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Abstract: In the present work, iron–sillenite (Bi25FeO40) was synthesized using a simple solid-state
reaction method and characterized. The effects of the synthesis conditions on the phase purity of
Bi2O3/Fe3O4, morphological features, and possible application as an XRD/MRI dual-contrast agent
were investigated. For the synthesis, the stoichiometric amounts of Bi2O3 and Fe3O4 were mixed
and subsequently milled in a planetary ball mill for 10 min with a speed of 300 rpm. The milled
mixture was calcined at various temperatures (550 ◦C, 700 ◦C, 750 ◦C, 800 ◦C, and 850 ◦C) for 1 h in
air at a heating rate of 5 ◦C/min. For phase identification, powder X-ray diffraction (XRD) analysis
was performed and infrared (FTIR) spectra were recorded. The surface morphology of synthesized
samples was studied by field-emission scanning electron microscopy (FE-SEM). For the radiopacity
measurements, iron–sillenite specimens were synthesized at different temperatures and mixed with
different amounts of BaSO4 and Laponite solution. It was demonstrated that iron–sillenite Bi25FeO40

possessed sufficient radiopacity and could be a potential candidate to meet the requirements of its
application as an XRD/MRI dual-contrast agent.

Keywords: iron–sillenite; Bi25FeO40; solid-state reaction synthesis; radiopacity

1. Introduction

The development of biomedical imaging techniques like X-ray, computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), digital
mammography (DM), optical imaging (OI), and ultrasound (US) is of great importance
to obtain comprehensive information about tissues and organs [1]. Currently, various
multimodal-contrast-based agents imaging modalities, such as X-ray/US [2], CT/MRI [3],
OI/MRI [4], PET/CT [5], and PET/MRI [6], are successfully applied to obtain high sensi-
tivity and anatomic resolution in clinical diseases diagnosis.

Magnetic resonance imaging (MRI) provides detailed images of brain, spine, joint,
and soft-tissue examinations [7]. Iron oxide nanoparticles like Fe2O3, with their inherent
magnetism, biocompatibility, and flexibility of engineering, are ideal candidates for MRI
and multimodal imaging [8]. Radiopacity is essential for tracking medical devices in X-ray
images during procedures. Bismuth oxide (Bi2O3) is widely used for dental filling materials
due to its acceptable radiopacity to distinguish it from surrounding anatomic structures [9].
A modified Bi2O3/ZrO2 radiopacifier was proposed to improve its biocompatibility [10].

Solid-state synthesis has been conventionally used for inorganic compounds, but there
is also a growing interest in solvent-free organic synthesis to design new materials [11].
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Solid-state reaction syntheses offer several advantages related to their adaptability with
multi-elemental phases from a mixture of solid starting materials in direct reactions at high
temperatures [12].

Sillenite-type members of the bismuth ferrite family have demonstrated outstanding
potential as novel photocatalysts in environmental remediation [13]. It was shown recently
that iron–sillenite (Bi25FeO40) can be successfully used as a supercapacitor candidate and
for dye-sensitized solar cells [14]. The structural, optical, dielectric, catalytic, and magnetic
properties of Bi25FeO40 can be controlled by changing particle size, by doping with other
metals, or by developing composites [15,16]. For example, with increasing Cr concentration
in Cr-doped Bi25FeO40 (Bi25Fe1-xCrxO40, x = 0–0.5), the shape of particles has changed
from microcubes (x = 0) to microspheres (x = 0.3) owing to the lattice expansion [17]. The
Sb-doped Bi25FeO40 showed significant electrocatalytic activity [18]. The composite with
SiO2 (Bi25FeO40/SiO2) had quite different microstructural, optical, and magnetic properties
and an improved specific absorption rate of the nanoparticles [19].

Firstly, iron–sillenite was isolated as the impurity phase during the preparation of
perovskite BiFeO3 (BFO) or its derivatives [20]. For example, during the synthesis of
Bi1-xLaxFeO3 by the co-precipitation method, single-phase BFO phase formed when x = 0.3.
With an increasing amount of lanthanum, the impurity Bi25FeO40 phase was detected in the
synthesis products [21]. When the sol–gel–combustion synthesis method was applied for
preparation of BFO, the pure phase was obtained only at a low heating rate and annealing
temperatures between 500 ◦C and 600 ◦C. It was determined that, above 600 ◦C, the
BiFeO3 gradually decomposed to Bi25FeO40 and Bi2Fe4O9 [22]. Goldman et al. [23] also
observed that sillenite formed as intermediate product during synthesis of BFO using a
hydrothermal approach. Similar results have been published by Sansom et al. [24] and Yang
et al. [25]. Later, the monophasic Bi25FeO40 was synthesized using hydrothermal [26–28],
combustion [26], molten salts [29], and mechanical [30] synthesis methods. The final
products obtained by different synthesis approaches showed different surface morphology
and physical properties.

