcomes and allows to estimate the mean and standard deviation

of the results.

1The probability space here is constructed of all possible infection events for actor a.

17



4 Influence of model parameters

In this section we examine how each model parameter affects epidemic spread dy-

namics and suggest relevant value ranges for each parameter that results in more

realistic simulation outcomes. The model has six relevant parameters, namely in-

fection probabilities p1, p2, time to recovery from infection tr, Pareto parameter a,

which is used to generate degree sequence for location graph, Pareto parameters α

and β, which are used to generate social network. We will measure the following

aspects of the epidemic spread:

• Maximum number of active infection cases (also referred to as the peak of the

infection, maximum active cases, maximum cases), i.e., the largest share of

population that was in infected stage at the same time.

• Total infection cases (also referred to as total cases), i.e., the share of popula-

tion that was infected with disease at any point of time during the simulation.

• Epidemic duration, i.e., the number of time moments from infection spread

start till the last infected actor recovers.

• Basic reproduction number (R0), which describes an expected number of indi-

viduals that get infected directly from one infected actor (secondary infections

are not counted) where all other actors are susceptible to infection.

In the next subsections, we will analyze each parameter according to the four metrics

listed above.

4.1 Location graph

The impact of location graph on simulation outcome is dependent not only on Pareto

parameter a used to generate degree sequence but also on the population density.

We denote the ratio of the number of actors to the number of location graph vertices

as population density d = Nactors

Nlocations
.

The Figure 4 shows the relationship between parameter a used to generate degree

sequence for location graph and epidemic spread with different population densities.
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Figure 4: Relationship between a and epidemic spread with different population densities
d. The remaining parameters are p1 = 0.01, p2 = 0.1, tr = 10, 1000 actors, α = 1.1,
β = 2.1. The curve shows results averaged over Monte Carlo simulations and colored
range displays standard deviation from the mean value.

Higher a values generate degree sequences with smaller degrees, which result in

sparser location graph, which in turn makes it harder for actors to meet in the same

vertex of the graph slowing down the infection spread. With sparser location graphs

the peak of epidemic is smaller and the number of total infection cases is also lower.

The R0 is slightly lower for higher a values.

The population density is not a parameter of the model. However, it has strong

influence over the epidemic spread as low enough density might stop epidemic spread.

This happens because actors rarely meet other actors and have a low chance of

spreading infection when there are too many locations or too few actors. As can be

seen from Figure 4, with d = 10 (which equates to 1000 actors and 100 vertices)

epidemic spreads fast and wide with peak from 30% to 70% and total infection

cases between 70% to 95% depending on a value. Population density lower than 2

significantly slows down the infection spread with peak reaching not more than 25%

of population and up to 60% total cases. The observed dynamic nicely corresponds

to real world dynamics, for example, Covid-19 spread was faster and wider in high

density areas like Hong Kong compared to low density ones [74].

The epidemic duration depends on Pareto parameter a and population density d.

With high population density, epidemic duration is shortest when a value is low.

With lower population density, the relation between a value and epidemic duration

is non-monotonic. The epidemic duration is shortest with very low and very high a

values and peak with a value at around 0.5 to 1.

The population density and location graph degree sequence have a strong impact

on R0 values. The calculation of R0 often depends on the duration of infection
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contagiousness (in our case it corresponds to the parameter tr), the likelihood of

spreading infection (in our model corresponds to p1 and p2 probabilities), and contact

rate between individuals [17]. In our model the contact rate is influenced by the

structure of the location graph and population density d. Hence, different values

of location graph parameter a and population density d greatly affect the basic

reproduction number (R0).

4.2 Social graph parameters α and β

Pareto parameters α and β are used to generate actor and attribute weight se-

quences, which are then used to generate social network.

The Pareto parameter α is used to generate actor weight sequence that represents

actors’ activity level. Lower α values give higher weights and higher α values result in

lower weights, which means that with lower α values actors create more connections

with various attributes and thus have more connections with other actors sharing the

same attribute. With higher α values actors form less connections with attributes

and in turn with other actors. Hence, lower α means more connections in the social

graph and faster and wider spread of the infection. With higher α values both

maximum and total infection cases decrease.

Figure 5: Relationship between α and epidemic spread with different p2 probabilities. The
remaining parameters are p1 = 0.01, tr = 10, 1000 actors, 500 location graph vertices,
a = 1.5, β = 2.1. The curves show results averaged over Monte Carlo simulations and
colored range displays standard deviation from the mean value.

The β parameter has similar effect to α but it applies to the attributes rather than

actors. Likewise lower β values give higher attribute weights making them more

attractive to actors and resulting in more connections between different actors and

attributes. Higher β values result in lower weights and less connections between

actors and attributes. Thus, analogously lower β yields faster spread of infection,
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higher peak values, and more total infection cases. Whereas with higher β values,

infection spread is slower and less actors get infected.

Figure 6: Relationship between β and epidemic spread with different p2 probabilities. The
remaining parameters are p1 = 0.01, tr = 10, 1000 actors, 500 location graph vertices,
a = 1.5, α = 1.1. The curves show results averaged over Monte Carlo simulations and
colored range displays standard deviation from the mean value.

Notice that social network has influence over epidemic spread only when p2 prob-

ability is sufficiently high (see Figures 5 and 6). If p2 is too low and too close to

the value of p1 (in our example when p2 = 0.1) both α and β have no effect or

only a slight effect on selected metrics. Similarly, when p1 = p2 social network is

“turned off” and cannot affect epidemic spread. This is confirmed in Figure 7 where

p2 probability is set to p1. The result is two horizontal lines signifying that social

network (both α and β parameters) have no effect over the simulation outcomes.

