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Abstract: We studied the occurrence of endophytic fungi and bacteria in the roots of F. gigantea, a
woodland perennial grass common throughout Europe and temperate Asia. The taxonomic assignment
was carried out according to the isolate’s colony and cytological species morphotype characteristics and
confirmed by the assessment of the standard DNA sequences, ITS, RPB2, SSU, and TEF1-a for fungi
and 16S rDNA for bacteria. Our study has shown that F. gigantea roots are the habitat to a wide range of
fungi and bacteria. The occurrence of fungal structures was determined in ~40% of the roots examined
by Trypan Blue staining. In a surface-sterile root-cutting culture on PDA medium, we obtained isolates
of six endophytic fungi species: four members of Ascomycota—Alternaria alternata, Cadophora fastigiata,
Chaetomium funicola, and Microdochium bolleyi—and two of Basidiomycota—Coprinellus sp. and Sistotrema
brinkmannii. In addition, we report bacteria co-occurring endophytically in the roots of this grass. The
Firmicutes group was the most prevalent, consisting of four Gram-positive, endospore-forming bacteria
taxa. The isolates were identified as Bacillus pumilus, Bacillus sp., Lysinibacillus sp., and Priestia aryabhattai.
Moreover, two Gram-negative bacteria were detected—Kosakonia sp. (Proteobacteria) and Pedobacter sp.
(Bacteroidetes). Thus, applying the isolate-culture approach, we identified a set of microorganisms in
the roots of a typical grass native to the deciduous forest floor. The functional roles of these endophytes
are diverse, and many of them, saprotrophs and decomposers of wood and plant debris, are linked to
the decomposition of organic matter. This is the first detailed report on fungal and bacterial endophytes
inhabiting the roots of F. gigantea. This study fills in a research gap on endophytes associated with the
below-ground parts of Festuca spp., hitherto extensively studied for Epichloé¢/ Neotyphodium associations
in their foliar parts.
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1. Introduction

Endophytic fungi and bacteria are associated with almost all plants across diverse
ecosystems [1-3]. Although plant endophytes are diverse, most come from the phylum As-
comycota and, to a lesser extent, from the phylum Basidiomycota. They thrive in temperate
and tropical habitats up to polar sites. Endophytic fungi are common in meadows, the Alps,
deserts, and forests of the middle zones [4-8]. Endophytic fungi are usually present in the
plant tissues of leaves and roots without causing obvious symptoms. Many well-known
endophytes of the anamorphic Ascomycota are characterized by melanized septate hyphae.
Due to this feature, these fungi are assigned to a special group of dark septate endophytes,
DSEs [9-11]. Endophytic fungi produce bioactive compounds that help plants resist biotic
and abiotic stress, are antagonists to host pests, and are beneficial for host growth and
development [11,12].

Many studies show that the roots of most grasses are home to endophytic fungi [7,13-15].
However, it should be noted that endophytes in the roots of Festuca spp. and closely related
Lolium spp. have been greatly underestimated compared to a very broad literature describing
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Epichloé / Neotyphodium (Clavicipitaceae) associations in the foliar parts and seeds of these
plants [16-24].

Festuca gigantea, a member of the Schedonorus subgenus, is a woodland perennial grass
common throughout Europe and temperate Asia. Unlike the closely related F. arundinacea
and F. pratensis, this species is not used in agricultural pastures. It prefers shady places,
damp wet habitats along ditches and riverbanks and is a common grass in forests and
parks. Festuca gigantea is adapted to deal with light deficiency in a specific ecological niche
rich in decomposing leaf litter and other plant debris shaded by the tree canopy. According
to Ellenberg-type indicator value ranking, the light requirement optima for F. gigantea is
half that for other members of the Schedonorus group, F. arundinacea and F. pratensis [25].
Like other Festuca, F. gigantea plants are associated with Epichloé/Neotyphodium fungal
endophytes [19,26-28]. As mentioned above, this fungus systemically colonizes the leaves
and stems of host plants but not the roots. Meanwhile, the data on root endophytes in F.
gigantea are limited to a brief note where the presence of the fungal hyphae was recorded
microscopically, but no species description was specified [29]. Thus, by investigating the
occurrence of fungi and bacteria in the roots of F. gigantea, our study attempts to fill in the
gap of root endophyte studies and is the first observation of this kind in the broad-leaved
Festuca group.

