
VILNIUS UNIVERSITY 

FACULTY OF MEDICINE 

DEPARTMENT OF HUMAN AND MEDICAL GENETICS 

INSTITUTE OF BIOMEDICAL SCIENCES 

 

2nd Year Master's Student of Molecular Biotechnology Study Program 

Kristina GRIGAITYTĖ 

 

Inferring Archaic Alleles: Assessing Their Impact on Balancing Selection 

Master Thesis 

Supervisor: 

Faculty of Medicine Institute of Biomedical Sciences  

Department of Human and Medical Genetics 

Dr. Alina URNIKYTĖ 

Signature:  

 

Student: 

Kristina GRIGAITYTĖ 

Signature:  

Vilnius, 2024 



 

CONTENTS 

CONTENTS .................................................................................................................................. 2 

ABBREVIATIONS ...................................................................................................................... 4 

INTRODUCTION ........................................................................................................................ 5 

1. LITERATURE REVIEW ......................................................................................................... 7 

1.1. Mechanisms of evolution…................................................................................................… 7 

1.2. Balancing selection................................................................................................................. 8 

1.2.1. Balancing selection mechanisms .........................................................................................9 

1.2.2. Balancing selection cases .................................................................................................. 10 

1.3. Methods to detect balancing selection.................................................................................. 12 

1.3.1. Tajima’s D test .................................................................................................................. 13 

1.3.2. HKA .................................................................................................................................. 14 

1.3.3. MK .................................................................................................................................... 14 

1.3.4. LD ..................................................................................................................................... 15 

1.4. Balancing selection challenges ............................................................................................ 16 

1.5. ML approaches ..................................................................................................................... 17 

1.6. Archaic sequences ................................................................................................................ 17 

2. MATERIALS AND METHODS ............................................................................................ 18 

2.1. Materials ...............................................................................................................................18 

2.1.1. Subjects.............................................................................................................................. 18 

2.1.2. Data Preparation................................................................................................................. 19 



2.2. Methods ................................................................................................................................ 23 

2.2.1. Data augmentation.........................................................................................................… 23 

2.2.2. Artificial neural networks model training.......................................................................... 25 

2.2.3. Model predictions.............................................................................................................. 29 

2.2.4. Archaic fragments mapping............................................................................................... 29 

2.2.5. Protein functionality analysis............................................................................................. 31 

3. RESULTS ............................................................................................................................... 33 

3.1. Genotype data analysis......................................................................................................... 33 

3.2. Selection type distribution and probability .......................................................................... 34 

3.3. Related protein functionality................................................................................................. 38 

DISCUSSION ............................................................................................................................. 47 

CONCLUSIONS ......................................................................................................................... 51 

SUMMARY ................................................................................................................................ 52 

LITERATURE ............................................................................................................................ 54 

ACKNOWLEDGMENTS .......................................................................................................... 61 

SUPPLEMENTARY MATERIAL...............................................................................................62 

 

 

 

 

 

 



 

ABBREVIATIONS 

ANN - Artificial Neural Networks 

API - Application Programming Interface 

ArchIE - Archaic Introgression Explore 

CNN - Convolutional Neural Networks 

HKA - Hudson-Kreitman-Aguadé  

HLA - Human Leukocyte Antigen 

HIV - Human Immunodeficiency Virus 

IFS - Individual Frequency Spectrum 

JSON - JavaScript Object Notation 

LD - Linkage Disequilibrium 

MHC - Major Histocompatibility Complex 

MK - McDonald-Kreitman 

ML - Machine Learning 

SARS-CoV - Severe Acute Respiratory Syndrome Coronavirus 

SNP - Single Nucleotide Polymorphism 

SFS - Site Frequency Spectrum 

URL - Uniform Resource Locator 

 

 

 

 



 

INTRODUCTION 

In population genetics, the importance of balancing selection as a main factor of evolution has 

been more widely recognized in recent years. However, not as many studies have shown exactly 

how balancing selection impacts recent or ancient human evolution, even though it is predicted 

that short-term balancing selection can be quite common in nature (Olivia L. Johnson, 2023). 

Balancing selection frequently preserves beneficial genetic variations. Studying these variations 

in ancient fragments gives an interesting view of the possible adaptive ways that shaped modern 

human evolution (Sankararaman et al., 2014). This becomes incredibly important when examining 

immune response-related genes and trying to decipher how ancestors adapted to environmental 

challenges and various external factors like pathogens (Abi-Rached et al., 2011).  

Moreover, population-specific research expands the understanding of the genetic makeup in 

specific human groups/populations. This additional knowledge not only contributes to the field of 

genetics, particularly evolutionary genetics, but also holds potential regarding personalized 

medicine and disease resistance related to specific historical regions or even populations (Enard et 

al., 2016). 

Contemporary Lithuanians are one of such target populations. Lithuanians are an outcome of a 

blend of ancient Baltic tribes, contributing to the deep and ancient genetic roots. Due to this 

historical intermingling, it is likely that current Lithuanians retain elements of this ancient genetic 

makeup within their genome (Urnikyte et al., 2019). 

Balancing selection within the recent human evolution of archaic sequences in a population-

specific scope is overall a compelling journey into the complex forces that shape the human species. 

The idea was to search for balancing selection footprints in the Lithuanian population, variants 

that could potentially be researched further on to provide more insights into human adaptability. 

 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0168952523000288
https://www.nature.com/articles/nature12961
https://pubmed.ncbi.nlm.nih.gov/21868630/
https://elifesciences.org/articles/12469
https://elifesciences.org/articles/12469
https://www.nature.com/articles/s41598-019-45746-3


The objective of the research work: 

The objective of the research is to identify ancient balancing selection signatures across 

generations in modern human genomes, employing genetic population statistics and deep learning 

techniques. Answering the question of which variants or proteins potentially indicate that 

balancing selection occurred in ancient times but could continue to influence populations today? 

 

The tasks of the research work: 

1. To parse and transform the genetic data files to appropriate formats for further analysis. 

2. Utilize AI techniques to identify archaic signatures of balancing selection within modern 

human DNA. 

3. Enhance the study by incorporating in silico functional analysis of the found archaic 

balancing selection variants. 

 

 

 

 

 

 

 

 

 

 

 

 

1. LITERATURE REVIEW 



1.1. Mechanisms of evolution 

In populations, genetic diversity is usually maintained over generations, with the frequency of 

different genes remaining fairly stable in the absence of significant external factors. This genetic 

balance can be influenced by several key mechanisms, each with different outcomes: mutations, 

gene flow (or in other words, migration), genetic drift, and natural selection. Like gene flow and 

genetic drift, mutations are random processes. They do not directly increase an organism's 

adaptation to the environment. These mechanisms introduce some level of randomness into the 

genetic makeup of a population and can change gene frequencies in ways that may not favor the 

reproductive success of an organism (K.A.Stewart, 2019). 

In contrast, natural selection is a non-random process that significantly shapes genetic frequencies 

based on how well organisms are adapted to their environments (Oscar Lao, 2021). It is possible 

to predict the impact of natural selection on specific genetic variants, especially when looking at 

alleles that show marked differences from the population's general genetic pattern. These 'outlier 

loci' are striking because they either confer strong benefits or disadvantages upon the organism, 

hence becoming the target of strong selective pressure. The fact that they deviate from the norm 

in the population's genome already proves the intervention of natural selection in retaining or 

eliminating the given genetic variant. In contrast to predictions of regularity in natural selection, it 

acts through a diverse array of mechanisms that can change, reduce, or enhance genetic diversity 

and the distinctiveness of populations and species. Two primary types of natural selection are 

implicated in changing gene allele frequencies - directional selection and balancing selection 

(Angela M. Hancock, 2008) 

It is widely held that directional selection represents the quintessential model of natural selection. 

It favors one allele over its alternatives, significantly increasing its frequency. On the other hand, 

directional selection also involves the suppression of deleterious alleles, hence decreasing their 

frequency to give way to the more favorable alternative. Whether increasing or decreasing an 

allele's frequency, directional selection changes the frequency of alleles by favoring one over the 

other (T. Ryan Gregory, 2009). 

Although genetic variation can be reduced by random genetic drift and directional selection, some 

genetic differences persist for longer periods due to balancing selection, helping to understand how 

human species evolve and adapt to the environment over the years.  

https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-019-1385-4
https://nature.com/articles/s41562-021-01232-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901121/
https://evolution-outreach.biomedcentral.com/articles/10.1007/s12052-009-0128-1


 

1.2. Balancing selection 

Balancing selection (sometimes also referred to as stabilizing selection), was first proposed by 

Dobzhansky in 1951. This phenomenon arises when two different genetic variants maintain equal 

frequencies within a population, a state referred to as balanced polymorphism. This implies that 

both genetic forms could be advantageous (William E. Gundling Jr., 2023) (Figure 1.2.1.). 

Maintaining a genetic variation is achieved through the compensation of stochastic elimination or 

fixation of one allele due to genetic drift, thanks to balancing selection (Alber Aqil, 2023). 

 

Figure 1.2.1. A graphical outline of balancing selection indicators includes a. The ancestral 

lineages of genetic locations in a state of neutrality (left) and under the influence of balancing 

selection (right). The red star marks the emergence of a favored mutation within the lineage. b. 

The distribution of allele frequencies at each site when neutral (left) and affected by balancing 

selection (right), with the latter condition often leading to a higher proportion of alleles at moderate 

frequencies (third and fourth bar) (Deborah Charlesworth, 2006) 

 

1.2.1. Balancing selection mechanisms 

https://www.frontiersin.org/articles/10.3389/fcell.2023.1125972/full#B19
https://elifesciences.org/articles/79111#bib26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449905/


There are two main mechanisms for balancing selection that ensure the maintenance of genetic 

diversity within populations or a group. One of the mechanisms is referred to as heterozygote 

advantage (or overdominant selection), where individuals with two different alleles of a given gene, 

heterozygotes, show greater fitness as opposed to both homozygote types (Charlesworth, 2006). 

This superiority can be due to their resistance to diseases or even their adaptability to 

environmental changes (Hedrick, 2011). In such a situation, the relative frequency of an allele in 

a population is an indicator of fitness. The rare alleles are favored, and the frequency thus increases 

to reach a stable point (Hartl and Clark, 2007). At this point, the relative fitness of each genotype, 

including the reproductive success and survival rate of all the individuals carrying the different 

combinations of alleles, determines the equilibrium frequency of that allele. For example, if the 

heterozygotes have more fitness than either type of homozygote, then the frequency of each of the 

alleles would get to an equilibrium, which is usually about 50% (Fisher, 1930). However, for the 

maintenance of genetic diversity, it must lie within a range of, say, 20% to 80%. Beyond that range, 

it may result in genetic drift (Takahata and Nei, 1990; Ewens and Thomson, 1970). 