Figure 7: Relationship between α and β and epidemic spread when p1 = p2. The remaining
parameters are p1 = 0.01, tr = 10, 1000 actors, 500 location graph vertices, a = 1.5. The
curves show results averaged over Monte Carlo simulations and colored range displays
standard deviation from the mean value.

Lastly, regardless of what other parameters are selected, α and β have only a slight

effect on epidemic duration and no effect on R0.

4.3 Social graph structure

Another question to explore is what the influence of the social network structure on

epidemic spread is. We hypothesize that epidemic spread mainly depends on the
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average degree of the social network, whereas graph structure has weaker influence.

To assess this hypothesis, we use five graphs with the same average degree, i.e.,

the same number of vertices and edges, but different structures. These graphs are

then used as social networks in the model simulation. Then simulation outcomes in

terms of peak (maximum share of active infection cases) and total infection cases

are compared.

The first graph is social network used up till now. It is generated from an underlying

bipartite graph with parameters α and β. The second graph is generated using a

configuration model where degrees are drawn from Pareto distribution with shape a.

This corresponds to the same algorithm that was used for location graph generation.

The third graph is generated using a configuration model but with degree sequence

sampled from the uniform distribution in the interval [l, h). The fourth graph is a

random d-regular graph where all vertices have the same degree d. The last graph is

the Watts–Strogatz graph with parameters k - mean degree and p - the probability of

rewiring each edge. The Watts–Strogatz degree distribution resembles a bell curve.

All five graphs have significantly different degree distributions and global clustering

coefficients (see Figure 8).

Figure 8: Degree distributions for five graphs with 100 average degree, 1000 vertices, 50000
edges. In the top right corner, minimum degree (min), maximum degree (max), and global
clustering coefficient (C), and graph parameters are noted.

The simulation outcomes are summarized in the table below. It can be seen that

when difference between p1 and p2 is smaller, social network has smaller overall influ-

ence on simulation outcomes and thus, social network structure is almost irrelevant

with less than 1% difference in both maximum and total cases for all five graphs.

When difference is larger, social network has stronger effect on simulation outcomes

and hence, there are bigger differences in maximum and total cases between different

graph structures.

Overall, the social network average degree has stronger influence over epidemic
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spread as graph with average degree of 100 yields higher peak and more total infec-

tion cases compared to graphs with lower average degrees (for example, 50, 20, and

10). Although relative increase with higher average degree also depends on selected

p1 and p2 probabilities.

Average

degree

Graph Peak,

p1 = 0.01,

p2 = 0.2

Total,

p1 = 0.01,

p2 = 0.2

Peak,

p1 = 0.1,

p2 = 0.2

Total,

p1 = 0.1,

p2 = 0.2

100 Baseline social network,

α = 1.1, β = 2.2

11.9% 35.8% 59.0% 94.3%

100 Configuration graph

(Pareto), a = 0.001

11.9% 35.7% 58.9% 94.2%

100 Configuration graph

(Uniform), l = 0, h = 230

9.5% 32.1% 58.8% 94.5%

100 Random regular graph,

d = 100

7.6% 27.0% 59.0% 94.5%

100 Watts–Strogatz graph,

k = 100, p = 0.3

7.4% 26.1% 59.0% 94.5%

50 Baseline social network,

α = 1.6, β = 2.1

4.6% 14.1% 56.4% 93.7%

50 Configuration graph

(Pareto), a = 0.19

5.4% 16.5% 56.2% 93.6%

50 Configuration graph

(Uniform), l = 0, h = 110

3.8% 11.8% 56.3% 93.6%

50 Random regular graph,

d = 50

3.4% 10.6% 56.6% 93.8%

50 Watts–Strogatz graph,

k = 50, p = 0.3

3.3% 10.3% 56.4% 93.6%

20 Baseline social network,

α = 2.1, β = 2.3

2.1% 5.1% 56.5% 93.5%

20 Configuration graph

(Pareto), a = 0.5

2.7% 6.9% 56.6% 93.5%

20 Configuration graph

(Uniform), l = 0, h = 43

2.0% 4.6% 56.4% 93.6%
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20 Random regular graph,

d = 20

1.9% 4.5% 56.2% 93.6%

20 Watts–Strogatz graph,

k = 20, p = 0.3

1.8% 4.2% 56.5% 93.6%

10 Baseline social network,

α = 2.8, β = 2.6

1.8% 4.2% 56.2% 93.5%

10 Configuration graph

(Pareto), a = 0.8

1.8% 4.5% 56.0% 93.6%

10 Configuration graph

(Uniform), l = 0, h = 21

1.8% 3.9% 56.3% 93.5%

10 Random regular graph,

d = 10

1.7% 3.7% 56.2% 93.5%

10 Watts–Strogatz graph,

k = 10, p = 0.3

1.8% 4.2% 56.1% 93.4%

Table 2: Comparison between different graph structures and their effect on simulation
results. Columns in table show graph average degree, peak - maximum active cases (%)
with specified p1 and p2 values, total - total cases (%) with specified p1 and p2. Other
simulation parameters are p1 = 0.01, p2 = 0.2, tr = 10, 1000 actors, 500 location graph
vertices, a = 1.5. Simulation results are averaged over Monte Carlo simulations.

Simulation results confirm that social network structure has weaker effect on in-

fection spread compared to the number of edges in the network. That is because

actors walk randomly between vertices in the location graph. If random walk would

be replaced with a more intelligent walking pattern within location graph, then so-

cial network structure would have stronger impact over simulation outcomes. For

example, we could allocate a home vertex to each actor making sure that actors con-

nected in social network get the same or close locations. Then random walk could be

modified by limiting the actor’s traveling distance from the home vertex and adding

some preferential behavior to return to home vertex. This walking pattern would

ensure that connected actors meet more often and spread the infection to friends,

family members, and other connections in social network much more rapidly. With

these modifications the structure of social network would have an integral role in

epidemic spread and simulation outcomes.

