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Effective light-induced Hamiltonian for atoms with large nuclear spin
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Ultracold fermionic atoms, having two valence electrons, exhibit a distinctive internal state structure, wherein
the nuclear spin becomes decoupled from the electronic degrees of freedom in the ground electronic state.
Consequently, the nuclear spin states are well isolated from the environment, rendering these atomic systems
an opportune platform for quantum computation and quantum simulations. Coupling with off-resonance light
is an essential tool to selectively and coherently manipulate the nuclear spin states. In this paper, we present a
systematic derivation of the effective Hamiltonian for the nuclear spin states of ultracold fermionic atoms due to
such an off-resonance light. We obtain compact expressions for the scalar, vector, and tensor light shifts taking
into account both linear and quadratic contributions to the hyperfine splitting. The analysis has been carried out
using the Green operator approach and solving the corresponding Dyson equation. Finally, we analyze different
scenarios of light configurations which lead to the vector- and tensor-light shifts, as well as the pure spin-orbit
coupling for the nuclear spin.
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I. INTRODUCTION

Alkaline earth atoms stand as a prime platform for the
realms of quantum simulation and computation, as well as for
high-performance optical clocks [1–7]. These atoms have two
valence electrons forming a closed shell ns2 with zero spin
and angular momentum quantum numbers (S = L = J = 0)
in the electronic ground state 1S0. They are also character-
ized by forbidden optical transitions to electronic triplet states
3Pj , with j = 0, 1, 2. Fermionic isotopes possess a nuclear
spin that is highly isolated from the environment rendering
them a convenient platform for the applications mentioned
above [1–7]. The most notable alkaline-earth species are Mg,
Ca, Sr, but other species—in particular, Yb and the group
IIB transition metals (Hg [8], Cd [9], Zn [10]) share these
properties [11–13]. All of them but Zn have been laser-cooled
and trapped in the ground state. It is noteworthy that the
number of nuclear spin states of their fermionic isotopes can
be quite large, such as N = 10 for 87Sr, providing beneficial
features useful for quantum simulation and computation [6].
The nuclear spin in these atoms thus represents a convenient
carrier of quantum information taking into account the long
coherence times and the ability of coherent spin control with
magnetic and optical fields.

Manipulation of atomic spin states by off-resonant laser
fields was studied extensively in the context of both
the alkali [14–18] and alkaline earth atoms [6,7]. The
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light-induced effective atomic spin Hamiltonian can be gen-
erally cast in terms of components known as the scalar,
vector and tensor light shifts [16,17]. Typically, the evalua-
tion of these light shifts involves numerical summation over
transitions to various excited states, with differing strengths
expressed using e.g. Clebsch-Gordan coefficients [16,17].
Simple analytical forms of the effective Hamiltonian and the
scalar, vector and tensor components of the light shifts are
desired to ease practical experimental implementations and
theoretical understanding.

Here we develop a formalism allowing us to obtain com-
pact analytical expressions for the scalar, vector and tensor
light shifts of the nuclear spin states for the alkaline-earth-like
atoms. We find that the three light shifts are simple rational
functions expressed solely in terms of the nuclear spin quan-
tum number, hyperfine splitting energies, and detuning. The
method involves the Green operator (the resolvent) approach
and the solution of the corresponding Dyson equation, allow-
ing to by-pass explicit analysis of transitions to the specific
hyperfine states of the excited state manifold. The technique
is related to the one used to analyze the vector light shifts
of the alkali atoms presented in Sec. 4 of Ref. [18]. Yet,
there are significant differences between the two treatments.
In the present analysis of the alkaline-earth-like atoms the
electron spin is zero in the ground state, and it is the hyper-
fine splitting of the excited electronic states which provides
the vector and tensor light shifts for the (nuclear) spin states
of the ground-state atoms. However, for alkali atoms with a
single unpaired outer electron, it is the excited state fine struc-
ture splitting which is responsible for the vector light shifts
for the spin states in the ground electronic manifold [18].
In our analytical calculations, we have managed to include
not only linear but also quadratic terms of the hyperfine
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coupling operator. Therefore, the theory provides a very ac-
curate description of the light shifts for the alkaline-earth-like
atoms. To resolve the hyperfine splitting without significant
perturbation by spontaneous emission we consider the light
shifts due to the 3P1 intercombination line characterized by a
relatively large frequency of the hyperfine splitting AHF and
a comparatively small spontaneous emission rate �. As an
example, for 87Sr atoms AHF/2π is around 2.6×105 kHz,
whereas �/2π is of the order of 10 kHz [19] for the 3P1

line. This allows an efficient light-induced manipulation of
the nuclear spin states with minimum decoherence. In the
subsequent text, we will consider 87Sr as a typical example.
Nevertheless, our analytical findings are broad-reaching and
can be applied to other alkaline earth (or alkaline-earth-like)
atoms with the same structure.