There are a limited number of studies of fungal and bacterial endophytes using the same
experiment, whether focused on a particular plant or a particular ecosystem [3,15,30,31]. One
of the best examples is Toju and co-authors’ study [3] of fungal and bacterial communities
in the leaves and roots across more than 100 plant species sampled in the grassland. Their
observations reveal that the below-ground microbiome has different features and dynamics
compared to the above-ground microbiome. Therefore, research revealing the complexity
of the assemblage of endophytic fungi and bacteria in the hidden parts of plants is greatly
valuable for the understanding of plant life.

A diverse group of bacteria, including strains of Pseudomonas, Bacillus, Paenibacillus,
Serratia, Kosakonia, and Xanthomonas, has been shown to promote plant growth and has been
assigned as plant growth-promoting rhizobacteria (PGPR) or plant growth-promoting bac-
teria (PGPB) [32,33]. In grasses, the inoculation of bermudagrass with Bacillus spp. strains
has demonstrated beneficial effects, showing nitrogenase activity, phosphate solubilization,
and siderophore production [34]. In addition, the removal of bacteria from the seeds by
sterilization demonstrated significant detrimental effects on root hair development in F.
arundinacea and Lolium perenne plants [35]. To date, reports on bacterial endophytes in
grasses related to F. gigantea are limited to a set of strains isolated from surface-sterilized
seeds of F. arundinacea, where Bacillus, Pantoea, and Pseudomonas bacteria were detected [36].
However, bacteria inhabiting the roots of F. gigantea and other related Festuca have not
yet been documented. Thus, one of the objectives of this study was to isolate culturable
bacterial strains from the roots of F. gigantea and determine their taxonomy:.

Firstly, in the course of the microscopic examination of F. gigantea root apical sections,
we detected fungal and bacterial morphostructures. Following this discovery, we aimed to
determine the species of fungi and bacteria colonizing the roots of F. gigantea. A taxonomic
assignment was carried out according to the typical isolate’s colony and cytomorphotype
characteristics of the species, and it was confirmed by the assessment of the standard
DNA sequences. Based on this investigation, we describe a set of endophytic fungi and
bacteria colonizing the roots of F. gigantea. This is the first detailed report on the endophytes
inhabiting the roots of this woodland grass.

2. Materials and Methods
2.1. Root Sampling and Sterilization

For isolation of the fungi and bacteria, tiller samples of F. gigantea from healthy plants
were collected on the edges of deciduous forest sites in the Botanical Garden of Vilnius
University, Kairénai (Lithuania, Vilnius; N 54.7362067, E 25.4034823) and Vingis Park
(Lithuania, Vilnius, N 54.682574, E 25.233736) during the vegetation season in May—June.
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The tillers were washed under running tap water, and the roots were removed. Tillers
without roots were placed in test tubes filled with tap water. New roots, 1-2 cm long, were
collected and sterilized accordingly: 50% ethanol for 90 s, 1.25% sodium hypochlorite for
90 s, and, finally, the samples were washed 3 times for 3 min with sterile water. In addition,
200 uL of final wash water was added to three Petri dishes with PDA or LB medium during
the fungal and bacterial culture step, which were used as a negative control to confirm that
root sterilization was adequate.

2.2. Microscopy and Estimation of the Abundance of Endophytic Fungi in F. gigantea Roots

For microscopy, newly grown roots are described in Section 2.1, (excluding the steril-
ization step) were collected and placed in 1.5 mL Eppendorf test tubes with a fixative of
ethanol-glacial acetic acid (3:1) and kept in the refrigerator (at 2-3 °C) until use.

Prior to microscopy, all the roots were softened using enzyme treatment as follows:
the sampled roots were washed twice with citrate buffer (0.1 M, pH 4.8) at 27-28 °C for
10 min. and treated with 0.5% Macerozyme R-10 at 37 °C for 25 min.

The root cross-sections were prepared without specimen staining and examined for
fungal and bacterial morphostructures under a Nikon ECLICE Ci-L phase-contrast micro-
scope. In total, ~100 roots from 25 plants were analyzed.

To determine the frequency of endophytic fungi in F. gigantea, tillers from the plants
collected from Kairénai and Vingis locations were used. In each location, three sampling
replicates were made during the season, with two tillers from 5 plants and 2 roots from
each tiller collected, making 60 root samples in total for each location. After the enzyme
treatment, the roots were washed with citric citrate buffer and stained with 0.025% Trypan
Blue, following the protocol described by Kiheri et al. [37] with some modifications: root
staining at 90 °C for 30 min, then bleaching with a lactic acid-glycerol (1:1) mixture,
repeating it three times. The first two bleaches were at 37 °C for 30 min, and the third was
left at room temperature for 24 h before microscopic analysis. A lactic acid-glycerol mixture
(4:1) was used to prepare the root tip sections on the microscopy slides. The presence of
fungal structures was assessed using a phase contrast microscope in 10 fields of view for
each root at x400 magnification.