24



4.4 Probability p2

The p2 probability corresponds to infection probability for actors that meet in the

same location network vertex and are connected in the social network. The extent of

p2 influence over simulation results depends mostly on the selected social network,

recovery time tr, and probability p1. Denser social networks yield higher epidemic

spread with the same probability p2 and very sparse networks (for example, when

α = 5 and β = 5) can switch off the effect of p2, see Figure 9.

Figure 9: Relationship between p2 and epidemic spread with different α and β. The
remaining parameters are p1 = 0.01, tr = 10, 1000 actors, 500 location graph vertices,
a = 1.5. The curves show results averaged over Monte Carlo simulations and colored
range displays standard deviation from the mean value.

Different sets of tr and p1 values also affect the influence of p2. Figures 10 and 11

show that probability p2 has the strongest effect on the maximum active infection

cases with higher p2 values resulting in rapid increase in the maximum infection

cases. Depending on selected p1 probability, total infection cases significantly in-

crease with higher p2 values or increase only slightly when approaching a maximum

100% of population.

Figure 10: Relationship between p2 and epidemic spread with different p1. The remaining
parameters are tr = 10, 1000 actors, 500 location graph vertices, a = 1.5, α = 1.1, β = 2.1.
The curves show results averaged over Monte Carlo simulations and colored range displays
standard deviation from the mean value.

The epidemic duration is the shortest either with high p2 values or very small values

(see Figures 10 and 11), since higher p2 probability result in faster spread of infection
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and hence shorter total epidemic duration and very low p2 probability result in

infection spreading to small part of population and not spreading further, thus

epidemic rapidly ends due to small share of population quickly getting infected and

recovering.

Figure 11: Relationship between p2 and epidemic spread with different tr. The remaining
parameters are p1 = 0.01, 1000 actors, 500 location graph vertices, a = 1.5, α = 1.1,
β = 2.1. The curves show results averaged over Monte Carlo simulations and colored
range displays standard deviation from the mean value.

The p2 has a slight effect on R0. From Figure 11 it can be seen that R0 is influenced

more by selected recovery time tr than different p2 values.

4.5 Probability p1

The p1 probability corresponds to infection probability for actors that meet in the

same location network vertex and are not connected in the social network. The

influence of probability p1 over the epidemic spread depends on the population

density d and degree sequence of location graph, recovery time tr, and probability

p2. Other model parameters have a coincidental effect over the simulation results.

The effect of p1 with different location graphs is showed in Figure below.

Figure 12: Relationship between p1 probability and epidemic spread with different pop-
ulation densities d and degree sequence parameters a. The remaining parameters are
p2 = 0.1, tr = 10, 1000 actors, α = 1.1, β = 2.1. The curve shows results averaged over
Monte Carlo simulations and colored range displays standard deviation from the mean
value.
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The effect of p1 strongly depends on the selected location graph. Small and dense lo-

cation graphs, for example, when d = 10 and a = 0.75, result in rapid and widespread

epidemic where higher or lower p1 probability can further accelerate or slow down

epidemic spread. Given a dense location graph, the epidemic duration decreases

with higher p1 probability. Big and sparse location graphs, e.g., when d = 1 and

a = 3, have the opposite effect where different p1 values might have only marginal

effect over the peak of infection and total cases due to sparseness and largeness of

the location graph. The epidemic duration is then shortest with lower p1 probability.

Furthermore, the effect of p1 is different with different recovery times tr (see Figure

13). Longer recovery time results in higher peak and more total infection cases

and vice versa. The effect of increasing p1 values result in a monotonic increase

in maximum and total cases. The epidemic duration varies with different recovery

times. Long recovery time yields shortest epidemic duration with high p1 probability.

Whereas short recovery time results in opposite effect where epidemic duration is

the longest with high p1.

Figure 13: Relationship between p1 probability and epidemic spread with different tr.
The remaining parameters are p2 = 0.1, 1000 actors, 500 location graph vertices, a = 1.5,
α = 1.1, β = 2.1. The curve shows results averaged over Monte Carlo simulations and
colored range displays standard deviation from the mean value.

Influence of probability p1 is different with various p2 values. Here similarly to

recovery time, higher p2 and p1 values result in higher maximum and total cases.

Whereas with lower p2 values, the trend is preserved but with lower maximum value

and total infection cases. The epidemic duration has similar non-monotonic trend

for different p2 probabilities. Epidemic duration is the shortest with very low and

high p1 values.
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Figure 14: Relationship between p1 probability and epidemic spread with different p2.
The remaining parameters are tr = 10, 1000 actors, 500 location graph vertices, a = 1.5,
α = 1.1, β = 2.1. The curve shows results averaged over Monte Carlo simulations and
colored range displays standard deviation from the mean value.

All three Figures show that p1 has slight effect on R0. From Figure 13 can be seen

that R0 is influenced more by selected recovery time tr than different p1 values.

4.6 Recovery time tr

The relationship between recovery time tr and selected metrics is shown in the figure

below.

Figure 15: Relationship between tr and epidemic spread with different p1 and p2 proba-
bilities. The remaining parameters are 1000 actors, 500 location graph vertices, a = 1.5,
α = 1.1, β = 2.1. The curves show results averaged over Monte Carlo simulations and
colored range displays standard deviation from the mean value.

It is clear that longer infection period results in larger peak of the infection and

higher share of total infection cases. Similarly, with longer time to recover epidemic

duration increases. Furthermore, recovery time together with population density

has the strongest effect out of all other parameters on the R0 even close to linear

relationship with longer tr resulting in higher R0. This is due to the definition of

R0 - it is a number of susceptible actors one infectious individual can infect during

the contagiousness period [17]. The contagiousness period in our model is tr and

setting different tr value has a direct effect on R0.
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4.7 Parameter value ranges

We would like to choose such parameter values that result in a realistic epidemic

spread. The realistic value range can be determined from empirical data of various

epidemics. For example, in Lithuania the maximum number of active Covid-19

cases between municipalities never surpassed 13% of the population [20]. Similarly,

in the United States maximum number of active cases did not exceed 5% of the

population, for Germany - 5%, France - 10%, Italy - 5% [74]. The Institute for

Health Metrics and Evaluation estimated that 77% of people globally have been

infected with Covid-19 at least once [26].