The paper is organized as follows. In Sec. II we introduce
the fine and hyperfine structures of alkali earth or alkali-
earth-like atoms. Next, in Sec. III, we present our theory for
the derivation of effective Hamiltonian describing the spin
ground-state manifold when an atom is coupled with laser
radiation. In Sec. IV, we discuss typical examples of light con-
figuration and the resulting atom-light coupling Hamiltonian,
as well as prospects for the realization of spin-orbit coupling
for fermionic atoms with nuclear spin. Finally, the concluding
Sec. V summarizes our findings.

II. MANIFOLDS OF GROUND AND EXCITED STATES
FOR ALKALINE-EARTH-LIKE ATOMS

We will consider the optical control of nuclear spin for
alkali earth or alkali-earth-like atoms with two s-shell valence
electrons characterized by a nuclear spin iI . We will study the
fermionic isotopes which have nonzero nuclear spin. Bosonic
alkaline-earth-like atoms possess zero nuclear spin, as they
contain an even number of protons and even number of neu-
trons. Thus, the bosonic species are not of interest for the
present analysis of the manipulation of atomic nuclear spin.

In the ground electronic manifold denoted by 1S0 the spins
of outer electrons of alkali-earth-like atoms form a singlet, so
the quantum numbers of the electronic spin S and the orbital
angular momenta L are zero, as well as the total electronic
momentum J = L + S, namely s = l = j = 0. It is a reason
why the fine and hyperfine couplings are not affecting the
ground electronic state. The energy of this state is taken to
be zero Eg = 0.

The excited electronic state of interest | j, mj〉 with
j = 0, 1, 2 belongs to the manifold 3Pj where spins of the
outer electrons form a triplet, and the state of the atom is char-
acterized by the spin and orbital angular momentum quantum
numbers, s = 1 and l = 1, respectively.1 The state | j, mj〉 is
an eigenstate of S2, L2, J2 and Jz with the corresponding
eigenvalues h̄2s(s + 1) = 2h̄2, h̄2l (l + 1) = 2h̄2, h̄2 j( j + 1)
and h̄m j . Without including the fine and hyperfine couplings

1Alternatively, the theory presented here is also applicable for vir-
tual transitions via the 1P1 manifold. However, we will concentrate
on the 3P1 manifold, as its higher ratio between hyperfine structure
and linewidth makes it more relevant experimentally due to much
smaller rate of spontaneous emission.

the excited state is degenerate concerning j. The fine structure
coupling removes this degeneracy.

The fine structure (FS) coupling between the total elec-
tron spin and orbital angular momentum is described by
the Hamiltonian HFS = AFS

h̄ L · S = AFS
h̄ (J2 − L2 − S2)/2 pro-

viding j-dependent energies E ( j)
FS = h̄AFS[ j( j + 1) − 4]/2 for

l = s = 1. Therefore, one has

E ( j=0)
FS = −2h̄AFS, E ( j=1)

FS = −h̄AFS, E ( j=2)
FS = h̄AFS. (1)

The state with j = 2 is not accessible via the dipole transitions
from the ground-state manifold 1S0 with j = 0 and thus will
not be considered by us in the further part of the text. The
transition to the state with j = 0, also known as “clock tran-
sition,” is double forbidden, both by spin and orbital degrees
of freedom. It is very weak, and only relevant if the radiation
frequency is very close to this state’s resonance. Therefore,
in what follows, we will consider only the transition to the
excited state manifold 3P1 corresponding to j = 1. This transi-
tion called the intercombination line, is forbidden by spin flip,
but opens due to j- j coupling admixing with the 1P1 state [20].