2.3. Isolation of Fungi

To make Potato Dextrose Agar (PDA) medium, 200 g of peeled, sliced potatoes (Lithua-
nian var. Rasa) were boiled in 1 L of distilled water for 30 min. The potato mass was filtered
through cheesecloth, saving effluent. The potato infusion was poured into flasks 200 mL at
a time. A total of 4 g of dextrose and 4 g of agar were added to each flask. Mixtures were
autoclaved at 121 °C for 20 min. The medium was enriched with ampicillin sodium salt (final
concentration—100 pg/mL) and streptomycin sulfate (final concentration—100 pg/mL) to
selectively inhibit bacterial growth.

The experiment was repeated in 8 replicates, with 4 replicates from Kairénai and 4
from Vingis locations. In total, 200 root fragments were evaluated for the cultivation of
endophytes. Five cuttings of sterile roots were placed in each Petri dish with a PDA medium.
Before isolation, the roots were squashed with a sterile needle to facilitate the proliferation
of endophytic fungi. The root cuttings in Petri dishes with PDA were incubated in the
dark at 27 °C. After 7-14 days, we observed the growth of fungal colonies in proximity
to the root segments. The obtained fungal isolates are deposited in the collection of the
Laboratory of the Botanical Garden of Vilnius University.

2.4. Isolation of Bacteria

A total of 25 g of LB powder (Fisher BioReagents, Waltham, MA, USA) were dissolved
in 1 L of purified water, heated and agitated until completely dissolved, and sterilized
by autoclaving at 121 °C for 15 min. Sterile root cuttings were prepared as described in
Section 2.1. Root cuttings in Petri dishes with LB medium were incubated at 37 °C in the
dark. After 1-2 days, we observed bacterial colonies in proximity to the root segments. The
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experiment was repeated twice; in total, 50 root fragments were evaluated. The obtained
bacterial isolates are deposited in the collection of the Laboratory of the Botanical Garden
of Vilnius University.

2.5. DNA Extraction from Fungi and Bacteria Culture Colonies

The fungi and bacteria’s genomic DNA was isolated using the Quick-DNA™ HMW
MagBead Kit (Zymo Research, Irvine, CA, USA) following the manufacturer’s guidelines.

For the extraction of the genomic DNA of the fungi, 10-day-old fungal colonies were
used, sampling 100 mg of mycelial biomass. For bacteria, 1-2-day-old colonies were used.
Each bacterial colony was grown in a liquid LB medium, and the next day, genomic DNA
was isolated.

2.6. Standard DNA Amplification and Sequencing

For standard DNA amplification, the primer pairs used in the PCR reactions are listed
in Tables 1 and 2 for fungi and bacteria. The total volume of the PCR mix for amplification
was 50 pL. PCR was conducted under the temperature profile of 94 °C for 3 min, followed by
35 cycles of 94 °C for 30 s, 49-61 °C [calculated according to the primer’s Ta = Tm — (04 °C)]
for 30 s and 72 °C for 1 min, and the final extension at 72 °C for 5 min.

Table 1. The list of primers in PCR reactions for amplification of fungi DNA sequences.

Locus Primers Primer Sequences (5'-3) Tm °C Reference
ITS ITS1 TCCGTAGGTGAACCTGCGG 54 [38]
ITS4 TCCTCCGCTTATTGATATGC
TEF EF1-728F CATCGAGAAGTTCGAGAAGG 54 [39]
a EE-2 GGARGTACCAGTSATCATGTT
Ssu NS1 GTAGTCATATGCTTGTCTC 49 [38]
NS4 CTTCCGTCAATTCCTTTAAG
) RPB2-5F2 GGGGWGAYCAGAAGAAGGC 58 40
RPB fRPB2-7cR  CCCATRGCTTGYTTRCCCAT [40]
Table 2. The list of primers in PCR reactions for amplification of standard bacteria 165 rDNA sequences.
Locus Primers Primer Sequences (5'-3) Tm °C Reference
27f CM AGAGTTTGATCMTGGCTCAG
165 rDNA 1492R TACGGYTACCTTGTTACGACTT 52 [41]
704F GTAGCGGTGAAATGCGTAGA
165 rDNA 765R CTGTTTGCTCCCCACGCTTTC 56 [41]
S-D-Bact-0341-b-S-17 CCTACGGGNGGCWGCAG
16STDNA 5 1 Bact-0785-a-A-21 GACTACHVGGGTATCTAATCC 56 [42]

The PCR products were purified using the Gene]ET PCR Purification Kit (Thermo
Fisher Scientific Baltics, Vilnius, Lithuania). The sequencing was performed by BaseClear
B.V,, Leiden, Netherlands. The fungal and bacterial colonies representing sequences were
analyzed against NCBI reference data using the BLAST tool https:/ /blast.ncbinlm.nih.
gov/Blast.cgi (accessed on 17 July 2024).

