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Abstract. We propose a model of 1/f noise in semiconductors based on the
drift of individual charge carriers and their interaction with the trapping cen-
ters. We assume that the trapping centers are homogeneously distributed in the
material. The trapping centers are assumed to be heterogeneous and have unique
detrapping rates. We show that uniform detrapping rate distribution emerges as
a natural consequence of the vacant trap depths following the Boltzmann dis-
tribution, and the detrapping process obeying Arrhenius law. When these laws
apply, and if the trapping rate is low in comparison to the maximum detrapping
rate, 1/f noise in the form of Hooge’s relation is recovered. Hooge’s parameter,
αH, is shown to be a ratio between the characteristic trapping rate and the max-
imum detrapping rate. The proposed model implies that 1/f noise arises from
the temporal charge carrier number fluctuations, not from the spatial mobility
fluctuations.
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1. Introduction

The nature of the 1/f noise (often also referred to as low frequency, flicker or pink
noise), characterized by power spectral density of S (f)∼ 1/fβ form (with 0.5⩽ β ⩽
1.5), remains open to discussion despite almost 100 years since the first reports [1–4].
While many materials, devices, and systems exhibit different kinds of fluctuations or
noise [4–6], only the white noise and the Brownian noise are well understood from the
first principles. White noise is characterized by absence of any temporal correlations,
and has a flat power spectral density of S (f)∼ 1/f 0 form. Examples of the white
noise include thermal and shot noise. Thermal noise is known to arise from the random
motion of the charge carriers. It occurs at any finite temperature regardless of whether
the current flows. Shot noise, on the other hand, is a result of the discrete nature of
the charge carriers and the Poisson statistics of waiting times before each individual
detection of the charge carrier. The Brownian noise is a temporal integral of the white
noise, and thus exhibits no correlations between the increments of the signal, it is
characterized by a power spectral density of S (f)∼ 1/f 2 form.

Theory of 1/f noise based on the first principles is still an open problem. 1/f noise
is of particular interest as it is observed across various physical [7–12], and non-physical
[13–16] systems. 1/f noise cannot be obtained by the simple procedure of integration,
differentiation, or simple transformations of well-understood processes. Also the general
mechanism of generating 1/f noise has not yet been properly identified, and there is no
generally accepted solution to the 1/f noise problem.

The oldest explanation for 1/f noise involves the superposition of Lorentzian spectra
[17–20]. Lorentzian spectral densities themselves may arise from the random telegraph
signals [4], and from the Brownian motion with a broad distribution of relaxations
[21]. These approaches, as well as many others, are often limited to the specific systems
being modeled, or require quite restrictive assumptions to be satisfied [22]. In the recent
decades, series of models for the 1/f noise based on the specific, autoregressive AR(1),
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point process [21], and the agent-based model [23, 24], yielding nonlinear stochastic
differential equation [25] was proposed (see [26] for a recent review). Another more
recent trend relies on scaling properties and nonlinear transformations of signals [27–
30]. These models, on the other hand, prove to be rather more abstract, and therefore
more similar to the long-range memory models found in the mathematical literature,
such as fractional Brownian motion [31, 32] or ARCH models [33, 34]. These and other
similar models of 1/f noise are hardly applicable to the description and explanation of
the mostly observable 1/f noise in the semiconductors.

On the other hand, for a homogeneous semiconductor material Hooge proposed
an empirical relation for the 1/f noise dependence on the parameters of the material
[35, 36],

S (f) = Ī2
αH

Nf
. (1)

Where Ī stands for the average current flowing through the cross-section of the semi-
conductor material, N is the number of charge carriers, and αH is the titular Hooge
parameter. If the current is kept constant, or does not exhibit large fluctuations,
Hooge’s empirical relation could be rewritten in terms of voltage or resistivity noise, i.e.
SV (f) = V̄ 2 αH

Nf or SR (f) = R̄2 αH

Nf (here the subscripts emphasize fluctuations of which

quantity are being observed). However, we are specifically interested in the case of con-
stant voltage, focusing on the power spectral density of the current fluctuations that are
associated with equation (1). There were numerous attempts to derive or explain the
structure of the Hooge’s relation [37–41]. A more recent derivation of the Hooge’s para-
meter, based on the Poisson generation-recombination process modulated by random
telegraph noise, was conducted in [42, 43]. Yet these models, as well as many others,
cannot be directly applied to describe and explain the widespread 1/f noise in the
semiconductors.