The hyperfine (HF) coupling between the total electronic
angular momentum J and the nuclear spin I is generally given
by the Hamiltonian (see, e.g., Ref. [17]):

HHF = A′
HF

h̄
I · J + BHF

6(I · J)2 + 3h̄2I · J − 2I2J2

4h̄ 3iI (2iI —1) j(2 j—1)
, (2)

where in the present situation j = 1. Here A′
HF and BHF are

HF constants. In the case of strontium atoms, their values
are A′

HF/2π = −260085 ± 2 kHz and BHF/2π = −35667 ±
21 kHz [19,21]. It is convenient to represent HHF as

HHF = AHF

h̄

[
I · J + γ

h̄2 (I · J)2

]
, (3)

where AHF = A′
HF + 3BHF/[4iI (2iI − 1) j(2 j − 1)], and the

dimensionless parameter γ=6BHF/[AHF4iI (2iI−1) j(2 j−1)]
describing a relative strength of the quadratic term is generally
much less than the unity. For 87Sr atoms one has γ ≈ 0.006,
and we will use this value in specific examples. In Eq. (3) a
uniform shift of energy proportional to I2J2 has been incorpo-
rated to the excitation energy E ( j=1)

FS , whereas the two terms of
Eq. (2) proportional to I · J have been merged to a single term
characterized by the modified frequency AHF.

The eigenstates of hyperfine Hamiltonian are also eigen-
states of F2 (F = I + J), I2, J2 and Fz, and the corresponding
eigenvalues are h̄2 f ( f + 1), h̄2iI (iI + 1), h̄2 j( j + 1), and
h̄m f . For the excited state 3P1 manifold of interest one has
j = 1, so f can take the values f = iI and f = iI ± 1. The
energies of these excited states are

EiI +1 = h̄AHF iI (1 + γ iI ), (4)

EiI = −h̄AHF(1 − γ ), (5)

EiI −1 = −h̄AHF(iI + 1)[1 − γ (iI + 1)]. (6)

The hyperfine structure for the electronic line 3P1 is schemat-
ically represented in Fig. 1.
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FIG. 1. A sketch of the atomic levels for alkaline-earth-like
atoms illustrating the hyperfine structure of the excited electronic line
3P1. The order of the excited states depends on the sign of AHF; here
we take AHF < 0 as in 87Sr. The probe frequency ωL is tuned in a
vicinity of the transition 1S0 → 3P1 manifold with the detuning �.

III. EFFECTIVE HAMILTONIAN

We consider the effects of light field E on atomic nuclear
spin states in the ground electronic manifold 1S0 due to the
virtual transition to the excited state manifold 3P1. In the
dipole approximation, the interaction between a monochro-
matic light field characterized by the electric field strength E
and an atom can be described by the operator

V = −d · E = −
∑

q

dqẼq cos(φq − ωLt ), (7)

where the components of the electric field amplitude Ẽq and
phase φq of the radiation are generally position dependent.
Here d = −e

∑
α rα is the electric dipole operator, e is an

electron charge and rα is the position of the αth electron
within the atom.

We will go to the frame rotated at the driving frequency
ωL and subsequently apply the rotating wave approximation
(RWA) by removing terms oscillating at frequencies ωL, 2ωL

in the transformed interaction Hamiltonian which then takes
the form (see, e.g., Chap. 4 of Ref. [18])

V = −1

2

∑
q

[E∗
q PgdqPe + EqPedqPg], (8)

where we introduced the complex electric field Eq = Ẽqeiφq .
In the above formula, Pg and Pe are projector operators

onto the ground and excited state manifolds 1S0 and 3P1,
respectively.

A. Analysis of effective Hamiltonian

If the incident light E with components Eq is sufficiently
weak and/or well detuned from atomic resonances, the sat-
uration parameter is small, and the atom-light interaction
effectively provides coupling between the nuclear spin states
|iI , miI 〉 of the electronic ground state |g〉 via virtual transitions
to the excited states without populating them.2 Specifically,
the adiabatic elimination of the excited states can be described

2This means we are not considering the resonant regime (|� −
Ef | � |dgeE|), where Ef is energy of hyperfine state, given by

in the second order (with respect to the interaction V ) via
Schrieffer-Wolff transformation; see, e.g., the Supplemen-
tal Materials of Ref. [22]. This provides the corresponding
second-order effective atomic Hamiltonian for the ground-
state manifold:

Ĥeff = PgV GV Pg, (9)

where

G = (� − HHF)−1 (10)

is the Green operator and � = E ( j=1)
FS − Eg − h̄ωL is the de-

tuning. Although our analysis is perturbative to second order
in electron-light interaction V , the hyperfine interaction HHF

is treated exactly. Note that by adding an imaginary part
to the detuning �, one can include effects of losses due to
spontaneous emission. This is discussed in Sec. III B.