There is significantly less data on other epidemics in history. The data on the

number of active cases is not available for all other epidemics except for the Covid-

19. However, the total infection cases are estimated for 1918 Spanish flu to be

approximately 33% of the world’s population (500 million people) [48], 2009 swine

flu to around 11 to 21 percent of the global population (700 million to 1.4 billion)

[37].

The R0 can vary significantly between different diseases and estimation methods

[17]. The estimates of R0 for Covid-19 range from 0.4 to 12.58 between different

studies. The overall pooled estimate of R0 was estimated to be 2.66 [19]. For 1918

Spanish flu R0 estimates range from 2.4 to 10.6 [70]. In some settings estimates were

higher, for example, in confined “Devon” sailing boat setting R0 was estimated to

be 17. For 2009 swine flu, it was estimated that R0 is between 1.3 and 2.3 [9]. For

other diseases R0 estimate ranges are influenza 1 − 1.5, smallpox 5 − 6, chickenpox

7 − 12, measles 12 − 18 [19].

We assume that real epidemics do not exceed approximately 20% active cases at

any point of epidemic duration, 80% of total infection cases, and R0 is between 0

and 30. Then we suggest the following value ranges for each parameter:

• The population density should not go below 0.7 as that stops the epidemic

(d > 0.7).

• Pareto parameter a can be chosen from values above 0 (a > 0).

• Pareto parameters α and β should be α > 1 and β > 2 to prevent actors from

29



having connections with all other actors in the social network.

• Recovery time tr should be roughly below 20 to ensure that the peak of the

infection does not exceed 20% (0 < tr < 20).

• Infection probability p1 should approximately range from 0 to 0.1 and be lower

than p2 to not exceed selected thresholds (0 < p1 < 0.1 and p1 ≤ p2).

• Infection probability p2 should roughly go up to 0.5 to make sure that the

peak of the infection is within the desired range (p1 ≤ p2 < 0.5).

Using some combinations of parameters from the suggested range might still result

in peculiar epidemic spread outcomes. Thus, parameters have to be reviewed and

adjusted according to generated location and social graphs to get meaningful results.

5 Epidemic control

In this section we look at various epidemic control measures and their effectiveness.

The effectiveness of epidemic control is measured against baseline scenario when

disease is spread without any controls. The relevant metrics to compare are the size

of infection peak and total infection cases.

5.1 Lockdown

One way to control the spread of disease is enforcing a lockdown, which restricts

movement within communities, cities, or countries. Lockdown effect can be achieved

by removing edges from the location graph. The removal of edges ensures that

actors can no longer use those edges to move between vertices, thus limiting actors’

movements.

We have implemented three methods to remove edges from location graph: random,

from hubs, and based on edge betweenness centrality. Random removal of edges

represents closure of randomly selected roads and pathways. This is a simple and

straightforward approach that does not require any information about the location

graph or disease spread. Removal of edges from hubs means that edges are removed

from 10% of vertices with highest degrees2. This approach corresponds to closure
2If 10% of vertices with highest degrees do not have sufficient number of edges then more
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of roads and pathways from strongly interconnected locations like city center, work-

places, etc. Lastly, removal based on edge betweenness centrality means that edges

with highest betweenness centrality are removed first, which represent the closure

of roads and pathways that are frequently used for travel like highways or arterial

roads. Here betweenness centrality score for the edge e ∈ E is calculated as the sum

of the fraction of all-pairs shortest paths that pass through e [10]:

cB(e) =
∑

s,t∈V

σ(s, t|e)
σ(s, t) ,

where V is the set of vertices, E is the set of edges, σ(s, t) is the number of shortest

(s, t)-paths, and σ(s, t|e) is the number of those paths passing through edge e.

Figure 16: Simulated number of infected actors with and without lockdown control mea-
sures. The vertical line marks when lockdown was started. All lockdown approaches
remove 10% of location graph edges. Model parameters are p1 = 0.01, p2 = 0.1, tr = 10,
1000 actors, 500 location graph vertices, a = 1.5, α = 1.1, β = 2.1.

Figure 16 shows one realization example of a lockdown implementation. First, in-

fection is spread without any controls until number of infected individuals reach a

selected 2% threshold marked by vertical line. Then three different lockdown ap-

proaches are implemented. The baseline shows the continuation of epidemic spread

without any controls, whereas blue, orange, and green lines show epidemic spread af-

ter randomly removing edges, removing edges from hubs, and removing edges based

on edge betweenness centrality.

The overall effect of lockdown is showed in Figure 17. The baseline shows maxi-

mum infected actors and total infected actors when epidemic is spread without any

controls. Three other curves show the three lockdown approaches. The effect of ran-

domly removing location graph edges is twofold: removing less than approximately

30% of edges has almost no effect on simulation results as we can observe only mi-

vertices are added to remove selected number of edges.
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Figure 17: Relationship between lockdown and epidemic spread metrics. Model param-
eters are p1 = 0.01, p2 = 0.1, tr = 10, 1000 actors, 500 location graph vertices, a = 1.5,
α = 1.1, β = 2.1.

nor decrease or increase of infection spread, which is within standard deviation of

the simulation results. Only when more than 30% of edges are removed epidemic

starts to slow down. The second approach of removing edges from hubs is much

more efficient as epidemic spread slows down after removing as few as 5% of edges.