Here, we propose a model of 1/f noise in semiconductors containing heterogeneous
trapping centers. As far as the square of the average current Ī2 is proportional to the
squared number of the charge carriers N 2, Hooge’s relation implies that the intensity
of 1/f noise is proportional to the number of charge carriers N. Therefore, as the first
approximation we can consider the noise originating from the flow of individual charge
carriers. It is known that the drift, and the diffusion, of the charge carriers does not yield
1/f noise [4]. Therefore, we consider the drift of the charge carriers interrupted by their
entrapment in the trapping centers. We show that, if the detrapping rates of individual
trapping centers are heterogeneous and uniformly distributed, 1/f noise arises. As an
explanation for the uniform detrapping rate distribution, we note that it may arise
from the interplay between the Boltzmann distribution of the vacant trap depths (as is
observed in various materials [44–47]) and the Arrhenius law (which is often applied in
empirical works studying varied activation and detrapping processes in semiconductors
[48–51]). In this model, the signal generated by a single charge carrier is similar to
the signal composed of non-overlapping rectangular pulses [52]. Here, we derive Hooge’s
relation, and show that Hooge’s parameter is a ratio between the characteristic trapping
rate and the maximum detrapping rate. The proportionality between Hooge’s parameter
and the characteristic trapping rate was reported earlier in quite a few experimental
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works [53–55]. This result prompts us to suggest that 1/f noise in semiconductors arises
from the fluctuations in the effective number of charge carriers, not from the spatial
fluctuations in mobility.

This paper is organized as follows. In section 2 we introduce a model for 1/f noise in
the semiconductors based on the trapping-detrapping process of a single charge carrier.
In section 3 we address the implications of finite experiments and simulations. Namely,
we show that the power spectral density produced by a single charge carrier may exhibit
spurious low-frequency cutoff. This cutoff disappears, if the current generated by a large
number of charge carriers is considered. Finally, Hooge’s empirical relation and Hooge’s
parameter value for the proposed model is derived in section 4. The main results of the
paper are summarized in section 5.

2. Model for 1/f noise in a homogeneous semiconductor material

Let us consider a drift of a single charge carrier (e.g. election) through a homogeneous
semiconductor material. While the charge carrier is freely moving through the conduc-
tion band, it will generate a non-zero contribution to the net current, i.e. I1 (t) = a for
t when the charge carrier is free. As the material contains trapping centers, the freely
moving charge carrier will eventually get trapped in one of such trapping centers. Let
τ i stand for ith detrapping time (time spent in the trap) and θi be ith trapping time
(time spent moving). Under these considerations the contribution of single charge car-
rier to the net current will be composed of gaps (duration corresponds to the respective
detrapping time) and pulses (duration corresponds to the respective trapping time). For
visual illustration of the single charge carrier trapping-detrapping process and a sample
signal see figure 1.

The power spectral density of a signal with rectangular pulses of fixed height is given
by [52]

S1 (f) = lim
T→∞

〈
2

T

∣∣∣∣ˆ T

0

I1 (t)e
−2πiftd t

∣∣∣∣〉=
a2ν̄

π2f 2
Re

[
(1−χθ (f))(1−χτ (f))

1−χθ (f)χτ (f)

]
. (2)

In the above T stands for observation time (duration of the signal), which is assumed
to approach infinity [52], χτ (f) and χθ (f) stand for the characteristic functions of the
respective detrapping and trapping time distributions, while ν̄ is the mean number of
pulses per unit time. For the ergodic processes, and given a long observation time T,
the value of ν̄ is trivially derived from the mean trapping and detrapping times, i.e.
ν̄ = 1

⟨θ⟩+⟨τ⟩ . For the nonergodic processes, or if the observation time T is comparatively

short, the expected value of ν̄ can be derived from the means of the appropriately
truncated distributions, or it may be defined purely empirically, i.e. ν̄ =K/T (here K
is the number of observed pulses).

