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Introduction

Risk management has become one of the most important tasks for financial
institutions in recent years. The global financial crisis drew even more attention to
the issues of risk measurement. An accurate estimation of risk exposure is highly
important to financial institutions since the appropriate risk quantification is the
basis for managing possible future losses and keep adequate capital. Financial
institutions hold a risky portfolio consisting of financial assets, such as equity,
bonds, foreign exchange, commodities or derivative securities. They face market
risk arising due to unknown future price changes in their portfolio financial
assets. Value-at-Risk (VaR) has been the most popular methodology to quantify
market risk since 1996, when the Bank for International Settlements adopted an
amendment to the Capital Accord allowing the use of internal models to estimate
risk and to calculate capital requirements. VaR is a statistical model defined as
the maximum future loss due to likely changes in the value of financial assets
portfolio during a certain period with a certain probability. The estimate of risk
obtained by the VaR model can be applied both to regulatory requirements in the
calculation of capital adequacy and management of portfolio exposure risk.

The increasing volume of data in financial markets and a fast development
of information technologies influenced the accessibility of high frequency data.
Such data sets consist of the so-called "ticks" containing information about the
financial market activity (price, volume, trader, etc.) and the time moment this
information was recorded. "Tick-by-tick" data began to be collected in the early
eighties. Soon the first empirical studies appeared whilst analyzing high frequency
data behavior and stylized facts (see, for example, Goodhart and Figliuoli (1991),
Zhou (1993)). Later, Engle (2000) introduced the definition of ultra high frequency
data trying to emphasize that such data sets contain a full record of transactions
and their associated characteristics, and it is not possible to access any more
information. The main features of tick-by-tick data series are a huge number of
observations, a random time interval between two subsequent events as well as
a random number of daily observations. The analysis of high frequency data is
complex since econometric theory is specified for regularly spaced data. There are
mainly two possible ways to deal with high frequency observations. The first one
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is a "tick-by-tick" analysis. Special models are developed to treat randomly spaced
data. Extensive information about handling high frequency data is summarized
in Dacorogna et al. (2001). The other way is data regularization, where "tick-by-
tick" observations are aggregated to obtain regularly spaced data series. In this
thesis, the aggregation of high frequency data is considered.

Aims and problems. The main topic of the thesis is the data aggregation
problem in risk measurement. We consider the Value-at-Risk model, as a tool to
estimate the market risk. The following objectives are formulated to analyze data
aggregation problem in VaR models:

• Define an aggregated VaR model and illustrate the VaR estimator depen-
dence on the choice of the data aggregation method.

• Construct a functional GARCH model with univariate volatility and analyze
its properties.

• Introduce a functional GARCH model in the Hilbert space and analyze its
properties.

• Present the data aggregation problem from the view of stylized facts of high
frequency returns.

Methods. The methods of advanced probability theory, statistics and functional
analysis are applied.

Novelty. The new approach of using high frequency aggregated data to estimate
VaR as a daily measure of risk is presented in the thesis. In relation, two new
functional GARCH type models are introduced to model volatility of functional
risk factors: a ρ − GARCH(1, 1) model with volatility dependent on some fea-
tures of functional returns and a Hilbert space valued GARCH(1, 1) model with
univariate volatility.

Maintaining statements.

• The aggregated Value-at-Risk model was defined and model estimator de-
pendence on data aggregation was analyzed, taking high frequency foreign
exchange rates.

• A functional ρ−GARCH(1, 1) model, depending on some features of func-
tional data, was constructed. The existence of a stationary solution and
the consistency of maximum likelihood estimators of model parameters
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were proved. Several examples with the known aggregated returns density
function were given.

• The Hilbert space-valued GARCH(1, 1) with univariate volatility model
was introduced. The existence of a stationary solution, the consistency
and the asymptotic normality of quasi-maximum likelihood estimators of
model parameters were proved; the asymptotic properties of residuals were
analyzed.

• The dependence of the Hurst exponent, as a long memory parameter, on
data aggregation was researched taking absolute returns of foreign exchange
rates.

Main results. Let {(τj, yj)}Nj=1 be an irregular time series, where τj and yj
indicate respectively the time and the value of the j’th observation. Fix a time
interval between two observations at δ > 0, and let τ ∗t = tδ, t = 1, . . . , N∗. Using
an appropriate aggregation scheme g one defines the regular time series

y∗t = y∗t (g) = g({(τj, yj), τj ∈ (τ ∗t−1, τ
∗
t ]}), t = 1, . . . , N∗.

This basically implies that the aggregated observation value y∗t is constructed
using information available from the moment τ ∗t−1 to the moment τ ∗t . Note that
the dimension of the aggregation g in the definition is not fixed; therefore both
finite and infinite dimensional aggregation schemes can be used. For example,
Brownlees and Gallo (2006) suggested several univariate aggregation rules, such
as taking the first, the last, the maximum, the minimum or the sum of the values
yj in the interval (τ ∗t−1, τ

∗
t ]. Additionally, the methods based on the interpolation

at τ ∗t of the previous and next observation in data series can be chosen (see, e.g.,
[26]). In this case, when the aggregation produces univariate time series, the
standard econometric theory can be applied. Furthermore, one might construct
functional observations from high frequency data. Ramsay and Silverman (1997)
introduced several techniques for converting raw data into a functional form,
such as basis functions methods, smoothing by local weighing, and the roughness
penalty approach. The direct constructions of functional data can be used as
well. For example, the consecutive maximal values of high frequency observations
produce the non-decreasing functions,

y∗t (s) = max{yj|τj ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}, s ∈ [0, 1].

Aggregated functional observations can be analyzed applying functional data
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models.

It is agreed that high frequency data might improve the quality of risk model
estimates. However, there are only a few studies about the VaR estimation using
high frequency data. One part of papers (see, e.g., [13],[43]) concerning high
frequency data VaR analyze regularized data and apply standard VaR models.
The other part of publications (see, e.g., [22], [31]) develop special VaR models
for tick-by-tick observations. High frequency data VaR models, usually based
on 5 to 30 minutes returns, are applied to intraday risk management purposes.
The estimates of VaR obtained by such models enable us to manage the exposure
of risky positions or the whole portfolio of risky assets during the day. To our
knowledge, high frequency data VaR models are not applied to measure market
risk for capital adequacy calculation purposes. The reason of this is the Capital
Accord, adopted by the Bank for International Settlements (2006), where the
requirements to the VaR model are stipulated, indicating that "Value-at-Risk
must be computed on a daily basis". In general, daily data are obtained either
taking the closing or the last price of the day (equity markets) or fixing the
price at a certain moment or period of the day (foreign exchange markets). For
example, in the Bloomberg1 system the daily foreign exchange rates are fixed
at the end of the day, while the Bank of Lithuania sets official foreign exchange
rates for the next day according to foreign exchange rates observed at around 10
a.m. local time. Obviously, both daily foreign exchange rates - one taken from
the Bloomberg system and the other one provided by the Bank of Lithuania -
are different. Furthermore, daily data can be obtained taking the maximum, the
minimum, the average financial asset price during the day, or even applying more
complex data aggregation methods. However, the official requirements to VaR
models do not include any statement about aggregation.

Aggregated VaR. In the thesis, a new concept of aggregated VaR was introduced
following the classical VaR definition, given in [34]. Consider aggregated financial
assets prices pt(g), where the aggregation rule g is from the class G. Denote by
τt := tδ the sequence of regular data series time moments and suppose f is a
mapping function. Having taken logarithms of financial assets aggregated prices,
the portfolio loss can be written as

Lt+1(g) = −[f{τt+1,Zt(g) + Xt+1(g)} − f{τt,Zt(g)}],

1Bloomberg is a major global provider of 24-hour financial news and information including
real-time and historic price data, financials data, trading news and analyst coverage, as well
as general news and sports. Its services, which span their own platform, television, radio and
magazines, offer professionals analytic tools.(www.investopedia.com)
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here Xt+1(g) := Zt+1(g) − Zt(g) are changes of risk factors with the risk factors
expressed as Zt(g) = (Zt,1(g), ..., Zt,d(g)) = (ln pt,1(g), ..., ln pt,d(g)). Denote the
portfolio of the financial assets loss distribution function as FL(g), g ∈ G. Assume
that the confidence level α ∈ (0, 1). The portfolio aggregated VaR at a fixed
confidence level α is given by the smallest number l such that the probability that
the loss L(g), g ∈ G exceeds l is not larger than (1 − α) over the time horizon
δ ≥ 0:

V aRα(g) = inf{l ∈ R : P (L(g) > l) ≤ 1− α} = inf{l ∈ R : FL(g)(l) ≥ α}.

According to this definition, VaR not only depends on the confidence level α and
the holding period δ, but also on the aggregation rule g from a given class G.

The empirical study was performed taking high frequency foreign exchange
rates to illustrate the market risk estimator’s dependence on data aggregation.
Foreign currencies - the US dollar (USD) versus the euro (EUR), the British
pound (GBP) and the Japanese yen (JPY) - were taken to calculate VaR. The
following aggregation rules were chosen for analysis:

• pointwise aggregation

pDAILYt (s) = {pi|τi = max{τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}}, s ∈ [0, 1],

• maximum value aggregation

pMAXt (s) = max{pi|τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}, s ∈ [0, 1],

• minimum value aggregation

pMINt (s) = min{pi|τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}, s ∈ [0, 1],

• average value aggregation

pAV Et (s) = 1
mt(s)

∑
τi∈(τ∗t−1,(1−s)τ∗t−1+sτ∗t ]

pi, s ∈ [0, 1],

where
mt(s) = #{τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}.

Here the class of aggregation rules G is taken as an interval [0, 1] and the
number s denotes an aggregation rule. For example, taking the maximal or average
values for each time moment s ∈ [0, 1], we obtain the corresponding aggregation

vii



rule.

There is a large variety of different methodologies to calculate VaR (see, e.g.,
[38]). One of the most popular methods to estimate VaR, historical simulation
methodology, can be easily generalized for aggregated data. Historical simulation
aggregated VaR can be written as

V aRα(s) = qα(FL(s)), s ∈ [0, 1],

where FL(s) denotes the empirical distribution of the foreign exchange position
loss and the symbol qα denotes the α quantile of the empirical distribution.

Applying the VaR model and taking high frequency foreign exchange rates and
daily foreign exchange rates, the market risk was estimated (the maximum possible
loss over one day due to rate fluctuations). The empirical study has showed
that the possible loss of a financial institution depends on the chosen aggregation
rule.The presented analysis not only shows the difference of the risk estimate,
depending on the chosen aggregation scheme, but also clearly indicates that the
estimate of risk, calculated by using daily foreign exchange rates represents only
a small part of the view what happens during the whole day.

According to the official requirements of the Bank for International Settle-
ments, daily historical data are sufficient to estimate the market risk. However,
such calculations are based only on a very small part of information available
during the day. Therefore the market risk of a financial institution is measured
inaccurately. The use of aggregated data in VaR models would account for the
whole information observable in the markets during the day and let us estimate
the risk more accurately.

Functional GARCH. In the second chapter of the thesis, the functional ρ −
GARCH(1, 1) model has been developed. Consider a functional time series
(Xt, t ∈ Z), where for each t, Xt = (Xt(g), g ∈ G) is a random function defined
on the set G. We assume all random elements to be defined on a fixed probability
space (Ω,F , P ). We also assume, that for each t, Xt ∈ E ⊂ RG, is an E-valued
random element, where E is a separable topological vector space endowed with its
Borel σ-field. Let ρ : E→ R be a measurable semi-norm.

The process (Xt, t ∈ Z) is defined as a functional ρ − GARCH(1, 1) model if,
for each g ∈ G and t ∈ Z, it satisfies

Xt(g) = σtεt(g),

σ2
t = ω + αρ2(Xt−1) + βσ2

t−1,
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where (εt(g), g ∈ G), t ∈ Z are independent identically distributed random
functions.

The strong stationarity (see Theorem 2.1) and the 2nd order stationarity (see
Theorem 2.2) of the functional ρ − GARCH(1, 1) model were proved following
[40].

To estimate model parameters, the maximum likelihood method was chosen.
The maximum likelihood estimator of the true parameters vector ν0 = (θ0, λ0)T ,
θ0 = (ω0, α0, β0)T is obtained by maximizing the likelihood function:

ν̂n = argmax
ν∈K×M

L̂n(ν),

and the notation is provided in section 2.4. The consistency (see Theorem 2.3) of
the maximum likelihood estimator ν̂n of ρ−GARCH(1, 1) model parameters was
proved following Theorem 6.1.4. in [71].

At the end of the chapter, several examples were given where the density
function of random elements ρ(εt) was known. The consistency of maximum
likelihood parameter estimators was proved checking the conditions of Theorem
2.3.

Example 0.1. Assume that the class G = [0, 1], i.e., each s ∈ [0, 1], corresponds
to a certain aggregation rule. Consider the C[0, 1] valued time series (Xt, t ∈ Z)
with functional elements obtained applying the aggregation rule and expressed as

Xt(s) = σtεt(s),

σ2
t = ω + α

(
max
s∈[0,1]

Xt−1(s)
)2

+ βσ2
t−1,

where (εt(s), s ∈ [0, 1]), t ∈ Z are independent identically distributed Wiener
processes.

This example corresponds to the functional ρ − GARCH(1, 1) model, where
E = C[0, 1] and the semi-norm ρ(f) = max0≤s≤1 f(s). Since the density function
of ρ(εt) = maxs∈[0,1] εt(s) is well known, we can express the maximum likelihood
function and show that the conditions of Theorem 2.3 are satisfied. Therefore,
the maximum likelihood estimator of model parameters is consistent.

Example 0.2. Consider the C[0, 1]-valued time series (Xt, t ∈ Z), where

Xt(s) = σtεt(s),

σ2
t = ω + α min

s∈[0,1]
X2
t−1(s) + βσ2

t−1,

where (εt(s), s ∈ [0, 1]), t ∈ Z are independent identically distributed Wiener
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processes.
So this example corresponds to the functional ρ−GARCH(1, 1) model, where

E = C[0, 1] and the semi-norm ρ(f) = min0≤s≤1 f(s). The consistency of the
maximum likelihood estimator of model parameters is proved similarly as in the
first example.

Example 0.3. In this example, we take the case, where the class G = {g1, . . . , gd}
consists of d aggregation rules and consider the Rd-valued time series (Xt, t ∈ Z):

Xjt = σtεjt, j = 1, . . . , d,

σ2
t = ω + αρ2(Xt−1) + βσ2

t−1,

where (εjt, j = 1, . . . .d), t ∈ Z are independent identically distributed Gaussian
random vectors with zero mean and the covariance matrix Λ = (λij, i, j = 1, . . . , d)
and ρ is a semi-norm on Rd. As an example, we consider the semi-norm ρ(x) =(∑d

i=1 x
2
i

) 1
2

and assume that λii = 1, i = 1, . . . d. Then ρ2(εjt) = ∑d
i=1 ε

2
jt, t ∈ Z

has χ2-distribution. Therefore we can express the maximum likelihood function
and prove the consistency of the model parameter estimator.

Example 0.4. In this example, we take a point-wise aggregation. Consider the
C[0, 1] valued time series (Xt, t ∈ Z), where

Xt(s) = σtεt(s),

σ2
t = ω + α(Xt−1(1)−Xt−1(0))2 + βσ2

t−1,

where (εt(s), s ∈ [0, 1]), t ∈ Z are independent identically distributed Gaussian
processes.

The example corresponds to the functional ρ − GARCH(1, 1) model, where
E = C[0, 1] and the semi-norm ρ(f) = |f(1)−f(0)|. This case has also a practical
explanation, when the returns of financial asset prices are analyzed. Assume, e.g.,
that the returns of a share, traded on the stock exchange, are taken. From this
model equations we can see that the volatility depends on the difference between
the returns taken at the beginning and at the end of the day, i.e., the opening
price and the closing price returns.

The density function of [εt(1) − εt(0)] is well known, so we can derive the
maximum likelihood function to estimate the model parameters and to verify
that the conditions of Theorem 2.3 are satisfied.

GARCH model in the Hilbert space. Let H be a real separable Hilbert space of
infinite or finite dimensions with the inner product 〈·, ·〉 and the corresponding
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norm || · ||, ||x||2 = 〈x, x〉, x ∈ H. Let (Xt, t ∈ Z) be an H-valued random process,
Z = {0,±1,±2, . . . }.

We say that (Xt) is GARCH(1, 1) with univariate volatility (uvGARCH(1, 1)),
if

Xt = σtεt, (εt) ∼ iid (0, Qε),

σ2
t = ω + βσ2

t−1 + 〈Xt−1, z〉2, t ∈ Z,

where ω > 0, β ≥ 0 and z ∈ H are parameters of interest. We also assume
that (εt, t ∈ Z) are independent identically distributed H-valued random elements
with zero mean and covariance Qε. It is clear, that (Xt) when projected in the
direction z, namely, the time series (〈z,Xt〉), follows the classical GARCH(1, 1)
model. However, the direction z is unknown.

The strong stationarity (see Theorem 3.1) and the 2nd order stationarity (see
Theorem 3.3) of the Hilbert space-valued uvGARCH(1, 1) model have been proved
using the results in [40] and [71].

The quasi-maximum likelihood approach was chosen to estimate model pa-
rameters. The quasi-maximum likelihood estimator θ̂n is by obtained maximizing
the likelihood function:

θ̂n = argmaxθ∈KL̂n(θ),

and the notation is provided in Section 3.3. The consistency (see Theorem 3.4) of
the quasi-maximum likelihood estimator θ̂n was proved according Theorem 5.1.7
in [71]. The asymptotic normality (see Theorem 3.5) of the maximum likelihood
estimator θ̂n was proved following Theorem 7.2 in [40] and Theorem 5.6.1 in [71].

At the end of the chapter, the analysis of asymptotic properties of model
residuals was made (see Theorem 3.6).

Aggregation and Stylized Facts. In the final chapter of the thesis, the problem
of aggregation when analyzing the statistical properties of high frequency data is
presented (for details of stylized facts see [23], [26] and [40]). Common statictical
properties of financial assets prices have been studied for many years and such facts
as almost no autocorrelation of returns, non-stationarity of prices series and long
memory are well known. The analysis of low and high frequency returns volatility
has revealed several statistical properties: volatility clustering, seasonality, and
the leverage effect. The research of the institutional frameworks, news and other
exogenous impacts also drew a lot of attention. Later on, high frequency data
sets stylized facts, such as the discreteness of quoted bid-ask spread, the short-
term triangular arbitrage and scaling laws, were summarized. When working with
the aggregated high frequency data an important question arrises, whether the
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aggregation changes the basic stylized facts and how. To our knowledge, such an
analysis has not been made as yet.

Long memory, as one of the basic stylized facts, was chosen for an empirical
study. According to [56] the covariance stationary process, yt is said to exhibit a
long memory if the following condition is satisfied

−n∑
k=n
|ρk| → ∞, n→∞,

where ρk is the autocorrelation function at lag k. Applying the R/S statistic
[49], the Hurst exponent was estimated and if its values fall into the interval
0, 5 < H < 1, it is said that the process exhibits a long-range dependence. The
same aggregation rules as in Chapter 1 were taken: pointwise, maximum value,
minimum value, and average value aggregation. The empirical study performed
for foreign currencies (USD, EUR, GBP, JPY) has confirmed the widely known
stylized fact that absolute returns have a long memory. However, it has also
showed that the Hurst exponent depends on the applied aggregation rule and
fluctuates all the day. This fact should be considered when modeling functional
returns and applying long memory models.
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2. Pranckevičiūtė M. Long Memory in High Frequency FX Rates: Hurst
Exponents Dependence on Data Aggregation. LI Conference of the Lithua-
nian Mathematical Society, Šiauliai University, 17-18 June 2010, Šiauliai,
Lithuania.
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Structure of the thesis.
The thesis consists of an introduction, four chapters, general conclusions, two

appendices and the bibliography.