Different composites with Bi25FeO40 have been also synthesized and investigated.
The Bi25FeO40–graphene composite photocatalyst exhibited higher catalytic activity, was
superparamagnetic, and can be readily recovered in an external magnetic field [31]. The
Bi/Bi25FeO40-C even exhibited higher catalytic efficiency [32]. It was demonstrated that
the sillenite–graphene oxide nanocomposite is promising for improving the magnetic and
optical properties for potential technological applications [33,34]. Silver phosphate/sillenite
bismuth ferrite/graphene oxide (Ag3PO4/Bi25FeO40/GO) nanocomposite has been success-
fully fabricated as well [35]. In the work by [36], a Bi25FeO40-Fe3O4-Fe2O3 composite was
prepared directly through the solid-state reaction process. The results of the investigation
indicated that these composite samples have photocatalytic properties which can be easily
recycled by magnetic separation.

The heterojunction nanostructures of bismuth iron oxides showed enhanced photocat-
alytic and other properties. A Bi25FeO40/Bi2Fe4O9 photocatalyst has been synthesized and
evaluated as a visible-light responsive catalyst for the degradation of Rhodamine B [37]. A
heterojunction-type charge transfer mechanism interpreting the enhanced photocatalytic
activities was proposed and discussed in this study. The strategies of BiFeO3/Bi25FeO40
heterojunction construction, temperature, and morphology controlling and Fe3+ doping
allowed precise regulation of the band gap structure of bismuth ferrite [38,39]. These
findings promoted the application of BiFeO3 in photocatalytic and other redox reactions.

Magnetic resonance imaging (MRI) has become one of the most prominent and widely
adapted diagnostic imaging methods in the realm of clinical practice and biomedical
research because of its superior spatial resolution and 3D tomographic images with anatom-
ical details. To date, only a few nanosystems have been investigated as T1 MRI-CT dual-
contrast agents. The summarized results suggest that D-glucuronic acid-coated Gd(IO3)3
center dot [40], low-magnetization magnetite nanocubes [41], Eu-doped iron oxide nanopar-
ticles [42], functionalized Fe3O4 composites [43], or (Fe3O4/γ-Fe2O3) nanoparticles coated
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by gadolinium–diethylenetriaminepentaacetic acid [44] could be potential T1 MRI-CT dual-
contrast reagents. However, these dual-contrast agents have a relatively low sensitivity
compared with other imaging methods. Moreover, most of them suffer from low relaxation
and contrast efficiency, which hampers their application in clinical diagnosis.

In this study, we aim to fill this gap. Iron–sillenite (Bi25FeO40) was synthesized using a
simple solid-state reaction method and characterized. The effects of the synthesis conditions
on the phase purity of Bi2O3/Fe3O4, morphological features, and possible application as
an XRD/MRI dual-contrast agent were investigated.

2. Materials and Methods
2.1. Synthesis

Iron–sillenite (Bi25FeO40) was synthesized using a simple solid-state reaction method.
Stoichiometric amounts of Bi2O3 (Alfa Aesar, Haverhill MA, USA, 99.9%) and Fe3O4 (Sigma-
Aldrich, St. Louis, MO, USA, 97.0%) were mixed and subsequently milled in a planetary
ball mill for 10 min with a speed of 300 rpm. Ball milling was performed using a bench-top
planetary ball mill (Retsch PM100, Haan, Germany). The conditions involved loading a 10 g
sample into a 50 mL alumina grinding jar and adding 10 alumina grinding balls (each with
a diameter of 10 mm). The milled mixture was calcined at various temperatures (550 ◦C,
700 ◦C, 750 ◦C, 800 ◦C, and 850 ◦C) for 1 h in air at a heating rate of 5 ◦C/min. Finally, the
synthesized products were ground in an agate mortar. A simplified scheme of the synthesis
route of iron–sillenite is presented in Figure 1.
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Figure 1. Solid-state reaction synthesis of Bi25FeO40.

2.2. Characterization

For phase identification at ambient temperature, the XRD data were collected at 20–70◦

2θ range (step width of 0.2◦, scan speed 3.33◦/min) using Ni-filtered Cu Kα1 (λ = 1.54184 Å)
radiation on a Bruker D2 PHASER diffractometer. Infrared (FTIR) spectra were recorded in
the range of 4000−400 cm−1 employing a Bruker ALPHA ATR spectrometer. In order to
study the morphology of the samples, a field-emission scanning electron microscope (FE-
SEM) Hitachi SU-70 (Tokyo, Japan) was used. The radiopacity of samples was measured
using a dental X-ray system (VX-65, Shanghai, China) and X-ray images recorded by
an occlusal radiographic imaging plate (Kodak CR. Los Angeles, CA, USA). The mean
grayscale values of each step of the aluminum step wedge (from 2 to 16 mm in 2 mm
increments) and the specimens were measured and analyzed using imaging processing
software ImageJ 1.39f (Wayne Rasband). For the radiopacity measurements, iron–sillenite
samples were synthesized at different temperatures and mixed with different amounts
of BaSO4 (Alfa Aesar, Haverhill MA, USA, 99.0%) and Laponite solution (Sigma-Aldrich,
St. Louis, MO, USA, LiMgNaO6Si2, 1% solution).