The second mechanism of negative frequency-dependent selection is the process by which a rare 

allele is favored, hence increasing in frequency until it reaches equilibrium or experiences negative 

selection. This mechanism plays a crucial role in maintaining diversity within a population (Mark 

R. Christie, 2023). 

Apart from the above two factors, another major factor is spatiotemporally varying selection. This 

phenomenon takes place when the benefit of a particular gene variant is dependent on the 

environment and period. A gene variant could be helpful in one scenario or under specific 

environmental conditions but harmful in other scenarios. This constant change retains the 

significance and usefulness of different gene variants for a wide range of setups and times and 

serves as a prominent factor in maintaining genetic diversity  (Bell, 2010). 

Besides, balancing selection acts on a variety of timescales, running from very long-term selection, 

influencing distinct species to short-term, acting only within a population. The duration of the 

selection has a direct effect on the genomic signature produced (Fijarczyk and Babik, 2015). In 

this way, we can realize the fine patterns and processes that support the maintenance of genetic 

diversity. 

 

https://pubmed.ncbi.nlm.nih.gov/16683038/
https://pubmed.ncbi.nlm.nih.gov/21427751/
https://www.researchgate.net/publication/250180913_Principles_of_Population_Genetics_D_L_Hartl_A_G_Clark_2007_Principles_of_Population_Genetics_4th_Edition_Sinauer_Associates_xv_628_185_24_cm_hardcover_US9395_ISBN_978-0-878-93308-2
https://psycnet.apa.org/record/1930-04698-000
https://pubmed.ncbi.nlm.nih.gov/2323559/
https://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1970.tb01663.x
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.10327
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.10327
https://royalsocietypublishing.org/doi/10.1098/rstb.2009.0150
https://pubmed.ncbi.nlm.nih.gov/25943689/


1.2.2. Balancing selection cases 

In contrast to positive and negative selection, well-established instances of balancing selection are 

less common (Charlesworth and Charlesworth, 2017). In humans, balancing selection plays a 

crucial role in diversifying genes related to metabolism (Matteo Fumagalli, 2019), among other 

biological functions (Barbra D Bitarello, 2018). Significantly, it has been discovered that variants 

influenced by pathogen-driven balancing selection are linked to increased risk for various 

autoimmune diseases (Matteo Fumagalli, 2011). Consequently, by deciphering the genomic 

indicators of balancing selection, we can pinpoint prevalent alleles that have crucial functional 

impacts. 

The heterozygote advantage linked with sickle cell anemia in African populations serves as a 

powerful illustration of genetic traits impacting disease resistance. Sickle cell anemia arises from 

recessive alleles of the hemoglobin gene, necessitating two copies of the ‘diseased’ allele for 

severe symptoms. While typically deleterious, in malaria-prevalent African regions, carriers of one 

sickle cell allele (HbS allele, rs334) demonstrate resistance to malaria, as the parasites find it 

difficult to infect the altered shape of red blood cells. This heterozygote advantage means 

individuals with one normal hemoglobin allele (HbA) and one sickle cell allele (HbS) have 

increased survival rates in areas with high malaria incidence. The hemoglobin-β locus is crucial, 

where homozygous individuals for the sickle cell allele (rs334) experience sickle cell anemia, 

those homozygous for the normal allele are more vulnerable to malaria, and heterozygotes exhibit 

resistance to malaria with a milder sickle-cell condition (Malaria Genomic Epidemiology Network, 

2015, Luzzatto, 2012; Aidoo et al., 2002). This phenomenon provides a clear example of how 

genetic diversity can confer survival advantages in specific environmental contexts. 

One more fitting example is the major histocompatibility complex. The Major Histocompatibility 

Complex (MHC), known for its dense concentration of transspecies polymorphisms (trans-SNPs, 

ancient genetic variations maintained across distinct species over extended periods), exemplifies 

the concept of balancing selection in genetic studies. In-depth research into these polymorphisms, 

like the well-documented HLA-B*57:01 allele (rs2395029) associated with human 

immunodeficiency virus (HIV) control but also with hypersensitivity to certain drugs, reveals that 

individuals heterozygous for certain MHC genes tend to have a more robust immune response 

without triggering excessive inflammation. This balance between effective pathogen defense and 

controlled inflammatory response highlights the critical role of genetic diversity within the MHC 

https://elifesciences.org/articles/79111#bib16
https://pubmed.ncbi.nlm.nih.gov/31159924/
https://academic.oup.com/gbe/article/10/3/939/4938688
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002355
https://pubmed.ncbi.nlm.nih.gov/26416757/
https://pubmed.ncbi.nlm.nih.gov/26416757/
https://pubmed.ncbi.nlm.nih.gov/23170194/
https://pubmed.ncbi.nlm.nih.gov/11965279/


in shaping adaptive immunity. The enduring presence of these alleles, such as those found within 

the HLA region on chromosome 6, underscores their evolutionary significance in maintaining 

health and combating a wide range of pathogens, reflecting a delicate equilibrium between immune 

efficiency and overactivity (Azevedo et al., 2015, Leffler et al., 2013). Chromosome 6 of 

Lithuanian whole-genome sequencing data contains Neanderthal introgressed selection fragments 

with HLA genes, which are important for acquired immunity, including HLA-A, HLA-B, HLA-C, 

HLA-DRB1, and HLA-DQA1. Many genes were identified that are connected to innate immunity, 

including REG3G, MAPK10, PHACTR2, HLA-A, HLA-B, HLA-C, HLA-DQB1, IL17A, IL17F, 

DLC1, MMP20, CLEC7A, CDH1, and TOM1. Nonsynonymous variants were detected in the 

particularly important immunity genes HLA-A, HLA-B, and HLA-C. Using gene ontology analysis, 

further investigation demonstrated that these genes are involved in a series of pathways due to 

infections, including HIV, Listeria monocytogenes entry, and SARS-CoV-2 interactions. The 

pathogen–host interaction database PHILM2Web revealed associations between specific human 

immune-related genes such as HLA-G, HLA-DQB1, HLA-B, and HLA-DRB1, and pathogens like 

human papillomavirus, HIV, and unidentified influenza viruses (Alina Urnikytė, 2023). 

As research continues in this field, it is becoming increasingly clear that the history of the human 

species is deeply intertwined with the genetic complexities of the human immune system, a 

testament to the power of natural selection and genetic diversity. Selection events, particularly 

pronounced during infectious disease outbreaks, tend to imprint distinct markers within the human 

genome.  

 

1.3. Methods to detect balancing selection 

In the field of genetics, genetic signatures of recent balancing selection are like those of recent 

positive selection (Ulas Isildak, 2020). This becomes clear when noting that beneficial alleles 

typically exist at intermediate frequencies in contemporary genomes (Deborah Charlesworth, 

2006). Such frequencies are neither exceedingly rare nor overly common. In balancing selection, 

this equilibrium is essential for maintaining genetic diversity, whereas in positive selection, it 

signifies a transitional phase where a beneficial allele is gradually becoming more prevalent. 

Understanding the precise evolutionary mechanisms behind balancing selection, like 

https://humgenomics.biomedcentral.com/articles/10.1186/s40246-015-0043-1
https://pubmed.ncbi.nlm.nih.gov/23413192/
https://www.sciencedirect.com/science/article/pii/S1567134823001260?via%3Dihub
https://www.biorxiv.org/content/10.1101/2020.07.31.230706v1.full#ref-16
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020064
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020064


overdominance or negative frequency-dependent selection, continues to be a daunting task 

(Violaine Llaurens, 2017). 

While identifying balancing selection theoretically benefits from a more localized genomic impact 

compared to positive selection, thus potentially easing the narrowing of causal variants, the 

situation is actually more complex. Balanced loci in humans that have a clearly defined phenotype 

or identified selective pressure are unexpectedly rare, highlighting a substantial gap in our 

comprehension of human evolutionary genetics. To accurately identify genome regions under 

balancing selection, researchers use a range of statistical tools from population genetics, which are 

helpful in detecting signs of balancing selection (Table 1.3.1.). 

 

Table 1.3.1. Tools/tests for detecting balancing selection (Anna Fijarcczyk, 2015) 

Timescale Test Pattern 

Intermediate, ancient HK, BALLET, Tajima’s D, 

Allele frequency spectrum, 

McDonald Kreitman test 

Increased diversity around 

selected locus, excess of 

common polymorphisms 

Recent, intermediate Fst outliers Genetic differentiation 

between populations 

Recent Long range haplotype test, 

integrated extended 

haplotype homozygosity 

LD 

 

1.3.1. Tajima’s D Test 

One of the main tools in the study of balancing selection is Tajima's D, a statistical test introduced 

by Tajima in 1989 (Tajima, 1989). This test is normally applied to identify anomalies in the 

frequency of polymorphisms by comparison of two critical measures: π and θw. Tajima's D 

measures deviations in the site frequency spectrum from the expectations under neutral 

https://onlinelibrary.wiley.com/doi/full/10.1111/mec.14051
https://onlinelibrary.wiley.com/doi/10.1111/mec.13226
https://academic.oup.com/genetics/article/123/3/585/5998755?login=false


evolutionary conditions. A positive Tajima's D, therefore, indicates an excess of alleles at 

intermediate frequencies - something not expected to be seen by the neutral model of evolution.  

On the contrary, a neutral model would normally cause a Tajima's D value to be close to zero. The 

deviation is a significant indicator of balancing selection, characterized by higher genetic diversity 

than expected at the selected locus and a prominent presence of polymorphisms occurring at 

intermediate frequencies  (Joanne R. Chapman, 2019) 

In this regard, Tajima's, and the related statistics, π and θw, are indispensable instruments in the 

detection and characterization of balancing selection within genomes.  

 

1.3.2. HKA 

The Hudson-Kreitman-Aguade (HKA) test is one of the basic methods in evolutionary genetics, 

introduced by Hudson and colleagues in 1987 (Stephen I. Wright, 2004).  

It contrasts the level of genetic variation within species with the genetic divergence of interspecies. 