The third approach of removing edges based on betweenness centrality is the most

efficient as the epidemic spread declines after removing only 1% of edges.

The effect on maximum active cases is not straightforward for edge removal from

hubs and betweenness centrality approaches. The initial decrease in maximum value

is followed by a minor increase and then stabilization at a general 51% level. This is

a consequence of removing sufficient number of edges to divide location graph into

smaller disconnected subgraphs. Actors that are in these subgraphs can no longer

leave it, hence, disease spread is slightly accelerated in these “islands”.

5.2 Social distancing

Social distancing is another infection spread prevention strategy. The World Health

Organization (WHO) defines social distancing as keeping physical distance between

people and avoiding gathering in large groups. Some examples of social distancing

are keeping 1- or 2-meter distance between people, temporary closure of schools,

workplaces, cancellation of festivals, sports events, etc. [73].

Similarly to lockdown, social distancing can be implemented by removing contacts

between actors in the social network. The naive approach is to remove random edges

from the social network. Removing edges from the social network means that people
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are keeping distance from one another, hence, instead of having higher likelihood

(p2) to get infected from sick friends, family members or coworkers, they have a

lower probability (p1) to get infected.

Another implementation is removal of random attributes from the underlying bi-

partite graph. This approach also results in a reduction of contacts or edges in the

social network. Contacts are removed not randomly but between actors that share

the same removed attribute. In reality, removing attributes corresponds to closure

of some common activities like schools, workplaces, sport clubs, and others.

We can also apply previous edge removal strategies like removing edges from hubs

and removing edges based on edge betweenness centrality. However, these strategies

do not have an intuitive interpretation for the social network.

Figure 18: Relationship between social distancing and epidemic spread metrics. Model
parameters are p1 = 0.01, p2 = 0.1, tr = 10, 1000 actors, 500 location graph vertices,
a = 1.5, α = 1.1, β = 2.1.

All four approaches have the same size effect for peak and total infection cases.

That is because the number of edges in social network has stronger influence for

disease spread compared to graph degree distribution. Hence, different edge removal

strategies have the same effect as long as the same number of edges is removed.

5.3 General preventative measures

We understand the general preventative measures as a collection of personal pro-

tective measures and environmental measures. Personal protective measures are

washing or sanitizing hands, wearing face masks, covering mouth when coughing or

sneezing. Environmental measures are cleaning and disinfecting surfaces and objects,
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ventilating rooms, etc. A collection of these preventative measures is implemented as

scaling of infection probabilities, that is, following personal and environmental rec-

ommendations reduces both likelihoods to get infected from strangers (probability

p1) and from family members, friends, coworkers, etc. (probability p2).

Figure 19 shows the effect of scaling infection probabilities. It can be observed that

scaling probabilities is a very effective way to reduce epidemic spread. Reducing

both p1 and p2 by 10% (equivalent to 0.9 factor) reduces peak from 8.6% to 7.5%

and total cases from 24% to 21%.

Figure 19: Relationship between general preventative measures and epidemic spread met-
rics. Model parameters are p1 = 0.01, p2 = 0.1, tr = 10, 1000 actors, 500 location graph
vertices, a = 1.5, α = 1.1, β = 2.1.

5.4 Vaccination

Vaccination has been the most popular measure for the prevention of infection

spread. It is important to analyze the effect of vaccination on epidemic spread and

identification of individuals that should be vaccinated first due to the high potential

of disease spread.

Vaccination is implemented as an additional disease stage. Susceptible actors can

be vaccinated and gain immunity to infection. After vaccination susceptible actors

move to vaccination stage V and cannot be infected for the rest of the epidemic

duration. The transitions between infection stages are showed in the figure below.
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Figure 20: Diagram of susceptible, infectious, vaccinated, and recovered compartments of
the model and the interactions of these compartments.

We explore the most popular vaccination strategies found in literature: random

actors, highest degree actors, highest betweenness centrality actors. The simplest

and naive approach is to vaccinate randomly selected individuals. The highest de-

gree actor’s strategy means vaccinating individuals with the highest degree in the

social network, which corresponds to actors with the highest number of connections

in the population. The highest betweenness centrality actor vaccination strategy

means vaccinating individuals in order from the highest to lowest vertex between-

ness centrality, which corresponds to vaccinating first actors that are like bridges

in the social network. Betweenness centrality for vertex v ∈ V is calculated in the

following way [10]:

cB(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t) ,

where V is the set of vertices, σ(s, t) is the number of shortest (s, t)-paths, and

σ(s, t|v) is the number of those paths passing through vertex v other than s, t.

Figure 21: Relationship between vaccination and epidemic spread metrics. Model param-
eters are p1 = 0.01, p2 = 0.1, tr = 10, 1000 actors, 500 location graph vertices, a = 1.5,
α = 1.1, β = 2.1.

In literature the most effective strategy is vaccinating actors with the highest be-
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tweenness centrality score ([61, 62, 32, 14, 31] as cited in [43]). However, in our

model vaccinating based on the highest degree and the highest betweenness cen-

trality has the same effect because of the difference between the model structures.

Articles often describe models with one network, where individuals are represented

as nodes in a network, and the edges between the nodes represent the contacts along

which an infection can spread. Since our model works differently, betweenness cen-

trality approach is equivalently effective as the highest degree owing to the fact that

vertices with the highest betweenness centrality are the ones with the highest num-

ber of shortest paths passing through them. This often coincides with the vertices

with the highest degrees as they tend to have many shortest paths passing through

them.

5.5 Comparison of control measures

In literature [21, 29, 52, 57, 58], comparison metrics for disease control measures are

often model specific. Thus, to compare the efficiency of different control measures

used in our model, we define a simple metric (inspired by statistical measures that

compare areas under curves [64, 65]):

e = 1 −
∑n

i=1 c(xi)
bn

(
≈ B − C

B

)
,

where n is the number of data points in the measuring sample, c(xi) control measure

outcome with control intensity xi, and b is baseline simulation outcome. Metric e is

roughly equal to ratio of difference between area under baseline curve (B) and area

under the control measure outcome curve (C) to area under baseline curve (B).