2.7. Morphological Characterization of Endophytic Fungi

The fungal isolates were characterized by their morphological characteristics, includ-
ing structure, color, and colony edge. A mixture of glycerol-lactic acid (1:4) was used for
analyzing and photographing the fungal mycelium specimens. For viewing, a microscopic
Nikon ECLICE Ci-L phase-contrast microscope was used.
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2.8. Photography

The images of the colonies were taken by a Sony Alpha a6300 camera (Sony Corpora-
tion, Tokyo, Japan) with a Sigma 56 mm f/1.4 lens. Root section cuttings and mycelium
samples were analyzed under the phase-contrast microscope, and the NIS-Elements D
software (version 6.02.01) program was used for microscopic photography and analysis.

3. Results
3.1. Cytological Morphotypes of Endophytes and Their Abundance in the Roots of F. gigantea

Firstly, in the course of a microscopic examination of F. gigantea root apical sections,
we detected patterns of fungal and bacterial morphostructures.

The variable type of hyphae morphology observed demonstrates that the fungi living
inside the roots represent different fungi species (Figure 1A-E). In some tissue specimens,
we found both hyaline, cystidia-like hyphae (~130 um long) and thin, melanized, dichoto-
mously branched hyphae present in the same root (Figure 1B,C). The majority of the fungal
structures were extracellular (Figure 1A-C,E,H,I), although some appeared intracellular
(Figures 1D and S1). Some hyphae were clustered together in abundant groups, which
indicates rapid proliferation of endophytic fungi (Figure 1H,I). The Alternaria-type conidia
recorded show that Alternaria sp. has an active developmental cycle inside the root tissues
of F. gigantea (Figure 1F).

EXY.

° b |

Figure 1. Cytological view of fungal and bacterial endophyte morphotypes in the root meristem of F.
gigantea: (A-E) images of endophytic fungi hyphae; (F) Alternaria-type conidia; (G) agglomerates
of fungal spores; (H,I) clusters of hyphae; (J) large bunches of Bacillus-type endophytic bacteria;
(K) chains of filamentous bacteria. Scale bar = 10 um.

In addition, we viewed images of endophytic bacteria (Figure 1] K). Large bunches of
scattered rod-type bacteria indicated active Bacillus sp. spread (Figure 1J). Moreover, the
occurrence of fungi and bacteria together was quite common in some root specimens.

The abundance of endophytic fungi was analyzed in the root tip cross-sections stained
with Trypan blue. At the Kairénai and Vingis locations, the fresh-grown roots were sampled
in three replicates from the tillers collected during the vegetation season in May-June. The
microscopical analysis of 60 roots for each location in total (no significant differences
between replicates were observed) showed the occurrence of fungal structures in about
~40% of the roots examined (Table 3).
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Table 3. Endophytic fungi structure abundance in F. gigantea root tip tissues.
Roots Fragments Roots with Microscopical Fields of View
Location * No No. with Fungi Endophytic No No. with Fungi Endophytic
Anal S'e d Structures Fungi, % Anal ;e d Structures Fungi
y Detected y Detected Abundance, %
Kairénai 60 28 46.7 600 155 25.8
Vingis 60 25 41.7 600 141 235
* No.—number.
3.2. Fungal Endophyte Isolation and Taxonomic Assignment
Endophytic fungi were isolated from the surface-sterile fresh root cuttings of F. gigantea
placed on a PDA medium. Twenty-five root segments were planted in eight replicates, four
from Kairénai and four from Vingis locations. Seven fungal isolates were obtained from a
total of 200 root segments planted. Four fungal species identified belong to Ascomycota,
and two are from Basidiomycota (Figure 2, Table 4). No colony growth was detected in
control Petri dishes with the final root-wash water after sterilization.
Table 4. Taxonomic assignment of the endophytic fungi isolated from the roots of F. gigantea according
to the standard DNA data.
Fungus Isolate Code DNA Locus DNA I}c)i;ntlhes, Congruence, % BLAST ID
ITS 440/440 100.0 PP218262.1
Alternaria BSG001 RPB2 587/587 100.0 MN922279.1
alternata BSG002 ssu 647/647 100.0 OR453387.1
TEF 373/373 100.0 MK386655.1
Cadophora 531/531 100.0 MN833359.1
fastigiata BSGO03 ITS 508/508 100.0 MF077223.1
ITS 248/249 99.6 FIN394680
Chaetomium BSG039 570/570 100.0 PP165499.1
funicola RPB2 527/540 97.6 XM_062782192.1
ssu 417/417 100.0 AF048794.1
Microdochium BSGO008 ITS 460/460 100.0 MT276137.1
bolleyi RPB2 543/543 100.0 MNB817764.1
. 390/397 98.2 JN689938
Coprinellus sp. BSG004 ITS 464/471 985 FN386275
Si TS 514/514 100.0 DQ093653.1
A ?Stk"t’e’”“.. BSG005 650/650 100.0 JQ912675.1
TR Ssu 567 /567 100.0 KM222227.1