• Chapter 1 is designated to define the aggregated Value-at-Risk model.
The standard VaR concept is explicitly introduced and the most common
VaR method - historical simulation is presented. A new definition of the
aggregated VaR is given, and the empirical study on the foreign exchange
rate (USD versus EUR, GBP, JPY) position VaR estimators’ dependence on
the data aggregation functions (pointwise, maximum value, minimum value
and average value) is provided.

• At the beginning of Chapter 2, pointwise GARCH models are consid-
ered in the context of risk measurement purposes. Next, a functional
ρ−GARCH(1, 1) model is defined and analyzed. Finally, some examples of
the ρ−GARCH(1, 1) model taking the known density function of aggregated
observations are given.

• In Chapter 3, the general Hilbert space valued time series is presented and
the GARCH(1, 1) model with univariate volatility is investigated. The
estimation of this model is considered and the asymptotic properties of
quasi-maximum likelihood parameter estimators are provided.
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• In Chapter 4, stylized facts of high frequency data are presented. The
long memory of absolute daily foreign exchange returns is analyzed, using
classical R/S statistic and estimating the Hurst exponent. The empirical
study of the dependence of the Hurst index intraday value on the data
aggregation rule for the USD versus EUR, GBP and JPY currencies is
provided.
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Chapter 1

Aggregated Value-at-Risk model

VaR methodology is based on modeling the risk factors of financial assets. Log-
arithmic prices are usually taken for risk factors and the returns distribution is
analyzed. When the portfolio consists of highly liquid financial instruments, "tick-
by-tick" data sets are available for risk analysis. Despite the common agreement
that high frequency data might improve the quality of risk model estimates, there
are only a few studies about VaR estimation using high frequency data. One
part of papers concerning high frequency data VaR analyze regularized data and
apply standard VaR models. For instance, Beltratti and Morana (1999) used
half hour German mark versus the US dollar exchange rate to estimate daily
and high frequency data VaR. Giot (2005) took 15 and 30 minute returns to
estimate intraday VaR applying parametric (Normal, Normal GARCH, Student
GARCH, RiskMetrics and high-frequency duration models) and non-parametric
(empirical quantile, extreme distributions models) to three stocks traded on the
New York Stock Exchange. Other authors developed special VaR models based
on "tick-by-tick" data. Dione, Duchesne and Pacurar (2006) introduced a study of
intraday VaR estimates calculated using the ultra-high frequency GARCH model
as an extension of the framework proposed by Engle (2000). Colletaz, Hurlin, and
Topkavi (2007) suggested combining Autoregressive Conditional Duration (ACD)
models and a non parametric quantile estimation to model irregularly spaced
intraday VaR with a stochastic forecast horizon. Most of such studies estimate
VaR in short time horizons for the portfolio of risky assets management purposes.
However, there is no research about using high frequency data to estimate daily
VaR which would be applied to the capital adequacy calculation.

Despite the continued research of high frequency VaR models, in practice,
daily VaR models are still wideused. This is also due to the fact that even the
latest version of capital standards published by the Basel Committee of Bank for
International Settlements in 2006 allows using daily data for risk measurement
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without any notice about higher frequency data. An extensive survey about
standard VaR methods is provided by Engle and Manganelli (2001). They
classify VaR methodologies into three categories: parametric, nonparametric and
semi-parametric models. Parametric models are based on making an explicit
assumption on the distribution function of risk factors and mainly deal with
returns parametrization and volatility modeling. The most common approaches
to estimate variance are RiskMetrics methodology [50], [58] and ARCH family
models introduced by Engle (1982) and Bollerslev (1986). Nonparametric models
are based on the assumption that future behavior of risk factors will be similar as in
the past and the past behavior of risk factors is analyzed. The model of historical
simulation is relatively simple to estimate and is widely applied in practice.
Furthermore, there is a number of historical simulation method improvements.
For example Boudoukh, Richardson and Whitelaw (1998) introduced a hybrid
approach as a combination of RiskMetrics and historical simulation methodologies
where the exponentially declining weights were applied to past returns. Hull
and White (1998) proposed a volatility adjusted version of the classical historical
simulation approach. The extensions of nonparametric models can also be referred
as semiparametric models. In addition, there is a large group of semiparametric
models using the extreme value theory to measure VaR. Applications of extreme
value theory are proposed in Embrechts, Kluppelberg and Mikosch (1997) and
Danielson and de Vries (2000). The models based on quasi-maximum likelihood
GARCH are introduced by Diebold, Schuermann and Stroughair (1999) and
McNeil and Frey (2000). The Conditional Autoregressive VaR model is proposed
by Engle and Manganelli (1999) with the extended version that incorporates the
extreme value theory, presented in [38]. Finally, a separate group of VaR models
based on the Monte-Carlo simulation can be distinguished (see, for example,
Jorion (2007)).

1.1 Standard Value-at-Risk

A standard VaR method was developed and is still widely used taking daily finan-
cial asset prices for risk estimation. Despite the huge variety of methodologies,
VaR is an easy concept to interpret; therefore it is often applied to measure the
potential loss of a decrease in a financial assets portfolio market value. A VaR
model estimates the maximum loss due to changes in financial asset prices during
the assets holding period with a chosen confidence level. Below we provide the
common concept of VaR, following McNeil, Frey and Embrechts (2005), as the
basis to define an aggregated high frequency data VaR model.
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1.1.1 Loss distribution

Let (Ω,F , P ) denote the probability space of all random variables. Consider a
portfolio of risky assets such as stocks, bonds, foreign exchange or commodities
and denote by V (τ) the value of this portfolio at time τ . By assumption, a random
variable V (τ) is observable at time τ . The portfolio loss over the period [τ, τ + δ]
for a fixed time horizon δ is defined by L[τ,τ+δ] := −(V (τ + δ) − V (τ)). The
distribution of L[τ,τ+δ] is called a loss distribution.

Assume that, for any generic d-dimensional stochastic process U(τ), the
discrete-parameter time series (Ut)t∈N is defined by setting Ut := U(τt) , where
τt := tδ. Then the portfolio loss can be expressed as

Lt+1 := L[τt,τt+1] = −(Vt+1 − Vt). (1.1)

It should be noted that an index t can vary indicating minutely, hourly, or
daily data depending on the time horizon δ. For example, taking δ equal to one
day, Lt+1 represents the loss between days t and t + 1, while Vt and Vt+1 are
portfolio values.

Risk factors

The risky assets portfolio value is usually modeled as the function of time and
risk factors. Consider a d-dimensional random vector of risk factors Zt =
(Zt,1, ..., Zt,d)T and a measurable function f : R+ × Rd → R. Then the portfolio
value is

Vt := f{τt,Zt}. (1.2)

It is assumed that the random vector of risk factors Zt is observable at time
t. Depending on the portfolio at hand, the risk factors and function f are chosen.
Usually the logarithmic prices of financial assets are taken as risk factors. For
example, consider a fixed portfolio of stocks or foreign exchange and denote by
wi the number of financial asset i in the portfolio at time t. Denote the price
process of the financial asset by (pt,i)t∈N and take risk factors as logarithmic prices
Zt,i := ln pt,i, 1 ≤ i ≤ d. Then the portfolio value can be expressed as Vt =∑d
i=1wi exp(Zt,i). However, there can be a lot of other choices of risk factors. Not

only the price, but also the features of risky assets, such as volume, price volatility
and other derived characteristics, can be taken as risk factors. Furthermore,
market news announcements, macroeconomic indicators can also be selected as
parameters to model the distribution of financial assets. The function f is called a
mapping function and the representation of the portfolio value in (1.2) is regarded
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as risk mapping. Risk factors and their changes are the main object of interest in
risk modeling.

Suppose that logarithmic prices of financial assets are taken for risk factors.
Then portfolio loss (1.1) can be expressed as

Lt+1 = −[f{τt+1,Zt + Xt+1} − f{τt,Zt}]. (1.3)

Here Zt = (ln pt,1, ..., ln pt,d)T is the vector of logarithmic prices of financial
assets at time t and Xt+1 := Zt+1−Zt is the change in the risk factor value. Taking
the example of stocks or foreign exchange portfolio considered above, the portfolio
loss can be written as Lt+1 = −(Vt+1 − Vt) = −∑di=1wipt,i(exp(Xt+1,i) − 1).
Equation (1.3) shows that the portfolio loss distribution is determined by the
distribution of risk factor changes Xt+1, as the distribution of risk factors Zt is
known at time t.

Conditional loss distribution

In this subsection, a distinction between conditional and unconditional loss dis-
tributions is considered in short. Both the conditional and unconditional distri-
butions are relevant in the risk management. The unconditional loss distribution
is usually used in the credit risk management and insurance, where losses are
measured over long time horizons. Since we take a particular interest in measuring
the market risk over a relatively short time period, the conditional loss distribution
will be considered in the rest part of the thesis. Denote by Ft the σ-algebra,
generated by risk factor changes (Xs)s≤t, and denote by F[Xt+1|Ft] the conditional
distribution of Xt+1 given the information Ft. Before giving a definition of the
conditional loss distribution, the notation of a loss operator that maps changes of
risk factors into losses, is introduced. Recall a portfolio loss as in (1.3) and define
the loss operator as

l[t](x) := −[f{τt+1, Zt + x} − f{τt, Zt}], x ∈ Rd.

Note that Lt+1 = l[t](Xt+1).
The conditional loss distribution F[Lt+1|Ft] can be defined as the distribution

of the loss operator l[t](·) under F[Xt+1|Ft] and written as

F[Lt+1|Ft](a) = P (l[t](Xt+1) ≤ a|Ft) = P (Lt+1 ≤ a|Ft), a ∈ R. (1.4)

The conditional loss distribution gives the conditional distribution of the next
period loss Lt+1, given all the current information Ft.
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1.1.2 Value-at-Risk

In this section, a general definition of VaR is introduced. Consider a portfolio of
risky assets with the conditional loss L distribution function FL(l). With reference
to the definition of the standard VaR we assume the confidence level α ∈ (0, 1).
The portfolio VaR at the fixed confidence level α is given by the smallest number
l such that the probability that loss L exceeds l is no larger than (1−α) over the
time horizon δ ≥ 0:

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}. (1.5)

According to this definition, VaR depends on the confidence level α and the
holding period δ that is chosen while setting the discrete time series, as defined in
Section 1.1.1. Under regulatory requirements (BCBS 2006) to VaR parameters,
the confidence level α is 99% and the holding period equals 10 days. However,
for everyday risk management purposes the confidence level is usually taken 95%
and a 1 day time horizon is used. Additionally, the VaR value depends on the
choice of a loss distribution model. Therefore there is a great variety of different
methodologies to estimate VaR. Two approaches are usually chosen to model
the portfolio or a single asset loss distribution. According to the first one, the
assumption that future behavior of risk factors will be the same as in the past is
made. Then the past behavior of risk factors is analyzed. The other approach is
based on making an explicit assumption on the distribution of risk factors. These
methods are briefly presented in the next two sections.

Historical Value-at-Risk

One of the most popular methods to estimate VaR is the historical simulation
methodology. The method, based on the concept of rolling windows, is easily
implemented. Suppose that the data set of n historical prices of the financial
asset such as equity, bond or foreign exchange is available. Assume that the
financial asset price returns are identically distributed with the same empirical
distribution function over the time horizon analyzed. The historical VaR model
can be written as:

V aRhistα = qα(FL), (1.6)

where FL denotes the empirical distribution of the financial asset position loss
L, and the symbol qα denotes the α quantile of the empirical distribution. In
practice, a daily estimate of the historical VaR model is obtained by calculating
all the possible changes in the current price over the analyzed time horizon and
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choosing a sufficiently large price change at the required confidence level. To
estimate VaR for the following day, the whole window is moved forward by one
day and the entire procedure for calculating all the possible changes in the price
is repeated.

Parametric Value-at-Risk

Another widely used VaR methodology is parametric VaR. The main feature of the
parametric VaR methodology is the assumption that the risk factors distribution
determines the distribution of losses.

Assume that the loss distribution function FL is normal with mean aL and
variance σ2

L. The parametric VaR measure can be expressed as

V aRparα = aL + σLqα{Φ}, (1.7)

where qα{Φ} denotes the α quantile of the standard normal distribution Φ.
When using the parametric VaR methodology in practice, mean aL and

variance σ2
L are not known and have to be estimated. Usually, the mean of returns

is very close to zero and is not regarded in the VaR estimation. Besides, Kim,
Malz and Mina (1999) have showed that mean forecasts for a shorter than three
months period do not produce accurate estimates. In the market risk the forecasts
are usually taken up to 10 days. In this case, the forecast of future returns is
determined by the volatility parameter σ estimate. One of the most common
methods to estimate variance is the RiskMetrics approach (see, e.g., [50]), where
the variance can be calculated using Exponentially Weighted Moving Average
(EWMA). Another broadly used approach to estimate risk factor volatility is
the GARCH model introduced by Bollerslev (1986).

The presented standard VaR definition, based on the distribution of loss, can
be straightforwardly generalized when the aggregated high frequency risk factors
data are considered. A new concept of aggregated VaR is introduced in the next
section.

1.2 Aggregated Value-at-Risk

Consider "tick-by-tick" series of financial asset prices, where the jth observation
consists of two variables - moment τj and value pj. The time series of N such
observations can be written as {(τj, pj)}Nj=1. To construct regular time series, the
time interval between two observations δ is fixed and a new time scale is obtained
by taking τ ∗t = tδ, t = 1, ..., N∗. Suppose that the aggregation rule g is from a
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class G (for a more general approach to aggregation see Kvedaras and Račkauskas
(2010)). Data series of regular financial asset prices are defined as

pt(g) := g({(τj, pj), τj ∈ (τ ∗t−1, τ
∗
t ]}), t = 1, ..., N∗. (1.8)

There are several possible ways of choosing the aggregation rule. For example,
daily data are obtained either taking the closing or the last price of the day
(equity markets) or fixing the price at a certain moment or period of the day
(foreign exchange markets). In such a case, all the remaining information on price
behavior during the day is not taken into account. Therefore we would like to try
taking such data aggregation that captures more information about the financial
asset price than the fixed price at a certain moment. Having aggregated the prices,
using different rules, it is important to analyze the VaR estimator’s dependence
on data aggregation. In this chapter, we use pointwise, maximum value, minimum
value and average value data aggregation rules. There are a lot of possibilities
for other choices of aggregation rules; however, our purpose is not to analyze all
the possible aggregation methods, but to illustrate the dependence of the VaR
estimate on the selected aggregation rules.

Suppose a "tick-by-tick" series of financial asset prices is regularized, using the
aggregation rule g ∈ G, as defined in equation (1.8). Having taken logarithms of
financial asset aggregated prices (1.8), the portfolio loss in (1.3) can be written as

Lt+1(g) = −[f{τt+1,Zt(g) + Xt+1(g)} − f{τt,Zt(g)}], (1.9)

where Xt+1(g) := Zt+1(g) − Zt(g) are changes of risk factors with Zt(g) =
(Zt,1(g), ..., Zt,d(g))T = (ln pt,1(g), ..., ln pt,d(g))T . Assume that the conditional
distribution function the portfolio of financial assets loss is FL(g)(l), g ∈ G.

Definition 1.1 (Aggregated Value-at-Risk). Assume the confidence level α ∈
(0, 1). The portfolio VaR at a fixed confidence level to be α is given by the
smallest number l such that the probability that the loss L(g), g ∈ G exceeds l is
no larger than (1− α) over the time horizon δ ≥ 0:

V aRα(g) = inf{l ∈ R : P (L(g) > l) ≤ 1− α} = inf{l ∈ R : FL(g)(l) ≥ α}.
(1.10)

According to this definition, VaR depends not only on the confidence level α
and the holding period δ, but also on the aggregation rule g from the given class G.
This is the general definition of aggregated VaR, where neither the aggregation rule
nor the class of these rules is specified. For example, we can define the aggregation
rule taking the aggregated price as a point equal to the closing price of the day. In
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this case, the aggregated VaR corresponds to the standard definition of the daily
VaR and its estimate. However, applying more complex aggregation rules, VaR
values will be different. In the next section, we present a numerical example of
the aggregated VaR estimate using the historical simulation methodology.

1.3 Numerical example

Foreign currencies (USD, EUR, GBP, JPY) were taken to calculate VaR and to
illustrate the market risk estimator’s dependence on the data aggregation rule.
These currencies were chosen as frequently traded on the foreign exchange market
and, therefore, large data sets are available for research. Foreign exchange rates
were taken every minute over one-year period, i.e., the final data set for each
currency consisted of 1440 minutely rates for 252 working days of the year. The
average price of the bid and ask rates was used. By the assumption a position
of 1 million of USD was held. The possible loss due to the USD exchange rate
decrease in respect of the local currency (EUR, GBP or JPY) was considered
over one day, i.e., due to foreign exchange rate fluctuations a smaller equivalent
value of 1 million USD position was estimated. The confidence level was taken 95
percent.

According to the portfolio loss definition (1.9), risk factors and the risk
mapping function should be specified. As usual, logarithmic foreign exchange
rates are taken as risk factors. Consider any foreign currency and denote by
w the amount of this currency equivalent in respect of the fixed local currency.
Suppose pt(g), g ∈ G is a regular data series of foreign exchange rates. Accordingly,
risk factors Zt(g), g ∈ G are logarithmic foreign exchange rates and risk factor
changes Xt(g), g ∈ G are logarithmic foreign exchange returns. The portfolio of
a single currency loss in equation (1.9), after mapping the risk can be given by
Lt+1(g) := −w pt(g)(exp(Xt+1(g)) − 1). Using the Taylor series of an exponent,
the linearized loss L̃t+1(g) can be expressed as

L̃t+1(g) := −w pt(g)Xt+1(g). (1.11)

In practice, the linearized loss is usually taken to estimate VaR. To specify the
aggregation rules that were applied to aggregate foreign exchange rates, consider
"tick-by-tick" observations {(τj, pj)}Nj=1, where pj indicates the financial asset price
(it could also be volume, number of news announcements or some other feature)
recorded at time τj. We assume that each s ∈ [0, 1] corresponds to the aggregation
scheme g ∈ G. So we identify class G with the interval [0, 1] and the aggregation
rule g with s.
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The following aggregation schemes were chosen for analysis:

• pointwise aggregation

pDAILYt (s) = {pi|τi = max{τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}}, s ∈ [0, 1],

• maximum value aggregation

pMAXt (s) = max{pi|τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}, s ∈ [0, 1],

• minimum value aggregation

pMINt (s) = min{pi|τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}, s ∈ [0, 1],

• average value aggregation

pAV Et (s) = 1
mt(s)

∑
τi∈(τ∗t−1,(1−s)τ∗t−1+sτ∗t ]

pi, s ∈ [0, 1],

where
mt(s) = #{τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}.

The parameter s ∈ [0, 1] is assumed to be continuous. In practice, however,
risk factors are recorded at discrete time moments and therefore this parameter
can be chosen depending on the available data frequency - one second, one minute,
five minutes, etc. In the thesis, a parameter s equal to one minute, was taken.