Typically when trapping–detrapping processes are considered [4, 9] it is assumed
that both τ i and θi are sampled from the exponential distributions with rates γτ and
γθ, respectively. Characteristic function of the exponential distribution with an event
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Figure 1. Visualization of the single charge carrier trapping-detrapping process
(left) and a sample single charge carrier contribution to the net current (right).
Relevant notation: τ i is the detrapping time (gap duration), θi is the trapping time
(pulse duration), a is the height of the pulses (single free charge carrier contribution
to the net current), t i is the time of ith detrapping event.

rate γ, is given by

χ(f) =

ˆ ∞

0

γe2πifτ−γτ dτ =
γ

γ− 2πif
. (3)

Inserting equation (3) as the characteristic function for both trapping and detrap-
ping time distributions into equation (2) yields a Lorentzian power spectral density
[4]. Notably, there were prior works which have examined the case when τ i , θi , or
both are sampled from distributions with power-law tails [42, 43, 52, 56–59]. Under
the power-law distribution assumption, it was shown S (f)∼ 1/fβ dependence can be
recovered.

Here, let us assume that the trapping centers are heterogeneous. Each of them

has their own unique depth, or detrapping (activation) energy, E
(i)
a . As is commonly

observed [48–51], let us assume that the detrapping process obeys Arrhenius law

γ(i)
τ =Aexp

[
−E

(i)
a

kBΘ

]
. (4)

To obtain the overall detrapping time distribution we first need to establish the distri-
bution of detrapping energies. Not all trapping centers will participate in the trapping-
detrapping process at all times. Because charge carrier first needs to be trapped, before
being detrapped, only vacant trapping centers will participate in the process. In exper-
imental literature [44–47] it is well established that vacant trap level depths (their
activation energies) reasonably well follow the Boltzmann distribution

p
[
E(i)

a

]
= CN exp

[
−E

(i)
a

kBΘ

]
. (5)

In the above CN stands for the normalization constant. Notably, this result also follows
directly from the Fermi–Dirac statistics under the assumption that trap level degeneracy
is constant in respect to activation energy. Then, from the conservation of the probability
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density, it follows that the distribution of detrapping rates would be uniform

p
[
γ(i)
τ

]
=

p
[
E

(i)
a

]
∣∣∣ dc

dE
(i)
a

∣∣∣ =
CN exp

[
− E

(i)
a

kBΘ

]
A

kBΘ
exp

[
− E

(i)
a

kBΘ

] = const. (6)

It is important to note that other physical mechanisms could also imply uniform distri-

bution of the detrapping rates as long as p(η)∣∣∣∣ dγ(i)τ
dη

∣∣∣∣ = const (here η is some generic physical

quantity which would impact the detrapping process).

Let γ
(i)
τ be uniformly distributed in [γmin,γmax]. Then it can be shown that the

probability density function of the detrapping time distribution is given by

p(τ) =
1

γmax− γmin

ˆ γmax

γmin

γτ exp(−γττ)dγτ

=
(1+ γminτ)exp(−γminτ)− (1+ γmaxτ)exp(−γmaxτ)

(γmax− γmin)τ 2
. (7)

This probability density function saturates for the short detrapping times, τ ≪ 1
γmax

.

For the longer detrapping times, τ ≫ 1
γmin

, it decays as an exponential function. In the

intermediate value range, 1
γmax

≪ τ ≪ 1
γmin

, this probability density function has the τ−2

asymptotic behavior, which is already known to lead to 1/f noise [52, 56–58]. The
benefit of this formulation is that it allows to see how the τ−2 asymptotic behavior
can emerge in homogeneous semiconductors. Experimentally τ−2 asymptotic behavior
is observable in quantum dots, nanocrystal, nanorod, and other semiconductors [60–63],
with the detrapping times ranging from picoseconds to several months. The asymptotic
behavior of equation (7) can be examined in figure 2 where it is represented by a red
curve. Figure 2 also highlights contributions of some of the individual trapping centers,
detrapping time distributions of which are plotted as dashed black curves.