Metric e represents the average efficiency of the control measure taking into account

the intensity of control. For example, lockdown might achieve the same control

efficiency as vaccination, however, it might require stronger control of movement

compared to the share of actors that need to be vaccinated to achieve the same

epidemic slow down effect.

Table 3 shows all epidemic control measures compared by metric e. For a reduction of

epidemic peak, the most efficient approach is scaling infection probabilities followed

by vaccination with betweenness centrality strategy. For reducing total infection
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Control measure Approach e for
maximum

e for
total

Lockdown random 0.166 0.200
Lockdown from hubs 0.338 0.515
Lockdown betweenness centrality 0.374 0.595
Social distancing random 0.321 0.381
Social distancing from hubs 0.340 0.402
Social distancing betweenness centrality 0.327 0.385
Social distancing attributes 0.328 0.396
General preventative
measures

scale factor 0.495 0.602

Vaccination random 0.366 0.454
Vaccination degrees 0.434 0.546
Vaccination betweenness centrality 0.446 0.554

Table 3: Comparison of epidemic control measures. Column “e for maximum” means that
calculation of e was applied to the maximum number of active infection cases, and “e for
total” means that calculation of e was applied to the total infection cases.

cases, the best control is also scaling of probabilities followed by lockdown with

betweenness centrality strategy. Overall, the most efficient control strategy is scaling

of infection probabilities followed by vaccination and lockdown. The least effective

strategy is social distancing.

In general, the comparisons above are only theoretical. In a real-world epidemic

scenario analysis to compare different disease control measures a comparable cost

metric must be assigned to each of them. For example, reducing p1 by 10% would

cost much less than closing 10% of roads or vice versa. This introduces additional

complexity and requires more data; thus, it was not feasible to do in the context of

this thesis.

6 Comparison with the classical SIR model

In this section we compare our epidemic model with location and social networks

against the classical SIR model characterized by a set of differential equations. For

definition and description of the classical SIR model see subsection 2.1 Compart-

mental models and set of differential equations (1).

The comparison is carried out in the following way. First, we perform Monte Carlo

simulations for the epidemic model with location and social networks. The pro-

portions of susceptible, infected, and recovered individuals are calculated as mean
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values of the Monte Carlo simulations. Then classical SIR model is fit to the out-

come of the model with networks. The parameters are estimated using the least

square method.

Figures 22 and 23 show two examples with comparison between classical and model

with networks for proportion of actors in one of the three infection stages.

Figure 22: Comparison of proportion of susceptible, infected, and recovered individuals in
classical SIR model and simulation-based model with two networks. The parameters used
in model with networks are p1 = 0.01, p2 = 0.2, tr = 14, 1000 actors starting simulation
with 10 infected individuals.

When fitting classical SIR model β was estimated as 0.2109 and γ as 0.1306, which is

equivalent to d = 7.66. The estimated time of infection is roughly half of the selected

length of infection in the network model. It is difficult to compare β estimation

as model with networks has two infection probabilities that have slightly different

interpretation compared to β.

From figures it is visible that the set of differential equations manages to estimate the

number of susceptible and recovered actors adequately. However, it cannot capture

the number of infected individuals. The estimated infection spread speed is slower

than what was simulated with networks as seen from steeper blue curve and flatter

orange curve in Figure 22. Since the numbers of susceptible, infected, and recovered

individuals are connected (in the form N = S(t) + I(t) + R(t)), it is natural that if

classical SIR model cannot capture one of the disease compartments, in this example

infected stage, then it would not fully capture the other compartments.

The second example results are showed in Figure 23 below.
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Figure 23: Comparison of proportion of susceptible, infected, and recovered individuals in
classical SIR model and simulation-based model with two networks. The parameters used
in model with networks are p1 = 0.1, p2 = 0.2, tr = 14, 1000 actors starting simulation
with 10 infected individuals.

Here β was estimated as 0.3897 and γ as 0.0658, which is equivalent to d = 15.21.

The estimated γ is roughly the same as selected length of infection in the network

model. In this example the proportion of susceptible individuals had a perfect

match. Whereas the proportions of infected and recovered actors were matched

inaccurately.

To evaluate the difference between the classical SIR model and our model with

location and social networks we calculate normalized mean absolute error (NMAE).

It is calculated as follows

NMAE =
∑n

t=1 |Sn(t) − Sc(t)|∑n
t=1 Sc(t)

+
∑n

t=1 |In(t) − Ic(t)|∑n
t=1 Ic(t)

+
∑n

t=1 |Rn(t) − Rc(t)|∑n
t=1 Rc(t)

,

where Sn(t), In(t), Rn(t) are number of susceptible, infected, and recovered indi-

viduals at time t in the model with two networks, Sc(t), Ic(t), Rc(t) is number of

susceptible, infected, and recovered individuals at time t in the classical model, n is

the number of time moments. The comparison results are showed in Figure 24.

Figure 24: Comparison between the classical SIR model and simulation-based model with
two networks in terms of NMAE. The NMAE is calculated for different model with net-
works parameter values starting from the left: population density d, location network
parameter a, infection probabilities p1 and p2, social network parameters α and β, and
recovery time tr. The remaining parameters are p1 = 0.01, p2 = 0.1, tr = 10, 1000 actors,
500 location graph vertices, α = 1.1, β = 2.1. The curve shows results averaged over
Monte Carlo simulations and colored range displays standard deviation from the mean
value.

39



Overall, the set of differential equations manages to estimate one stage of infection

quite well, mostly the number of susceptible or recovered individuals. However,

after experimenting with different parameters, it seems that classical model cannot

estimate all three stages of the infection in the same way as model with networks.