Application of the aggregation rules defined above results in different aggre-
gated values during a day. Using the pointwise (POINT) data aggregation, the
aggregated value is obtained taking the corresponding tick observation at every
moment of the day (see Figure 1.3). The maximum (MAX) value aggregation at
a certain moment of the day is defined as the maximum tick observation up to
that moment. On the contrary, under the minimum (MIN) value aggregation,
the aggregated value is obtained taking the minimum tick observation up to
the corresponding moment of the day. The average (AVG) value aggregation
means that at every moment of the day, the aggregated value is calculated as an
arithmetic average of all the tick observations up to that moment. Figure 1.1
illustrates the EUR/USD (i.e. the price of 1 EUR in USD) aggregated exchange
rate during a day and using all the aggregation rules listed above.

The historical simulation methodology was chosen to estimate the aggregated
VaR of the foreign currency position. Assume that the foreign exchange position
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Figure 1.1: EUR/USD aggregated exchange rate

loss is defined as in equation (1.11). Then the aggregated VaR can be written as

V aRα(s) = qα(FL(s)), s ∈ [0, 1],

where FL(s) denotes the empirical distribution of the foreign exchange position
loss and the symbol qα denotes the α quantile of the empirical distribution.

The VaR estimate is the empirical α quantile calculated as

V̂ aRα(s) = Y ∗[αn]+1(s), s ∈ [0, 1],

where Y ∗[αn]+1(s), is the [αn] + 1 member of ordered time series for every s ∈ [0, 1]
consisting of

Yj(s) = −w pn(s)Xj(s), j = 1, ..., n, Y ∗1 (s) ≤ Y ∗2 (s) ≤ ... ≤ Y ∗n (s).

The results of the aggregated VaR estimates for the exchange rates of EUR/USD,
GBP/USD and JPY/USD are presented in Figures 1.2, 1.3, and 1.4. In addition,
the horizontal line in each picture corresponds to the daily VaR estimate calculated
using the daily foreign exchange rates provided by Bloomberg. The daily foreign
exchange rates in the Bloomberg system are fixed as that of the end of the day.
All the pictures show that the pointwise value aggregation yields the most volatile
VaR. Another common characteristic is that the average value aggregation gives
a very low VaR estimate at the end of the day as this aggregation method results
in smoother prices and, consequently, lower returns. However, there are some
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considerable differences in the presented charts for all the currencies analyzed.

Figure 1.2: Aggregated VaR of the USD position in respect of the EUR. currency

Figure 1.2 shows VaR estimates of the EUR/USD foreign exchange position.
The maximum VaR value, amounting to 15,2 th.EUR, is obtained by pointwise
aggregation at 13:56. The pointwise aggregation produces the largest VaR esti-
mates between 9 a.m. and approximately 3 p.m. when there is the most active
trade in the European financial market as well as the start of trade in America.
Consequently, larger exchange rate fluctuations result in larger returns. At the
end of the day, the EUR/USD exchange rate does not change considerably and
VaR values are respectively low. Therefore the daily foreign exchange rate fixed
at the end of the day results in rather a low daily VaR estimate amounting to
12,7 th.EUR or 16 per cent less than the maximum VaR value in the pointwise
aggregation. Even the maximum and minimum value aggregation rules give
larger VaR estimates most of the time than daily VaR. It should be noted that
the minimum value aggregation gives a higher VaR estimate almost all the day
compared to the maximum value aggregation, since decreases in the EUR/USD
foreign exchange rate were larger than increases during the analyzed period. The
average value aggregation resulted in the largest deviation between the smallest
VaR value of 10,1 th.EUR and the largest VaR value of 14,1 th.EUR, i.e., a
difference of 39 per cent. Nevertheless, the average value aggregation rule is not
very suitable to estimate the risk for such a long aggregation interval as one day.
The chart shows that in the second part of the day new observations do not
make any impact and the average value aggregation gives smoother and smoother
exchange rates with minor fluctuations, and results in a low risk estimate.
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Figure 1.3: Aggregated VaR of the USD position in respect of the GBP. currency

Figure 1.3 shows VaR estimates of the GBP/USD foreign exchange position.
Overall, this picture is quite similar to the EUR/USD graph but still there are
some differences. There are two prominent peaks in the pointwise aggregation
case. The first one is between 10 a.m. and 11 a.m., when the business day in
Europe starts and the market is opened, and the second one around 4 p.m., when
the market is going to be closed in Europe. The British pounds are mostly traded
in Europe; therefore this chart represents active trading hours in Europe when
the highest risk estimates are obtained. The largest VaR value amounting to 18,2
th. GBP is obtained by the pointwise aggregation at 9:57. Similarly as in the
EUR/USD case, the daily VaR estimate is smaller in some intervals compared to
VaR estimates obtained using data aggregation. The daily VaR 15,1 th. GBP
in total is 17 per cent smaller than the maximum VaR value of the pointwise
aggregation. The pointwise aggregation also resulted in the largest deviation
between the smallest VaR value of 12,4 th.GBP and the largest VaR value of
18,2 th.GBP, which makes even 47 per cent difference. Unlike in the EUR/USD
case, the maximum value aggregation most of the day gives larger VaR estimates
than the minimum value aggregation. Increases of the foreign exchange rate at
this time were sharper and resulted in larger fluctuations than decreases. VaR
estimates of the average value aggregation rule tend to be lower in the second part
of the day and the same comments suit as in the EUR/USD case.

Figure 1.4 shows VaR estimates of the JPY/USD foreign exchange position.
This picture is rather different from EUR/USD and GBP/USD graphs. This is
mainly due to time differences between Europe, America, and Asia. The Japanese
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Figure 1.4: Aggregated VaR of the USD position in respect of the JPY. currency

yen currency trade is more active between America and Asia in the second part
of the day and in the late hours (if London time is considered). Therefore at the
end of the day, fluctuations of the JPY/USD foreign exchange rate are larger and
returns series have sharper increases and decreases. The pointwise aggregation
VaR estimates have two peaks. One is between 9 a.m. and 11 a.m., which is related
to the start of trading in Europe, and the other one is between 11. p.m. and 2
a.m. when the trading is active in Asia. Unlike it was in the case of EUR/USD
and GBP/USD foreign exchange rates; the maximum VaR value 2.092,6 th. JPY
in total is obtained by the minimum value aggregation at 17:42. The daily VaR
value amounting to 2.034,2 th.JPY is very close to the maximum VaR. This is
due to time differences, as the largest foreign exchange rate fluctuations are also
observed at the end of the day. It should be noted that, during most part of
the day, there is a very large difference between the VaR estimates, using the
maximum and the minimum value aggregation rules. The main reason is that the
foreign exchange rate decreases were more sharper and larger than increases, and
the foreign exchange rate with the aggregated minimum value was more volatile
than under the maximum value aggregation. The VaR result, when using the
average aggregation scheme, is quite similar as that of other currencies with a
very large difference of 51 per cent between the minimum (1.383,5 th.JPY) and
the maximum (2.089,8 th.JPY) VaR estimates. The JPY/USD currency example
shows that not only the aggregation rule, but also the aggregation period is very
important and makes a difference when estimating the risk.
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1.4 Conclusions

The analysis presented in this chapter shows not only the difference of the risk
estimate depending on the chosen aggregation rule, but also clearly indicates that
the estimate of risk, calculated using daily foreign exchange rates, represents only
a small part of the view what happens during the whole day. According to the
official requirements of the Bank for International Settlements, daily historical
data are sufficient to estimate the market risk. However, financial markets operate
at a very high frequency nowadays when millions of trades are performed during
one minute. Then the question is whether it is enough to measure risk and to
calculate the capital requirement on a daily basis. Perhaps instead of taking daily
data financial institutions should estimate risk with regard to all the information
available during the day. This question is very important not only for financial
institutions, but also for the supervisory authorities, since the main task for the
supervisory authorities is to ensure that financial institutions would accurately
estimate the risk assumed and hold sufficient amounts of capital to be able to
meet their obligations.

The empirical study performed on the VaR value dependence on the choice
of the four analyzed risk factor aggregation methods (pointwise, maximum value,
minimum value and average value) illustrates how much the estimates may vary.
Looking at the presented dynamics of the aggregated VaR of the USD positions
in respect of EUR, GBP and JPY and different results of risk estimates thereby,
the question can be posed which aggregation rule should be taken to obtain the
best estimate of risk. However, the answer to this problem is still open and can
only be solved after a thorough theoretical research on the risk estimate, based on
aggregated risk factors. We provided an example of the aggregated VaR estimate,
using the historical simulation methodology; however, to calculate the aggregated
VaR estimate using the parametric methodology, one needs a special model to
estimate volatility. Therefore, in the next chapter, the functional GARCH model
and its asymptotic properties are introduced.

14



Chapter 2

Functional ρ− GARCH(1, 1) model

The uncertainty, usually measured by volatility, is the central issue in financial
analysis. The financial asset return volatility estimation is the main object of
interest in risk measurement, asset pricing and portfolio allocation. In financial
economics, volatility is often defined as an instantaneous standard deviation
of a random Wiener-driven component in the continuous-time diffusion model.
Estimation of financial assets, such as stocks, foreign exchange or interest rates,
volatility is based on returns of their logarithmic prices, i.e., rj = log pj − logj−1,
j = 1, 2, . . . , is the return of the jth price pj of a financial asset. There is a huge
number of models proposed for financial asset returns and volatility (see, e.g., [4]
and [5] for surveys).

It is observed that the conditional volatility of financial returns series changes
over time, therefore GARCH family models are one the most popular tools in
the financial risk management. In 1982, Engle introduced an ARCH(p) model,
assuming that returns can be written as

rj = σjεj,

where σj is volatility and satisfies

σ2
j = α0 +

p∑
k=1
αkr

2
j−k,

with non-negative parameters αi, i = 0, 1, . . . , p, and (εj) is a white noise process
with variance 1. However, empirical works have shown that the ARCH(p) model
fits real data only for large p. In 1986, Bollerslev proposed a GARCH(p, q) model,
where volatility is given by

σ2
j = α0 +

p∑
k=1
αkr

2
j−k +

q∑
k=1
βkσ

2
j−k.
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There are many generalizations of the GARCH model to represent other
stylized facts of financial asset returns. The basic GARCH model assumes that
both positive and negative shocks of the same absolute size have the same impact
on the future conditional variance. However, the asymmetry, usually referred
as a leverage effect, is often observed in financial returns series, i.e., a fall of
the price tends to cause a higher volatility increase compared to the same size
growth of the price. There are three most frequently used GARCH models to
describe this type of asymmetry: the Threshold GARCH (see, e.g., [73]), the
Asymmetric GARCH (see, e.g., [39]), and the Exponential GARCH (see, e.g.,
[62]). Furthermore, to account for long memory, observed in absolute or squared
returns, the Fractionally Integrated GARCH model was developed (see, e.g., [10]).
However, GARCH(1,1) is the model, most often applied in practice, despite the
advantages of that discussed above and numerous other generalizations of ARCH
models. For example, Hansen and Lunde (2005) compared various types of ARCH
models (AGARCH, EGARCH, TGARCH and many others) in their ability to
describe conditional variance. The analysis has shown no evidence that other
more sophisticated models outperformed the GARCH(1,1) model.

Stochastic volatility models can be distinguished as another broad class of
volatility models (see, e.g., [2], [41] and [68] for surveys). The volatility dynamics
expression of models of this type includes an unobserved shock to the return
variance. The variance process becomes inherently latent, i.e., even with all the
available past information and knowledge of the data generating process, the
exact value of the current volatility state is unknown. This feature implies that
the volatility process is not measurable with respect to observable information.
Therefore, data filtering and smoothing techniques together with simulation pro-
cedures (simulated moments, Markov Chain Monte Carlo, etc.) are used in the
estimation and forecasting of stochastic volatility. In contrast, the conditional
variance is assumed to be observable, given past information, in GARCH models
and usually the maximum likelihood method is applied. Despite these differences,
stochastic volatility and GARCH type models are closely related. In practice, the
class of GARCH models is more often chosen for volatility forecasting due to the
easier parameter estimation.

One more group of volatility models is a realized volatility or sometimes
referred as the historical volatility, since it measures what happened in fact in
the past. The notion of realized volatility represents a model-free approach to a
consistent estimation of the quadratic return variation under general assumptions,
such as arbitrage-free financial markets. High-frequency returns are usually taken
for the assessment of a lower frequency return volatility. For more details on the
realized volatility measurement and forecasting refer to [6] and [24].
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All the volatility models discussed above were univariate. Generalizations of
these models to applications in a higher dimension, when several financial assets
volatility is measured together, can be attributed to the class of multivariate
volatility (see, e.g., [7], [12] and [47] for reviews). However, due to some difficulties
in parameter estimation and in setting the sufficient conditions to ensure that the
covariance matrix forecasts remain positive definite for all forecasting horizons,
multivariate volatility models are rarely applied in practice.

In this chapter, we present a completely different - functional generalization of
the basic GARCH(1, 1) model. We consider functional returns, subject to a certain
aggregation rule g, varying in the class G. The functional ρ − GARCH(1, 1) is
introduced and its properties are analyzed.

2.1 Point-wise GARCH

Suppose for each aggregation rule g from a given class G we have a time series
(Xt(g), t ∈ Z). Consider a classical GARCH(p, q) model:

Xt(g) = σt(g)εt(g), (2.1)

σ2
t (g) = ω(g) + α(g)

q∑
i=1
X2
t−i(g) + β(g)

p∑
i=1
σ2
t−i(g), (2.2)

where for each g ∈ G, (εt(g), t ∈ Z) are random variables and (ω(g), α(g), β(g)) is
the vector of parameters.

If for each g the random variables (εt(g), t ∈ Z) are i.i.d., the classical GARCH
theory applies (see, e.g., [40]) pointwise with respect to g ∈ G. Then, with respect
to a data set, the best aggregation rule can be found, for example, by minimizing
a distance between the data set observations Xt(g), t = 1, . . . , n and estimates
X̂t(g):

g0 = argmin
g∈G

d(X̂t(g), Xt(g)). (2.3)

The problem of choosing an aggregation rule appears, for instance, in the risk
measurement. To illustrate this problem, consider Value-at-Risk (VaR), a statis-
tical model, defined as the maximum future loss due to possible changes in the
value of financial asset portfolio during a certain period with a certain probability.
Assume a position of foreign exchange, where the potential loss arises due to
foreign exchange rate fluctuations, is held. In practice, a daily market risk is
calculated using official foreign exchange rates (the Bank of Lithuania fixes daily
foreign exchange rates at around 10 a.m. for the next working day) or daily rates
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taken from financial data systems (in Bloomberg, daily foreign exchange rates are
taken as that of the end of the day). As already discussed in the previous chapter,
there are a lot of other possibilities to choose daily rates, if the aggregation is
applied. The presented numerical example has clearly shown the VaR estimate
dependence on the aggregation when the high frequency foreign exchange rates
are aggregated.

Recall the definition of the parametric VaR model, based on an explicit
assumption about the distribution function of risk factors and it mainly deals
with the parametrization of returns and volatility modeling. Assume that the
distribution function FL of loss L is normal with zero mean and variance σ2

L. The
parametric VaR can be expressed as

V aRparα = σLqα{Φ}, (2.4)

where qα{Φ} denotes the α quantile of the standard normal distribution Φ.
Suppose that the GARCH(1, 1) model is taken to estimate the risk factor volatility.
The variance equation can be written as

σ2
t = ω + αX2

t−1 + βσ2
t−1. (2.5)

Assume that a set of "tick-by-tick" observations {(τj, pj)}Nj=1 consists of foreign
currency exchange rates pj recorded at times τj, j = 1, . . . , N . Consider the case
where τ ∗t = tδ with δ corresponding to one day and let

pt(s) = {pj|τi = max{τj ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}}

be the last price in the interval up to s of the tth day. To illustrate the variability of
the VaR value during the day, time s was fixed every 15 minutes and a parametric
VaR using (2.4) was calculated for each s, taking the volatility estimates obtained
from the GARCH(1, 1) model as in (2.5). The assumption of holding 1 million
USD position was made. The confidence level was chosen 95% and the holding
period was taken one day. Figure 2.1 shows the EUR/USD position of the VaR
estimate variability during the day. If, for instance, the foreign exchange rate is
fixed at the end of the day, the estimate of the VaR model will be near to the
minimum during the day; meanwhile, taking the foreign exchange rate at around
10 a.m. gives the maximum daily VaR estimate. What is the best choice for
s? One of the ways to select an aggregation rule is to choose the one, where
the aggregated data fit the model best. Taking the same example as considered
above, we use the Euclidean distance and find the point s0 that has the minimum
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Figure 2.1: Value-at-Risk of EUR/USD using GARCH(1, 1)

distance between the estimate obtained by GARCH(1, 1) and the aggregated data:

s0 = arg min
s∈[0,1]

n∑
t=1

(X̂t(s)−Xt(s))2.

Calculations performed by taking the foreign exchange data show that the point,
where the aggregated data fits the model best, is at 23:45. However, there might
be different criteria of choosing the aggregation rule. For instance, from the point
of view of supervisory authorities of financial institutions or clients, the daily rate
should be chosen so that it had the maximum estimate of risk. This conservative
approach to measure risk ensures that financial institutions hold sufficient amounts
of capital to cover possible losses. In that case, the point of 10:00 would be the
best. Nevertheless, the problem of both examples is that the situation changes
every day. Next day estimating VaR the picture should look similar to that
presented above, however the point that yields the maximum risk estimate or the
minimum distance might be different. The natural solution to this problem would
be to fit the model, where volatility does not vary during the day, but it depends
on a certain information known at that day, similarly as analyzed in Alizadeth,
Brandt and Diebold (2002). This approach is presented in the next section.

Another way to overcome the problem of aggregation for VaR is to take σ2
t =

T (σ2
t (g), g ∈ G), where T is a functional. The conservative approach to measure

risk would be choosing a functional, that yields the maximum volatility estimate,
i.e. σ2

t = supg∈G σ2
t (g). From the point-wise model we have the following estimate

of σ2
t (g) :

σ̂2
t (g) = ω̂(g)

1− β̂(g) + α̂(g)
t∑
j=1
X2
t−1(g), g ∈ G.

Hence, one could take σ̂2
t = supg∈G σ̂2

t (g).
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2.2 Model

Let (Ω,F , P ) denote the probability space of all random elements. Consider a
functional time series (Xt, t ∈ Z), where for each t, Xt = (Xt(g), g ∈ G) is a
random function defined on a set G. Assume, that for each t, Xt ∈ E ⊂ RG,
is an E-valued random element, where E is a separable topological vector space
endowed with its Borel σ-field. Let ρ : E→ R be a measurable semi-norm.

Definition 2.1. The process (Xt, t ∈ Z) is a functional ρ − GARCH(1, 1), if for
each g ∈ G and t ∈ Z it satisfies,

Xt(g) = σtεt(g), (2.6)

σ2
t = ω + αρ2(Xt−1) + βσ2

t−1, (2.7)

where (εt(g), g ∈ G), t ∈ Z are independent identically distributed random
functions.

In the next two sections we summarize some properties of the functional ρ −
GARCH(1, 1) process.

2.3 Stationarity

Consider the functional ρ − GARCH(1, 1) process Xt, t ∈ Z, defined by (2.6),
(2.7), where α ≥ 0, β ≥ 0, ω > 0.

Theorem 2.1. If inovations (εt) are iid, and

−∞ ≤ γ := E log{αρ2(ε0) + β} < 0, (2.8)

then the series

ht := ω + ω
∞∑
n=1

n∏
j=1

(
αρ2(εt−j) + β

)
(2.9)

converges a.s. and the process (Xt) defined as

Xt(g) = h1/2
t εt(g), g ∈ G, (2.10)

is the unique strictly stationary solution of the model (2.6), (2.7).