The taxonomic assignment was based on the colony morphology and the cytomor-
phological characteristics of the species (Figure 2) and confirmed by the alignment of the
PCR-produced ITS, RPB2, SSU, and TEF1-a sequences with the reference fungal DNA data
using the BLAST tool [43] (Table 4).

In the isolate culture using PDA medium, the fungal community obtained from the
roots of F. gigantea was dominated by Ascomycota species represented by Alternaria alternata,
Cadophora fastigiata, Chaetomium funicola, and Microdochium bolleyi.

Alternaria alternata (Fr.) Keissler (1912) isolate’s colony view and cytomorphology
images are shown in Figure 2(A1-A4). The colonies on the PDA medium are fast-growing,
black to olivaceous-black or greyish, floccose; conidiophores single or in small groups;
conidia multicell, ovoid or ellipsoidal, often with a short conical beak, present singly or
in acropetal chains, having both transverse and longitudinal septations, pale brown or
golden-brown to brown, ~20-50 x 6-10 um; hyphae subhyaline, septate. Typical A. alternata
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conidia were observed microscopically in both isolate mycelium (Figure 2(A3)) and root
section specimens (Figure 1F).

Figure 2. The 7-10-day isolate colonies on PDA medium from the roots of F. gigantea and
cytomorphological images obtained from mycelium: (A1,A2) Alternaria alternata (isolate BSG001) top
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and reverse view, (A3) multicelled, obclavate conidia with short conical beaks, and (A4) segmented
hyphae; (B1,B2) Cadophora fastigiata (BSG003) top and reverse views, (B3,B5) conidiophores (funnel-
shaped collarette marked) and segmented hyphae, and (B4) conidia; (C1,C2) Chaetomium funicola
(BSGO039) front and reverse views, (C3) ascomata, and (C4) ascomata hair and ascospores sticking
to it; (D1,D2) Microdochium bolleyi (BSG008) top and reverse, (D3) conidia on cylindrical conidio-
genous cells; (E1,E2) Coprinellus sp. (BSG004) top and reverse view, and (E3,E4) segmented hyphae;
(F1,F2) Sistotrema brinkmannii (BSG005) top and reverse view, (F3,F5) hyphae, and (F4) spores. Scale
bar: (A3,A4,B3,C3,E3,F3) = 100 um; (B4,B5,C4,D3,E4,F4,F5) = 10 um.

Cadophora fastigiata Lagerb. & Melin (1928) [=Phialophora fastigiate (Lagerb. & Melin) Co-
nant (1937)] isolate’s colony view and cytomorphology images are shown in
Figure 2(B1-B5). The colonies on the PDA are medium greyish-brown, suede-like, re-
verse dark brown to black, producing ray-like strands towards the center; conidiophores
pale brown, straight, unbranched, producing terminal phialides; phialides appear clustered
or singly; conidiogenous cells phialidic, pale brown, smooth, with funnel-shaped collarette;
conidia ovoid, smooth, light brown, nonseptate, ~5 x 2.5 um; hyphae subhyaline to pale
brown, septate.

Chaetomium funicola Cooke (1872) (=Dichotomopilus funicola (Cooke) X. Wei Wang &
Samson 2016) isolate’s colony view and cytomorphology images are shown in
Figure 2(C1-C4). The ten-day isolate colonies on the PDA medium are white with a
grey tint, reverse pale orange, floccose, hyphae segmented; ascomata dark brown, di-
chotomously hairy, globose to ovoid, brown, 150-220 um; terminal hairs dichotomously
branched 2-5 times, forming a dense head; ascospores brown, ovate, slightly apiculate at
both ends, ~5 x 3 pm.