The effective atomic Hamiltonian can be expressed as

Ĥeff = 1
4E

∗
s Ds,qEq. (11)

Here and below the summation over repeated indices of vec-
tors and tensors is assumed. In Eq. (11) we introduced the
tensor operator acting on the ground-state manifold:

Ds,q = PgdsPeGPedqPg, (12)

where the Green operator G obeys a Dyson-type equa-
tion (identity)

G = 1

�
+ 1

�
HHFG; (13)

see Appendix A. Combining Eqs. (12) and (13), one has

Ds,q =
∣∣d2

ge

∣∣
�

Pgδsq + 1

�
PgdsPeHHFGPedqPg, (14)

where ∣∣d2
ge

∣∣ = 1
3 〈g|dqPedq|g〉 (15)

characterizes the strength of the dipole transition and equals
to the third of the reduced matrix element 〈g|dqPedq|g〉 =∑

e |〈e|dq|g〉|2. The dipole transition is weak, but nonzero.
This is because the excited state manifold 3P1 contains a
small admixture of the manifold 1P1 with the same j = 1,
but zero spin s = 0, and the transitions to the latter manifold
1S0 → 1P1 are dipole allowed.

According to the Landé projection theorem [16], the effec-
tive Hamiltonian (11) can be represented in the form

Ĥeff = b0

4
(E∗ · E ) + i

b1

4h̄
I · (E∗ × E )

+ b2

4h̄2

[
(E∗ · I)(E · I) − 1

3
|E|2I2 + H.c.

]
, (16)

where the coefficients b0, b1 and b2 characterize the strengths
of the scalar, vector and tensor terms. Conventionally the
effective Hamiltonian is calculated using the explicit ex-
pressions for the transition matrix elements involving the

Eqs. (4)–(6) and |dge| =
√

|d2
ge| is defined in Eq. (15). In the resonant

situation one would have a significant excited state population and
observe Rabi oscillations.
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Clebsch-Gordon coefficients. Here, we perform analytical cal-
culations of the coefficients b0, b1 and b2 defining the effective
Hamiltonian to derive their simple forms in a self-consistent
way based on solution of Eq. (14) for Ds,q. To this end, it is
convenient to introduce a vector operator K with Cartesian
components derived from Ds,q:

Ks = Ds,qEq. (17)

In terms of K, the effective Hamiltonian of Eq. (11) reads

Ĥeff = 1
4E

∗ · K. (18)

Multiplying Eq. (14) by Eq from the right-hand side, we write
down the relation for the vector-operator K

K = 1

�
Pg

∣∣d2
ge

∣∣E+ AHF

h̄�
Pgd(I · J)

(
1+ γ

h̄2 I · J
)

GPe(d · E )Pg.

(19)

As demonstrated in Appendix B 1, this provides the following
equation for K:

ηK = 1

�
Pg

∣∣d2
ge

∣∣E + i
AHF

�
(1 − γ )(I × K) − γ

AHF

h̄�
I(I · K),

(20)

where η = 1 − γ AHF h̄iI (iI + 1)/�.
Anticipating the effective Hamiltonian of the form of

Eq. (16), we will look for the following K ansatz:

K =
[

a0E − i
a1

h̄
I × E + a2

h̄2 I(I · E )

]
Pg, (21)

where a0, a1, and a2 are real coefficients. Inserting the
ansatz (21) into Eq. (20), one gets a system of equations for
these coefficients, giving

a0 = − |d2
ge|

h̄AHF

Ē (+)(
�̄ − ĒiI +1

)(
�̄ − ĒiI −1

) , (22)

a1 = |d2
ge|

h̄AHF

ĒiI(
�̄ − ĒiI +1

)(
�̄ − ĒiI −1

) , (23)

a2 = |d2
ge|

h̄AHF

γ Ē (−) − Ē2
iI(

�̄ − ĒiI +1
)(

�̄ − ĒiI

)(
�̄ − ĒiI −1

) , (24)

with

Ē (±) = (
ĒiI +1 ± ĒiI + ĒiI −1

)
/2 − �̄, (25)

where �̄ = �/(h̄AHF) and Ē f = E f /(h̄AHF) (with f = iI − 1,

iI , iI + 1) are, respectively, the dimensionless detuning and
energies of hyperfine states, and E f is defined by Eqs. (4)–(6).
Details of derivation are in Appendix B 2.

Substituting the solution (21) for K into Eq. (18), one
arrives at the explicit result for the ground-state effective
Hamiltonian expressed in terms of the coefficients a0,1,2,

Ĥeff = a0

4
(E∗ · E ) + i

a1

4h̄
I · (E∗ × E ) + a2

4h̄2 (E∗ · I)(E · I),

(26)

where for brevity we have omitted the ground-state projector
operator Pg.