Neutral variants linked to a site under balancing selection are maintained within a population, 

leading to increased diversity around a target of interest. The Hudson–Kreitman–Aguade test can 

detect this pattern in specific genes or flag selection signatures in a gene group. In genomic surveys, 

in the absence of prior information, a π/d ratio, within-species diversity to between-species 

divergence, can be calculated for each locus. Loci that are significant outliers from the expected 

range or an appropriate null model may be inferred as under-selection (Thomas, 2012). 

The neutral theory predicts a constant relation of polymorphism to divergence in genomic regions. 

However, balancing selection disrupts this balance by causing increased polymorphism in a 

species compared to divergence between species, especially in contrast to other parts of the 

genome. This high polymorphism would indicate that genetic variation in populations is being 

actively maintained (Cutter and Payseur, 2013). 

Applying the HKA test, researchers look for significant polymorphism-to-divergence ratio 

variations across different loci. These variations are not merely random occurrences but rather can 

be indicative of evolutionary processes such as balancing selection affecting certain genome 

regions.  

https://academic.oup.com/gbe/article/11/9/2691/5559776
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1448833/
https://onlinelibrary.wiley.com/doi/10.1111/mec.13226#mec13226-bib-0144
https://pubmed.ncbi.nlm.nih.gov/23478346/


 

1.3.3. MK   

In addition, nonsynonymous polymorphisms can effectively bring out balancing selection. One 

such important method in this regard is the test developed by McDonald and Kreitman in 1991, 

often referred to as the MK test (John H. McDonald, 1991). This test is insightful in that it analyzes 

the ratio of nonsynonymous to synonymous variations present in both polymorphism within 

species and divergence among species. 

In the ideal neutrality scenario posited by the neutral theory of evolution, the ratios of 

nonsynonymous to synonymous changes should be similar for both polymorphisms and 

divergence. However, a more frequent occurrence of nonsynonymous polymorphisms within a 

species compared to synonymous ones may strongly suggest balancing selection. The reason for 

this is simple: balancing selection tends to maintain a wide variety of alleles in a population, 

including those that change amino acids. 

Further refinement and validation of the use of the MK test in detecting balancing selection by 

recent studies (Vitti et al., 2013; Fijarczyk and Babik 2015) have deepened the understanding of 

the way the MK test can be applied to discrimination of subtle but significant signals of balancing 

selection in the genetic data. 

 

1.3.4. LD 

As noted, the detection of recent balancing selection is problematic because it generates patterns 

indistinguishable from those expected under positive selection. This results in heightened linkage 

disequilibrium near the selected locus and reduced population differentiation, which resembles 

what would be observed in cases of incomplete sweeps. In this respect, linkage disequilibrium 

(LD)-based methods can be utilized for detection. In such polymorphisms, LD will be found 

around the selective site, meaning that alleles in haplotypes are non-randomly associated, and 

haplotypes tend to cluster by allele type rather than by population or species. However, this 

signature is like that of an incomplete sweep and is, therefore, difficult to separate between the 

signal of balancing selection. Allele beneficial in fitness is increasing in frequency due to positive 

selection but has not yet become universal in the population and is considered under incomplete 

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004561#pgen.1004561-Hudson1
https://www.nature.com/articles/354116a0
https://pubmed.ncbi.nlm.nih.gov/24274750/
https://pubmed.ncbi.nlm.nih.gov/25943689/


sweep. The allele is therefore favored and under selection, but the process has not been fully 

completed (Hermisson and Pennings, 2005).  

These phenomena often overlap in occurrence. For instance, a genetic variant may first experience 

a partial selective sweep because of an increase in the selective benefit it confers. Then, through 

changes in environmental or population factors, the same genetic variant may be subject to 

balancing selection thereafter, which maintains it at a particular frequency instead of letting it 

sweep. These dynamics will represent the complicated and fluctuating nature of evolution in the 

wild. It is convenient to set up two-time points to detect the hallmarks of very recent balancing 

selection, typically starting from 0.02–0.4 Ne (effective population size) generations ago (Anna 

Fijarczyk, 2015), which unfortunately resemble the hallmarks of recent positive selection, such as 

partial or soft selective sweeps (Hermisson & Pennings, 2005). 

 

1.4. Balancing selection challenges 

The challenges of finding balancing selection using these methods are not perfectly accurate when 

used alone. One way to find potential genes is by using tests that look at different genetic patterns 

expected under balancing selection and combining them (Ochola et al. 2010). 

While Tajima's D and the HKA test are useful, they cannot distinguish selection effects from 

demographic and population structure influences that also produce similar polymorphism patterns. 

Thus, it is vital to construct and use a demographic model as a baseline for comparison (Quach et 

al. 2013). Andrés et al. (2009) exemplified this by analyzing 13,400 human genes with these tests, 

using inferred demographic history as a reference model. They identified genes deviating from 

this model as balancing selection candidates, a method noted for its low false-positive rate. 

Moreover, the effectiveness of these tests is further greatly impacted by high recombination rates, 

which localize selection signatures and complicate detection. 

 

1.5. Machine Learning (ML) Approaches  

The challenges may be addressed by a promising area from the side of supervised machine learning, 

which recently has been introduced to population genetics (Daniel R. Schreder, 2018). ML 

https://pubmed.ncbi.nlm.nih.gov/15716498/
https://onlinelibrary.wiley.com/doi/10.1111/mec.13226
https://onlinelibrary.wiley.com/doi/10.1111/mec.13226
https://pubmed.ncbi.nlm.nih.gov/15716498/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944029/
https://www.researchgate.net/publication/249319796_Different_Selective_Pressures_Shape_the_Evolution_of_Toll-like_Receptors_in_Human_and_African_Great_Ape_Populations
https://www.researchgate.net/publication/249319796_Different_Selective_Pressures_Shape_the_Evolution_of_Toll-like_Receptors_in_Human_and_African_Great_Ape_Populations
https://pubmed.ncbi.nlm.nih.gov/19713326/
https://www.sciencedirect.com/science/article/pii/S0168952517302251


algorithms self-optimize their parameters to improve predictive performance. In contrast to 

classical ML approaches that rely on summary statistics, deep-learning methods can automatically 

learn important data features relevant for prediction during the training process (Yann LeCun, 

2015). 

Recent developments also feature two likelihood-based approaches to identifying ancient 

balancing selection signatures employing simulations (DeGiorgio et al. 2014). The first focuses on 

the spatial distribution of polymorphisms and substitutions around a selective site, while the 

second analyzes allele frequencies flanking a polymorphic site. The effect of balancing selection 

on the genealogy surrounding a selected locus permits even finer-grained analysis. This precision 

is increased using a model of the genealogical process under balancing selection (Kaplan NL, 

1988). Composite likelihood approaches are specifically useful in the analysis of genetic variation 

data with complex models of population genetics, providing estimates for complex models without 

the need to explicitly calculate full likelihoods. 

 

1.6. Archaic Sequences 

Detection of archaic genetic fragments within modern human DNA could be quite a challenging 

task due to the rarity of intact archaic DNA and the difficulty in distinguishing haplotypes that are 

distinctly different from already known archaic genomes. New statistical methods, including 

ArchIE, enable the detection of archaic DNA segments without comparison to known archaic 

DNA (Durvasula and Sankararaman, 2019). These methods allow for the extension of human 

evolutionary history insights  (Sankararaman, 2020). 

ArchIE, which is short for ARCHaic Introgression Explorer, uses genetic population statistics 

within a logistic regression framework to detect archaic DNA segments without directly 

comparing them to known archaic sequences. It represents the allele frequency using the individual 

frequency spectrum (IFS) then calculates the Euclidean distance between haplotypes while 

implementing statistics, such as mean, variance, and skewness/kurtosis. The main attribute used 

in this study is the minimum Euclidean distance between the target haplotype and any other 

haplotype in the reference group (measuring how likely it is to have experienced introgression). 

The model also considers the number of unique single nucleotide polymorphisms (SNP) in the 

haplotype, ignoring those shared with the reference group. Furthermore, it employs the S statistic, 

https://www.researchgate.net/publication/277411157_Deep_Learning
https://www.researchgate.net/publication/277411157_Deep_Learning
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004561
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1203559/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1203559/
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008175
https://www.science.org/doi/10.1126/sciadv.aax5097


obtained from the imbalance in LD, to identify introgressed haplotypes. This logistic regression 

approach has been quite effectively trained with these parameters, to discern between archaic and 

contemporary genetic fragments (Plagnol and Wall, 2006). 

One telling example of the implementation of such a tool is the identification of Neanderthal gene 

variants of LZTFL1 that have been associated with a higher risk of developing severe COVID-19. 

These variants have been found located at chr3:45,859,651–45,909,024, hg19 (Zeberg and Pääbo, 

2020). These are examples of the influence that ancient genetic variation has on human health 

today and how selection is still having its effect on our response to modern diseases. 

Briefly, ArchIE is one of the major breakthroughs in genomics, which delves into the mystery of 

human evolutionary history. Primarily, the tool has proved to be remarkable in its application of 

sophisticated statistical techniques to identify archaic DNA segments in modern human genomes. 

It underlines the innovation behind ArchIE and establishes it as a milestone in deepening our 

understanding of the intriguing play of genetic elements across various periods in human life. 

 

 

2. MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Subjects and Genotyping Data 

Genotyping data is a part of the project ‘Genetic Diversity and Structural Changes in the 

Lithuanian Population Related to Evolution and Common Diseases’ (acronym LITGEN, project 

code VP1-3.1-ŠMM-07-K-01-013) carried out by the Faculty of Medicine at Vilnius University 

(A. Urnikyte, 2019). The research sample includes 424 individuals from the Lithuanian population, 

all with parents and grandparents who lived in Lithuania.  

Genomic DNA extraction was performed from blood leukocytes using the phenol-chloroform 

method and the TECAN Freedom EVO automated DNA extraction system. The concentration of 

the extracted DNA was measured using the NanoDropR ND-1000 spectrophotometer. Large-scale 

genotyping of DNA samples for SNP markers was done using Illumina Infinium® HD and 

Illumina Infinium HTS technology chips. During the LITGEN project, the DNA of 295 individuals 

was genotyped with Illumina 770K HumanOmniExpress-12 v1.1 (719,666 SNPs) chips, and the 

DNA of 144 individuals was genotyped with Infinium OmniExpress-24v1-2 (713,599 SNPs) chips. 