This is further confirmed by the calculation of NMAE (see Figure 24), which is

always above 0.3 for different values of model with networks parameters. Higher

NMAE signifies a substantial difference between the number of susceptible, infected,

and recovered individuals resulting from the classical model and model with two

networks. This could be due to the fact that the SIR model characterized by the set

of differential equations assumes homogeneous mixing of the population and thus

creates a simplified view of the infected population. Whereas a model with location

and social networks simulates individual behavior, which results in a more complex

infection spread model.

7 Data fitting

In this section we describe how we fit our epidemic model to Covid-19 data, evaluate

results and compare them against classical model and model with one network.

We obtained Covid-19 data for municipalities in Lithuania from Department of

Statistics of Lithuania [20]. The Covid-19 data contains municipality population

size and daily infection cases. Since SIR compartmental model can only describe

one peak of epidemic, we select period from December 2021 to May 2022 that cap-

tures the highest peak of Covid-19 epidemic spread in Lithuania. We select two

city municipalities - Vilnius and Šiauliai that visually have different disease spread

dynamics. Other cities had very similar trends to the selected ones, for example,

Kaunas had very similar trend to Vilnius, Klaipėda to Šiauliai etc.

The model parameters are estimated using the simplicial homology global opti-

mization (shgo) algorithm with bounds. The shgo algorithm is a general-purpose

optimization algorithm and it is suitable for any general class of low dimensional

optimization problems [22]. It is the most applicable to global and derivative free

optimization problems, especially science and engineering problems that are based

on simulations or have a complex model structure. The algorithm requires only a

black-box function input with an option to provide bounds, symmetry, or gradients.
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It works best for problems with ten or fewer variables. This optimization algorithm

is suitable for our model, since it is simulation based with quite a complex structure.

In addition, we provide bounds to ensure that infection probabilities p1 and p2 are

in the range (0, 1).

For objective function we use the normalized mean squared error (NMSE):

NMSE =
∑n

i=1(yi − ŷi)2∑n
i=1 ŷi

2 ,

where yi is observed value at time i, i.e., Covid-19 data, ŷi is predicted value at time

i, n is the number of time moments in the dataset.

We will compare model fit against model with one network and classical SIR model.

For model with one network, we modify our model with two networks by removing

social network and only keeping location network. The model with one network is

fit to data in the same way as our model with two networks. The classical model is

the SIR model defined by a set of differential equations described in subsection 2.1

Compartmental models and equations (1). The classical SIR model is fit using the

Nelder-Mead algorithm and the same NMSE objective function.

Real Covid-19 data includes some epidemic control measures that are not taken into

account in all three models. Hence, all data fitting results could be improved by

introducing some epidemic control measures from section 5 Epidemic control. This

would improve model precision but also would introduce additional complexity and

require further parameter estimation.

To compare model fit we use previously described normalized mean squared error

(NMSE), normalized mean absolute error (NMAE), bias, and maximum number of

active infection cases (peak of the infection), i.e., the largest share of population

that was in infected stage at the same time. The NMSE is widely used for model

fitting and machine learning algorithms [69]. NMAE is another widely used measure.

The difference between the two is that NMSE gives more importance to the most

significant errors and hence it is more sensitive to outliers in the data, whereas

NMAE gives the same importance to all errors. Thus, one big error can significantly

deteriorate NMSE, whereas NMAE can be unaffected. We have also considered using

mean absolute percentage error (MAPE), but it promotes very low estimation values
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leading to consistent model underestimation.

We calculate NMAE and bias as follows:

NMAE =
∑n

i=1 |yi − ŷi|∑n
i=1 ŷi

,

bias = 1
n

n∑
i=1

(yi − ŷi),

where yi is observed value at time i, i.e., Covid-19 data, ŷi is predicted value at time

i, n is the number of time moments in the dataset.

7.1 Vilnius

Figure 25: Model fitting to Covid-19 data for Vilnius city municipality. Blue curve - model
with location and social graphs, orange curve - model with only location graph, green curve
- the classical SIR model, red dots - Covid-19 data. The colored range displays standard
deviation.

Classical model Model with one network Model with two networks

β γ p1 tr p1 p2 tr

0.1698 0.1001 0.225 13 0.15 0.2996 13

Table 4: Estimated parameters.
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Model NMSE NMAE bias peak

Covid-19 data – – – 12.1%

Classical model 0.021 0.148 -2.955 10.7%

Model with one network 0.048 0.196 -5.981 11.1%

Model with two networks 0.014 0.120 -2.286 11.8%

Table 5: Model fit evaluation. NMSE is normalized mean squared error, NMAE - nor-
malized mean absolute error, bias - the average error, peak - maximum number of active
infection cases, i.e., the largest share of population that was in infected stage at the same
time.

Figure 25 shows the results of proposed model with location and social networks,

model with location network, and a classical SIR model, compared with the real

data. Table 4 shows estimated parameters for all three models and Table 5 shows

model fit measures.

Interestingly, all three models had similar estimated infection periods. Both models

with networks had 13 days recovery time and classical SIR model had 10 days period

(d = 1/γ). In model with only location network infection probability p1 is naturally

estimated at higher level than p1 probability in model with two networks. This

accounts for the removal of social network and possibility to be infected with the

higher probability p2. Classical model infection transmission parameter β cannot be

directly compared to the other infection probabilities.