Remark 2.1. The proof goes along the lines of the proof of strict stationarity for
the classical GARCH(1, 1) model (see, e.g., Theorem 2.1 in [40]).
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It is just needed to notice that ρ2(Xt) = σ2
t ρ

2(εt) and therefore (σ2
t ) satisfies

σ2
t = ω + (αρ2(εt−1) + β)σ2

t−1.

This difference equation has the solution σ2
t = ht.

Proof. By iterating equation (2.7) and using ρ2(Xt) = σ2
t ρ

2(εt), we obtain

σ2
t = ω + (αρ2(εt−1) + β)σ2

t−1

= ω + ω(αρ2(εt−1)2 + β) + (αρ2(εt−1) + β)(αρ2(εt−2) + β)σ2
t−2

= ω
{

1 +
N∑
n=1

(αρ2(εt−1)2 + β)...(αρ2(εt−n) + β)
}

+ (αρ2(εt−1) + β)...(αρ2(εt−(N+1)) + β)σ2
t−(N+1)

:= ht(N) + (αρ2(εt−1) + β)...(αρ2(εt−(N+1)) + β)σ2
t−(N+1),

Since the process (ht(N)) consists of positive terms, the limit of the process ht =
limN→∞ ht(N) exists in the interval [0,+∞]. Furthermore, we have that

(αρ2(εt−1) + β)ht−1(N − 1)

=(αρ2(εt−1) + β)ω
{

1 +
N−1∑
n=1

(αρ2(εt−2)2 + β) . . . (αρ2(εt−1−n) + β)
}

=ω
{

(αρ2(εt−1) + β) +
N−1∑
n=1

(αρ2(εt−1) + β)(αρ2(εt−2)2 + β) . . . (αρ2(εt−1−n) + β)
}

=ω
N∑
n=1

(αρ2(εt−1) + β) . . . (αρ2(εt−n) + β) = ht(N)− ω,

and, as N →∞, the relation ht(N) = ω + (αρ2(εt−1) + β)ht−1(N − 1) becomes

ht = ω + (αρ2(εt−1) + β)ht−1. (2.11)

Assume that γ < 0. Using the Cauchy theorem for the series of positive terms 1,
we obtain[
(αρ2(εt−1) + β)...(αρ2(εt−n) + β)

]1/n
= exp

[ 1
n

n∑
j=1

log(αρ2(εt−j) + β)
]
→ eγ a.s.,

(2.12)

as n → ∞, since by applying the strong law of large numbers to the series

1If (
∑
an) is the series consisting of positive numbers and λ = lima1/n

n , then (i) if λ < 1, the
series (

∑
an) converges, (ii) if λ > 1, the series (

∑
an) diverges.
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(log(αρ2(εt) + β)) and condition (2.8), we obtain

1
n

n∑
j=1

log(αρ2(εt−j) + β)→ E log(αρ2(ε0) + β) = γ, a.s. as n→∞.

Hence, we have shown that the process, defined in (2.11), converges a.s. Conse-
quently, the process Xt(g) defined as

Xt(g) = h1/2
t εt(g) =

{
ω + ω

∞∑
n=1

(αρ2(εt−1) + β)...(αρ2(εt−n) + β)
}1/2
εt(g),

(2.13)

is strictly stationary and it fits the model (2.6), (2.7). Furthermore, this process
is ergodic by applying Theorem A.2. in [40] (see, Theorem A.1 in Appendix 1).

To show the uniqueness of the solution, we conversely assume that X̃t(g) =
h̃

1/2
t εt(g), g ∈ G is another strictly stationary solution. Suppose P(ht 
= h̃t) > 0

for a certain t. Iterating (2.11), we obtain

ht = ω + (αρ2(εt−1) + β)ht−1

= ω + ω(αρ2(εt−1) + β) + (αρ2(εt−1) + β)(αρ2(εt−2) + β)ht−2 = . . .

= ω + ω
n−1∑
j=1

(αρ2(εt−1) + β) . . . (αρ2(εt−j) + β)

+ (αρ2(εt−1) + β) . . . (αρ2(εt−n) + β)ht−n,

and analogously

h̃t = ω + ω
n−1∑
j=1

(αρ2(εt−1) + β) . . . (αρ2(εt−j) + β)

+ (αρ2(εt−1) + β) . . . (αρ2(εt−n)) + β)h̃t−n.

Then we have

|ht − h̃t| = (αρ2(εt−1) + β)...(αρ2(εt−n) + β)|ht−n − h̃t−n|. (2.14)

Since the series ht converges a.s., as n→∞, (αρ2(εt−1)+β)...(αρ2(εt−n)+β)→ 0
with probability 1. Therefore, P(|ht−n− h̃t−n| → ∞) > 0 implying that ht−n →∞
or h̃t−n →∞ with a positive probability. This is impossible, since both processes
(ht) and (h̃t) are stationary. Hence, we conclude that ht = h̃t for all t > 0 a.s.

Definition 2.2. The process (Xt, t ∈ Z) of E valued random elements is 2nd
order stationary if for all t, h ∈ Z,
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• EX2
t (g) <∞, g ∈ G,

• EXt(g) = µ(g), g ∈ G,

• Cov(Xt(g), Xt+h(f)) := E(Xt(g)−µ(g))(Xt+h(f)−µ(f)) = Γh(g, f), g, f ∈
G.

Theorem 2.2. Let (εt(g), t ∈ Z) be iid square integrable random elements, i.e.,
Eε2t (g) <∞ for all g ∈ G. If αEρ2(ε0) +β < 1, the process (Xt(g), t ∈ Z) defined
by (2.10) is the unique 2nd order stationary solution of the model (2.6), (2.7).

Remark 2.2. The proof runs along the lines of the proof of 2nd order stationarity
for the classical GARCH(1, 1) model (see e.g., Theorem 2.2 in [40]).

It is just needed to notice that the strict stationarity condition (2.8) is satisfied,
when αEρ2(ε0) + β < 1 and, therefore, to conclude the proof, one needs to show
that the solution (2.10) has a finite variance.

Proof. Applying Jensen’s inequality E[ϕ(Z)] ≤ ϕ(E[Z]) to a concave function
ϕ(Z) = log(Z) and using αEρ2(ε0) + β < 1 we obtain:

E log{αρ2(εt) + β} ≤ logE{αρ2(ε0) + β} < 0.

Hence the condition (2.8) is satisfied, therefore a strictly stationary solution of
equations (2.6), (2.7) exists and is given by (2.10). Next, it suffices to show that
the process defined by (2.10) has a finite variance.

Set ψ(g, f) = Eε0(g)ε0(f), f, g ∈ G. Since ht is Ft−1 measurable and εt(g) is
independent of Ft−1, by a monotone convergence theorem for all g ∈ G we derive

EX2
t (g) = E[htε2t (g)] = E[E(htε2t (g)|Ft−1] = EhtEε2t (g)

= ψ(g, g)ω
{

1 +
∞∑
n=1
E
( n∏
j=1

(αρ2(εt−j) + β)
)}

= ψ(g, g)ω
{

1 +
∞∑
n=1

(αEρ2(ε0) + β)n
}

= ψ(g, g)ω
1− (αEρ2(ε0) + β)

.

To prove the uniqueness, we use exactly the same arguments as in the proof of
Theorem 2.1. Assume that X̃t(g) = h̃1/2

t εt(g) is the other second order stationary
solution of (2.6), (2.7). Suppose P(ht 
= h̃t) > 0 for a certain t. Then

E|ht − h̃t| = E
{ n∏
j=1

(αρ2(εt−j) + β)
}
E|ht−n − h̃t−n|

= (αEρ2(ε0) + β)nE|ht−n − h̃t−n|.
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Since E|ht−n − h̃t−n| ≤ E|ht−n| + E|h̃t−n|, that is finite and due to stationarity
independent of n and (αEρ2(ε0)+β)n → 0, as n→∞, we find that E|ht− h̃t| = 0
and therefore for each t, ht = h̃t a.s.

2.4 Estimation

Consider the vector θ = (ω, α, β)T of parameters to be estimated. Unknown
distributional parameters of ε0 can be estimated from the residuals (ε̂t) of the
model (2.6), (2.7). It follows from (2.6) that

ρ(Xt) = σtρ(εt). (2.15)

Hence, θ = (ω, α, β)T can be estimated similarly as in the case of the univariate
GARCH(1, 1) model.

Denote the true value of parameters by θ0 = (ω0, α0, β0)T . Suppose that the
random variable ρ(ε0) has a density pλ from the parametric class of Lebesque
densities on R, {pλ|λ ∈ M}, M ⊂ Rd. Then, the conditional density of ρ(Xt),
given Ft−1 where Ft = σ(Xs, s ≤ t) is

pX,λ(x|Ft−1) = 1
σt
pλ(x/σt).

To construct the likelihood function, unobserved σ2
t is replaced by σ̃2

t , where σ̃2
t =

σ̃2
t (θ), θ = (ω, α, β)T , satisfies

σ̃2
t = ω + αρ2(Xt−1) + βσ̃2

t−1, t = 1, . . . , n,

with the initial values σ̃2
0 = 0 and X0 = 0. We easily find that

σ̃2
t (θ) = ω

t−1∑
j=0
βj + α

t−1∑
j=1
βj−1ρ2(Xt−j), t = 1, . . . , n.

It should be noted that one can show that the estimator does not depend on the
choice of initial values.

Assume that θ ∈ K, λ ∈ M and K ⊂ R3 and M ⊂ Rd are compact sets and
denote the vector of parameters by ν = (θ, λ)T .

Let C(K ×M) be the Banach space of continuous functions f : K ×M → R

endowed with the uniform distance

dK×M(f, g) = sup
x∈K×M

|f(x)− g(x)|.
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Set ||f ||K×M := dK×M(f, 0) for f ∈ C(K ×M).
Now we consider the likelihood function

L̂n(ν) = L̂n(ν;X1, X2, . . . , Xn) =
n∑
t=1
�̂t(ν,Xt, Xt−1, . . . , X1), (2.16)

�̂t(ν,Xt, Xt−1, . . . , X1) = log[σ̃−1
t pλ(ρ(Xt)/σ̃t)], t = 1, ..., n. (2.17)

The maximum likelihood estimator of the true parameters vector ν0 = (θ0, λ0)T

is obtained by maximizing the likelihood function:

ν̂n = argmax
ν∈K×M

L̂n(ν). (2.18)

It is noteworthy, that (σ̃2
t ) is nonstationary in general, therefore the ergodic

theorem cannot be applied while proving the consistency of the estimator. To
establish the limit properties of the maximum likelihood estimator, we consider
a stationary approximation (ht) to (σ̃2

t ) (for details regarding this approach see
[71]). Following this idea, for θ = (ω, β, α)T in a compact set K ⊂ R3, define

ht(θ) = ω

1− β + α
∞∑
j=1
βj−1ρ2(Xt−j).

It is essential that this approximation satisfies

sup
θ∈K
|ht(θ)− σ̃2

t (θ)| a.s.→ 0,

exponentially fast2 as t→∞ and (ht(θ)) = (σ2
t ) a.s. if and only if θ = θ0.

Now, replacing the sequence (σ̃2
t ) by its stationary approximation (ht) in

(2.16),(2.17), we define the maximum likelihood function

Ln(ν) =
n∑
t=1
�t(ν),

where
�t(ν) = log 1

(ht(θ))1/2pλ

(
ρ(Xt)

(ht(θ))1/2

)
.

Set
νn = argmaxν∈K×MLn(ν).

Before establishing the strong consistency of the estimator, we list several regu-
larity assumptions for the class of densities D = {pλ|λ ∈M}, where M ⊂ Rd is a

2A sequence (ξt)t∈T of random elements with values in a normed vector space (B, || · ||) is
said to converge to zero exponentially fast almost surely as t → ∞, if there exists γ > 1 with
γt||ξt|| a.s.→ 0.

25



compact set.

M.1 pλ(x) > 0 for all λ ∈M and x ∈ R.

M.2 The map R×M → (0,∞) : (x, λ) �→ pλ(x) is continuous.

M.3 From pλ = pλ′ it follows that λ = λ′.

Now we can establish the conditions for the consistency of the maximum
likelihood estimator ν̂n following Theorem 6.1.4 in [71].

Theorem 2.3. Consider the model (2.15), (2.7) and let the following conditions
hold:

(i) E log{αρ2(ε0) + β} < 0 and Eρ2(X0) <∞.

(ii) K ⊂ (0,∞)× [0,∞)× [0, 1) and M ⊂ Rd are compact subsets that contain
true parameters θ0 ∈ K, λ0 ∈M and (α0, β0) 
= 0, ω0 ≥ ω1 > 0.

(iii) The class of densities D = {pλ|λ ∈M} is such that the conditions M.1-M.3
hold.

(iv)
∫∞

0 | log pλ0(x)|pλ0(x)dx <∞.

(v) 1
n

supν∈K×M |L̂n(ν)− Ln(ν)| a.s.−−−→
n→∞ 0.

Then the maximum likelihood estimator ν̂n is strongly consistent:

(θ̂, λ̂) a.s.−−−→
n→∞ (θ0, λ0).

Remark 2.3. We prove following Theorems 5.3.1 and 6.1.1 from Straumann [71]
and has a standard structure. First, it is shown that L̂n/n

a.s.→ L in C(K ×M) as
n→∞, where

L(ν) = E�0(ν) = −1
2
E(log h0(θ)) + E

[
log pλ

(
ρ(X0)

(h0(θ))1/2

)]
, ν ∈ K ×M.

Next we have to prove that L(ν) is uniquely maximized at ν = ν0. In the end,
using the standard arguments we can show that a strong consistency follows from
the almost sure convergence of L̂n/n towards L together with the fact that the
limit L is uniquely maximized.

Proof. First we will show that Ln/n
a.s.→ L in C(K ×M). The sequence

�t = −(1/2) log ht + log pλ
(
ρ(Xt)
h

1/2
t

)
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consists of random elements with the values in C(K×M) as the density function
pλ is continuous according to assumption M.2. Besides, (�t) is of the form (�t) =
(f(Xt, Xt−1, . . . )), where f is a measurable function and the process (Xt, t ∈ Z) is
strictly stationary and ergodic, since condition (2.8) of Theorem 2.1 is satisfied by
the assumption (i). Hence, from Theorem A.2. in [40] it follows that the sequence
(�t) is stationary and ergodic. To apply Theorem 2.2.1 in [71] (see, Theorem A.2
in Appendix 1) to the sequence (�t) we have to verify if E supν∈K×M |�0(ν)| <∞.
Recall that

h0(θ) = ω

1− β + α
∞∑
j=1
βj−1ρ2(X−j),

and define the compact K = [ω, ω̄] × [α, ᾱ] × [β, β̄], ω > 0, β̄ < 1. Since by
assumption (i) Eρ2(X0) <∞, we can show that

E sup
θ∈K
|h0(θ)| = E

(
ω̄

1− β̄ + ᾱ
∞∑
j=1
β̄j−1ρ2(X−j)

)
= ω̄

1− β̄ + ᾱ

1− β̄ Eρ
2(X0) <∞.

(2.19)

Therefore by Jensen’s inequality it follows that

E sup
θ∈K
| log h0(θ)| ≤ logE sup

θ∈K
h0(θ) <∞. (2.20)

Since ν0 is the maximizer of the likelihood function and using the assumption
(iv), we obtain:

E sup
ν∈K×M

∣∣∣∣ log pλ
(
ρ(X0)
h

1/2
0 (θ)

)∣∣∣∣ = E
∣∣∣∣ log pλ0

(
ρ(X0)
h

1/2
0 (θ0)

)∣∣∣∣ = E| log pλ0(ρ(ε0))|

=
∫ ∞

0
| log pλ0(x)|pλ0(x)dx <∞. (2.21)

From (2.20) and (2.21) we can conclude that

E sup
ν∈K×M

|�0| = E sup
ν∈K×M

∣∣∣∣12 log h0(θ) + log pλ
(
ρ(X0)
h

1/2
0 (θ)

)∣∣∣∣ ≤
≤ 1

2
E sup
θ∈K
| log h0(θ)|+ E sup

ν∈K×M

∣∣∣∣ log pλ
(
ρ(X0)
h

1/2
0 (θ)

)∣∣∣∣ <∞.
Thus, from Theorem 2.2.1 in [71] it follows that Ln/n

a.s.→ L in C(K ×M). Since
by assumption (v) 1

n
supν∈K×M |L̂n(ν) − Ln(ν)| a.s.−−−→

n→∞ 0, we can conclude that
L̂n/n

a.s.→ L.

Next, we will show that the function L(ν) is uniquely maximized at ν = ν0. We
have established E supν∈K×M |�0(ν)| < ∞, therefore it follows that the function
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L(ν0) <∞. Set

ft(ν) = 1
(ht(θ))1/2pλ

(
ρ(Xt)

(ht(θ))1/2

)
.

Since log x ≤ x− 1, ∀x > 0 with equality if and only if x = 1, we can write that

L(ν)− L(ν0) = E
(

log f0(ν)
f0(ν0)

)
≤ E

(
f0(ν)
f0(ν0)

)
− 1 (2.22)

with equality if and only if f0(ν) = f0(ν0) a.s.
Denote r(θ) = σ0/

√
h0(θ). Recall that ρ(X0) = σ0ρ(ε0) =

√
h0(θ0)ρ(ε0), then

we have

f0(ν) = 1√
h0(θ)

pλ

⎛⎝ ρ(X0)√
h0(θ)

⎞⎠ = 1√
h0(θ)

pλ

⎛⎝σ0ρ(ε0)√
h0(θ)

⎞⎠ = 1√
h0(θ)

pλ(r(θ)ρ(ε0)),

f0(ν0) = 1√
h0(θ0)

pλ0

⎛⎝ ρ(X0)√
h0(θ0)

⎞⎠ = 1
σ0
pλ0

(
σ0ρ(ε0)
σ0

)
= 1
σ0
pλ0(ρ(ε0)),

and since ρ(ε0) is independent of r(θ), it follows that

E
(
f0(ν)
f0(ν0)

)
= E

(
E
[
r(θ)pλ(r(θ)ρ(ε0))
pλ0(ρ(ε0))

∣∣∣∣r(θ)]) = E
( ∫ r(θ)pλ(r(θ)x)

pλ0(x)
pλ0(x)dx

)
= E

( ∫
pλ(r(θ)x)d(r(θ)x)

)
= E(1) = 1.

Hence and from inequality (2.22) we can conclude that L(ν) ≤ L(ν0) with equality
if and only if f0(ν) = f0(ν0) a.s.

Observe that f0(ν) = f0(ν0) a.s. is equivalent to

pλ0(ρ(ε0)) = r(θ)pλ(r(θ)ρ(ε0)) a.s. (2.23)

We will show that (2.23) implies θ = θ0 and λ = λ0. Suppose by contrast that
θ 
= θ0. Then, since σ2

0 = h0(θ) a.s. if and only if θ = θ0, we have P [r(θ) 
= 1] > 0.
So, by Lemma 6.2.1. from [71]3 we derive

P [pλ0(ρ(ε0)) 
= r(θ)pλ(r(θ)ρ(ε0))|r(θ)] > 0 on {r(θ) 
= 1}, (2.24)

and therefore

P [pλ0(ρ(ε0)) 
= r(θ)pλ(r(θ)ρ(ε0))] = E[P [pλ0(ρ(ε0)) 
= r(θ)pλ(r(θ)ρ(ε0))|r(θ)]] > 0,
(2.25)

which contradicts (2.23). So we can conclude that θ = θ0. From assumption
3Let a > 0 be a constant. Then for all λ ∈M : a 
= 1⇒ P [pλ0(ρ(ε0)) 
= apλ(aρ(ε0))] > 0.
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M.3 it follows that pλ0(ρ(ε0)) = pλ(ρ(ε0)) with probability 1 implies that λ = λ0.
Altogether, we have shown that L(ν) ≤ L(ν0) with equality if and only if ν = ν0.