Microdochium bolleyi (R. Sprague) de Hoog & Herm-Nijh. (1977) isolate’s colony view
and cytomorphology images are shown in Figure 2(D1-D3). The colonies on the PDA
are peachy orange, suede-like or floccose, in reverse black-spotted at the center, white
at edges; hyphae hyaline, septate; conidiogenous cells ampullate or cylindrical; conidia
crescent-shaped, hyaline, one-celled, thin-walled, smooth, ~6 x 2 pm.

Two isolate cultures of Basidiomycota, Coprinellus sp. and S. brinkmannii, were obtained
on a PDA medium from the surface-sterile root fragments of F. gigantea.

Coprinellus sp. (Pers.) J. E. Lange (1938) isolate’s colony view and cytomorphology
images are shown in Figure 2(E1-E4). The isolate colonies on the PDA medium are white
to yellowish, growing fluffy, with aerial mycelial tufts filling Petri; hyphae subhyaline,
septate, and some clamp projections visible.

Sistotrema brinkmannii (Bres.) J. Erikss. (1948) isolate’s colony view and cytomorphol-
ogy images are shown in Figure 2(F1-F5). The isolate colonies on the PDA medium are
pale yellowish-white, floccose to fluffy, with concentric rings; “chain chlamydospores” are
visible microscopically, which is consistent with Potvin and co-authors [44]; basidiospores
are dark, ellipsoid, ~4 x 2 pm.

3.3. Bacterial Endophyte Isolation and Taxonomic Assignment

In the culture, from fifty root segments of F. gigantea incubated on an LB medium, we
obtained isolated cultures of six bacterial taxa. The group of Firmicutes bacteria was the
most prevalent and was represented by Bacillus pumilus, Bacillus sp., Lysinibacillus sp., and
Priestia aryabhattai (Table 5). All these four taxa belong to Gram-positive, endospore-forming
bacteria. In addition, from the root tissues of F. gigantea, we obtained isolates of two Gram-
negative, non-spore-forming bacteria—Kosakonia sp. (=Enterobacter sp.) (Proteobacteria)
and Pedobacter sp. (Bacteroidetes). No colony growth was detected in control Petri dishes
with the final root-wash water after sterilization. The taxonomic assignment of the bacteria
was confirmed by the BLAST results of 165 rDNA sequences (Table 5). The obtained 165
DNA sequences of our bacterial isolates were deposited in the GenBank (Table S1).



Diversity 2024, 16, 453

9 of 15

Table 5. Taxonomic assignment of endophytic bacteria isolated from the roots of F. gigantea according
to standard 165 rDNA sequences.

Bacteria

Bacteria

Isolate Code

Colony Characteristics

Colony Shape, DNA Congruence, % BLAST ID

Surface, Edge Shape Color Identities, bp

Almost round, opaque,

Bacillus pumilus BSB021 . Yellow 1086/1087 99.91 MK521063.1
shiny, uneven edge
Bacillus sp. BSBO13 Round, opaque, rough, i, 986/1012 97.43 CP026662.1
uneven edge
Lysinibacillus sp. BSB054 Round, flat, opaque,  yyy qi 1084,/1087 99.72 MH385002.1
smooth edge
Priestia Round, straight edges,
. BSB045 shiny oil, Cream 1084/1088 99.63 MH321608.1
aryabhattai
fluff-shaped colony
Round, the surface is
Kosakonia sp. BSB028 smooth, shiny, White 1068/1088 98.16 MG835978.1
uneven edge
Round, convex,
Pedobacter sp. BSB034 opaque, shiny, Pink 1039/1092 95.15 CP079218.1

smooth edge

4. Discussion

Phylogenetically diverse fungi, bacteria, and archaea are widely found coexisting in
plant aerials and below-ground parts. They make communities that affect plant life by
playing pivotal roles in nutritional chains and ensuring well-being by providing resistance
to stress, diseases, and pests [1,2,12,45-47]. In this study, we describe the set of endophytic
fungi and bacteria found in the roots of F. gigantea. This is the first detailed report on fungal
and bacterial associations in the roots of this woodland grass, which is native to Europe
and much of Asia.