Note that the self-consistent method we used to find the
vector K of Eq. (21) can be applied on the level of the tensor

FIG. 2. Dependence of the rescaled scalar b̄0 (a), vector b̄1 and
tensor b̄2 coefficients (b) on the rescaled detuning �̄ for iI = 9/2 and
γ = 0.006, corresponding to 87Sr atoms. The analytical results given
by (31), (32) and (33) are marked by solid lines while squares, cir-
cles and triangles, respectively, represent Clebsch-Gordan numerical
calculations.

Ds,q featured in Eqs. (12) and (14). In that case one finds

Ds,q = a0δsq + i
a1

h̄
Ikεksq + a2

h̄2 IsIq. (27)

This leads to the same form of the effective Hamiltonian (26)
with the same coefficients a0,1,2 defined by Eqs. (22)–(24).

Using the fact that E∗ · (I×E ) = −E∗ · (E×I) =
−(E∗×E ) · I, we express the effective Hamiltonian (26) in the
symmetric and traceless form as in Eq. (16). Consequently,
we obtain the following relations for the coefficients b0, b1,
and b2 defining the scalar, vector, and tensor light shifts

b0 = a0 + ī2
I a2/3, b1 = a1 + a2/2 and b2 = a2/2, (28)

with

ī2
I ≡ I2/h̄2 = iI (iI + 1). (29)

It is convenient to define the dimensionless b coefficients

b̄u = buh̄AHF/
∣∣d2

ge

∣∣ , with u = 0, 1, 2. (30)

Calling on Eqs. (22)–(24) and (28), one arrives at the ex-
plicit expressions for the latter coefficients:

b̄0 = −3Ē (+)
(
�̄ − ĒiI

) + ī2
I

(
γ Ē (−) − Ē2

iI

)
3
(
�̄ − ĒiI +1

)(
�̄ − ĒiI

)(
�̄ − ĒiI −1

) , (31)

b̄1 = 2ĒiI

(
�̄ − ĒiI

) + (
γ Ē (−) − Ē2

iI

)
2
(
�̄ − ĒiI +1

)(
�̄ − ĒiI

)(
�̄ − ĒiI −1

) , (32)

b̄2 =
(
γ Ē (−) − Ē2

iI

)
2
(
�̄ − ĒiI +1

)(
�̄ − ĒiI

)(
�̄ − ĒiI −1

) . (33)

In Fig. 2 we plot the dimensionless coefficients b̄0,1,2 as
a function of the relative detuning �̄ using Eqs. (31)–(33)
and the conventional Clebsch-Gordan approach outlined in
Appendix C. There is a perfect agreement with a relative
deviation due to finite computing precision below 10−13.

The analytical expressions (31)–(33) show explicitly the
detuning dependence of the coefficients b̄0,1,2 describing,
respectively, the scalar, vector, and tensor light shifts.
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For example, by taking the 87Sr atom with iI = 9/2 and
choosing detuning comparable with the HF energies, �̄ =∑

f =iI ,iI ±1 Ē f /3 ≈ −0.57, the dimensional coefficients are:
b̄0 ≈ 0.76, b̄1 ≈ 0.09 and b̄2 ≈ 0.05. Thus, the scalar term
dominates for the specific value of �̄ chosen. Yet by changing
�̄ it is possible to find a point where the scalar term b̄0 changes
the sign and thus goes through the zero point, as one sees
in Fig. 2. Hence, one can eliminate the scalar term without
canceling the other terms.

Neglecting the quadratic hyperfine coupling (γ = 0 and
thus ĒiI = −1), Eqs. (32) and (33) shows that the ratio of the
vector and tensor light shifts goes linearly with the detuning:

b̄1/b̄2 = 2�̄ + 3. (34)

Such a linear dependence holds well also after including
the quadratic hyperfine coupling which is typically small
(γ 
 1). From Eq. (34) it follows that the ratio b̄1/b̄2 goes
to zero at �̄ = −3/2 for γ = 0.