Finally, it remains to show that, almost sure uniform convergence of L̂/n
towards L together with the fact that the limit L has a unique maximum, implies
a strong consistency. Suppose δ > 0 is arbitrary and P (lim supn→∞ |ν̂n − ν0| >
δ) > 0. Define the set K ′ × M ′ = K × M ∩ {ν : |ν − ν0| ≥ δ}. Since the
set K ′ × M ′ is compact and L̂/n a.s.→ L in C(K × M) there is an event W ⊂
{lim supn→∞ |ν̂n − ν0| > δ} with a positive probability and being such that for
every w ∈ W , one can find a convergent subsequence (ν̂nk) ⊂ K ′ × M ′ with
lim ν̂nk = ν and L̂nk/nk → L in C(K ×M), where (nk) and ν ∈ K ′ ×M ′ depend
on the realization w. On the other hand, by the definition of the maximum
likelihood estimation L(ν) = lim L̂nk(ν̂nk)/nk ≥ lim L̂nk(ν̂0)/nk = L(ν0) on W .
Since W 
= ∅, there exists at least one point ν ∈ K ′ ×M ′ with L(ν) ≥ L(ν0) and
it is a contradiction, since L is uniquely maximized at ν = ν0. Note that δ > 0
was chosen arbitrarily, therefore we can conclude that ν̂n

a.s.→ ν0 as n→∞.

2.5 Some examples

In this section, we consider a case of the model (2.6), (2.7) where the density
function of ρ(ε0) is known.

Example 2.1. Assume that G = [0, 1], i.e., each s ∈ [0, 1] corresponds to a certain
aggregation rule. Consider the C[0, 1]-valued time series (Xt, t ∈ Z) expressed as

Xt(s) = σtεt(s), s ∈ [0, 1],

σ2
t = ω + α

(
max
s∈[0,1]

Xt−1(s)
)2

+ βσ2
t−1,

where (εt(s), s ∈ [0, 1]), t ∈ Z are independent identically distributed Wiener
processes.

This example corresponds to the model (2.6), (2.7), where E = C[0, 1] and the
semi-norm ρ(f) = max0≤s≤1 f(s).

The density of ρ(εt) = maxs∈[0,1] εt(s) is well known (see, e.g., [17]) and can be
expressed as

fρ(ε)(x) =
√

2
π

exp
(
−x

2

2

)
.

To show almost sure convergence of the maximum likelihood estimator we
verify the assumptions for the density function of Theorem 2.3.
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To fulfil the assumption (i), define the parameter space as follows

ω ∈ [ω1, ω2], ω1 > 0, ω2 <∞

α ∈ [α1, α2] α1 > 0, α2 < 1

β ∈ [β1, β2], β1 > 0, β2 < 1

To check the assumption (iv) we have

E| log p(ρ(εt)| = E
∣∣∣∣∣∣log

√
2
π
− 1

2
log σ2

t −
1
2
ρ2(Xt)
σ2
t

∣∣∣∣∣∣ ≤ C +E log σ2
0 +Eρ2(ε0) <∞,

where C is a constant.
For the assumption (v) first observe

sup
θ∈K
|σ̃2
t − σ2

t | = sup
θ∈K
|βn[α(ρ̃2(X0)− ρ2(X0)) + (σ̃2

0 − σ2
0)]| ≤ βn2K, (2.26)

where K>0 is a constant and ρ̃2(X0), σ̃2
0 are fixed initial values. Now we estimate

1
n

sup
θ∈K
|L̂n − Ln| = 1

n
sup
θ∈K

∣∣∣∣∣
n∑
t=1

(log σ̃2
t − log σ2

t ) + 1
2

n∑
t=1
ρ2(Xt)

(
1
σ̃2
t

− 1
σ2
t

)∣∣∣∣∣
≤ 1
n

sup
θ∈K

∣∣∣∣∣
n∑
t=1

(
σ̃2
t − σ2

t

σ2
t

)
+ 1

2

n∑
t=1
ρ2(Xt)

(
σ̃2
t − σ2

t

σ̃2
t σ

2
t

)∣∣∣∣∣
≤ 1
ω1n

n∑
t=1

sup
θ∈K
|σ̃2
t − σ2

t |+
1

2ω2
1n

n∑
t=1
ρ2(Xt) sup

θ∈K
|σ̃2
t − σ2

t |

≤ c
n

n∑
t=1

(1 + ρ2(Xt)) sup
θ∈K
|σ̃2
t − σ2

t |,

where c = max( 1
ω1
, 1

2ω2
1
) > 0 denotes a constant. To obtain the first inequality, we

have used log x ≤ x− 1, if x > 0. Together with (2.26) we get that

1
n

sup
θ∈K
|L̂n − Ln| ≤ cK

n

n∑
t=1
βt2(1 + ρ2(Xt))→ 0 a.s., n→∞

since E log+(1 + ρ2(Xt)) < ∞ by Lemma 2.5.3 of Straumann [71]; and using
Proposition 2.5.1 of Straumann [71] (see, Proposition A.3 in Appendix 1), one
can conclude that ∑∞t=1 β

t
2(1 + ρ2(Xt)) <∞ a.s.

In this example, we have made an assumption that the innovations are Wiener
processes. However, the distribution of the maximum random variable is known
only for several stochastic processes, such as the Brownian motion (as in example
2.1), the Brownian bridge, the Brownian motion with a linear drift and several
cases of the stationary Gaussian processes with a specified covariance function
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(see [8] for the list of processes and the corresponding references). Even if the
distribution of the maximum process of innovations is unknown, one can use the
quasi-maximum likelihood approach for parameter estimation, i.e., an assumption
about Gaussian innovations can be made and the Gaussian maximum likelihood
function is then analyzed.

Example 2.2. Consider the C[0, 1]-valued time series (Xt, t ∈ Z), where

Xt(s) = σtεt(s), s ∈ [0, 1],

σ2
t = ω + α min

s∈[0,1]
X2
t−1(s) + βσ2

t−1,

and (εt(s), s ∈ [0, 1]), t ∈ Z are independent identically distributed Wiener
processes.

Thus this example corresponds to the model (2.6), (2.7), where E = C[0, 1]
and the semi-norm ρ(f) = min0≤s≤1 f(s). It is known that the random processes(

maxs∈[0,1] εt(s)
)

and
(
− mins∈[0,1] εt(s)

)
have the same distributions, hence

the conditions of the maximum likelihood estimator consistency can be verified
similarly as in example 2.1.

Example 2.3. Here, we take the case, where the class G = {g1, . . . , gd} consists of
d aggregation rules.

Consider the Rd-valued time series (Xt, t ∈ Z):

Xjt = σtεjt, j = 1, . . . , d,

σ2
t = ω + αρ2(Xt−1) + βσ2

t−1,

where (εjt, j = 1, . . . .d), t ∈ Z are independent identically distributed Gaussian
random vectors with zero mean and the covariance matrix Λ = (λij, i, j = 1, . . . , d)
and ρ is a semi-norm on Rd.

As an example, we consider the following semi-norm

ρ(x) =
( d∑
i=1
x2
i

) 1
2
,

and assume that λii = 1, i = 1, . . . d. Then ρ2(εjt) = ∑d
i=1 ε

2
jt, t ∈ Z has a

χ2-distribution with the known density function:

fχ2(x) = 1
2 d2 Γ(d2)

x
d
2−1 exp

(
− x

2

)
.
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The conditional distribution function of ρ(Xjt) = σtρ(εjt) can be written as

P (ρ(Xjt) ≤ x|Ft−1) = P (σtρ(εjt) ≤ x|Ft−1) = P

⎛⎝( d∑
j=1
ε2jt

) 1
2 ≤ x
σt

∣∣∣∣Ft−1

⎞⎠
= P

⎛⎝( d∑
j=1
ε2jt

)
≤ x

2

σ2
t

∣∣∣∣Ft−1

⎞⎠ ,
and the conditional density function is as follows

fρ(X)(x) = 2x
σ2
t

fχ2

(
x2

σ2
t

)
= 1

2 d2−1Γ(d2)
xd−1

σdt
exp

(
− x

2

2σ2
t

)
.

Using the same considerations as in Example 2.1, we can verify the validity of
assumptions in Theorem 2.3. For the assumption (iv) we can write

E| log fX(ρ(Xjt))|

=E

∣∣∣∣∣∣d− 1
2

log
∑d
j=1X

2
jt

σ2
t

− log 2
d
2−1 − log Γ(d

2
)− 1

2
log σ2

t −
1

2σ2
t

d∑
j=1
X2
jt

∣∣∣∣∣∣
≤c1 + c2E log

d∑
j=1
ε2j0 + E log σ2

0 + E
d∑
j=1
ε2j0 <∞,

where c1 and c2 are positive constants. Following the same arguments as in
Example 2.1, for the assumption (v) we have:

1
n

sup
θ∈K
|L̂n − Ln| =

1
n

sup
θ∈K

∣∣∣∣∣∣d2
n∑
t=1

(log σ2
t − log σ̃2

t ) + 1
2

n∑
t=1

d∑
j=1
X2
jt

( 1
σ2
t

− 1
σ̃2
t

)∣∣∣∣∣∣→ 0 a.s.,

as n→∞.

Example 2.4. We use here the point-wise aggregation. Consider the C[0, 1]-valued
time series (Xt, t ∈ Z), where

Xt(s) = σtεt(s), s ∈ [0, 1], (2.27)

σ2
t = ω + α(Xt−1(1)−Xt−1(0))2 + βσ2

t−1, (2.28)

and (εt(s), s ∈ [0, 1]), t ∈ Z are independent identically distributed Gaussian
processes.

So this example corresponds to the model (2.6), (2.7), where E = C[0, 1] and
the semi-norm ρ(f) = |f(1) − f(0)|. This case also has a practical explanation,
when the returns of a financial asset prices are analyzed. Assume, for example,
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that the returns of a share, traded on the stock exchange, are taken. From the
model defined by equations (2.27), (2.28), we can see that the volatility depends
on the difference between the returns taken at the beginning and at the end of
the day, i.e., the opening and closing price returns.

The density function of [εt(1) − εt(0)] is well known and, using the density
function of the bivariate Normal distribution with zero mean and the covariance

matrix

⎛⎝ 1 ξ
ξ 1

⎞⎠, can be written as

f[εt(1)−εt(0)] = 1
2
√
π(1− ξ)

exp
{
− x2

4(1− ξ)
}
.

The distribution of |εt(1) − εt(0)| is symmetric and the conditional density
function of ρ(Xt(s)) = σtρ(εt(s)) = σt|εt(1)− εt(0)| can be written as

fρ(X)(x) = 1
σt
√
π(1− ξ)

exp
{
− x2

4σ2
t (1− ξ)

}
.

Since the density function is the same, except for constants, as the density function
analyzed in Example 2.1, the assumptions of Theorem 2.3 can be verified similarly
as in Example 2.1.

2.6 Conclusions

In the thesis, the data aggregation problem in the risk measurement is considered.
The empirical analysis shows that risk estimates depend on aggregation. Conse-
quently, there is a question, how to choose an aggregation rule. One of the ways
to select an aggregation rule is to take the one, where the aggregated data fit the
model best. Another way, with a conservative approach to the risk measurement,
could be choosing such a rule, which gives the largest estimate of risk. However,
the difficulty of this question also consists in the fact that the aggregation scheme,
selected under an appropriate rule, might change every day. With regard to this
observation, we have developed a functional GARCH-type model. The main idea
of this model is the definition of volatility, which is stable during the day, but
depends on some features of high frequency returns. We have established the
conditions for the existence of a stationary solution and for the consistency of the
maximum likelihood estimator in this model. Finally, several practical examples
of the model were presented.
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Chapter 3

uvGARCH(1, 1) model in a Hilbert
space

In this chapter, following Kvedaras and Račkauskas (2010) we consider a func-
tional aggregation of high frequency data producing a regular functional time se-
ries with values in a certain Hilbert space. There are several methods to construct
functional observations from high frequency data. One can use the methodology
introduced by Ramsay and Silverman (1997). They presented several techniques
for converting raw data into a functional form, such as basis functions methods,
smoothing by local weighing and the roughness penalty approach. Moreover,
the direct construction of functional data can be chosen as well. For example,
consecutive maximal values of high frequency observations produce nondecreasing
functions

y∗t (s) = max{yj|τj ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ], s ∈ [0, 1]

whereas consecutive averages result in

y∗t (s) = m−1
t (s)

∑
τj∈(τ∗t−1,(1−s)τ∗t−1+sτ∗t ]

yj,

mt(s) = #{τj ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}, s ∈ [0, 1].

Here (y∗t (s), j = 1, . . . , N∗), s ∈ [0, 1] are functional observations, aggregated from
high frequency irregularly spaced time series {(τj, yj)}Nj=1 with a fixed time interval
δ > 0 and τ ∗t = tδ, t = 1, . . . , N∗.

With any of the mentioned regularization of high frequency observations one
receives the functional time series (y∗t (s), s ∈ [0, 1]). One of the classical Hilbert
spaces H, e.g., H = L2(0, 1) the space of square Lebesgue integrable functions,
is usually considered as a path space. For detailed information about statistical

34



modeling of functional data we refer to [18] and [66]. We are interested in extend-
ing the real-valued conditional heteroscedastic models to a functional framework.
In this chapter, the general Hilbert space-valued time series is considered and the
GARCH(1, 1) model with univariate volatility is introduced and its properties are
investigated.

3.1 Model

Let H be a real separable Hilbert space of infinite or finite dimension with the inner
product 〈·, ·〉 and the corresponding norm || · ||, ||x||2 = 〈x, x〉, x ∈ H. Classical
Hilbert spaces include the Lebesgue space L2(0, 1) of measurable square integrable
functions x : [0, 1] → R endowed with the inner product 〈x, y〉 =

∫ 1
0 x(t)y(t)dt.

Another important framework for functional data analysis is the Hilbert space
L2,1(0, 1) of differentiable functions x : (0, 1) → R such that

∫ 1
0 (x′(t))2dt < ∞

with the inner product 〈x, y〉 =
∫ 1

0 x(t)y(t)dt+
∫ 1

0 x
′(t)y′(t)dt.

The space of bounded linear operators u : H → H is denoted by L(H).
We consider L(H) as the Banach space with the usual uniform norm ||u|| =
sup||x||≤1 ||ux||. For x, y ∈ H, we denote as x⊗ y the linear operator on H,

x⊗ y(z) = 〈x, z〉y, z ∈ H.

The covariance operator of an H-valued random element X is QX = E(X ⊗X),
QXx = E〈X, x〉X, x ∈ H. It exists and is bounded linear operator whenever
E〈X, z〉2 <∞ for any z ∈ H. If E||X||2 <∞, then the operator QX is nuclear.

Definition 3.1. Let (Xt, t ∈ Z) be an H-valued random process,Z = {0,±1,±2, . . . }.
We say that (Xt) is GARCH(1, 1) with univariate volatility (in short uvGARCH(1, 1))
if

Xt = σtεt, (εt) ∼ iid (0, Qε), (3.1)

σ2
t = ω + βσ2

t−1 + 〈Xt−1, z〉2, t ∈ Z, (3.2)

where ω > 0, β ≥ 0 and z ∈ H are parameters of interest.

We also assume that (εt, t ∈ Z) are independent identically distributed H-
valued random elements with zero mean and covariance Qε. It is clear that (Xt)
when projected in the direction z, namely, the time series (〈Xt, z〉, t ∈ Z), follows
the classical GARCH(1, 1) model. However, the direction z is unknown.
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3.2 Stationarity

In this section, the conditions for the existence of the strong and the 2nd order
stationary solution of the model (3.1), (3.2) are stipulated.

Theorem 3.1. If
−∞ ≤ γ := E log{〈ε0, z〉2 + β} < 0, (3.3)

then the series

ht := ω + ω
∞∑
n=1

n∏
j=1

(
〈εt−j, z〉2 + β

)
(3.4)

converges a.s. and the process (Xt, t ∈ Z) defined as

Xt = h1/2
t εt, t ∈ Z, (3.5)

is the unique strictly stationary solution of the model (3.1), (3.2).

Theorem 3.1 can be proved following the lines of the strong stationarity
Theorem 2.1 proof, presented in the previous chapter. We will use here the method
based on the techniques of stochastic recurrence equations (SREs), introduced by
Straumann (2005).

More general Hilbert space valued GARCH models with univariate volatility
are obtained replacing (3.2) by

σ2
t = gθ(Xt−1, σ

2
t−1), t ∈ Z, (3.6)

where the volatility process (σt) is a nonnegative real-valued process and (εt)
is a sequence of iid H-valued random elements with zero mean and the known
covariance Qε. Nonnegative functions {gθ, θ ∈ Θ} are defined on H× [0,∞) and
it is necessary that σt were Ft−1 = σ(Xs, s ≤ t− 1)-measurable for t ∈ Z.

The solution of stationarity for such models is obtained via stochastic recur-
rence equations (for details of this approach see [71] and references therein):

st+1 = ψt(st), t ∈ Z, (3.7)

on [0,∞), where
ψt(s) = gθ(s1/2εt, s), s ∈ [0,∞).

Assume that (ψt) is the stochastic process with values in a complete separable
metric space E endowed with the σ-algebra E . It is clear that, if (st) is a solution
of (3.7) and st is Ft−1-measurable, then the sequence (s1/2t εt, s1/2) is stationary
and fits (3.1), (3.6).
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For an integer m ≥ 0 set ψ(m)
t = ψt ◦ · · · ◦ ψt−m. For a function f set

Λ(f) = sup
s �=t

|f(s)− f(t)|
|s− t| .

The following result is taken from [71].

Proposition 3.2. Let the functional process (ψt) be stationary and ergodic. Fix
an arbitrary s20 ∈ [0,∞) and suppose that the following conditions hold:

(a) E(log+ |ψ0(s20)|) <∞;

(b) E[log+ Λ(ψ0)] <∞ and for some integer r ≥ 1 it holds that E[log Λ(ψ(r)
0 )] <

0.

Then the stochastic recurrence equations (3.7) admits a unique stationary ergodic
solution (σ2

t ) such that σ2
t is Ft−1-measurable for every t ∈ Z. Moreover,

σ2
t = lim

m→∞ψt−1 ◦ · · · ◦ ψt−m(s20), t ∈ Z, (3.8)

and the limit does not depend on s20.

For the model (3.1, 3.2), we have gθ(x, s) = ω + βs+ 〈x, z〉2 and

ψt(s) = gθ(s1/2εt, s) = ω + (β + 〈εt, z〉2)s, s ∈ [0,∞), t ∈ Z.

The corresponding Lipshitz exponents are

Λ(ψ0) = β + 〈ε0, z〉2 and Λ(ψ(r)
0 ) = (β + 〈ε−1, z〉2) · · · (β + 〈ε−r, z〉2), r ≥ 1.

Theorem 3.1 follows immediately from Proposition 3.2. Indeed, since s20 ∈ [0,+∞)
is taken arbitrary, for the condition S.1. we can write

E(log+ |ψ0(0)|) = E(log+ ω) <∞.

Note that log Λ(ψ(r)
0 ) = ∑r

i=1 log(β + 〈ε−i, z〉2), and for this reason the condition
S.2. is equivalent to

E(log(β + 〈ε0, z〉2) < 0.