Model fitting results are quite similar between models. Our model with two networks

has a slightly better fit compared to the other two as it has the lowest NMSE. The

model with one network has the worst fit out of the three. Our model with two

networks has the best fit due to the fact that the classical SIR model is not as good

at capturing the peak of infection, whereas model with two networks captures the

highest peak of the epidemic well. The model with one network has the worst fit

in terms of NMSE and NMAE due to overestimation of infection cases in the initial

phase of the epidemic.
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7.2 Šiauliai

Figure 26: Model fitting to Covid-19 data for Šiauliai city municipality. Blue curve - model
with location and social graphs, orange curve - model with only location graph, green curve
- the classical SIR model, red dots - Covid-19 data. The colored range displays standard
deviation.

Classical model Model with one network Model with two networks

β γ p1 tr p1 p2 tr

0.1806 0.1077 0.225 13 0.075 0.3 13

Table 6: Estimated parameters.

Model NMSE NMAE bias peak

Covid-19 data – – – 12.5%

Classical model 0.041 0.192 -7.289 10.3%

Model with one network 0.039 0.182 -15.065 11.9%

Model with two networks 0.034 0.185 -9.247 12.4%

Table 7: Model fit evaluation. NMSE is normalized mean squared error, NMAE - nor-
malized mean absolute error, bias - the average error, peak - maximum number of active
infection cases, i.e., the largest share of population that was in infected stage at the same
time.

Figure 26 shows the comparison between proposed model with location and social

networks, model with location network, classical SIR model and real data. Tables 6

and 7 show the estimated parameters and model fit measures for all three models.
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Similarly to Vilnius case, the recovery time matches, and it is 13 days between model

with two networks and one network. However, the classical model has shorter 9 days

infection period. The p1 probability in model with one network lies in between p1

and p2 values in model with two networks.

The model with location and social networks has slightly better fit based on NMSE.

NMAE is lowest for the model with only location network, meaning that model with

two networks is better at predicting average infected actor proportion, where model

with one network is better at predicting the median infected actor proportion [69].

Like before, the classical model does not capture the peak of the infection and

has a lower peak compared to data. Models with networks capture the peak well.

However, all three models fail to capture the first few months of the epidemic spread

by overshooting the number of infected actors.

To conclude, the new model with two networks is more realistic and manages to cap-

ture real Covid-19 data slightly better than the classical model. It can reflect more

nuanced disease dynamics as compared to the classical SIR model. For example, it

captures the peak of the infection more closely.

8 Conclusions

In this thesis, we have built the location and social networks, defined epidemic model

simulation process, assessed the impact of various model parameters, introduced and

assessed epidemic control measures, compared the new model with the classical SIR

model, and fit the new model to the Covid-19 data for Vilnius and Šiauliai city

municipalities.

The new model more closely reflects realistic epidemic characteristics and dynamics.

For example, individuals are connected in the social network if they share common

interests; individuals have a closer contact with their acquaintances and hence, have

a higher chance to infect them. Furthermore, higher population density accelerates

the infection spread resulting in higher peak and increased total cases.

The comparison with classical model and data fitting results show that the epidemic

model with location and social networks is different from epidemic model with one
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network and a classical SIR model defined by a set of differential equations. The

novel approach combining two networks into one epidemic model reflects a more

nuanced epidemic spread that cannot be captured by the classical model or model

with only one network.

Concluding remarks:

1. The model with location and social networks is a more intuitive real-world

representation. Although, some aspects of the model have a higher level of ab-

straction like the selected disease compartments (using susceptible-infectious-

recovered disease stages) or the movement of actors (individuals moving along

the location graph with random walk pattern). Nonetheless, the built model

has sufficient level of detail and complexity to reflect real world epidemic spread

and epidemic control measures.

2. The model simulations are computationally complex, and their outcomes can

have high variance. In section 4 Influence of model parameters we show mean

model simulation results and their standard deviation. It can be seen that for

some of the infection characteristics standard deviation is higher. For example,

the basic reproduction number (R0) and epidemic duration results have higher

variance.

3. The built model is substantially different from the classical SIR model char-

acterized by a set of differential equations. This is because the classical SIR

model is a simple representation of the disease spread in population, while a

model with location and social networks is a more complex representation of

disease spread.

4. For estimating real epidemic data, the model with location and social networks

performs comparatively to the classical SIR model. In our analysis, the model

with two networks showed slightly better fit to Covid-19 data compared to

model with one network and classical model. One of the biggest obstacles

experienced in data fitting was long computation times for simulation-based

model with two networks.

5. The model could be used to study how location and social networks affect and
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interact with disease spread characteristics. Also, it could be used to model

real data and estimate disease progression through time. Lastly, due to model

granularity and complexity, it could be used in scenario analysis. For example,

it could be used when making projections about the disease spread and the

effect of epidemic control measures.

In further study, the model could be improved with the following modifications to

introduce additional dynamics:

1. Create a more complex location graph. One way to do that would be to

improve the generation process of the random graph. For example, categoriz-

ing vertices in the location graph such as homes, supermarkets, workplaces,

schools, social gathering places, etc. The vertex degree should correspond to

the type of vertex, i.e., homes should have lower degrees compared to gath-

ering places, schools, universities, workplaces. Another approach could be to

base the location graph generation on real geographical data. For example,

the location graph could be derived from city road and pathway maps.

2. A more intelligent walking pattern can be implemented. For example, actor

movement can be modified by allocating a home vertex and limiting each

actor’s traveling distance from their home vertex.

3. More infection stages can be added. For example, exposed, infected without

symptoms, quarantined, hospitalized, etc. Especially for modelling communi-

cable diseases, the introduction of the exposed compartment would produce

more realistic results.

4. Actors can be enriched with additional characteristics. For example, actors

can be split by into age groups with differing infection probabilities depending

on the age. Actors could also be categorized based on their behavior, like

careful and reckless individuals.

5. For further research, the tradeoff between complexity of the model that im-

proves model estimation results and computational complexity could be in-

vestigated. The current model is already quite complex and requires a com-

paratively long time to produce results. Further modifications that introduce
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additional complexity would surely exacerbate computational complexity is-

sues.
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