Unlike the simple power-law distribution, this detrapping time distribution does not
require the introduction of any arbitrary cutoffs. Also the parameters of this detrapping
time distribution have explicit physical meaning. Furthermore, the statistical moments
are well-defined and have compact analytical forms. The mean of the distribution is
given by

⟨τ⟩= 1

γmax− γmin
ln

(
γmax

γmin

)
. (8)

Higher order moments also exist and can be easily derived.
The characteristic function of the detrapping time distribution can be obtained either

by calculating Fourier transform of equation (7), or by averaging over the characteristic
functions of the exponential distribution, equation (3). Both approaches lead to the
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Figure 2. Probability density function of the detrapping time distribution under
the assumption that detrapping rates of individual trapping centers are uniformly
distributed (red curve), equation (7). The probability density function was cal-
culated for γmin = 10−3, and γmax = 10 case. Black dashed curves correspond to
the exponential probability density functions of the detrapping times from the
individual trapping centers with fixed rates: γτ = 10−3, 2.78× 10−3, 7.74× 10−3,
2.15× 10−2, 5.99× 10−2, 1.67× 10−1, 4.64× 10−1, 1.29, 3.59, and 10. Normalization
of the exponential probability density functions was adjusted for the visualization
purposes, but it remains proportional to their respective contributions.

same expression, but the latter approach is quicker

χτ (f) =
1

γmax− γmin

ˆ γmax

γmin

γτ
γτ − 2πif

dγτ = 1+
2πif

γmax− γmin
ln

(
γmax− 2πif

γmin− 2πif

)
. (9)

If the interval of the possible detrapping rates is broad γmin ≪ γmax, then for γmin ≪
2πf ≪ γmax the characteristic function can be approximated by

χτ (f)≈ 1+
2πif

γmax
ln

(
1+

iγmax

2πf

)
≈ 1− 2πf

γmax

[
π

2
− i ln

(
2πf

γmax

)]
. (10)

Inserting equation (10) into equation (2) we have

S1 (f) =
2a2ν̄

πγmaxf
Re

 (1−χθ (f))
[
π
2 − i ln

(
2πf
γmax

)]
1−χθ (f)

{
1− 2πf

γmax

[
π
2 − i ln

(
2πf
γmax

)]}
 . (11)

Assuming that 2πf
γmax

[π2 − i ln( 2πfγmax
)]≪ 1, which is supported by an earlier assumption that

2πf ≪ γmax, allows to simplify the above to

S1 (f)≈
a2ν̄

γmaxf
. (12)

This approximation should hold well for γmin ≪ 2πf ≪ γmax, and should not depend on
the explicit form of χθ (f) unless χθ (f)≈ 1 for at least some of the frequencies in the
range.
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Figure 3. Power spectral density of the simulated signal (red curve) and its analyt-
ical approximation by equation (12) (black dashed curve). Simulated power spectral
density was obtained by averaging over 102 realizations. Simulation parameters:
T = 106, γmin = 10−4, γmax = 104, a =1, γθ = 1.

Let us examine a specific case when the trapping centers are uniformly distributed
within the material, and therefore the trapping process can be assumed to be a homo-
geneous Poisson process. Inserting the characteristic function of the exponential dis-
tribution, equation (3), as the characteristic function of the trapping time distribution
into equation (2) yields

S1 (f) =
4a2ν̄

γ2
θ

Re

[
1

1−χτ (f)− 2πif
γθ

]
. (13)

Then inserting the characteristic function of the proposed detrapping time distribution,
equation (10), into equation (13) yields

S1 (f) =
a2ν̄γmax

γ2
θf

× 1(
π
2

)2
+
[
γmax

γθ
+ ln

(
2πf
γmax

)]2 . (14)

If the maximum detrapping rate is large in comparison to the trapping rate, i.e. γmax

γθ
≫ π

2

and γmax

γθ
≫− ln( 2πfγmax

), then we recover equation (12). In figure 3 the power spectral

density of a simulated signal with comparatively large detrapping rates is shown as a red
curve. We have chosen observation time T to allow us to show three regimes of the power
spectral density: white noise cutoff for 2πf ≪ γmin, 1/f noise for γmin ≪ 2πf ≪ γmax and
Brown noise for γmax ≪ 2πf . Longer or similar observation times would yield similar
power spectral density.
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3. Low-frequency cutoff in finite experiments

The obtained approximation, equation (12), holds in the infinite observation time limit
(single signal of infinite duration T ) or the infinite number of experiments limit (infin-
itely many signals with finitely long observation time T ). If either of the limits does not
hold, then the range of frequencies over which the pure 1/f noise is observed becomes
narrower. In the finite experiments the process will not reach a steady state, and there-
fore the cutoff frequencies will depend not on the model parameter values γmin and γmax,

but on the smallest and the largest γ
(i)
τ values actually observed during the experiment.