Since relation (3.8) is valid for arbitrary initial values, we obtain

σ2
t = lim

m→∞ψt−1 ◦ · · · ◦ ψt−m(0) = lim
m→∞ω

(
1 +

m∑
k=1

k∏
i=1

(β + 〈εt−i, z〉2)
)

= ω
(

1 +
∞∑
k=1

k∏
i=1

(β + 〈εt−i, z〉2)
)
, a.s.
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Definition 3.2. The H-valued process (Xt, t ∈ Z) is second-order stationary if
for all t, h ∈ Z it holds that

(i) E||Xt||2 <∞,

(ii) EXt = µ,

(iii) E〈Xt − µ, x〉〈Xt+h − µ, y〉 = Γh(x, y), x, y ∈ H.

Theorem 3.3. Suppose that (εt, t ∈ Z) are iid square integrable random elements,
i.e., is E||ε0||2 <∞. If E〈ε0, z〉2+β < 1, the process (Xt, t ∈ Z) defined by (3.5) is
the unique second order stationary solution of equations (3.1), (3.2). In addition,
for p ≥ 2, if E||ε0||p < ∞ and E(〈ε0, z〉2 + β)p/2 < 1, solution (3.5) has a finite
p’th order moment.

Remark 3.1. For the proof of Theorem 3.3 one has to verify, that the conditions
yield the existence of a strong stationary solution, which has a finite second
moment indeed. Therefore, the proof is analogous to that of the 2nd order
stationarity of the model ρ−GARCH(1, 1), obtained by Theorem 2.2.

Proof. By Jensen’s inequality for a concave function we get

E log{〈εt−j, z〉2 + β} ≤ logE{〈ε0, z〉2 + β} < 0.

Hence, condition (3.3) is satisfied, therefore a strictly stationary solution of
equations (3.1), (3.2) exists and is given by (3.5). Thus, it is enough to show
that the process defined by (3.5) has a finite variance. Set q0 = E〈ε0, ε0〉. By a
monotone convergence theorem we derive:

E‖Xt‖2 = q0Eht = q0ω

⎧⎨⎩1 +
∞∑
n=1
E
n∏
j=1

(〈εt−j, z〉2 + β)

⎫⎬⎭
= q0ω

{
1 +

∞∑
n=1

(
E〈ε0, z〉2 + β

)n}
= q0 ω

1− (E〈ε0, z〉2 + β)
.

To prove the uniqueness, assume that X̃t = (ω+ωh̃t)1/2εt is another second-order
stationary solution of (3.1), (3.2). Suppose P(ht 
= h̃t) > 0 for a certain t. Then

E|ht − h̃t| = E
⎧⎨⎩
n∏
j=1

(〈εt−j, z〉2 + β)

⎫⎬⎭E|ht−(n+1) − h̃t−(n+1)|

= (E〈ε0, z〉2 + β)nE|ht−(n+1) − h̃t−(n+1)|.

Since E|ht−(n+1) − h̃t−(n+1)| ≤ E|ht−(n+1)| + E|h̃t−(n+1)| is finite and due to
stationarity independent of n; and (αE〈ε0, z〉2 + β)n approaches 0, as n→∞, we
obtain that E|ht − h̃t| = 0 and therefore for every t, ht = h̃t a.s.
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To prove that the process (Xt, t ∈ Z) has a finite p’th moment, we have to
show that

E||Xt||p = E||h1/2
t εt||p = Ehp/2t E||εt||p <∞. (3.9)

By the assumption of the theorem E||εt||p <∞. It remains to prove that Ehp/2t <
∞. Recalling the definition of ht

ht = ω
(

1 +
∞∑
n=1

n∏
j=1

(〈εt−j, z〉2 + β)
)

it suffices to check that

E
( ∞∑
n=1

n∏
j=1

(〈εt−j, z〉2 + β)
)p/2
<∞. (3.10)

Since p/2 ≥ 1, by the Minkovski inequality 1 and taking into account the
independence and identical distribution of the sequence (εt), (3.10) reduces to

⎡⎣E( ∞∑
n=1

n∏
j=1

(〈εt−j, z〉2 + β)
)p/2⎤⎦2/p

≤
∞∑
n=1

(
E
n∏
j=1

(〈εt−j, z〉2 + β)p/2
)2/p

=
∞∑
n=1

(
E(〈ε0, z〉2 + β)p/2

)2n/p
<∞. (3.11)

The convergence is guaranteed by the assumption of the theorem E(〈ε0, z〉2 +
β)p/2 < 1. Thus, we have showed that (3.9) is valid; the proof is complete.

3.3 Estimation

In this section, we investigate a quasi-maximum likelihood estimator of the model
(3.1), (3.2). We assume throughout that E||ε0||2 <∞. In this case, the covariance
operator Qε is nuclear. Let (φj) ⊂ H be the orthonormal basis for H consisting
of eigenfunctions of the operator Qε. Let the corresponding eigenvalues be µ2

1 ≥
µ2

2 ≥ · · · . We shall consider only the case where the eigenfunctions (φj) and
eigenvalues (µ2

j) are known.

Assume that X1, X2, . . . , Xn is a sample of the unique stationary ergodic
solution to equations (3.1), (3.2) with the true parameter θ0 = (ω0, β0, z0) ∈
R2 × H, where z0 = λo1φ1 + · · · + λodφd, with known d ≥ 1. In this case,

1
∥∥∥∑∞i=1 ai

∥∥∥ ≤∑∞i=1 ||ai||, where ||a|| =
(
E|a|p/2

)2/p
.
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θ0 = (ω0, β0, λ
o
1, . . . , λ

o
d) ∈ [0,∞)2 × Rd. Consider the set K ⊂ R2+d:

K = [ω, ω]× [β, β]× [−α, α]d, (3.12)

where ω > 0, ω < ∞, α > 0, β ≥ 0 and β < 1. Suppose that the true parameter
θ0 belongs to the set K.

Denote an Euclidean space R2+d norm by ‖ ·‖d, which for x = (x1, . . . , xd+2) ∈
R2+d is defined as

‖x‖d = max
1≤i≤d+2

|xi|.

Recall that C(K) is the Banach space of continuous functions f : K → R

endowed with the uniform norm

||f ||K = sup
x∈K
|f(x)|.

Set θ = (ω, β, λ1, . . . , λd) ∈ K and z = λ1φ1 + · · ·+ λdφd,

ht(θ) = ω

1− β +
∞∑
j=1
βj−1〈Xt−j, z〉2. (3.13)

This is the solution to the equation

ht(θ) = ω + βht−1(θ) + 〈Xt−1, z〉2, θ = (ω, β, λ1, . . . , λd) ∈ K,

in the space C(K) irrelevant to the initial value h0 ∈ C(K). We also see that
ht(θ0) = σ2

t . Next, let us define an approximation to (ht):

ĥt(θ) = ω

1− β +
t∑
j=1
βj−1〈Xt−j, z〉2, θ = (ω, β, λ1, . . . , λd) ∈ K. (3.14)

The approximation satisfies

||ĥt − ht||K a.s.−−→ 0 exponentially fast as t→∞.

Indeed, for any θ ∈ K,

|ĥt(θ)− ht(θ)| =
∞∑
j=t+1
βj−1〈Xt−j, z〉2

≤ C0

∞∑
j=t+1
β
j−1||Xt−j||2,

where C0 > 0 is a constant. Evidently ∑∞j=t+1 d
j−1||Xt−j||2 a.s.−−→ 0, as t → ∞, for

any 0 < d < 1. Taking � such that β0 < � < 1 we see that �t|ĥt(θ) − ht(θ)| ≤
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∑∞
j=t+1 d

j−1||Xt−j||2 a.s.−−→ 0, where d = β0/�.

If (εt) were Gaussian, then the conditional density function of (〈Xt, φk〉, k =
1, . . . , d), given (σt), is∏dj=1(

√
2πµjσt)−1 exp{−x2

k/(2µ2
jσ

2
t )}. However, (σt) are not

known. Since the function (ĥt) serves as an estimate of (σ2
t ) with the parameters

that compose the vector θ0, we consider the following quasi-maximum likelihood
function

L̂n(θ) = −1
2

n∑
t=1

d∑
i=1

(〈Xt, φi〉2
µ2
i ĥt(θ)

+ log(ĥt(θ))
)
.

Now choose a measurable θ̂n so that

θ̂n = argmaxθ∈KL̂n(θ).

Let us note that
(∑d

i=1〈Xt, φi〉2/(µ2
i ĥt)+log ĥt

)
is neither stationary nor ergodic.

Therefore, in order to investigate limit properties of the estimator θ̂n we replace
this process by a stationary and ergodic one

(∑d
i=1〈Xt, ψi〉2/(µ2

iht) + log ht
)
.

Define

Ln(θ) = −1
2

n∑
t=1

d∑
i=1

(〈Xt, φi〉2
µ2
iht(θ)

+ log(ht(θ))
)

and set
θn = argmaxθ∈KLn(θ).

3.3.1 Consistency

Theorem 3.4. Assume that E〈ε0, z〉2 + β < 1, for all θ = (ω, β, λ1, . . . , λd) ∈ K,
where z = λ1φ1 + · · ·+ λdφd ∈ H and the set K is defined by (3.12). Then

θ̂n
a.s.−−−→
n→∞ θ0.

Proof. We follow the steps of the proof of Theorem 5.3.1 in [71]. Clearly (Ln) is
a sequence of random elements of the space C(K) and, moreover,

Ln =
n∑
t=1
�t,

where

�t = −1
2

d∑
i=1

(〈Xt, φi〉2
µ2
iht

+ log ht
)
, t = 1, . . . , n. (3.15)
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Since E〈εt, φi〉2 = 〈Qεφi, φi〉 = µ2
i , we deduce

L(θ) : = En−1Ln(θ) = E
[
− 1

2n

n∑
t=1

d∑
i=1

(〈Xt, φi〉2
µ2
iht(θ)

+ log(ht(θ))
)]

= −d
2
E
(
σ2

0
h0(θ)

+ log h0(θ)
)
.

The random elements �t, t ≥ 1 are of the form �t = f(Xt, Xt−1, . . . ), for each
t ≥ 1, where the function f is measurable. Hence, the C(K)-valued process (�t)
is stationary and ergodic. Now we verify that E||�t||K <∞. Indeed, we have

||�t||K ≤ 1
2

d∑
i=1

[〈Xt, φi〉2
µ2
i

||1/ht||K + || log ht||K
]

Since ht(θ) ≥ ω and E〈Xt, φi〉2 = Eσ2
tE〈εt, φi〉2 = µ2

iEσ
2
t = µ2

iEσ
2
0, we deduce

E||�t||K ≤ d2ωEσ
2
0 + d

2
E|| log h0||K .

Next we write

Eσ2
0 = E

{
ω0 + ω0

∞∑
n=1

n∏
j=1

(
〈ε−j, z0〉2 + β0

)}
= ω0 + ω0

∞∑
n=1

(E〈ε−j, z0〉2 + β0)n

= ω0 + ω0

1− (E〈ε0, z0〉2 + β0)
<∞,

by the assumption of the theorem, where z0 = λo1φ1 + · · ·+ λodφd. In view that

sup
θ∈K
h0(θ) ≤ ω

1− β +
∞∑
j=1
β
j−1 max
λ1,...,λd∈[−α,α]d

( d∑
i=1
λi〈X−j, φi〉

)2

= ω

1− β + α2
∞∑
j=1
β
j−1
( d∑
i=1
〈X−j, φi〉

)2
,

and using E〈Xt, φi〉2 ≤ µ2
1Eσ

2
0 <∞, we obtain

E sup
θ∈K
h0(θ) ≤ ω̄

1− β̄ + α2
∞∑
j=1
β̄j−1E

( d∑
i=1
〈X−j, φi〉

)2

≤ ω̄

1− β̄ + dα2µ2
1Eσ

2
0

∞∑
j=1
β̄j−1 <∞.

Now it follows E‖ log h0‖K <∞ by applying Jensen’s inequality. Hence E||�t||K <
∞ and by the law of large numbers (see, e.g., Theorem 2.2.1 in [71]), we conclude
that

n−1Ln
a.s.−−−→
n→∞ L, in C(K). (3.16)
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Next, we demonstrate that n−1||L̂n−Ln||K a.s.−−−→
n→∞ 0. Since ht(θ) ≥ ω and ĥt(θ) > ω

for each θ ∈ K, we have

||(ĥt)−1 − (ht)−1||K = sup
θ∈K

|ĥt(θ)− ht(θ)|
ĥt(θ)ht(θ)

≤ ω−2||ĥt − ht||K .

The application of the mean value theorem leads to

|| log ĥt − log ht||K ≤ c−1
0 ||ĥt − ht||K .

Thus, there exists a constant c > 0 such that

||L̂n − Ln||K ≤ c
n∑
t=1

d∑
k=1

(
1 + 〈Xt, φk〉

2

µ2
k

)
||ĥt − ht||K (3.17)

Since ||ĥt − ht||K a.s.−−→ 0 exponentially fast, as t→∞, and

E
d∑
k=1

(
1 + 〈Xt, φk〉

2

µ2
k

)
= d+ Eσ2

0

d∑
k=1

〈ε0, φk〉2
µ2
k

≤ d(1 + Eσ2
0) <∞,

by Proposition 2.5.1 in [71], we deduce that∑∞t=1
∑d
k=1(1+〈Xt, φk〉2/µ2

k)||ĥt−ht|| <
∞, a.s. Therefore ||L̂n − Ln||K/n→ 0, a.s. and (3.16) yields

L̂n/n→ L, a.s. in C(K). (3.18)

Further we prove the uniqueness of the maximum of L. We have to check that
L(θ) < L(θ0) for each θ ∈ K, θ 
= θ0. It is equivalent that the function (2/d)L(θ)+
log σ2

0, θ ∈ K is uniquely maximized as θ = θ0. We define

U(θ) := (2/d)L(θ) + log σ2
0 = log σ

2
0

h0(θ)
− E σ

2
0

h0(θ)
.

Since U(θ0) = −1 and log(x)− x ≤ −1 for all x > 0 with equality only if x = 1,
we obtain U(θ) ≤ −1 = U(θ0) with equality, only if θ = θ0, because σ2

0/h0(θ) = 1
if and only if θ = θ0. This shows that L is uniquely maximized as θ = θ0.

Now, suppose that (θ̂n) does not converge a.s. to θ0. Then, for an ε > 0, we
write P (lim supn→∞ ||θ̂n − θ0||d > ε) > 0. First, note that the set K ′ = K ∩ {θ :
||θ− θ0||d ≥ ε} is compact and K ′ ⊂ K. Since L̂/n→ L a.s. in C(K), there is an
event D ⊂ {lim supn→∞ ||θ̂n−θ0||d > ε} 
= ∅ such that limn ||n−1Ln(ω)−L||K = 0
for each ω ∈ D and the sequence (θ̂n(ω)) ⊂ K ′ has an convergent subsequence,
say, (θ̂n′) ⊂ K ′. Let θ′ = limn′→∞ θ̂n′(ω). Then

L(θ′) = lim L̂n′(θ̂n′)/n′ ≥ lim L̂n′(θ0)/n′ = L(θ0).
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Thus, there exists at least one point θ ∈ K ′, θ 
= θ0 with L(θ) ≥ L(θ0). This is a
contradiction. The proof is complete.

3.3.2 Asymptotic normality

Denote

Aε = E
[ d∑
i=1

(
1− 〈ε0, φi〉

2

µ2
i

)]2
=

d∑
i,j=1

(
E〈ε0, φi〉2〈ε0, φj〉2

µ2
iµ

2
j

− 1
)

and the matrix
J = Eσ−4

1 h
′
1(θ0)[h′1(θ0)]T .

As usual, N(0,Σ) denotes a normal random vector with zero mean and the
covariance matrix Σ.

Theorem 3.5. Assume that the following conditions are satisfied:

(i) θ0 ∈ K0, where K0 is the interior of K, which is defined by (3.12);

(ii) For 0 < δ < 1, E||ε0||4+δ < ∞ and E(〈ε0, z〉2 + β)2 < 1 for all θ =
(ω, β, λ1, . . . , λd) ∈ K, where z = λ1φ1 + · · ·+ λdφd;

(iii) The matrix J is invertible.

Then,

√
n(θ̂n − θ0) d→ N (0, Aε

d2
J−1).

Proof. We follow the steps of the proofs of Theorem 7.2. in [40] and of Theorem
5.6.1. in [71]. The first two derivatives of the function �t(θ), θ ∈ K are

�′t(θ) = (∂�t(θ)/∂θj, j = 1, . . . , d+ 2)

= −1
2
h′t(θ)
ht(θ)

d∑
i=1

(
1− 〈Xt, φi〉

2

µ2
iht(θ)

)
, (3.19)

and

l′′t (θ) = (∂2�t(θ)/∂θj∂θi, i, j = 1, . . . , d+ 2)

= (h′t(θ))Th′t(θ)
2h2
t (θ)

d∑
i=1

(
1− 2〈Xt, φi〉2

µ2
iht(θ)

)
− h

′′
t (θ)

2ht(θ)

d∑
i=1

(
1− 〈Xt, φi〉

2

µ2
iht(θ)

)
. (3.20)

The assumptions of this theorem imply that θn
a.s.−−→ θ0 (see the proof of Theorem
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3.4). For large enough n the following Taylor expansion is valid

L′n(θn) = L′n(θ0) + L′′n(θ̃n)(θn − θ0), (3.21)

where ||θ̃n − θ0|| < ||θn − θ0||. Since θn is the maximizer of Ln, one has that
L′n(θn) = 0. Therefore, (3.21) is equivalent to

L′′n(θ̃n)(θn − θ0) = −L′n(θ0). (3.22)

Next, the following will be proved:

(A1) n−1/2L′n(θ0)
D−−−→
n→∞ N(0, 1

4AεJ);

(A2) n−1L′′n(θ0)
P−−−→
n→∞ −

d
2J ;

(A3) n−1L′′n(θ̃n)
P−−−→
n→∞ −

d
2J ;

(A4)
√
n(θ̂n − θn) P−−−→

n→∞ 0.

Then, from (3.22), (A2), (A3) and Slutsky’s theorem we deduce
√
n(θn−θ0) D−−−→

n→∞
N (0, Aε

d2 J
−1) and (A4) completes the proof of the theorem.

First we prove (A1). Recall that ht(θ0) = σ2
t and Xt = σtεt. Hence, by (3.19)

we have

L′n(θ0) =
n∑
t=1
l′t(θ0) = 1

2

n∑
t=1

h′t(θ0)
σ2
t

d∑
i=1

(〈εt, φi〉2
µ2
i

− 1
)

Let Ft = σ(εs, s ≤ t), t ≥ 1. The random vector h′t(θ0)/σ2
t is Ft−1 measurable and

Ft−1 is independent of εt and E〈εt, φi〉2 = µ2
i . Consequently, (l′t(θ0))t∈N ⊂ Rd+2 is

a stationary ergodic martingale difference sequence with respect to the filtration
(Ft)t∈N. If the following two conditions are satisfied

(C1) n−1∑n
t=1E

(
�′t(θ0)[�′t(θ0)]T |Ft−1

)
P−−−→
n→∞ Q,

(C2) for a δ ∈ (0, 1) limn→∞ n−(1+δ/2)∑n
t=1E||�′t(θ0)||2+δ

d = 0,

then we obtain n−1/2∑n
t=1 �

′
t(θ0)

D−−−→
n→∞ N (0, Q) (it follows from a slight general-

ization of Theorem 3.1. in [65]).
First we establish the finiteness of the moment E||�′t(θ0)||2+δ

d . Since E||εt||4+δ <

∞, it suffices to verify that

E||h′t(θ0)||2+δ
d σ

−2(2+δ)
t <∞. (3.23)

As far as σt ≥ ω, (3.23) reduces to E||h′t(θ0)||2+δ
d <∞.
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Recall that

ht(θ) = ω

1− β +
∞∑
j=1
βj−1(λ1〈Xt−j, φ1〉+ ...+ λd〈Xt−j, φd〉)2

= ω

1− β +
∞∑
j=1
βj−1〈Xt−j, z〉2,

where θ = (ω, β, λ1, . . . , λd), z = λ1φ1 + · · ·+ λdφd, and calculate the derivatives

∂ht(θ)
∂ω

= 1
1− β ,

∂ht(θ)
∂β

= ω

(1− β)2 +
∞∑
j=1

(j − 1)βj−2〈Xt−j, z〉2,

∂ht(θ)
∂λk

= 2
∞∑
j=1
βj−1〈Xt−j, z〉〈Xt−j, φk〉, k = 1, ..., d.