3. Results and Discussion

The XRD patterns of Bi25FeO40 synthesis products obtained at 700 ◦C, 750 ◦C, and
800 ◦C are presented in Figure 2.
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Vertical lines represent the standard XRD pattern of Bi25FeO40.

As can be seen from the XRD diffraction patterns of synthesis products obtained
at 750 ◦C, all the peaks match very well with the standard XRD data of Bi25FeO40 (PDF
#96-900-5813). Also, iron–sillenite was the main crystalline phase in the products annealed
at slightly lower or higher temperatures. However, unreacted Bi2O3 was determined in
the XRD pattern of the sample obtained at 700 ◦C, while perovskite BiFeO3 and some
unidentified phase formed at 800 ◦C. Evidently, the solid-state reaction performed at 550 ◦C
was not complete and the reaction mixture annealed at 850 ◦C was already melted with the
formation of multiphasic product (see Figure S1). Thus, the apparently optimal temperature
for solid-state reaction synthesis of monophasic Bi25FeO40 is 750 ◦C.

FTIR spectra of the products obtained at 700 ◦C, 750 ◦C, and 800 ◦C are presented
in Figure 3. The FTIR range of 1250–400 cm−1 was chosen as representative since the
main bands attributed to Bi25FeO40 synthesis products can be observed in this region. As
can be seen, only stretching modes of metal–oxygen (M–O) vibrations can be observed at
approximately 820 cm−1, and in the range of 625–430 cm−1 in the FTIR spectra of all three
samples. These absorption bands correspond to the vibration of the Fe–O, Bi–O, or Bi–O–Fe
bonds in the crystalline lattice of Bi25FeO40 [45–48]. Such results are in a good agreement
with the XRD data.

The morphology of the Bi25FeO40 synthesis products obtained at 700 ◦C, 750 ◦C, and
800 ◦C was almost identical. However, the samples sintered at 550 ◦C and 850 ◦C showed
quite different morphological features. The SEM micrographs of the representative samples
are shown in Figure 4.

As can be seen, the particle shape varied from plate-like, spherical to multishaped
and flower-like structures by changing the synthesis temperature from 550 ◦C to 850 ◦C.
The samples fabricated at 700–800 ◦C were composed of spherical shapes and grew into
each other’s particles at 1–2 µm in size. It is worth noting that the narrow particle size
distribution was achieved even though the synthesis was performed by the solid-state
reaction method. The results of EDX analysis confirmed the molar ratio of Bi and Fe in
synthesized Bi25FeO40. The EDX spectrum and color mapping, along with the SEM image
of the representative sample, is provided in Figure S2.
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Radiopacity is a key factor to verify the efficiency of a radiocontrast agent in imag-
ing [49]. The synthesized samples were also characterized by the radiopacity measurements.
For the radiopacity measurements, the Bi25FeO40 synthesized at 750 ◦C was mixed with
different amount of BaSO4 and Laponite solution. Initially, the control reference samples
were prepared from BaSO4 and Laponite using different ratios of constituents (see Table 1).
The stability of the reference samples was checked visually. It is evident from digital photos
presented in Figure 5 that the color of different mixtures of BaSO4 and Laponite were
stable for 12 h. The aluminum step wedge (99.5% Al) was used as an internal standard
for measuring the equivalent radiopacity of different materials [50,51]. The results of
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the radiopacity of reference samples with composition presented in Table 1 are shown in
Table 2. The grayscale value corresponds to the attenuation of the material. The measured
grayscale value for each reference composition and aluminum corresponds to the amount
of attenuation. The regression parameter R2 for the investigated systems varied in the
range of 0.9948–0.9977.

Table 1. The reference samples used for the radiopacity measurements.

Name of Control Sample m(BaSO4), G m(Laponite Solution), G

A1 0.1 0.9

B1 0.2 0.8

C1 0.3 0.7

A2 0.2 1.8

B2 0.4 1.6

C2 0.6 1.4
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Table 2. The radiopacity of reference samples.