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020105
https://www.nature.com/articles/s41586-020-2818-3
https://www.nature.com/articles/s41586-020-2818-3
https://www.nature.com/articles/s41598-019-45746-3#Sec7


Genotyping was based on the Illumina Infinium® HD SNP genotyping protocol, as outlined in the 

Illumina Infinium® HD Assay Ultra user guide (Illumina, 2009). This research, part of the 

LITGEN project, was approved by the Vilnius Regional Research Ethics Committee (Approval 

No. 158200-05-329-79, dated May 3, 2011). Written informed consent was obtained from each 

participant according to the Declaration of Helsinki. 

 

2.1.2. Data Preparation 

Data preparation for analysis was conducted via SSH (secure shell) terminal (macOS, Darwin 

Kernel Version 23.3.0) on the ZMGKSERV server. Genetic data quality control was performed 

using the PLINK v1.90b6.21 64-bit software according to quality control metrics (Table 2.1.1.). 

Overall, these steps involve converting data formats, conducting quality control, removing 

duplicates, organizing data by chromosome, and phasing the data for further genetic analysis 

(SHAPEIT program v2.904.2.6, with architecture compatibility - x86-64). 

 

Table 2.1.1. Data processing steps and related code lines. All sequential steps and cleaned data 

can be found in the following repository: https://github.com/Tsukinome/Files/tree/main 

 

Preprocessing Step Code Line Description 

Converting .ped 

and .map to PLINK 

Binary Format 

 

plink --file data --make-bed 

--out data_binary 

 

This step converts genotype data 

from the text-based .ped 

and .map formats to PLINK's 

binary formats 

(.bed, .bim, .fam). The binary 

format is more space-efficient 

and allows for faster processing. 

https://github.com/Tsukinome/Files/tree/main


Quality Control Steps 

with PLINK 

 

a. Excludes SNPs and 

Individuals Based on 

Missingness Rates 

plink --bfile data_binary --

geno 0.05 --make-bed --out 

data_snp_callrate_filtered  

plink --bfile 

data_snp_callrate_filtered --

mind 0.1 --make-bed --out 

data_indiv_callrate_filtered 

b. Filters by Minor Allele 

Frequency (MAF) 

plink --bfile 

data_indiv_callrate_filtered 

--maf 0.01 --make-bed --out 

data_maf_filtered 

c. Excludes SNPs Deviating 

from Hardy-Weinberg 

Equilibrium (HWE) 

plink --bfile 

data_maf_filtered --hwe 1e-

6 --make-bed --out 

data_hwe_filtered 

 

a. Filters out SNPs with 

more than 5% missing 

data and individuals with 

more than 10% missing 

data. Elevated levels of 

missing data can indicate 

inferior quality and could 

bias the analysis. 

b. Excludes SNPs with a 

minor allele frequency 

below 1%. Rare alleles 

might not have enough 

statistical power for 

analysis and could lead 

to false positives. 

c. Removes SNPs that 

significantly deviate 

from Hardy-Weinberg 

equilibrium, as this may 

indicate genotyping 

errors or population 

stratification (Bowang 

Chen, 2017) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671567/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671567/


Remove Related 

Individuals and 

Duplicated Ids 

 

plink --bfile 

data_hwe_filtered --remove 

--out plink_autosomes 

Removed genotype data IDs: 

WA LTG-356, EA LTG-1401, 

WA LTG-333, EA LTG-813, 

WA LTG-1158, NZ LTG-1271, 

SZ LTG-875, SA LTG-781  

Dividing by 

chromosomes 

 

for chr_num in range(1, 

23): 

run_command([ plink, 

  "--bfile", 

“plink_autosomes”, 

  "--chr", str(chr_num), 

   "--make-bed", "--out",   

“{file_prefix}_filtered_chr{

chr_num}" ]) 

- 

Phasing with 

SHAPEIT 

shapeit -P 

data_for_phasing.ped 

data_for_phasing.map -M 

genetic_map.txt -O 

data_phased 

shapeit -B  

.bed .bim .fam -O 

phased_chr1 

Executes the phasing of 

genotype data using SHAPEIT, 

which determines the most likely 

combination of alleles inherited 

together on each chromosome. 

Phased data are essential for 

accurate haplotype analysis and 

imputation (Vivek Appadurai, 

2023) 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876938/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876938/


 

2.2. Methods 

2.2.1. Data Augmentation 

The SLiM 3.2 simulation program was used to generate training data (Benjamin C. Haller, 2019). 

SLiM is a powerful forward-in-time genetic simulation software that differs from backward-in-

time simulations by focusing on phylogenetic trees. Instead, forward-in-time simulations model 

the genetic evolution of populations over time and provide a dynamic view of genetic changes. 

Four scenarios were simulated, each representing one aspect of genetic evolution: 

• Neutrality: genetic drift without any selection pressure (offers a guideline for the 

natural fluctuation of allele frequencies). 

• Incomplete Sweep: a beneficial mutation that has not yet been fixed in the 

population, helping understand the initial stages of selection. 

• Overdominance (locus under balancing selection): heterozygous individuals have 

a fitness advantage, a case in which genetic diversity is maintained at the locus. 

• Negative Frequency-Dependent Selection (locus under balancing selection): fitness 

of a phenotype decreases when it gets common (hence increasing diversity in the 

population). 

All simulations were performed with the following parameters: a mutation rate of 1.44e-8 per base 

pair per generation (Julien Jouganous, 2017), reflecting more or less realistic mutation rates 

observed in human populations; a generation time of 29 years (human generation interval) and a 

recombination rate from a normal distribution with a mean of 1e-8 and a standard deviation of 1e-

9 (reflecting the natural variability of the recombination rate). 

To simulate scenarios of natural selection, sequences with 50,000 base pairs (bp) were used, in the 

middle of which a specific mutation is located. This mutation was introduced into a simulated 

European population at 21 different time points ranging from 40,000 to 20,000 years ago. These 

time points were divided into three categories by period: recent selection (20,000 to 26,000 years 

ago), intermediate selection (27,000 to 33,000 years ago), and ancient selection (34,000 to 40,000 

years ago). The simulation was restarted in the generation of the introduction of the variant when 

https://pubmed.ncbi.nlm.nih.gov/30517680/
https://academic.oup.com/genetics/article/206/3/1549/6064248


and if the final frequency of the selected allele was not between 40% and 60%. This provided a 

method for recreating the impact of a variant under selection but included only those variants that 

had major evolutionary consequences. 

No selection pressure was thus exerted in this case of neutrality. Data were instead generated with 

a neutral variant in the middle of the sequence, at a frequency lying between 40% and 60%. This 

kind of simulation framework is thorough, generating a strong dataset for training that captures a 

broad spectrum of evolutionary dynamics. 

 

2.2.2. Artificial Neural Networks Model Training 

To train an artificial neural network (ANN), the scikit-allele package is used to compute a set of 

potentially informative summary statistics for each simulation to represent the output sequence. 

The main statistics and their derivatives (median/mean/maximum) are shown in Table 2.2.1. 

Table 2.2.1. Main range of statistics used for simulations. 

Statistic Description 

Pairwise Distance Genetic distance between pairs of sequences 

Tajima's D A neutrality test statistic comparing the number of segregating 

sites to the average number of nucleotide differences (Tajima, 

1989) 

Watterson's Theta An estimate of genetic diversity based on the number of 

segregating sites (Sankar Subramanian, 2016) 

https://pubmed.ncbi.nlm.nih.gov/2513255/
https://pubmed.ncbi.nlm.nih.gov/2513255/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761153/


Observed Heterozygosity Heterozygosity observed in the population as well as ratio of 

observed and expected heterozygosity 

r2 Linkage disequilibrium measure (Montgomery Slatkin, 2008) 

Haplotype Diversity A measure of the uniqueness of a particular haplotype in the 

population. As well as diversity statistics H1, H12, H123, 

H2/H1. Total count of different haplotypes in the sample. 

EHH Extended haplotype homozygosity (Alexander Klassmann, 

2022) 

iHS Integrated haplotype score (Alexander Klassmann, 2022) 

nSL nSL statistic value (Anna Ferrer-Admetlla, 2014) 

Kelly's Zns A measure of linkage disequilibrium (Pleuni S. Pennings, 

2006) 

Fay and Wu's H A test statistic to detect population growth or selection (KEi 

Zeng, 2006) 

Number of Singletons Count of unique variants appearing only once 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124487/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765611/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765611/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765611/
https://academic.oup.com/mbe/article/31/5/1275/999180
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698945/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698945/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1667063/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1667063/


Summary statistics were calculated using the scikit-allel library, which can be found at 

https://github.com/cggh/scikit-allel. These statistics were then scaled using the StandardScaler 

function from the sklearn library (https://scikit-learn.org/stable/).  

A Python package called BaSe (Balancing Selection), available at 

https://github.com/ulasisik/balancing-selection, was used for selection detection. Apart from 

convolutional neural networks (CNN), BaSe uses artificial neural networks (ANN) to distinguish 

between incomplete sweep and balancing selection. All further analyses were performed in Python 

3.10, using a Miniconda environment for package management and reproducibility and Jupyter 

Notebook for interactive data analysis and visualization. 

ANN was created in Python using the Keras library (https://keras.io) (a high-level API (application 

programming interface) for building and training neural networks). Keras is based on TensorFlow 

(tensorflow.org) (ML platform developed by Google that serves as a backend for the actual 

calculations). All tools used are open-sourced. 

The ANN model consists of several layers (Wesam Salah Alaloul, 2018) (Figure 2.2.1.): 

• Input layer: the first layer in a neural network where the data is fed into the model. The 

number of neurons in this layer corresponds to the number of input features (variables) in 

a data set. 

• Hidden layer: layers termed hidden because they have no direct contact with inputs or 

outputs. The many neurons in each of the hidden layers make up the processing of the input 

data to help the model learn complex patterns. 

• Output layer: the last layer in the network provides the output of the model. If the task is 

binary classification, the output layer consists of one neuron. It consists of a neuron with a 

sigmoidal, logarithmic, or logistic activation function that outputs a continuous value 

between 0 and 1, which may be interpreted as the probability that a given input belongs to 

a certain class. 