Now we find

E||�′t(θ)||2+δ
d ≤

1
(1− β̄)2+δ + ω̄2+δ

(1− β̄)4+2δ + E
( ∞∑
j=1

(j − 1)β̄j−2〈Xt−j, α〉2
)2+δ

+ 4
d∑
k=1
E
( ∞∑
j=1
β̄j−1〈Xt−j, α〉〈Xt−j.φk〉

)2+δ
.

Hence, E||�t(θ)||2+δ
d <∞ follows from E||Xt||4+δ = E||X0||4+δ <∞ (this in turn

follows from the conditions of the theorem and Theorem 3.3). So we get

n−1
n∑
t=1
E
(
�′t(θ0)[�′t(θ0)]T |Ft−1

)
= n−1 1

4

n∑
t=1

h′t(θ0)[h′t(θ0)]T

σ4
t

E
[ d∑
i=1

(〈εt, φi〉2
µ2
i

− 1
)]2

= Aε
4
n−1

n∑
t=1

h′t(θ0)[h′t(θ0)]T

σ4
t

P−−−→
n→∞

Aε
4
J

by the law of large numbers (see, e.g., Theorem 2.2.1 in [71]).

Now we prove (A2). It is easy to see that L′′n(θ0) = ∑n
t=1 �

′′
t (θ0) and (�′′t (θ0))

is a stationary and ergodic process. Hence, the law of large numbers applies, if
we establish the finiteness of E||�′′0(θ0)||d2 , where ‖ · ‖d2 denotes the norm of the
(d+ 2)× (d+ 2) matrix, defined as

‖A‖d2 = max
i,j=1,...,d+2

|aij|, for A = (aij).
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We write

E‖�′′t (θ0)‖d2

≤1
2
E
[ ||h′t(θ0)[h′t(θ0)]T ||d2

h2
t (θ0)

d∑
i=1

∣∣∣∣2〈Xt, φi〉2µ2
iht(θ0)

− 1
∣∣∣∣+ ||h′′t (θ0)||d2

ht(θ0)

d∑
i=1

∣∣∣∣1− 〈Xt, φi〉2µ2
iht(θ0)

∣∣∣∣]

=1
2
E
[ ||h′t(θ0)[h′t(θ0)]T ||d2

σ4
t

d∑
i=1

∣∣∣∣2〈εt, φi〉2µ2
i

− 1
∣∣∣∣+ ||h′′t (θ0)||d2

σ2
t

d∑
i=1

∣∣∣∣1− 〈εt, φi〉2µ2
i

∣∣∣∣]

and we see that E||�′′t (θ0)||d2 <∞ follows from

E
||h′t(θ0)[h′t(θ0)]T ||d2

σ4
t

<∞ (3.24)

and
E
||h′′t (θ0)||d2

σ2
t

<∞. (3.25)

As (3.24) follows from (3.23), it remains to check (3.25). We calculate the second
derivative h′′t (θ) :

∂2ht(θ)
∂ω2 = ∂

2ht(θ)
∂ω∂λi

= 0, ∂
2ht(θ)
∂ω∂β

= 1
(1− β)2 ,

∂2ht(θ)
∂β2 = 2ω

(1− β)3 +
∞∑
j=1

(j − 1)(j − 2)βj−3〈Xt−j, z〉2

∂2ht(θ)
∂β∂λk

= 2
∞∑
j=1

(j − 1)βj−2〈Xt−j, z〉〈Xt−j, φk〉,

∂2ht(θ)
∂λk∂λl

= 2
∞∑
j=1
βj−1〈Xt−j, φk〉〈Xt−j, φl〉,

where k, l = 1, . . . , d. Since σ2 > ω, we easily see that (3.25) follows from
E||Xt||2 <∞. Hence, by the law of large numbers

1
n
L′′n(θ0)

P−−−→
n→∞ E�

′′
0(θ0).

It is easy to see that

E�′′0(θ0) = −d
2
Eσ−4

0 (h′0(θ0))Th′0(θ0) = −d
2
J.

(A3) follows from continuity of the function θ → L′′(θ) on K which is obvious in
definition (3.20).
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Finally we prove (A4). First we have to show that

1√
n
‖L̂′n − L′n‖K P−−−→

n→∞ 0, n→∞. (3.26)

Denote Y 2
t = ∑d

i=1
〈Xt,φi〉2
µ2
i

and take the following derivatives

l̂′t = −1
2

(
d− Y

2
t

ĥt

)
ĥ′t
ĥt
, l′t = −1

2

(
d− Y

2
t

ht

)
h′t
ht
.

Applying the mean value theorem to the function2 f(u, v) = u
v
(d − Y 2

t

v
), we

obtain the following expression

‖l̂′t − l′t‖K

=1
2

∥∥∥∥ ĥ′t
ĥt

(
d− Y

2
t

ĥt

)
− h

′
t

ht

(
d− Y

2
t

ht

)∥∥∥∥
K

=1
2

∥∥∥∥ 1
h̄t

(
d− Y

2
t

h̄t

)
(ĥ′t − h′t)−

h̄′t
h̄2
t

(
d− Y

2
t

h̄t

)
(ĥt − ht) + h̄

′
t

h̄t

(
d+ Y

2
t

h̄2
t

)
(ĥt − ht)

∥∥∥∥
K

≤c(d+ Y 2
t )‖ĥ′t − h′t‖K + c(d+ Y 2

t )‖h̄′t‖K‖ĥt − ht‖K
≤c(d+ Y 2

t ){‖ĥ′t − h′t‖K + ‖ĥ′t − h′t‖K‖ĥt − ht‖K + ‖h′t‖K‖ĥt − ht‖K},

where c is a constant and |h̄′t| ≤ |ĥ′t − h′t|+ |h′t|.

Recall that ĥt = ω
1−β +∑t

j=1 β
j−1〈Xt−j, z〉2 and calculate the derivatives

∂ĥt
∂ω

= 1
1− β ,

∂ĥt
∂β

= ω

(1− β)2 +
t∑
j=1

(j − 1)βj−2〈Xt−j, z〉2,

∂ĥt
∂λk

= 2
t∑
j=1
βj−1〈Xt−j, z〉〈Xt−j, φk〉, k = 1, ..., d.

Since

∂ht
∂ω

= ∂ĥt
∂ω
,

2For every function f : R2 → R with continuous partial derivatives fu and fv and for all
distinct pairs (u1, v1) and (u2, v2) in R2, there exists an intermediate point (u∗, v∗) on the line
segment, joining the points (u1, v1) and (u2, v2), such that f(u2, v2)−f(u1, v1) = fu(u∗, v∗)(u2−
u1) + fv(u∗, v∗)(v2 − v1). (see, e.g., [67])
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and

sup
θ∈K

∣∣∣∣∂ht(θ)∂β
− ∂ĥt(θ)
∂β

∣∣∣∣ = sup
θ∈K

∣∣∣∣ ∞∑
j=t+1

(j − 1)βj−2〈Xt−j, z〉2
∣∣∣∣

≤ c1
∞∑
j=t+1

(j − 1)β̄j−2‖Xt−j‖2,

sup
θ∈K

∣∣∣∣∂ht(θ)∂λk
− ∂ĥt(θ)
∂λk

∣∣∣∣ = sup
θ∈K

∣∣∣∣ ∞∑
j=t+1

2βj−1〈Xt−j, z〉〈Xt−j, φk〉
∣∣∣∣

≤ 2c2
∞∑
j=t+1
β̄j−1‖Xt−j‖2,

where c1, c2 are finite constants, we conclude that ‖ĥ′t− h′t‖K a.s.−−→ 0 exponentially
fast as t→∞, the same as shown earlier for ‖ĥt−ht‖K . Furthermore, E‖h′t‖K <
∞ and

EYt = E
{ d∑
i=1

〈Xt, φi〉2
µ2
i

}
≤ dEh0 <∞.

We can apply Proposition 2.5.1 and Lemma 2.5.3 in [71] to conclude that

‖L̂′n − L′n‖K ≤
∞∑
t=1
‖l̂′t − l′t‖K <∞, a.s.,

which completes the proof of (3.26).

From the mean value theorem

L′n(θ̂n)− L′n(θn) = L′′n(θ̄n)(θ̂n − θn), (3.27)

where θ̄n lies on the line segment that connects θ̂n and θn, which is completely
contained in the interior of K. Since L′n(θ̂n) = L′n(θn) = 0, equation (3.27) is
equivalent to

1√
n

(L′n(θ̂n)− L′n(θn)) = 1
n
L′′n(θ̄n)

√
n(θ̂n − θn), (3.28)

and both sides of this equation tend to 0, as n → ∞. Using (A3) and apply-
ing Theorem 2.2.1 in [71] to L′′n/n together with θ̄n

a.s.→ θ0, we conclude that
L′′n(θ̄n)/n

a.s.→ −d2J . Since by assumption iii) matrix J is invertible, we can deduce
that
√
n(θ̂n − θn) a.s.→ 0. This completes the proof.
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3.4 Analysis of residuals

In this section, we investigate the asymptotic properties of residuals (ε̂t) of the
model (3.1), (3.2). Recalling

σ2
t = ω

1− β +
∞∑
j=1
βj−1〈Xt−j, z〉2 (3.29)

we define
σ̂2
t = ω̂

1− β̂ +
m∑
j=1
β̂j−1〈Xt−j, ẑ 〉2, (3.30)

where 1 < m < n and set

ε̂t = σ̂−1
t Xt, t = 1, . . . , n.

Theorem 3.6. Assume that E〈ε0, z〉2 + β < 1, for all θ = (ω, β, λ1, . . . , λd) ∈ K,
where z = λ1φ1 + · · · + λdφd ∈ H, and the set K is defined by (3.12). Then, for
any x, y ∈ H, we have

n−1
n∑
k=1
〈ε̂k, x〉〈ε̂k, y〉 P−−−→

n→∞ 〈Qεx, y〉.

Proof. We write
n∑
k=1
ε̂k ⊗ ε̂k =

n∑
k=1
εk ⊗ εk + Vn,

where
Vn =

n∑
k=1

(
σ2
k

σ̂2
k

− 1
)
εk ⊗ εk.

Since
n−1

n∑
k=1
〈εk, x〉〈εk, y〉 P−−−→

n→∞ 〈Qεx, y〉

for any x, y ∈ H by the law of large numbers, we have to prove

n−1〈Vnx, y〉 P−−−→
n→∞ 0. (3.31)

50



To this end we decompose

σ2
j − σ̂2

j = ω

1− β +
∞∑
i=1
βi−1〈Xj−i, z〉2 − ω̂

1− β̂ −
m∑
i=1
β̂i−1〈Xj−i, ẑ 〉2

= ω

1− β −
ω̂

1− β̂ +
∞∑

i=m+1
βi−1〈Xj−i, z〉2 +

m∑
i=1

(βi−1 − β̂i−1)〈Xj−i, z〉2

+
m∑
i=1
β̂i−1[〈Xj−i, z〉2 − 〈Xj−i, ẑ〉2]

= τ1j + τ2j + τ3j + τ4j, j = 1, . . . , n.

We get accordingly

|〈Vnx, y〉| ≤
4∑
v=1
V (v)
n ,

where
V (v)
n =

n∑
j=1

τvj
σ̂2
j

〈εjx, y〉2, v = 1, . . . , 4.

On the set |ω − ω̂| + |β − β̂| ≤ τ0 we have σ̂2
k ≥ (ω0 − τ0)/(1 − β1 + τ0) := c−1

0 .
Then, we have to check

n−1
n∑
j=1
τvj||εj||2 P−−−→

n→∞ 0, v = 1, . . . , 4. (3.32)

Assumptions of this theorem imply that the conditions of Theorem 3.4 are valid,
therefore the result in (3.32) follows from the consistency of the model parameter
estimates.
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Chapter 4

Stylized facts and aggregation

While examining the specific behavior of financial asset prices, market analysts
usually relates that to the political and economic events or announcements. For
example, Cutler, Poterba and Summers (1989) have found that the news proxies
can explain about one-third of stock returns volatility. Then, it might seem
that the behavior of different financial asset (stock, foreign exchange, commodity,
etc.) prices is influenced by specific market events and have different statistical
properties. However, the statistical analysis shows that data series of financial
asset prices have common features, the so-called basic stylized facts. Therefore,
the analysis of basic stylized facts is an important issue, when modeling financial
asset prices and their return series. The requirements to models include not only
the desirable statistical properties, for example, stationarity, parameter estimate
consistency and asymptotic normality as studied in the previous two chapters,
but also the capability to reproduce stylized facts in the data series observed.

The statistical properties of financial asset prices have been studied for many
years and are well known. The appearance of high frequency data opened new
fields for search of the stylized facts that characterize such data sets. The
statistical properties are analyzed for both regular and "tick-by-tick" data series.
Moreover, regularly spaced data series can be constructed from high frequency
data by applying data aggregation. It is known that even a linear aggregation that
reduces the frequency of data series, changes the stylized facts, for example, the
Gaussianity of financial asset returns, i.e., high frequency returns are distributed
non-normally, but with an increasing interval between prices, the distribution of
returns approaches to normal. However, it is not known if the same frequency
prices, constructed applying different and more complex data aggregation, really
changes the basic statistical properties, and if so, then how. The analysis of this
problem is important when developing models for functional returns of series of
aggregated financial asset prices.
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In this chapter, a long memory as one of basic stylized facts is considered.
Dependence of the long memory parameter on aggregation is presented via a
numerical example for foreign exchange rates. The chapter is organized as
follows. At first, a short review of the basic stylized facts on financial asset
prices and return data series is provided. Next, the concept of long memory
and a review of papers on the long memory analysis, using foreign exchange
rates, is presented. Then, the related concepts of an R/S statistic and a Hurst
exponent are introduced. Finally, a numerical example of absolute returns Hurst
exponent estimates of foreign currencies (USD versus EUR, GBP, JYP), using
data aggregation, is presented.

4.1 Basic stylized facts

In this section a short review of basic stylized facts is provided following [23],
[26] and [40]. Gathering of common statistical facts started with the research of
returns of low frequency financial asset prices. Among the earliest observations
about the behavior of financial data series there was almost no autocorrelation
of returns. The series of returns of financial asset prices usually has a very
weak autocorrelation and is almost a white noise process. However, the series
of high frequency returns might have significant autocorrelations due to market
microstructure effects. For example, Goodhart and Figliuoli (1991) were the
first who demonstrated the existence of the negative first-order autocorrelation
of the highest frequency returns (up to 4 minutes). One of the explanations for
this observation is that market traders have different opinions about the effect
of news on the direction of price movements, which is a contradiction to the
hypothesis of a homogenous market and results in the negative correlation of
returns. Furthermore, it has been observed that the series of squared returns
or absolute returns is often strongly autocorrelated. Another feature observed
in financial data is non-stationarity of price series. In general, the trajectory
of prices series is close to a random walk process without the constant term.
Differently, the series of returns is usually the second order stationary process.
Although the assumption on the Gaussian distribution of returns is usually made
when modeling financial data series, it is obvious that the returns distribution is
non-normal. Empirical studies about the distribution of returns reveal several
common properties. The most important observation is that the distribution of
returns is fat-tailed. The means of returns are close to zero. The absolute values of
skewness are significantly smaller than 1 and the empirical distribution is almost
symmetric. The empirically determined kurtosis exceeds the value of 0, which
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is the theoretical value of Gaussian distribution. Furthermore, the distribution
of returns has a finite variance and the third moment, while the fourth moment
usually diverges. The temporal aggregation tends to diminish the effects of non-
normality and it is noticed that the distribution of weekly data approaches to
normal. One more important statistical property of financial data series is long
memory. The estimate of correlation between absolute returns is slowly decreasing
with an increasing interval between returns. The same applies to the correlation
between volatility estimates. More details about the long memory will be provided
in the next section.

The analysis of low and high frequency return volatility has revealed several
statistical properties. First, the so-called volatility clustering, characterized by the
observation that large price changes are usually followed by large ones and small
price changes are followed by small ones. High volatility events tend to cluster
in time, since a positive autocorrelation of different volatility measures might be
observed for several days. In addition, returns have generally a non-constant
conditional variance (conditional heteroscedasticity). Second, the seasonality
property is revealed by volatility variation, when intraday and intraweek returns
are analyzed. It has been observed that volatility tends to increase after weekends
or festivals, when the markets do not function. In addition, the seasonality effect
is also present in the intra-day data series. The daily patterns may be explained
by the behavior of active periods of the three main markets (European, Asian
and American) that partially overlap. Finally, the leverage effect, described by an
observation that positive and negative price changes have an asymmetric impact
on volatility. The fall of the price tends to cause a higher volatility increase as
compared to the same size of the price growth. This can be explained by the fact
that reactions of market participants are more sensitive to negative information
than to the positive one.

One more group of statistical properties of financial asset prices can be found
analyzing institutional frameworks and exogenous impacts. Currency systems
serves as an example of an institutional framework, where foreign exchange rates
are kept within fixed bounds. For instance, Lithuanian litas is pegged to the
Euro at a fixed rate of LTL 3,4528 = EUR 1 and Latvian lats floats within 1
percent of the central rate of LAT 0,702804 = EUR 1. Similarly it is evident
that official interventions of central banks have a positive impact on the market.
The interventions by central banks may be direct via official announcements or
indirect via unannounced interventions. As an example of an official intervention
can be decisions on the key interest rates for the euro area (the rates on the
main refinancing operations, the deposit facility and the marginal lending facility)
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made by European Central Bank1. Goodhard and Hesse (1993) have presented
the study, which shows that official interventions have positive effects in the long
run. Moreover, the impact of news is broadly analyzed. Major economic news
announcements, general political and economic news, economic forecasts and even
discussions among traders are understood as news. Since it is difficult to quantify
news, the analysis of news impact is quite complex. Different investigations have
been performed on a large variety of news and showed of mixed effects.

A typical stylized fact observed in high frequency data sets is scaling laws.
It has been noticed that mean absolute returns and mean squared returns can
be expressed as functions of their time intervals. One of the most important
scaling laws, also applied in the risk management, is the observation that the
size of the average absolute value of returns is scale-invariant in the time interval
of its occurrence. The analysis of such properties is important since there is
no agreement of the common frequency to fix and analyze data. Therefore,
the search for a high frequency financial data scaling laws is still carried out
rather extensively. In the recent paper, Dupuis, Glattfelder and Olsen (2011)
have announced the discovery of 12 new empirical scaling laws for high frequency
foreign exchange data. They believe that with an extended collection of stylized
facts, the space of possible theoretical explanations of market mechanisms becomes
more constrained. Among other statistical properties observed especially for the
"tick-by-tick" financial data is the discreteness of quoted bid-ask spread, i.e., the
difference between the ask price and bid price has discrete values, such as 5, 7,
10 basis points. The short-term triangular arbitrage is also the fact noticed in
high frequency data sets. The opportunity of arbitrage appears since a short time
is needed for smaller currency traders to adjust to the price movements of the
leading currencies, such as EUR or USD. However, the transactional costs are
often higher than the profit from the difference of currency prices.