We identified six species of endophytic fungi, four members of Ascomycota—A.
alternata, C. fastigiata, Ch. funicola, and M. bolleyi—and two of Basidiomycota—Coprinellus
sp. and S. brinkmannii. In addition, we report six bacteria taxa; four isolates were identified
from Firmicutes—B. pumilus, Bacillus sp., Lysinibacillus sp., and P. aryabhattai—along with
Kosakonia sp. (Proteobacteria) and Pedobacter sp. (Bacteroidetes), colonizing the root tissues
of F. gigantea.

In the roots of Poaceae and other plant taxa, Ascomycota endophytes are the most
common, accounting for about 90% of the community, with Basidiomycota making a
minor component [3,48-50]. In contrast, we found this proportion rather different. Two
Basidiomycota species were detected out of 6 in total, which makes 1/3 of this association.
This could be explained by the fact that F. gigantea is native to forest sites where the
occurrence of Basidiomycota is highly expected.

The fungal endophytes obtained in this study are taxonomically diverse. Both As-
comycota and Basidiomycota endophytes represent unrelated taxa at the order level, and
their functional role and distribution are diverse. In meta-data studies of grassland en-
dophyte communities, the members of Heliotales and Phleosporales are among the most
prevalent [3,10,51]. This is consistent with the occurrence of C. fastigiata and A. alternata
in the roots of F. gigantea grass found in our culture-dependent study. Alternaria alternata
(Phleosporales) is a highly common saprophyte found in soil or decaying plant debris
and a pathogen that causes leaf spots, rots, and blights on different plant parts [52-55]. In
addition, many studies show that Alternaria spp. can exist asymptomatically within a wide
host range, and they have been shown to be communities” dominant components in many
grasses [56—-60]. In the taxonomic group linked to F. gigantea, A. alternata endophyte was
recorded among the most abundant taxa in the roots of Festuca rubra subsp. purinosa from
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harsh ecological niches in marine cliffs [51], whereas in Lolium multiflorum it was found to
cause leaf spot disease [61].

Species of the genus Cadophora are widespread geographically. They inhabit different
plant roots [4,5,10,62-64] and may even appear as grapevine trunk pathogens [65,66]. Al-
though Cadophora endophytes are found colonizing very different plants, Sanchez Mdrquez
and co-authors [56], in summarizing their research with the findings of other authors, do
not list Cadophora species among the dominant taxa in grass mycobiota associations; they
appear more linked to wood/tree habitats. Many samples of C. fastigiata (=Phialophora
fastigiata) (Heliotales), which is a type Cadophora species, come from dying wood; they
are often found growing on the wood pulp and roots of Pinus sylvestris, Picea excelsa, and
Fagus sylvatica (references listed in Schol-Schwarz [67]). This indicates that C. fastigiata
is a common inhabitant in boreal forests, which can explain its occurrence in F. gigantea
collected under the forest canopy in our study.

Cheatomium funicola (=Dichotomopilus funicola) (Sordariales) fungus is common in terres-
trial habitats; it has been found as a decomposer on plant debris and in soil [68]. Chaetomium
funicola has been found widely occurring in very specific ecosystems, such as coastal dunes
in Spain and Caatinga semiarid tropical sites in Brazil [69-71]. Cheatomium spp. are known
as endophytes of many plants; they are often found in the roots of Poaceae [48,69,72]. How-
ever, their occurrence in Festuca spp. has not yet been reported. Notably, products obtained
from different Chaetomium spp. are widely used as biofungicides and biostimulants [73,74];
however, Ch. funicola is not specified in these agricultural applications.

Microdochium bolleyi (Amphisphaeriales) is a DSE fungus that typically resides endophyt-
ically in plant roots, especially in herbaceous plants, including many Poaceae [5,69,72,75,76].
David and colleagues [77] reported strains of M. bolleyi as the most abundant in the roots
of coastal herbaceous plant species along the Pacific Northwest coast of the United States.
Although the effects of M. bolleyi on herbaceous hosts have not yet been fully qualified, M.
bolleyi is generally considered a commensal or weak pathogen. M. bolleyi is often found on the
roots of cereal crops and grasses, where it appears as a weak pathogen under certain condi-
tions [78,79]. Within Poaceae grasses, Hong and co-authors [80] found M. bolleyi associated
with the basal rot of creeping bentgrass, Agrostis stolonifera.