 

https://github.com/cggh/scikit-allel
https://scikit-learn.org/stable/
https://github.com/ulasisik/balancing-selection
https://keras.io/
http://tensorflow.org/
https://www.tandfonline.com/doi/full/10.1080/23311916.2018.1507657


 

Figure 2.2.1. Artificial neural network model layers 

The network adjusts its internal parameters (weights and biases) during training to minimize the 

error in its predictions and thus improve its ability to correctly classify new, unseen data. This 

process is usually performed using optimization algorithms such as stochastic gradient descent 

(SGD), which iteratively updates the parameters to reduce the loss function, a measure of the 

discrepancy between the predicted results and the actual targets. By constantly fine-tuning these 

parameters, the network improves its generalization capabilities so that it can do well with various 

samples of data different from the ones in the training set. Effective training lies at the heart of the 

creation of robust neural networks that are able to adapt to different input conditions and yield 

accurate results in real-world applications (Goodfellow et al., 2016). 

 

2.2.3. Model Predictions 

The models are categorized by selection category to indicate when the selection started - new, 

intermediate, or ancient. In addition, each model is given a test number from 1 to 3, depending on 

https://www.scirp.org/reference/referencespapers?referenceid=2791883


what it was trained for: discrimination between neutrality and selection (including positive and 

balancing selection), balancing selection and incomplete sweep, or negative frequency-dependent 

selection and overdominance. All models are stored in Keras h5 format. 

Each test performs a binary classification. The first test checks whether the target allele is under 

selection. If it is, the second test checks whether it is a balancing selection or an incomplete sweep. 

If it is a balancing selection, the third test distinguishes between the several types of balancing 

selection: overdominance and negative frequency-dependent selection. 

 

2.2.4. Archaic Fragments Mapping  

The references to the archaic regions come from the latest research results on Neanderthal alleles 

in a set of 50 Lithuanian genomes (Alina Urnikyte, 2023). The archaic region data in this study 

was found using the Archaic Introgression Explorer (ArchIE) program. Genotype data from 108 

individuals of African ancestry from the Yoruba population were used for this study obtained from 

the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015). The final output 

included the chromosome number, segment, region of interest, and a probability score for 

Neanderthal introgression between 0 and 1. 

For further analysis, only those genomic fragments were considered to be of Vindija Neanderthal 

origin. Introgressive sequences with a match of 85% or more with the Vindija Neandertal genome 

were used. Matches with the Denisovan genome were less significant and were not analyzed 

because the main source of introgression in Lithuanians is the Neanderthal genome. 

To understand the association between SNPs and genes, each SNP was mapped via Ensembl. The 

function get_gene_and_consiquence_for_snp (available at  

https://github.com/Tsukinome/Files/blob/main/BSModel/CSVs/Prediction.ipynb), requires two 

inputs: snp_id - the identifier of a SNP, and chr_column - chromosome number. 

The process starts with the creation of a uniform resource locator (URL) to query the Ensembl 

REST API for information about the variations of the SNP. If the request is successful, it gets the 

JavaScript object notation (JSON) string response from the function. After that, if the response 

contains a mapping key, that means it includes the genomic locations for that SNP. It constructs 

https://www.sciencedirect.com/science/article/pii/S1567134823001260?via%3Dihub#ec0005
https://www.nature.com/articles/nature15393
https://github.com/Tsukinome/Files/blob/main/BSModel/CSVs/Prediction.ipynb


another URL for each mapping - one can also think about it in terms of a genomic location - to 

query overlapping genes using the Ensembl REST API. If this is a success, it collects all the gene 

IDs. The output of the function would be a list of unique gene IDs for the given SNP. Example 

response for available features is shown as below: 

 { 

 "evidence": 

 ["Frequency", "1000Genomes", "Cited", "TOPMed", "gnomAD"], 

 "most_severe_consequence": "intron_variant", 

 "name": "rs123", 

 "MAF": 0.292133, 

 "mappings": [ 

 { 

  "end": 24966446, 

  "coord_system": "chromosome", 

  "ancestral_allele": "C", 

  "assembly_name": "GRCh37", 

  "allele_string": "C/A/G/T", 

  "seq_region_name": "7", 

  "location": "7:24966446-24966446", 

  "strand": 1, 

  "start": 24966446 

 } 

  ], 

 "ambiguity": "N", 

 "source": "Variants (including SNPs and indels) imported from dbSNP", 

 "synonyms": [ 

  "NM_001177519.3:c.*235C>A", 

  "rs17614680", 

  "rs57332242" 

  ], 

 "minor_allele": "C", 



 "var_class": "SNP" 

} 

 

2.2.5. Protein Functionality Analysis  

The data were further processed using the GRCh37 (hg19) genome build and RefSeqGene. 

GRCh37 is a well-established reference build of the human genome, and RefSeqGene provides 

comprehensive and curated gene information; both are necessary for the precision of genomic 

studies. In support, a function get_protein_info_for_gene was designed to fetch protein 

information from a gene. It retrieves information about proteins related to the meaning of the gene. 

It works in the following way: the input to this function is gene_id. The process is initiated by 

constructing a URL in order to query Ensembl REST API for information about the gene. If there 

is no error in the request, the function retrieves the JSON response. From there, it picks up the 

display name, which is the protein name, in addition to the description of the gene. In case the 

protein name or description is not found, it defaults to the 'Unknown' and 'No description available' 

categories. So, this function output is a list that includes the protein name and its description. The 

following is an example of a response: 

{ 

 "species": "homo_sapiens", 

 "start": 32889611, 

 "db_type": "core", 

 "end": 32973805, 

 "seq_region_name": "13", 

 "object_type": "Gene", 

 "logic_name": "ensembl_havana_gene_homo_sapiens_37", 

 "display_name": "BRCA2", 

 "id": "ENSG00000139618", 

 "source": "ensembl_havana", 

 "description": "breast cancer 2, early onset [Source:HGNC Symbol;Acc:1101]",  

 "canonical_transcript": "ENST00000544455.1", 

 "version": 10, 



 "strand": 1, 

 "biotype": "protein_coding", 

 "assembly_name": "GRCh37" 

} 

This function provides a straightforward way of obtaining relevant protein information, which is 

essential for gene analysis, functional annotation, and understanding the potential implications of 

genetic variations.  

 

RESULTS 

3.1 Genotype data analysis  

Initially, genotype data was imported from text-based formats, and 733,133 (Table 3.1.1.) variants 

and 424 individuals were loaded onto the platform, with 212 males and 212 females. Related 

persons, as well as duplicated IDs, were removed from the dataset to avoid bias due to genetic 

relatedness; the result was a final count of 415 individuals, 208 males and 207 females. 

After filtering, 600,627 variants remained, and 415 individuals passed the quality control steps. 

The final genotyping rate was 99.87%, which is significantly higher than the original 96.81%. This 

high genotyping rate suggests that about 99.87% of the genotyping attempts were successful and 

hence guaranteed quality data for further analyses. 

These preprocessing steps ensure that the dataset being used for further genetic analysis is of 

excellent quality, hence minimizing errors and biases. 

 

Table 3.1.1. Initial and final population statistics. 

Preprocessing Step Removed Data 



Initial Population 

 

733,133 variants loaded from .bim file 

424 people (212 males, 212 females) loaded from .fam file 

Variants Removed 

during Quality Control 

Steps  

 

38,249 variants removed due to missing genotype data 

80,032 variants removed due to minor allele threshold(s) 

8,196 variants removed due to Hardy-Weinberg exact test 

Remove Related 

Individuals and 

Duplicated Ids 

 

Final individual count: 415 people (208 males, 207 females)  

2 duplicates and 7 related individuals removed 

Final Population 

 

600,627 variants and 415 people pass filters and Quality Control  

Total genotyping rate is 0.998718 (before data cleaning: 0.968083) 

 

 

3.2. Selection Type Distribution and Probability 

Strongest selection signals (mixture of both balancing and positive selection scenarios) were 

observed on chromosomes 6, 13, 15, and 22, indicating their possible role in genetic adaptation 

(Figure 3.2.1/2/3.). These chromosomes account for a total of 5,311 SNPs, with an average 

selection probability of 0.998 (Figure 3.2.4/5/6., zero values indicate lack of selection type pattern 

found).  

Significant patterns of recent balancing, frequency-dependent selection and overdominance are 

notable on chromosomes 3, 6, 13, 15, 16, 18, 19, 21, and 22. For instance, recent balancing 



selection on these chromosomes comprises 1,544 SNPs with an average probability of 0.610. 

Similarly, recent negative frequency-dependent selection is prominent on mentioned 

chromosomes 6, 13, 15, and 22, encompassing 5,233 SNPs with an average probability of 0.557. 

Recent overdominance is prevalent across 1-20 chromosomes (>1,000 SNPs per chromosome), 

totaling 93,292 SNPs (Supplementary Table 1).  

 

 

Figure 3.2.1. Recent selection. SNP count distribution by chromosome and selection type. 

Selection class includes a mixture of both balancing and positive selection scenarios. 



 

Figure 3.2.2. Intermediate selection. SNP count distribution by chromosome and selection type. 

Selection class includes a mixture of both balancing and positive selection scenarios. 

 

 

 

Figure 3.2.3. Ancient selection. SNP count distribution by chromosome and selection type. 

Selection class includes a mixture of both balancing and positive selection scenarios. 



 

The distinction between balancing selection and incomplete sweep was the most prominent and 

the most accurate during recent selection, hence only this pattern is explored further.  

 

Figure 3.2.4. Recent selection. Selection probability average by selection type and chromosome. 

 

Figure 3.2.5. Intermediate selection. Selection probability average by selection type and 

chromosome. 



 

 

Figure 3.2.6. Ancient selection. Selection probability average by selection type and chromosome. 

 

Additionally, balancing selection, negative frequency-dependent, and overdominance variants are 

chosen only if they were categorized as a selection class in the first prediction test (distinguishing 

between neutrality and balancing/positive selection scenarios). 

 

3.3. Related Protein Functionally 

Out of 1598 archaic fragments, 175 were determined to contain balancing selection-related 

variants. One hundred forty-five fragments were filtered out having <85% probability of having 

Neanderthal introgression. In total, 53 variants were selected to be processed further.  

Examining further these genetic variants (SNPs) across various chromosomes (both predicted to 

be under selection and balancing selection), it was found that chromosome 3 features 10 SNPs, 

Chromosome 13 includes 9 SNPs, and Chromosome 22 has 11 SNPs, making them the most SNP-

rich chromosomes under balancing selection in this dataset (Table 3.3.1. and Supplementary Table 

2). Most of these SNPs lead to changes in intron variants that most often do not affect protein 

function. Several regulatory and missense variants were observed on Chromosomes 3, 6, 13, and 



22. Such specific variants could play important roles in the regulation of genes and proteins and, 

therefore, may have strong implications for gene expression and protein activity (Table 3.3.2/3.). 