4.2 Long memory in foreign exchange returns

One of the most important stylized facts is a long memory, usually observed
in absolute or squared returns. According to McLeod and Hippel (1978) the
covariance stationary process yt is said to exhibit the long memory if the following
condition is satisfied −n∑

k=n
|ρk| → ∞, n→∞,

1http://www.ecb.int/mopo/decisions/html/index.en.html
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where ρk is the autocorrelation function at lag k. For example, fractionally
integrated processes are long memory processes, where the process yt is said to be
integrated of order d or I(d), if

(1− L)dyt = ut,

where L is the lag operator, −0, 5 < d < 0, 5 and ut is a stationary and ergodic
process with a bounded and positively valued spectrum at all frequencies (see,
e.g. [9]). For 0 < d < 0, 5 the process yt is a long memory, the autocorrelations
are positive and decaying at a hyperbolic rate. For −0, 5 < d < 0 the process
is a short memory as the sum of absolute values of autocorrelations tends to a
constant. Additionally, an important class can be distinguished when ut is I(0)
and covariance stationary process.

There has been a great interest in the analysis of the long memory property of
foreign exchange returns in recent years. Researchers that examine a long-range
dependence in foreign exchange returns have come to different conclusions. One
part of papers gaive evidence that foreign exchange returns have a long memory,
however, the other part rejected the hypothesis on the long memory in foreign
exchange returns. One of the earliest studies on a long memory in foreign exchange
returns was performed by Booth, Kaen and Koveos in 1982. They applied the R/S
statistic to find out that the spot rate of the US dollar versus the British pound,
the French frank and the German mark exhibit a long-term dependence. Cheung
(1993) found some evidence of long memory in weekly exchange rate returns series
of the British pound, the German mark, the Swiss frank, the French frank and
the Japanese yen currencies, using the Geweke and Porter-Hudak (GPH) test.
Bhar (1994) tested for a long-term memory in the US dollar versus the Japanese
yen exchange rate changes, using Lo’s methodology and found no evidence of a
long-term memory. The same methodology, applied in the estimation of daily
volatility of the exchange rate, has shown the presence of a long-term memory.
Tschernig (1995) found some evidence for the weak long memory in the changes of
the U.S. dollar versus the German mark and the Swiss frank spot rates. However,
there was no evidence of long memory in the German mark versus the Swiss
frank spot rate changes. Moody and Wu (1995) made a rescaled range and Hurst
exponent analysis on "tick-by-tick" interbank foreign exchange rates to find out
that they are mean-reverting. Later on in the research of 1996, Moody and Wu
improved Lo’s R/S statistic and have concluded that the German mark versus
the US dollar exchange rate series is mildly trending on time scales from 10 to
100 ticks. Nath and Reddy (2002) showed that the R/S analysis, applied to the
US dollar versus the Indian rupee exchange rate, had indications of a long-term
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memory, but with noise. Oh, Um and Kim (2006) studied a long-term memory
in diverse stock market indices and foreign exchange rates, using the Detrended
Fluctuation Analysis (DFA). In all daily and high-frequency market data explored
no significant long-term memory property was detected in the return series, while
a strong long-term memory property was found in the volatility time series. Soofi,
Wang, Zhang (2006) applied plug-in and Whittle methods to test the long memory
property of 12 Asian currencies versus the US dollar exchange rates. The plug-in
method results have shown that, with the exception of the Chinese renminbi, all
foreign exchange returns series may have a long memory. On the other hand, the
results, based on Whittle method, have indicated that only the Japanese yen and
the Malaysian ringgit may have long memory.

Researchers looking for a long memory in foreign exchange returns volatility
usually analyze absolute or squared foreign exchange returns. The results of
such an analysis are mostly the same, proving that foreign exchange returns
volatility is a long memory process. Dacorogna et al. (1993) examined the
squared returns for intra-daily exchange rate data and defined a the slow decay
of autocorrelations. Ding and Granger (1996) analyzed speculative returns series
from different markets. They have found that absolute returns and their power
transformations have long, positive autocorrelations. The exchange rate of the
US dollar versus the German mark was an exception with the strongest property
when taking the power of 1/4, while usually this property is the strongest one
for absolute returns. Andersen and Bollerslev (1997) have demonstrated that
the volatility of the German mark versus the US dollar exchange rate five-minute
returns exhibits long-run dependence. Ohanissian, Russel and Tsay (2003) applied
a specific test, based on the GPH estimates of the aggregated series, to the actual
intra-daily squared returns of the US dollar versus the German mark and the
Japanese yen exchange rates. They have concluded that the volatility of these
series is a true long memory process.

4.3 R/S statistic and the Hurst exponent

There are several methods for a long-term dependence analysis. For example,
the Rescaled Range (R/S) analysis and the Hurst exponent can be used to test
a long memory in high frequency foreign exchange data. The concept of rescaled
range was first introduced by Hurst (1951), where he investigated the data of the
river Nile level. Mandelbrot (1972) has developed and popularized the classical
R/S statistic methodology. Later on, there was a number of improvements of the
classical R/S statistic (see, e.g., [42], [54], [60]).
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The R/S statistic is a range of partial sums of deviations of a time series from
its mean, rescaled by its standard deviation. The R/S statistic for the returns
(Xt(g)), depending on the aggregation rule g ∈ G, can be defined as

[R/S](N, g) := 1
M

M∑
t0=1

R(N, t0, g)
S(N, t0, g)

,

where

R(N, t0, g) = max
1≤τ≤N

t0+τ∑
t=t0+1

[Xt(g)− X̄(N, t0, g)]− min
1≤τ≤N

t0+τ∑
t=t0+1

[Xt(g)− X̄(N, t0, g)],

X̄(N, t0, g) = 1
N

t0+N∑
t=t0+1

Xt(g)

and

S(N, t0, g) =

⎧⎨⎩ 1
N

t0+N∑
t=t0+1

[Xt(g)− X̄(N, t0, g)]2
⎫⎬⎭

1
2

.

Assuming that the scaling law exists, the Hurst exponent H can be estimated
using the following expression:

[R/S](N, g) ≈ cNH(g),

where c is a constant. There are three cases of the Hurst exponent values that
describe a different behavior of time series:

• H = 0, 5 is a random walk;

• 0, 5 < H < 1 is a persistent or trend reinforcing behavior;

• 0 < H < 0, 5 is an anti-persistent or mean-reverting behavior.

In the case of 0, 5 < H < 1, the time series is characterized by a long memory
process.

4.4 Numerical example

Just like in Chapter 1 foreign currencies (USD, EUR, GBP, JPY) were chosen
for the empirical research of the Hurst exponent dependence on data aggregation.
High frequency foreign exchange rates were available at every minute of the day
over one year period; therefore, the final data set for each currency consisted of
1440 minutely rates for 252 working days of the year. In general, we consider
an irregular time series of foreign exchange rates {(τj, pj)}Nj=i, where τj and pj
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indicate, respectively, the time and the value of the j’th observation. Then we fix
a time interval between two observations at δ > 0 and let τ ∗t = tδ, t = 1, . . . , N∗. In
this case, δ is chosen equal to one minute. Again, we consider a class of aggregation
rules with g ∈ G, where g : [0, 1] → R and the interval [0, 1] represents one day.
Aggregation rules were chosen in the same way as in Chapter 1. Let us recall
them. For each s ∈ [0, 1] we take:

• pointwise aggregation

pDAILYt (s) = {pi|τi = max{τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}}

• maximum price aggregation

pMAXt (s) = max{pi|τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]},

• minimum price aggregation

pMINt (s) = min{pi|τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ], }

• average price aggregation

pAV Et (s) = 1
mt(s)

∑
τi∈(τ∗t−1,(1−s)τ∗t−1+sτ∗t ]

pi,

mt(s) = #{τi ∈ (τ ∗t−1, (1− s)τ ∗t−1 + sτ ∗t ]}.

The Hurst exponents (H) were estimated taking absolute returns of the aggre-
gated prices, expressed as:

Xt(s) =
∣∣∣∣∣ log pt(s)
log pt−1(s)

∣∣∣∣∣ , s ∈ [0, 1].

The results of Hurst index estimates that depend on the aggregation rule of
the analyzed currencies are provided in Figures 4.1, 4.2, and 4.3.

The estimates of Hurst exponents of all the currencies vary from 0,63 and 0,81
and confirm the stylized fact of a long memory in foreign exchange absolute daily
returns. The pictures show that Hurst indices vary depending on the aggregation
rule and also change during the day with s varying in the interval [0, 1]. The
largest fluctuations of the Hurst index values estimated are observed when the
pointwise aggregation scheme is used since by applying other aggregation rules we
get smoother functions of aggregated prices and returns. The most stable intraday
Hurst exponent is obtained when the average aggregation scheme is chosen. At
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Figure 4.1: EUR/USD Hurst exponents dependence on data aggregation

the end of the day all the Hurst indices of currencies, estimated by using various
aggregation rules, converge to the common values.

Nevertheless, different patterns of the Hurst index dependence on the exchange
rate aggregation are observed for each currency analyzed. In the case of EUR/USD
currency, the largest differences between various aggregation rules appear in the
first part of the day. The maximum Hurst index value, amounting to 0,771, is
obtained at 10:15 by the maximum value aggregation and the smallest Hurst
index value of 0,658 is reached at 06:30 by the pointwise aggregation. In the
second part of the day the Hurst indices decrease. On the contrary, the Hurst
indices of GBP/USD currency increase in the second part of the day and exhibit
a slight decrease at the very end of the day. The maximum and the minimum
Hurst index values in the case of GBP/USD exchange rate are given by the
pointwise aggregation and total, respectively 0,807 at 19:45 and 0,679 at 07:15.
The Hurst exponents of JPY/USD currency have the largest variability compared
to EUR/USD and GBP/USD currencies, except for the average aggregation rule,
where the JPY/USD Hurst index is the most stable one. The maximum Hurst
index value of 0,808 is obtained by the pointwise aggregation at 11:45 and the
minimum Hurst index value, amounting to 0,637, appears at the very beginning
of the day at 00:00 by the maximum value aggregation. More values of the Hurst
index estimates are provided in the tables of Appendix 2. In conclusion, the anal-
ysis made shows that Hurst exponents depend on the choice of data aggregation.
Therefore this feature should be regarded when modeling the aggregated price
returns and volatility.
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Figure 4.2: GBP/USD Hurst exponents dependence on data aggregation

Figure 4.3: JPY/USD Hurst exponents dependence on data aggregation
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4.5 Conclusions

In this chapter, we consider the basic stylized facts of high frequency data and
aggregation. The analysis and representation of empirical statistical properties is
very important when modeling series of financial asset prices. Having applied the
aggregation to obtain functional data, we have to verify whether the aggregation
affects well-known stylized facts. A long memory as one of the most important
statistical properties, observed in absolute or squared returns, was chosen to
illustrate the impact of aggregation on the Hurst index, as a parameter of
long memory, which was calculated applying the R/S statistic. The empirical
analysis made of the Hurst index dependence on the choice of the four risk factor
aggregation methods analyzed (pointwise, maximum value, minimum value, and
average value) illustrates the variability of the foreign exchange rates EUR/USD,
GBP/USD and JPY/USD. We have illustrated that the data aggregation did not
influence the general statistical property of a long memory in absolute returns
series, however, the parameter of the long memory fluctuated, depending on the
aggregation as well as on the time moment it was measured.
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General Conclusions

In the thesis, data aggregation in risk measurement models was considered. The
tasks set in the introduction were accomplished and can be summarized as follows:

• The aggregated Value-at-Risk model has been defined and dependence of
model estimates on the data aggregation has been analyzed using high
frequency foreign exchange rates. The empirical study has showed that the
estimates of currency risk considerably depended on the applied aggregation
rule and varied during the day.

• The functional ρ − GARCH(1, 1) model that depends on some features of
functional data has been constructed. The existence of a stationary solution
and the consistency of maximum likelihood estimators of model parameters
were proved. Several examples with the known aggregated returns density
function were given with a reference to applications in the analysis of
financial assets risk.

• The Hilbert space-valued GARCH(1, 1) model with univariate volatility was
introduced. The existence of a stationary solution, the consistency and the
asymptotic normality of quasi-maximum likelihood estimators of the model
parameters have been proved; the asymptotic properties of residuals have
been analyzed.

• The dependence of the Hurst exponent, as a long memory parameter, on
data aggregation have been investigated, using absolute returns of foreign
exchange rates. The analysis has confirmed the well known stylized fact
that absolute returns exhibit a long memory; however the Hurst index
fluctuated, depending on the aggregation as well as on the time moment
it was measured.

The thesis posed a problem of applying aggregated high frequency observations
when calculating risk. The analysis made has clearly shown that the values of
estimates varied, depending on the aggregation rule and on the time moment the
risk was measured. This observation means that the choice of how daily data
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are fixed matters a lot. Up till now the daily data are understood as one value
attributed to the day, usually the closing or last price of the day. However, there
are much more different ways to construct daily observations when aggregation is
considered. Thus, it is very important to set up certain aggregation rules to be
sure that all market participants measure risk in the same way. The field is quite
new, therefore, in the thesis, only the problem of aggregation is illustrated and
some steps in constructing new functional data models are made. An extensive
research is still required to set up a theoretical background, since the theory of
functional data modeling is little developed.
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Appendix 1

Theorem A.1 (Theorem A.2. [40]). If (Zt)t∈Z is a strictly stationary ergodic
process and (Yt)t∈Z is the process defined as

Yt = f(. . . , Zt−1, Zt, Zt+1, . . . ),

where f is a measurable function of R∞ on R, then the process (Yt)t∈Z is strictly
stationary and ergodic.

Theorem A.2 (Theorem 2.2.1. [71]). Let (vt) or (vt)t∈N, respectively, be a
stationary ergodic sequence of random elements with values in C(K,Rd′). Then
the uniform strong law of large numbers is implied by E‖v0‖K <∞.

Proposition A.3 (Proposition 2.5.1. [71]). Let (ξt)t∈T be a sequence of real
random variables with ξt

e.a.s.→ 0 and (vt)t∈T be a sequence of identically dis-
tributed random elements with values in a separable Banach space (B, ‖ · ‖). If
E(log+ ‖v0‖) < ∞, then ∑∞

t=0 ξtvt converges a.s., and one has ξn
∑n
t=0 vt

e.a.s.→ 0
and ξnvn

e.a.s.→ 0, as n→∞.
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Appendix 2

Table A.1: Hurst Exponents of EUR/USD absolute daily aggregated returns

TIME POINT MAX MIN AVE
00 : 00 0,7097 0,7569 0,7691 0,7382
01 : 00 0,7428 0,7551 0,7664 0,7384
02 : 00 0,7188 0,7513 0,7672 0,7388
03 : 00 0,7542 0,7495 0,7550 0,7379
04 : 00 0,7275 0,7560 0,7409 0,7383
05 : 00 0,7292 0,7469 0,7410 0,7389
06 : 00 0,6798 0,7398 0,7474 0,7406
07 : 00 0,6738 0,7313 0,7505 0,7413
08 : 00 0,6897 0,7505 0,7501 0,7410
09 : 00 0,7322 0,7647 0,7431 0,7424
10 : 00 0,7594 0,7665 0,7403 0,7407
11 : 00 0,7603 0,7636 0,7343 0,7374
12 : 00 0,7296 0,7587 0,7358 0,7345
13 : 00 0,7113 0,7383 0,7339 0,7354
14 : 00 0,7044 0,7506 0,7277 0,7366
15 : 00 0,7544 0,7482 0,7213 0,7375
16 : 00 0,7293 0,7424 0,7175 0,7382
17 : 00 0,7139 0,7374 0,7266 0,7363
18 : 00 0,7456 0,7489 0,7324 0,7347
19 : 00 0,7276 0,7392 0,7218 0,7330
20 : 00 0,7216 0,7263 0,7249 0,7302
21 : 00 0,7502 0,7253 0,7080 0,7140
22 : 00 0,7182 0,6960 0,6996 0,7049
23 : 00 0,7180 0,6933 0,6907 0,6950
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Table A.2: Hurst Exponents of GBP/USD absolute daily aggregated returns

TIME POINT MAX MIN AVE
00 : 00 0,7526 0,7515 0,7825 0,7448
01 : 00 0,7738 0,7507 0,7826 0,7429
02 : 00 0,7424 0,7497 0,7788 0,7438
03 : 00 0,7554 0,7532 0,7798 0,7477
04 : 00 0,7339 0,7450 0,7780 0,7513
05 : 00 0,7251 0,7395 0,7703 0,7541
06 : 00 0,7058 0,7493 0,7694 0,7579
07 : 00 0,6899 0,7381 0,7526 0,7611
08 : 00 0,7329 0,7584 0,7460 0,7645
09 : 00 0,7666 0,7603 0,7328 0,7672
10 : 00 0,7642 0,7487 0,7182 0,7407
11 : 00 0,7448 0,7339 0,7335 0,7788
12 : 00 0,7644 0,7477 0,7381 0,7832
13 : 00 0,7283 0,7675 0,7510 0,7882
14 : 00 0,7589 0,7810 0,7575 0,7918
15 : 00 0,7710 0,7717 0,7762 0,7954
16 : 00 0,7940 0,7830 0,7853 0,7982
17 : 00 0,7758 0,7782 0,7929 0,7994
18 : 00 0,7944 0,7812 0,8040 0,8007
19 : 00 0,8028 0,7860 0,8044 0,7996
20 : 00 0,8061 0,7887 0,8026 0,7935
21 : 00 0,7974 0,7830 0,7801 0,7844
22 : 00 0,7813 0,7694 0,7832 0,7857
23 : 00 0,7954 0,7752 0,7790 0,7772
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Table A.3: Hurst Exponents of JPY/USD absolute daily aggregated returns

TIME POINT MAX MIN AVE
00 : 00 0,7342 0,6366 0,7427 0,7488
01 : 00 0,6948 0,6565 0,7426 0,7507
02 : 00 0,6659 0,6719 0,7436 0,7520
03 : 00 0,6894 0,6931 0,7434 0,7504
04 : 00 0,6932 0,6782 0,7296 0,7491
05 : 00 0,6793 0,6859 0,7276 0,7490
06 : 00 0,6747 0,6677 0,7345 0,7486
07 : 00 0,7185 0,6868 0,7531 0,7499
08 : 00 0,7405 0,7050 0,7567 0,7511
09 : 00 0,7269 0,7155 0,7363 0,7501
10 : 00 0,7946 0,7067 0,7376 0,7476
11 : 00 0,7711 0,7163 0,7473 0,7411
12 : 00 0,7815 0,7252 0,7621 0,7345
13 : 00 0,8053 0,7068 0,7793 0,7275
14 : 00 0,7889 0,7398 0,7778 0,7246
15 : 00 0,7812 0,7359 0,7631 0,7197
16 : 00 0,7137 0,7239 0,7629 0,7214
17 : 00 0,6979 0,7172 0,7600 0,7235
18 : 00 0,7310 0,7158 0,7613 0,7223
19 : 00 0,7300 0,7152 0,7562 0,7251
20 : 00 0,7362 0,7222 0,7523 0,7299
21 : 00 0,7433 0,7265 0,7349 0,7345
22 : 00 0,7571 0,7367 0,7673 0,7407
23 : 00 0,7457 0,7370 0,7523 0,7379
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