Name of Control Sample Grayscale Value mm Al

A1 10.773 0.355

B1 84.596 3.387

C1 142.910 2.922

A2 53.893 0.681

B2 83.008 4.257

C2 159.511 5.092

As can be seen from Table 2, the radiopacity values for the system A2, B2, and C2 were
higher in comparison with A1, B1, and C1. Therefore, the BaSO4 and Laponite samples
from series A2, B2, and C2 were selected for the investigation of the radiopacity of the
iron–sillenite sample synthesized at 750 ◦C using a solid-state reaction method. These
samples are marked A3, B3, and C3, respectively. Again, the samples with iron–sillenite
showed excellent stability over time (see Figure 6).
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Visual examination of the radiographic images (Figure 7) revealed that all three A3, B3,
and C3 specimens were homogeneous [51,52]. Evidently, the samples are free of radiolucent
and radiopaque inclusions.
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Figure 7. Radiographs of iron–sillenite Bi25FeO40 specimens mixed with BaSO4 and Laponite.

To quantify the radiopacity, an Al wedge was again placed beside the iron–sillenite
material during X-ray image acquisition and the grayscale values of the material of interest
along with the step wedge were digitally analyzed. The radiopacity of the specimen was
then referenced to the thickness of aluminum and expressed as the equivalent aluminum
thickness (mm Al) [53]. The calibration curves were plotted using best-fit logarithmic
regression analysis for the selected data. The equivalent in thickness of aluminum for each
material was calculated from the calibration curves. The average magnitude of the mean
regression residuals was 0.040 mm of aluminum and the maximum regression residual was
0.125 mm of aluminum The residuals were random with respect to radiopacity, indicating
that no major non-linearity was present. The results’ radiopacity of iron–sillenite Bi25FeO40
specimens obtained are presented in Figure 8 and Table 3.

Table 3. The radiopacity of iron–sillenite Bi25FeO40 specimens.

Name of Control
Sample

Investigated Samples Background Iron–
Sillenite

Grayscale Value mm Al Grayscale Value mm Al mm Al

A3 68.406 ± 6.534 2.279 60.143 ± 6.382 1.920 0.359

B3 102.346 ± 7.559 3.379 75.137 ± 6.242 2.274 1.105

C3 100.070 ± 7.654 3.790 60.731 ± 6.652 1.967 1.823
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In conclusion, the radiopacities of the tested B3 and C3 materials were greater than
0.5 mm and greater than the same thickness of aluminum. Therefore, the solid-state reaction-
derived iron–sillenite Bi25FeO40 possessed sufficient radiopacity and could be a potential
candidate to meet the requirements of its application as an XRD/MRI dual-contrast agent.

4. Conclusions

In this study, iron–sillenite (Bi25FeO40) was synthesized using a simple solid-state
reaction method and characterized. The effects of the synthesis conditions on the phase
purity of Bi2O3/Fe3O4, morphological features, and possible application as an XRD/MRI
dual-contrast agent were investigated. To obtain the iron–sillenite phase, the mixture
of starting reagents was calcined at various temperatures (550 ◦C, 700 ◦C, 800 ◦C, and
850 ◦C). The powder XRD analysis data showed that the synthesis product obtained at
750 ◦C was monophasic Bi25FeO40. Also, iron–sillenite was the main crystalline phase in the
products annealed at slightly lower or higher temperatures (700 ◦C and 800 ◦C, respectively).
However, unreacted Bi2O3 was determined in the XRD pattern of the sample obtained at
700 ◦C, while perovskite BiFeO3 and some unidentified phase formed at 800 ◦C. Evidently,
the solid-state reaction performed at 550 ◦C was not complete and the reaction mixture
annealed at 850 ◦C was already melted with the formation of multiphasic product. FTIR
spectroscopy results were in a good agreement with the XRD data. The samples fabricated
at 700–800 ◦C were composed of spherical shapes and grew into each other’s particles
at 1–2 µm in size. The synthesized samples were also characterized by the radiopacity
measurements. For the radiopacity measurements, the Bi25FeO40 synthesized at 750 ◦C
was mixed with different amount of BaSO4 and Laponite solution. Visual examination of
the radiographic images revealed that the specimens were homogeneous. The radiopacities
of the best compositions were greater than 0.5 mm and greater than the same thickness
aluminum. Therefore, the solid-state reaction-derived iron–sillenite Bi25FeO40 possessed
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sufficient radiopacity and could be a potential candidate to meet the requirements of its
application as an XRD/MRI dual-contrast agent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst14080706/s1, Figure S1: XRD patterns of Bi25FeO40 synthesis
products obtained at 550 and 850 ◦C along with standard XRD pattern of starting materials; Figure S2:
The EDX spectrum (top) and colour mapping along with SEM images (bottom) of Bi25FeO40 synthesis
products obtained at 700 ◦C.
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