The difference between γmax and the largest γ
(i)
τ is negligible, because the pure 1/f noise

will be observed only if γmax is a relatively large number. On the other hand the relative

difference between γmin and smallest γ
(i)
τ might not be negligible. Let us estimate the

expected value of the smallest γ
(i)
τ in a finite experiment.

In the model introduced in the previous section γ
(i)
τ is sampled from the uniform dis-

tribution with [γmin,γmax] range of possible values. It is known that, for x i sampled from
the uniform distribution with [0,1] range of possible values, the smallest x i observed in
the sample of size K is distributed according to the Beta distribution with the shape
parameters α1 = 1 and α2 =K [64]. Thus the expected value of the smallest x i is given
by

⟨min{xi}K⟩=
α1

α1+α2
=

1

K +1
. (15)

Rescaling the range of possible values to [γmin,γmax] yields

γ
(eff)
min =

〈
min

{
γ(i)
τ

}
K

〉
=

γmax− γmin

K +1
+ γmin. (16)

As K corresponds to the number of pulses in the signal, we have that K = ν̄T = T
⟨θ⟩+⟨τ⟩

and

γ
(eff)
min = (γmax− γmin)

⟨θ⟩+ ⟨τ⟩
⟨θ⟩+ ⟨τ⟩+T

+ γmin. (17)

In the above ⟨θ⟩ is effectively a model parameter as it is trivially given by ⟨θ⟩= 1
γθ
,

while ⟨τ⟩ is a derived quantity which has a more complicated dependence on the model

parameters γmin and γmax (see equation (8)). If the range of possible γ
(i)
τ values is broad,

i.e. γmax ≫ γmin, we have

γ
(eff)
min ≈ γmax

γmax ⟨θ⟩+ ln γmax

γmin

γmax (⟨θ⟩+T )+ ln γmax

γmin

+ γmin. (18)

The above applies to the ergodic case with γmin ≫ 1/T . In the nonergodic case, for
γmin ≲ 1/T , it would impossible to distinguish between the cases corresponding to the
different γmin values. Therefore, for the nonergodic case, γmin can be replaced by 1/T
yielding
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Figure 4. The effect of increasing the observation time T on the obtained power
spectral density. Dashed black curve corresponds to equation (12). Simulation para-
meters: a =1, γθ = 1, γmin = 0, γmax = 103, T = 104 (red curve), 106 (green curve),
and 108 (blue curve).

γ
(eff)
min ≈ γmax

γmax ⟨θ⟩+ ln(γmaxT )

γmax (⟨θ⟩+T )+ ln(γmaxT )
+

1

T
≈ 1+ γmax ⟨θ⟩+ ln(γmaxT )

T
. (19)

For relatively long trapping times, ⟨θ⟩ ≫ ln(γmaxT )
γmax

, we have that

γ
(eff)
min ≈ 1+ γmax ⟨θ⟩

T
≈ γmax

γθT
. (20)

From the above, it follows that low-frequency cutoff is always present in singular exper-
iments with one charge carrier, and with finite observation time T. The cutoff will be

observed at a frequency close to γ
(eff)
min . As can be seen in figure 4, the cutoff moves to

the lower frequencies as T increases, the power spectral density is flat for the lowest
observable natural frequencies, 1

T < f ≲ γmax

γθT
.

If multiple independent experiments (let R be the number of experiments) with finite
observation time T are performed and the obtained spectral densities are averaged, then
the total number of observed pulses increases by a factor of R yielding

γ
(eff)
min = (γmax− γmin)

⟨θ⟩+ ⟨τ⟩
⟨θ⟩+ ⟨τ⟩+RT

+ γmin ≈
γmax ⟨θ⟩
RT

+
1

T
=

R+ γmax ⟨θ⟩
RT

. (21)

For R≫ γmax ⟨θ⟩, no low-frequency cutoff will be noticeable. As shown in figure 5, low-
frequency cutoff disappears as the experiments are repeated and the obtained power
spectral densities are averaged.