The only missense variant was found to be rs5764698. In the reference genome, the nucleotide at 

this position is G (guanine). In some individuals, however, this position may also have other 

nucleotides, namely C (cytosine) or T (thymine). The SNP at position chr22:45354103 in the 

SMC1B gene results in a missense mutation that causes a change in the amino acid at position 1050 

in the protein, resulting in leucine (L) becoming either valine (V) for the C allele or methionine 

(M) for the T allele. 

Overall, proteins predicted to be under balancing selection are categorized into distinct functional 

groups. Among the signaling and regulatory proteins are interleukin 1 receptor accessory protein, 

PARK2 co-regulated, extracellular leucine-rich repeat and fibronectin type III domain containing 

2, and family with sequence similarity 118, member A. The metabolic and transport proteins 

include adenylate kinase 1, tripeptidyl peptidase II, and solute carrier family 39, member 11. 

Structural maintenance of chromosomes 1B is identified as a structural and maintenance protein. 

Several hypothetical and novel proteins with unknown functions, such as chromosome 6 open 

reading frame 99, must be mentioned as well. 

 

Table 3.3.1. SNPs intron variants and related protein functional aspects  

SNP Position Gene  Biological Function 

rs2193880 
chr3:190262799 

IL1RAP 

(ENSG00000196083) 

 

 

 

IL-1 Receptor 

Accessory Protein 

 rs3773989 
 

chr3:190547640  

rs9457507 
chr6:159316430 



rs9457511 
chr6:159325462 

LINC02901 

(ENSG00000203711) 

 

 

 

 

Chromosome 6 Open 

Reading Frame 99 

 

rs12200537 
chr6:159326830  

rs9356058 
chr6:163151399 

PACRG 

(ENSG00000112530) 

 

Parkin Co-Regulated 

Gene Protein 

rs3780663 

 

chr9:130631519  
Novel Gene 

(ENSG00000257524)

, 

AK1 

(ENSG00000106992) 

ST6-N-

Acetylgalactosaminid

e Alpha-26-

Sialyltransferase 6 

Isoform 2, 

Epididymis Secretory 

Sperm Binding 

Protein 

rs12251249 

 

chr10:127720923 
ADAM12 

(ENSG00000148848) 

 

ADAM 

Metallopeptidase 

Domain 12 

rs3736972 
chr13:103275386 

TPP2 

(ENSG00000134900) 

 

Tripeptidyl Peptidase 

II 



rs6496435 
chr15:88214711 

Novel Gene 

(ENSG00000259560) 

Novel 

rs12905479 
chr15:91711209 

SV2B 

(ENSG00000185518) 

 

Synaptic Vesicle 

Glycoprotein 2B 

rs17594552 

 

chr15:91712789 

rs1110614 
17:70750674 

SLC39A11 

(ENSG00000133195) 

Zinc Transporter 

ZIP11 

 rs4793484 
17:70752633 

rs9906450 
17:70763732 

rs2334295 
19:48263635 

NOP53-AS1 

(ENSG00000269656) 

 

NOP53 Antisense 

RNA 1 

rs2223743 
21:29503271 

LINC01695 

(ENSG00000236532) 

  

  

Long Intergenic Non-

Protein Coding RNA 

 rs6516819 
21:29510893  

rs9976944 
21:29512586 



rs2831534 
21:29514609 

rs4820286 
22:37781591 

ELFN2 

(ENSG00000166897)

, 

ELFN2 

(ENSG00000243902) 

 

 

 

Extracellular Leucine 

Rich Repeat and 

Fibronectin Type III 

Domain Containing 2 rs5750428 
22:37794269  

rs11704481 
22:45732328 

FAM118A 

(ENSG00000100376) 

Family With 

Sequence Similarity 

118 Member A 

 

rs5771906 
22:49054594  

TAFA5 

(ENSG00000219438) 

  

TAFA Chemokine 

Like Family Member 

5 

rs6010568 
22:49056481 

 

 

 

 

 

 



Table 3.3.2. SNPs 3 prime UTR or missense variants and related protein functional aspects  

SNP Position Gene  Biological Function 

rs2064068 
22:45736485  

FAM118A 

(ENSG00000100376) 

  

Family With 

Sequence Similarity 

118 Member A 

 

rs1044742 
22:45737290  

rs5764698  
22:45749983 

SMC1B 

(ENSG00000077935) 

Mitosis-Specific 

Chromosome 

Segregation Protein 

Like Protein Bet 

 

Because these proteins were subject to balancing selection, particularly negative frequency-

dependent selection, they exhibit genetic diversity that could provide significant advantages.  

One notable case concerns the SNP rs9356058 in the PACRG gene. Previous research has 

identified rs9356058 as one of two important regulatory polymorphisms in the PARK2 and PACRG 

genes associated with susceptibility to leprosy (A.Bakija-Konsou, 2011). In this study, Caucasian 

individuals from Mljet, an island formerly used as a leprosy quarantine, were compared with two 

control groups. The population of Mljet showed a significant increase in the frequency of the 

rs9356058 C allele compared to the control groups. However, the allele frequencies of the analyzed 

polymorphisms did not differ between the control groups. These results suggest that leprosy 

exposure and mortality on Mljet led to the selection of the protective C allele rs9356058 in the 

PARK2 gene, a pattern that is absent in the control groups, which have no documented leprosy 

history. This balancing selection on rs9356058 suggests that the retention of both the C and T 

alleles might be beneficial for a better resistance to leprosy or other pathogens. Therefore, the 

protective effect against leprosy has led to the prevalence of the C allele on the island of Mljet. In 

contrast, in Lithuania, various influences have maintained a balance between the two alleles. The 

https://pubmed.ncbi.nlm.nih.gov/21816242/


allele frequency variations indicate that Lithuanians have an intermediate C allele frequency 

(0.2674), which is lower than the European average (0.417) but higher than that in Africans (0.161) 

and South Asians (0.172), positioning it as intermediate globally. This indicates the existence of 

balancing selection, whereby both T and C alleles give evolutionary advantages under different 

conditions, thus retaining genetic variability. Such variability can be advantageous against a 

variety of diseases and environmental factors and can highlight the Lithuanian unique evolutionary 

pressures. 

Additionally, the identified PARK2 gene, also known as parkin, is associated with autosomal 

recessive juvenile parkinsonism (Marcelo T. Mira, 2004). Mutations in this gene cause Parkinson’s 

disease and autosomal recessive juvenile Parkinson’s disease. In addition, both PARK2 and 

PACRG are expressed in Schwann cells and macrophages, the primary host cells for 

Mycobacterium leprae, the bacterium that causes leprosy (Louis de Leseleuc, 2013). The same 

genetic changes that conferred protection against leprosy may also have survival effects relevant 

to vulnerability to Parkinson's disease. The fact that these genes, by their association with 

expression in the same cell types, namely Schwann cells and macrophages, suggest that there must 

be a shared pathway operating under balancing selection. It will be important to learn more about 

these genetic interplays, which may offer new inroads into mechanisms operating both in 

infectious and neurodegenerative diseases. 

Other promising SNPs were found to be related to IL-1 Receptor Accessory Protein: rs2193880 

(chr3:190262799) and rs3773989 (chr3:190547640). This protein plays a key role in the signaling 

pathways of various proinflammatory cytokines (Jame Frenay, 2022). Polymorphic forms of this 

gene have been linked to a wide range of inflammatory diseases. Various polymorphisms of the 

IL-1RAcP contribute to the pathophysiology of various diseases, including obesity, endometriosis, 

pre-eclampsia, and neurodegenerative diseases (Ali Zarezadeh, 2022). Significantly, the 

rs12053868-G polymorphism of the IL-1RAcP gene has been linked to Alzheimer's disease. 

Investigations show that this polymorphism leads to increased accumulation of amyloid peptides, 

which in turn decreases the activity of cortical microglial cells essential for the clearance of 

amyloid fibrils from the brain. Such activity can trigger cerebral atrophy, most especially in the 

temporal cortex, which contributes to accelerated disease progression and memory loss in 

Alzheimer's patients. Due to the elevated levels of expression of IL-1RAcP in inflammatory 

diseases compared to its low expression in healthy tissues, these polymorphisms may modify 

https://pubmed.ncbi.nlm.nih.gov/14737177/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547867/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735758/
https://onlinelibrary.wiley.com/doi/full/10.1111/imm.13462


susceptibility or resistance to a diverse array of inflammatory diseases. Therefore, IL-1RAcP and 

the associated polymorphisms found, rs2193880 and rs3773989, may have adaptive utility by 

moderating immune responses to balance effective defense against pathogens and prevention of 

excessive inflammation leading to chronic disease (Khaled Khazim, 2018). This is true of 

neuroinflammatory diseases, such as Alzheimer's disease, where neurodegenerative and 

inflammatory mechanisms play a critical role  (Jose Miguel Rubio-Perze, 2012). 

In total 7 genes were found to be related to the immune system or inflammatory responses: 

• IL1RAP, there is evidence for the significant role in airway inflammation driven by IL-1 

and IL-33, encouraging further research to explore the benefits of blocking the IL1RAP 

coreceptor in chronic respiratory diseases (G. Kasetty, 2022). 

• ADAM12 is a naive T cell costimulatory molecule that mimics CD28 signaling to activate 

Th1 cells and induce IFNγ production. Genetic or knockout ablation of ADAM12 decreased 

the activity of Th1 cells, reduced production of IFNγ, and attenuated Th1-mediated 

neuroinflammation in models of multiple sclerosis. These findings position ADAM12 as a 

potential therapeutic target for the treatment of Th1 cell-mediated inflammatory diseases 

(Yawei Liu, 2020). 

• SLC39A11 is associated with chronic gastritis in the Korean population and encodes a zinc 

transporter, suggesting involvement in zinc homeostasis. Although not directly associated 

with inflammatory responses, chronic gastritis involves inflammation of the lining in the 

stomach, indicating that SLC39A11 may be involved in influencing inflammation through 

gastritis progression (Eunyoung Ha, 2018). 

• PACRG, regarding this variant, additional related studies were done with Chinese 

(Jinghui Li, 2012) and Amazon ethnic admixed population (Andre Luiz Leturiondo, 

2020).  