Although the assemblage identified in this study consists mainly of Ascomycota grass-
host generalist species, we also obtained isolates of two Agaricomycetes from
Basidiomycota—Coprinellus sp. and S. brinkmannii, co-occurring in the root tissues of
woodland grass F. gigantea. In our study, obtaining the isolate of Coprinellus sp. (Agaricales)
from the roots of F. gigantea was rather surprising, as these cosmopolitan saprotrophs are
not known to colonize the roots of plants as endophytes. There are data about a C. dissemi-
natus isolate culture obtained from an achlorophyllous orchid, Epipogium roseum [81,82].
Recent studies demonstrated that this fungus forms mycorrhizal structures and facilitates
the germination and seedling formation of orchids in tropical forests [83]. In addition, C.
disseminatus culture isolates were reported from Holcus lanatus (Poaceae) leaves [72], and
some were obtained from the living stems of trees, including tropical species [84,85].

Sistotrema brinkmannii (Cantharellales) is a wood-rotting fungus that is widespread on
the bark of trees and also found in soil. It was isolated from various substrates, including
decayed Pinus sylvestris roots [86] and Pinus contorta wood [87], and was also found in
healthy Ipomea leaves [38]. Sometimes, this fungus was found to be involved in mycorrhizal
associations in the roots of some trees; however, its exact function remains to be elucidated
since typical endo- or ectomycorrhizae were not formed [44]. Notably, S. brinkmannii shows
highly antagonistic activity against Heterobasidion spp., the pathogen causing Heterobasid-
ion root disease of conifers [89]. In summary, S. brinkmannii is not a typical grass endophyte,
so its discovery as a root associate in F. gigantea shows that its habitat diversity could be
border rather than wood association. However, considering the wide distribution of the S.
brinkmannii fungus in boreal forests [90], finding this endophyte in woodland grass seems
quite possible. To the best of our knowledge, S. brinkmannii occurrence within the roots of
grasses has not yet been reported.
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Although there is still some possibility that the fungus spores or external hyphae may
have survived after surface sterilization, and further inoculation studies are needed to
fully verify that Coprinellus sp. and S. brinkmannii have originated from the endosphere,
the distinct cystidia-like structures in the root tip cross-sections (Figure 1B) that can be
assigned to Basidiomycota but not to Ascomycota are indicative of Basidiomycota in the
roots of F. gigantea. Besides endophytic fungi, plants are hosts to diverse endophytic
bacteria that are beneficial to plant growth and development [32-34]. In the roots of grasses,
diverse bacterial communities were reported across many species [1,3,15,91,92]. In our
study, most, four out of six, of the bacteria detected come from Bacillaceae; these are B.
pumilus, Bacillus sp., Lysinibacillus sp., and P. aryabhattai. Network analysis of microbial
communities involved in the decomposition of organic matter shows that bacteria of the
genus Bacillus and fungi representing Chaetomium spp. and Alternaria spp. are among
the most common keystone taxa [31]. This is related to the endophytic representatives
that we found in the roots of F. gigantea, a grass native to the forest floor, where organic
matter normally decomposes. Notably, our analysis detected Pedobacter sp., a member
of Sphingobacteriales that, according to Banerjee and co-authors [2], is also among the
keystone taxa in woodland and grassland ecosystems. Therefore, even though the list of
endophytes detected in this study is relatively short compared to the meta-analysis data,
we demonstrate the existence of the pivotal microbial community players in the roots of a
single woodland grass, F. gigantea.

This study shows that F. gigantea roots are the habitat for a wide range of root endo-
phytes, fungi, and bacteria, which fills in a gap in the studies of Festuca spp. and other
closely related grasses for root endophytes, hitherto widely investigated for their associa-
tions with Epichloé / Neotyphodium in the foliar parts. The functional roles of the identified
endophytes are diverse, and many of them, saprotrophs and decomposers of wood and
plant debris, are linked to the decomposition of organic matter. It should be noted that for
isolation, we used a single medium, PDA for fungi and LB for bacteria; therefore, future
studies using other media and taxonomic identification from a molecular meta-analysis will
likely detect a much broader microbial community. On the other hand, a culture-dependent
assessment allows for microorganism identification at the species level, whereas a bulk
sequence meta-analysis is usually limited to the order/genera level. The obtained isolates
preserved in our collection can serve as the basis for further physiological and ecological
studies disclosing the interactions between endophytes and F. gigantea plants. Among the
broad-leaved Festuca, F. gigantea belongs to a certain ecological niche; this grass prefers a
shady and moderately moist environment, typical of the deciduous forest floor. Further
studies, including the related Festuca species from the contrasting ecological sites (open field
grasslands), may demonstrate differences in root endophyte assemblages and elucidate
different functional roles of endophyte coexistence.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d16080453 /s1, Figure S1: Endophytic fungi structures in Festuca gigantea
root tip cross-sections. Table S1: The list of obtained 165 DNA sequences of bacterial isolates deposited
in the GenBank.
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