We have derived equation (12) considering the current generated by a single charge
carrier. In many experiments the number of charge carriers N will be large, N ≫ 1.
Consequently, from the Wiener–Khinchin theorem [4] it follows that performing inde-
pendent experiments is equivalent to observing independent charge carriers. Therefore
for N ≫ γmax ⟨θ⟩ no low-frequency cutoff will be noticeable. Though in this case, the
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Figure 5. The effect of averaging over repeated experiments on the obtained power
spectral density: R=1 (green curve), R= 103 (magenta curve). Dashed black curve
corresponds to equation (12). Simulation parameters, with exception to R, are the
same as for the green curve from figure 4.

power spectral densities of the signals generated by single charge carriers add up instead
of averaging out, yielding a minor generalization of equation (12)

SN (f)≈ Na2ν̄

γmaxf
. (22)

In the above ν̄ is strictly the mean number of pulses per unit time generated by a single
charge carrier.

As can be seen in figure 6(a), the signal generated by multiple independent charge
carriers is no longer composed of non-overlapping pulses, although it retains discrete
nature as individual charges drift freely or are trapped by the trapping centers. The
amplitude and the slope of the power spectral density are well predicted by equation (22)
(as seen in figure 6(c)). The distribution of the signal’s amplitude would be expected to
follow the Binomial distribution with sample size N and success probability (probability
that the charge carrier is free)

pF =
⟨θ⟩

⟨θ⟩+ ⟨τ⟩
≈ 1− ⟨τ⟩

⟨θ⟩
. (23)

The fit by the Binomial distribution shown in figure 6(b) is not perfect, because the
nonergodic case is simulated and ⟨τ⟩ is ill-defined, but predicts the overall shape of
the probability distribution rather well. For γmin ≫ 1/T the fit would be much better.
Notably, with larger N and under noisy observation, the Binomial distribution predicted
by the model will quickly become indistinguishable from the Gaussian distribution.
While in some cases 1/f noise is known to behave as a non-Gaussian process, most often
it is found to exhibit Gaussian fluctuations [4, 65, 66]. The duration of the reported
simulation was chosen arbitrarily, based on the technical considerations. Specifically, we
have opted to make 226 observations of the process with sampling period of ∆t= 10−4.
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Figure 6. Results of a single simulation with large number of charge carriers N
and finite duration T : excerpt of a signal generated by 103 independent charge
carriers (a), the probability mass function of the amplitude of the signal (b),
and the power spectral density of the signal (c). Red curves represent results of
numerical simulation, while dashed black curves provide theoretical fits: (b) bino-
mial probability mass function with pF ≈ 0.984 and N = 103, (c) the power spec-
tral density approximation equation (22). Simulation parameters: R=1, N = 103,
T = 226 · 10−4 = 6710.8864, a =1, γθ = 1, γmin = 0, γmax = 103.

Notably, [67] also discusses a spurious low-frequency cutoff that could be observed
in single particle experiments. Of the 1/f noise models considered in [67] superimposed
random telegraph signals and blinking quantum dot models are the most comparable
to the model presented here. In [67] each of the superimposed random telegraph signals
was assumed to be characterized by their own Poissonian switching rate γ = γθ = γτ
between the ‘on’ and ‘off’ states. It was shown that the conditional power spectral
density (requiring a certain minimum number of pulses, Kmin, to be observed) exhibits
low-frequency cutoff at fc ∼Kmin/T . In our simulations, we typically observe a large
number of pulses, K ≈ γθT , and should therefore observe the cutoff at fc ∼ γθ, but
instead, we observe that the cutoff frequency scales as 1/γθ. The nature of the cutoff is
different in the model introduced here. The other, blinking quantum dot, model does
not predict low-frequency cutoff, only the ageing effect, which for the pure 1/f noise
will not be noticeable [52].

4. Derivation of Hooge’s empirical relation and Hooge’s parameter

It is straightforward to see that we can rewrite equation (22) in the form of Hooge’s
empirical relation, equation (1), if we define Hooge’s parameter as

αH =
N 2a2ν̄

γmaxĪ2
. (24)
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Further we show that the straightforward expression above can be simplified, and given
a more compact form.