• TPP2, its deficiency causes immunodeficiency and immune dysregulation due to 

disrupted protein catabolism, favoring lysosomal pathways. This results in lysosome 

accumulation, reduced glycolysis, and impaired cytokine production (Clare Stockdale, 

2021). 

• ELFN2, genes co-expressed with ELFN2, are involved in the PI3K-Akt signaling 

pathway. This observation has indicated that ELFN2 and its associated genes play key 

https://pubmed.ncbi.nlm.nih.gov/29247999/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330269/
https://erj.ersjournals.com/content/60/suppl_66/1948
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roles in regulating such a pathway, which is crucial for cellular processes including 

growth, cell survival, metabolism, and inflammation (Ying Dong, 2022) 

• TAFA5 is upregulated in gastric cancer (GC) and linked to poor differentiation, advanced 

stages, and worse patient prognosis. Its downregulation inhibits GC cell proliferation and 

migration. TAFA5 is associated with genes involved in epithelial-mesenchymal transition, 

making it a potential therapeutic target for GC (Zhiqing Hu, 2019) 

 

Apart from SNPs related to neurodegenerative and inflammatory processes, one SNP rs5764698, 

which is the only missense variant (in the SMC1B gene), was found to be related to azoospermia 

and severe/moderate oligozoospermia (Kenneth I. Aston, 2010). The SMC1B gene is crucial for 

spermatogenesis and plays a significant role in the correct segregation of chromosomes during 

meiosis. This genotyping study included patient and control samples from individuals of European 

ancestry and Mediterranean origin.  

The finding that rs5764698 is subject to balancing selection in Lithuanians suggests that this 

variant, despite its association with azoospermia and oligozoospermia, provides some adaptive 

advantages and may optimize reproductive success under certain environmental or physiological 

conditions. The allele frequency of rs5764698 varies significantly across populations. The G allele 

is more common across the globe than the T allele. Lithuanians have a higher G allele frequency 

and a lower T allele frequency than average and the other Europeans. Conversely, Africans have 

a much higher G allele, while Asians and Latin Americans have intermediate values. 

Such balancing selection could be accounted for by a trade-off in which the variant provides some 

advantages - fertility or other reproductive-related - that are of sufficient magnitude to maintain 

the allele in the population despite negative effects on sperm production in some individuals. 

Knowing what specific advantages are conferred by the variant will shed deeper light on 

evolutionary forces acting upon genes responsible for spermatogenesis and the eventual 

consequences for reproductive health. 

Additionally, variation in the regulatory proteins with ELFN2 and FAM118A could affect cell 

signaling and growth, where different alleles convey differential advantages under varying 

physiological or environmental contexts. Lastly, variations in metabolic and transport proteins - 

https://pubmed.ncbi.nlm.nih.gov/35081534/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797941/
https://academic.oup.com/humrep/article/25/6/1383/2915778


for example, AK1, TPP2, and SLC39A11 - could be allowed to vary in accord with the different 

nutritional and metabolic conditions across populations and, further, give importance to these 

proteins in adapting to different challenges. 

 

DISCUSSION 

Selection events, particularly pronounced during the outbreak of infectious diseases, leave clear 

markers in the human genome. Deep learning techniques have proven to be powerful tools for 

detecting genomic signals for recently acted balancing selection (Ulas Isildak, 2020). By training 

forward-in-time simulation-based deep neural networks for population genetics using data 

augmentation, such methods have shown promise. 

This work demonstrates how deep learning can predict things that are currently impossible to 

predict using traditional methods for small populations based on summary statistics. The accuracy 

of these predictions can be drastically improved by expanding the size of the training dataset, by 

doing a more comprehensive search of the hyperparameters while avoiding overfitting of the 

model, and by treating overdominance and negative frequency-dependent selection as different 

classes for the prediction.  

The same applies to the relevance of individual statistics to be evaluated. To measure the false 

positive rate, it is also important to test ANN in neutral scenarios. This step ensures that the 

networks within these neutral control regions do not predict false selection signals. With this 

validation in place, it will be possible to enhance the reliability of the deep learning models and 

further refine their accuracy in identifying true signals for balancing selection. 

Presently, the recent compensatory selection is best represented in the population genomic data 

available now for Lithuanians, distinguished with greater accuracy from the incomplete sweep. In 

addition, the variants selected for analysis show negative frequency-dependent selection as the 

most generic form. This means that rarer phenotypes have a selection advantage simply because 

they are less common. As a result, negative frequency-dependent selection promotes and maintains 

genetic diversity within the population. 

https://www.biorxiv.org/content/10.1101/2020.07.31.230706v1.full#F5


Variants found to be under balancing selection display a few distinct categories relating to genes 

involved in neurodegenerative, inflammatory, or reproductive processes. Inflammatory response 

and immune function are common themes regarding Neanderthal introgressed fragments identified 

by previous studies (A. Urnikyte, 2023). Particularly with genes like REG3G, IL17A and IL17F 

compared to the IL-1 Receptor Accessory Protein of this study, as well as with CDH1, involved 

in cell adhesion and immune response regulation, compared to TAFA Chemokine Like Family 

Member 5.  

Despite the inflammatory response, balancing selection could also affect reproductive health, as 

shown by the SNP rs5764698 in the SMC1B gene, which is associated with azoospermia and 

oligozoospermia (Kenneth I. Aston, 2010). This variant may be widespread in the population 

despite an association with negative reproductive outcomes. 

In all, the persistence of those alleles in such genes may indicate that each of them gives some 

advantages under different environmental conditions or selection pressures. For instance, in the 

case of the C allele rs9356058, this may confer protection against leprosy, with the T allele 

conferring resistance to other diseases or having adaptive benefits that are presently unknown. 

More precisely, the PARK2 gene associated with autosomal recessive juvenile parkinsonism and 

PACRG are expressed in the main host cells for Mycobacterium leprae: the Schwann cells and 

macrophages (Louis de Leseleuc, 2013). This suggests a common pathway under balancing 

selection. Genetic variants that confer protection against leprosy may, in turn, increase 

vulnerability to Parkinson's disease; thus, the trade-off would be in that direction, such that alleles 

that are beneficial in one context may have a negative effect on another. This could be an example 

of how balancing selection maintains alleles that bring an advantage for resistance to infectious 

diseases, but that may make individuals more prone to neurodegenerative diseases. 

The fact that these genes and their expression in immune cells are linked allow to hypothesize that 

balancing selection causes adaptations that maximize the immune response. In other words, 

populations exposed to the broadest spectrum of pathogens in time may evolve a genetic 

architecture that balances the traits of multiple immune-related characteristics, ensuring a versatile 

and effective immune defense. The investigation of these interactions may lead to new 

interpretations of the mechanisms of infectious and neurodegenerative diseases and may shed light 

https://www.sciencedirect.com/science/article/pii/S1567134823001260?via%3Dihub#t0010
https://academic.oup.com/humrep/article/25/6/1383/2915778
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on the complex interrelations of genetic diversity with susceptibility to diseases in human 

populations. 

This work, analyzing genetic adaptation within local populations, thus sheds more light on the 

evolutionary mechanisms underlying human health and disease. Looking at these different 

selection pressures that each population faces, the genetic basis of adaptation will be apparent and 

deepened in our understanding of human biology. Balanced selection maintains not only the 

genetic diversity of a population but also contributes to molding our physiology and shaping our 

responses to a variety of health challenges. Integrative deep learning applied to genetic 

investigation can better identify and understand these selection markers, which hold the clue to the 

advancement of medical science using evolutionary history to improve health. 

 

CONCLUSIONS 

 

1.1. Successful identification of balancing selection variants depends on the preparation of the 

genomic data according to appropriate quality control metrics, removing related individuals and 

non-biallelic variants. 

1.2. One hundred seventy-five archaic fragments were determined to contain balancing selection-

related SNP variants.  

2.1. The majority of found SNPs result in intron variants, which generally are not known to 

impact protein function but could impact important regulatory aspects. Often, variants under 

selection are found in non-coding fragments. Several regulatory and missense variants on 

chromosomes 3, 6, 13, and 22 were found. The only missense variant was found to be 

rs5764698. 

2.3. Strongest selection signals are observed on chromosomes 3, 6, 13, 15, 16, 18, and 22, 

indicating their potential role in genetic adaptation. 



3.1. Proteins predicted to be under balancing selection, categorized into a few distinct functional 

groups such as signaling and regulatory, metabolic and transport, structural and maintenance 

protein, as well as several hypothetical and novel proteins. 

3.2. SNP rs9356058 in the PACRG gene is one of the two important regulatory polymorphisms 

associated with susceptibility to leprosy. 

3.3. In total, 7 genes were related to the immune system or inflammatory responses. Two of which 

(PACRG and ADAM12) are related to neurodegenerative disorders and two (TAFA5 and 

SLC39A11) with gastro-related disorders. 
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SUMMARY 

 

Balancing selection continues to be a captivating target because it sheds more light on how genetic 

diversity is maintained within populations despite external evolutionary pressures. Aspects of 



balancing selection are crucial for understanding how populations adapt over time to different 

environmental conditions, disease pressure, and other selective forces.  

In the context of the Lithuanian population, the study of balancing selection helps to clarify why 

certain alleles remain predominant in other populations despite the possible advantages of 

alternative alleles. This may reveal underlying mechanisms of disease resistance, metabolic 

adaptations, or other fitness-related traits that are of historical and contemporary importance. In 

addition, the identification of archaic SNPs that are subject to balancing selection is important as 

they highlight the contributions of ancient alleles to modern genetic diversity and adaptation.  

Objective of the research was to identify ancient balancing selection signatures across generations 

in modern human genomes, employing genetic population statistics and deep learning techniques, 

while identifying which variants or proteins potentially indicate that balancing selection occurred 

in ancient times but could continue to influence human species today. 

Deep learning models displayed great capability of effectively predicting loci under selection for 

a large pool of samples and by different selection types, namely between neutrality and selection 

(including positive and balancing selection), balancing selection and incomplete sweep, or 

negative frequency-dependent selection and overdominance. Overall, out of analyzed SNPs in 175 

archaic fragments, the strongest selection signals are pronounced on chromosomes 3, 6, 13, 15, 16, 

18, and 22, indicating their possible role in genetic adaptation. SNP-related genes are found to be 

involved in such processes as signaling, metabolism, transport, structural and maintenance 

functions.  

Although the most prominent pathways of influence were found to be related to the immune system 

or inflammatory responses, few of them are also related to neurodegenerative disorders (PACRG 

and ADAM12) and (TAFA5 and SLC39A11) with gastro-related disorders. Additionally, one of the 

most previously researched and explored in different populations, SNP rs9356058 in the PACRG 

gene, is one of the two important regulatory polymorphisms associated with susceptibility to 

leprosy. Understanding the role of rs9356058 and similar polymorphisms helps clarify the genetic 

factors that influence disease susceptibility and resistance, providing insight into how historical 

pathogen exposure has shaped the immune systems of modern humans. 
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Supplementary Table 1. SNP variants and predicted selection probability by chromosome and 

selection type. 
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Supplementary Table 2. Genes and proteins under balancing selection by chromosome and 

SNP variant. 
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1.0 ['rs12696

598', 

'rs724438

', 

'rs468711

2'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant', 

'regulatory_regi

on_variant', 

'regulatory_regi

on_variant'] 

[] 

3.0 1916

6117

1.0 

191

710

630.

0 

0.9479 ['rs39439

79', 

'rs985711

5', 

'rs204286

5'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant', 

'intergenic_vari

ant', 

'regulatory_regi

on_variant'] 

[] 



3.0 1917

1106

4.0 

191

755

302.

0 

0.9818 ['rs21938

80', 

'rs377398

9'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000001

96083'] 

['intron_variant'

, 

'intron_variant'] 

[['IL1RAP', 

'interleukin 

1 receptor 

accessory 

protein 

[Source:HG

NC 

Symbol;Acc

:5995]']] 

4.0 1861

1749

7.0 

186

164

767.

0 

0.9268 ['rs43554

30'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant'] 

[] 

6.0 1438

6733

6.0 

143

897

977.

0 

0.9661 ['rs21289

77'] 

Negative 

Freq-Dep. 

Selection 

[] ['regulatory_reg

ion_variant'] 

[] 

6.0 1568

9847

4.0 

156

946

230.

0 

0.8947 ['rs28897

6'] 

Balancing 

Selection 

[] ['intergenic_var

iant'] 

[] 

6.0 1568

9847

4.0 

156

946

230.

0 

0.8947 ['rs28897

6'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant'] 

[] 

6.0 1591

9826

0.0 

159

247

967.

0 

0.9672 ['rs94575

07', 

'rs945751

1', 

Negative 

Freq-Dep. 

Selection 

['ENSG

000002

03711'] 

['intron_variant'

, 

'intron_variant', 

'intron_variant'] 

[['C6orf99', 

'chromosom

e 6 open 

reading 

frame 99 



'rs122005

37'] 

[Source:HG

NC 

Symbol;Acc

:21179]']] 

6.0 1612

4855

2.0 

161

291

617.

0 

0.9286 ['rs19623

58'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant'] 

[] 

6.0 1630

4851

4.0 

163

097

724.

0 

0.9091 ['rs93560

58'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000001

12530'] 

['intron_variant'

] 

[['PACRG', 

'PARK2 co-

regulated 

[Source:HG

NC 

Symbol;Acc

:19152]']] 

9.0 1296

6097

7.0 

129

709

828.

0 

0.8684 ['rs37806

63'] 

Balancing 

Selection 

['ENSG

000002

57524', 

'ENSG0

000010

6992'] 

['intron_variant'

] 

[['RP11-

203J24.9', 

'No 

description 

available'], 

['AK1', 

'adenylate 

kinase 1 

[Source:HG

NC 

Symbol;Acc

:361]']] 

9.0 1296

6097

7.0 

129

709

0.8684 ['rs37806

63'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000002

57524', 

['intron_variant'

] 

[['RP11-

203J24.9', 

'No 



828.

0 

'ENSG0

000010

6992'] 

description 

available'], 

['AK1', 

'adenylate 

kinase 1 

[Source:HG

NC 

Symbol;Acc

:361]']] 

10.0 1276

7117

5.0 

127

711

500.

0 

0.9787 ['rs12251

249'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000001

48848'] 

['intron_variant'

] 

[['ADAM12'

, 'ADAM 

metallopepti

dase domain 

12 

[Source:HG

NC 

Symbol;Acc

:190]']] 

13.0 1020

7181

2.0 

102

116

884.

0 

0.8611 ['rs37369

72'] 

Balancing 

Selection 

['ENSG

000001

34900'] 

['synonymous_

variant'] 

[['TPP2', 

'tripeptidyl 

peptidase II 

[Source:HG

NC 

Symbol;Acc

:12016]']] 

13.0 1020

7181

2.0 

102

116

884.

0 

0.8611 ['rs37369

72'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000001

34900'] 

['synonymous_

variant'] 

[['TPP2', 

'tripeptidyl 

peptidase II 

[Source:HG

NC 



Symbol;Acc

:12016]']] 

13.0 1074

2132

9.0 

107

469

601.

0 

0.9365 ['rs95206

90', 

'rs952069

1', 

'rs952069

6', 

'rs951478

2', 

'rs951479

2', 

'rs128715

32', 

'rs102290

9'] 

Negative 

Freq-Dep. 

Selection 

[] ['regulatory_reg

ion_variant', 

'intergenic_vari

ant', 

'intergenic_vari

ant', 

'intergenic_vari

ant', 

'intergenic_vari

ant', 

'intergenic_vari

ant', 

'intergenic_vari

ant'] 

[] 

15.0 8600

2672.

0 

860

499

88.0 

1.0 ['rs64964

35'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000002

59560'] 

['intron_variant'

] 

[['RP11-

648K4.2', 

'No 

description 

available']] 

15.0 8950

1124.

0 

895

446

88.0 

1.0 ['rs12905

479', 

'rs175945

52'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000001

85518'] 

['intron_variant'

, 

'intron_variant'] 

[['SV2B', 

'synaptic 

vesicle 

glycoprotein 

2B 

[Source:HG

NC 

Symbol;Acc

:16874]']] 



17.0 6570

2659.

0 

657

499

53.0 

0.8519 ['rs23658

6', 

'rs236523

', 

'rs236531

'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant', 

'intergenic_vari

ant', 

'intergenic_vari

ant'] 

[] 

17.0 6825

6221.

0 

682

992

01.0 

0.9333 ['rs11106

14', 

'rs479348

4', 

'rs990645

0'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000001

33195'] 

['intron_variant'

, 

'intron_variant', 

'intron_variant'] 

[['SLC39A1

1', 'solute 

carrier 

family 39, 

member 11 

[Source:HG

NC 

Symbol;Acc

:14463]']] 

19.0 5292

8986.

0 

529

767

74.0 

0.8989 ['rs23342

95'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000002

69656'] 

['intron_variant'

] 

[['CTD-

2571L23.6', 

'No 

description 

available']] 

21.0 2841

1654.

0 

284

566

11.0 

0.8571 ['rs22237

43', 

'rs651681

9', 

'rs997694

4', 

'rs283153

4'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000002

36532', 

'ENSG0

000023

2079'] 

['intron_variant'

, 

'intron_variant', 

'intron_variant', 

'intron_variant'] 

[['AL03561

0.2', 'No 

description 

available'], 

['AL035610.

1', 'No 

description 

available']] 



22.0 3415

3779.

0 

342

034

96.0 

0.9706 ['rs57557

30'] 

Balancing 

Selection 

[] ['intergenic_var

iant'] 

[] 

22.0 3415

3779.

0 

342

034

96.0 

0.9706 ['rs57557

30'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant'] 

[] 

22.0 3565

4133.

0 

357

035

51.0 

0.8596 ['rs11089

816', 

'rs575034

8'] 

Balancing 

Selection 

[] ['intergenic_var

iant', 

'intergenic_vari

ant'] 

[] 

22.0 3565

4133.

0 

357

035

51.0 

0.8596 ['rs11089

816', 

'rs575034

8'] 

Negative 

Freq-Dep. 

Selection 

[] ['intergenic_var

iant', 

'intergenic_vari

ant'] 

[] 

22.0 3610

3709.

0 

361

333

97.0 

1.0 ['rs48202

86', 

'rs575042

8'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000002

43902', 

'ENSG0

000016

6897'] 

['intron_variant'

, 

'intron_variant'] 

[['RP1-

63G5.5', 'No 

description 

available'], 

['ELFN2', 

'extracellula

r leucine-

rich repeat 

and 

fibronectin 

type III 

domain 

containing 2 

[Source:HG

NC 



Symbol;Acc

:29396]']] 

22.0 4410

7968.

0 

441

499

35.0 

0.9167 ['rs11704

481', 

'rs206406

8', 

'rs104474

2', 

'rs576469

8'] 

Balancing 

Selection 

['ENSG

000001

00376', 

'ENSG0

000007

7935'] 

['intron_variant'

, 

'3_prime_UTR

_variant', 

'3_prime_UTR

_variant', 

'missense_varia

nt'] 

[['FAM118

A', 'family 

with 

sequence 

similarity 

118, 

member A 

[Source:HG

NC 

Symbol;Acc

:1313]'], 

['SMC1B', 

'structural 

maintenance 

of 

chromosom

es 1B 

[Source:HG

NC 

Symbol;Acc

:11112]']] 

22.0 4410

7968.

0 

441

499

35.0 

0.9167 ['rs11704

481', 

'rs206406

8', 

'rs104474

2', 

Negative 

Freq-Dep. 

Selection 

['ENSG

000001

00376', 

'ENSG0

000007

7935'] 

['intron_variant'

, 

'3_prime_UTR

_variant', 

'3_prime_UTR

_variant', 

[['FAM118

A', 'family 

with 

sequence 

similarity 

118, 



'rs576469

8'] 

'missense_varia

nt'] 

member A 

[Source:HG

NC 

Symbol;Acc

:1313]'], 

['SMC1B', 

'structural 

maintenance 

of 

chromosom

es 1B 

[Source:HG

NC 

Symbol;Acc

:11112]']] 

22.0 4743

2419.

0 

474

459

57.0 

0.9107 ['rs57719

06', 

'rs601056

8'] 

Negative 

Freq-Dep. 

Selection 

['ENSG

000002

19438'] 

['intron_variant'

, 

'intron_variant'] 

[['FAM19A

5', 'family 

with 

sequence 

similarity 19 

(chemokine 

(C-C motif)-

like), 

member A5 

[Source:HG

NC 

Symbol;Acc

:21592]']] 

 

 