As the height of the pulses a corresponds to the current generated by a single charge
carrier, we have

a=
qvc
L

, (25)

where q stands for the charge held by the carrier, vc is the free drift velocity between the
trappings (which will be much smaller than the thermal velocity of the charge carriers),
and L is the length of the material. Expression for a can be rewritten in terms of the
average current flowing through the cross-section of the material σM

Ī = σMnqvd, (26)

where n stands for the density of the charge carriers (i.e. n= N
LσM

), and vd is the average
drift velocity of the charge carriers. The average drift velocity is related to the free drift
velocity via the fraction of time the charge carrier spends drifting

vd =
⟨θ⟩

⟨θ⟩+ ⟨τ⟩
vc = ν̄ ⟨θ⟩vc. (27)

Consequently we have

a=
Ī

Nν̄ ⟨θ⟩
. (28)

Inserting equation (28) into equation (24) yields the expression of the Hooge’s para-
meter in terms of the characteristic trapping rate and the maximum detrapping rate,
assuming that the trapping times are comparatively long ⟨θ⟩ ≫ ⟨τ⟩,

αH =
1

ν̄ ⟨θ⟩2γmax

≈ γθ
γmax

=
⟨τmin⟩
⟨θ⟩

. (29)

In the above ⟨τmin⟩= 1
γmax

is the expected detrapping time generated when a charge

carrier is trapped by the shallowest trapping center. The purer materials (i.e. ones with
lower trapping center density nc) will have lower αH values, as the trapping rate is given
by γθ = ⟨σcvt⟩nc (here vt is the thermal velocity of the charge carriers, and σc is the
trapping cross-section). The proportionality αH ∝ γθ was previously reported in [53–55],
providing experimental support to equation (29).

Consequently the approximations for the power spectral density generated by the
proposed model, equations (12) and (22), can be rewritten in the same form as Hooge’s
empirical relation. Inserting equation (29) into equation (1) yields

SN (f) = Ī2
γθ

γmaxNf
. (30)

This expression appears to imply that the process under consideration is stationary,
but this is not true as the average current Ī is proportional to the number of pulses per
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unit time ν̄, which in the γmin → 0 limit is a function of the observation time T [52].
Although, for the case of pure 1/f noise, the dependence on T is logarithmically slow,
and barely noticeable. Nevertheless, even if the process would be non-stationary, this
should not have any impact on the estimate of Hooge’s parameter as only Ī is impacted
by the non-stationarity.

5. Conclusions

We have proposed a general model of 1/f noise in homogeneous semiconductors which
is based on the trapping-detrapping process of individual charge carriers. In contrast
to the many previous works, we have assumed that the detrapping rate of each trap-
ping center is random. We have shown that, if detrapping process obeys Arrhenius
law (which is well-established empirically [48–51]), and if the vacant trap depths follow
Boltzman distribution (which is also supported by experimental works [44–47]), the
detrapping rate distribution will be uniform. When detrapping rates are uniformly dis-
tributed, a power-law distribution of the detrapping times equation (7) is obtained. It
arises from the superposition of exponential detrapping time distributions representing
contributions of the individual trapping centers with their own fixed detrapping rates
(see figure 2).

Consequently, regardless of the exact details of the trapping process, as long as the
trapping process is slow in comparison to the detrapping process, pure 1/f noise in a
form of Hooge’s empirical relation is obtained, equation (30). Corresponding expression
of the Hooge’s parameter, αH, is then found to be a ratio between the rate paramet-
ers of the trapping and the detrapping processes, equation (29). The proportionality
between the Hooge’s parameter and the trapping rate was reported in previous exper-
imental works [53–55], thus providing partial experimental verification for the Hooge’s
parameter expression we have derived from general theoretical considerations. Inverse
proportionality between the Hooge’s parameter and the maximum detrapping rate sug-
gests interesting implications for approaching suppression of 1/f noise problem [68–70].
When the Arrhenius law applies, maximum detrapping rate could be increased either by
manipulating the pre-exponential factor, or by decreasing shalowest trap depth (min-
imum activation energy) from which the Boltzmann distribution applies to the trap
depth distribution. The obtained expression for the Hooge’s parameter also suggests
that 1/f noise arises from the temporal charge carrier number fluctuations, not from
the spatial mobility fluctuations.

In section 3, we have discussed the implications of finite experiments. We have shown
that the power spectral density may exhibit spurious low-frequency cutoff simply due
to finite duration of the experiment or simulation. The obtained width of the cutoff is
of the same order of magnitude as γmax

γθ
. This cutoff disappears when the power spectral

density is averaged over a large number of experiments, or when the experiment involves
a large number of independent charge carriers. In the latter case the distribution of the
signal’s amplitude follows Binomial distribution, which under imperfect observation will
quickly become indistinguishable from the Gaussian distribution.
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