For far-off resonance radiation when detuning is much
larger than the energy of the hyperfine splitting ¯|�| � 1, the
dimensionless coefficients read up to terms cubic in detuning

b̄0 ≈ �̄−1 + 2

3
γ ī2

I �̄
−2 + 2

3
ī2
I

[
1 + γ

(
γ ī2

I − 1
)]

�̄−3, (35)

b̄1 ≈ −
(

1 − γ

2

)
�̄−2 + 1

2

[
1 − 4γ ī2

I + γ 2(3ī2
I − 1

)]
�̄−3,

(36)

b̄2 ≈ −γ

2
�̄−2 + 1

2

[−1 + 4γ − γ 2
(
ī2
I + 3

)]
�̄−3. (37)

In this way, for large detuning, �̄ � 1, the scalar light shift
∝ �̄−1 decreases linearly with the inverse detuning, whereas
the vector light shift ∝ �̄−2 goes quadratically. For intermedi-
ate detuning 1 
 �̄ 
 γ −1 the tensor light shift decreases as
�̄−3 and then cross over to an asymptotic decay ∝ γ /�̄2 for
�̄ � γ −1, with |b̄2/b̄1| 
 1 ensured by the weaker quadratic
hyperfine coupling (typically γ 
 1).

B. Effects of spontaneous emission

Let us now include the effects of the finite radiative lifetime
of the excited state. This can be done by replacing the detuning
� by � − ih̄� in our treatment including the expressions
for the coefficients a0,1,2 and b0,1,2, where � is the excited
state linewidth due to spontaneous emission. Consequently,
the effective Hamiltonian acquires a non-Hermitian part rep-
resenting the radiative losses.

To estimate the losses let us expand Im b̄0,1,2 to first order
in the linewidth � assuming that the detuning is not too close
to the hyperfine lines (|� − E f | � h̄�) and neglecting the
quadratic contribution to the hyperfine coupling (γ = 0):

Im b̄0 ≈ 3(�̄ + 1)4 + 2(�̄ + 1)ī2
I + ī4

I

3
(
�̄ − ĒiI +1

)2(
�̄ − ĒiI

)2(
�̄ − ĒiI −1

)2 �̄, (38)

Im b̄1 ≈ − 4�̄3 + 13�̄2 + 12�̄ − ī2
I + 3

2
(
�̄ − ĒiI +1

)2(
�̄ − ĒiI

)2(
�̄ − ĒiI −1

)2 �̄, (39)

Im b̄2 ≈ − 3�̄2 + 4�̄ − ī2
I + 1

2
(
�̄ − ĒiI +1

)2(
�̄ − ĒiI

)2(
�̄ − ĒiI −1

)2 �̄, (40)

with �̄ = �/AHF.

FIG. 3. Dependence of the loss ratio Im b̄0/Re b̄1,2 (blue solid
lines, left vertical axis) and the dimensionless vector (a) and tensor
(b) polarizabilities Re b̄1,2 (dashed yellow lines, the right vertical
axis) on the dimensionless detuning �̄ for �/|AHF| = 3×10−5. Red
dash-dotted horizontal lines represent the limiting value of the ratio
Im b̄0/Re b̄1 for large detuning given by Eq. (41).

Although these formulas do not hold when the detuning
|� − E f | becomes comparable to h̄� or is smaller, such a
situation is not interesting because of a significant increase of
losses compared to the light shifts. However, the intermediate
(h̄� 
 |� − E f | 
 h̄AHF) and far detuned regimes are well
described by Eqs. (38)–(40). For the far detuned radiation,
|� − E f | � h̄AHF, the losses go as Im b̄0 ∝ �̄−2, Im b̄1 ∝
�̄−3, and Im b̄2 ∝ �̄−4, so the dominant loss term Im b̄0 and
the vector light shift coefficient Re b̄1 both go as 1/�2. Hence,
in the far detuned regime the ratio Imb̄0/Reb̄1 becomes con-
stant and is determined by the ratio of the linewidth � and the
hyperfine structure constant AHF:

|Imb̄0/Re b̄1| ≈ �/|AHF| 
 1. (41)

For example, for the 1S0 → 3P1 line of the species: spin-
7/2 43Ca, spin-9/2 87Sr, spin-1/2 171Yb, and spin-5/2 173Yb,
this ratio is, respectively, �/|AHF| = 2×10−6, 3×10−5,

5×10−5, and 2×10−4, showing that the intercombination line
of alkaline-earth-like atoms is very favorable to engineer
nuclear-spin-sensitive vector or tensor light shifts.

Yet in the far-detuned regime, the vector and tensor light
shifts decrease considerably. To get their larger values, one
needs to go closer to the resonances or even between the
resonance lines. In that case the relative contribution of the
losses can still have reasonably small (of the order of 10−4)
with a considerably increase of the vector light polarizability,
as one can see in Fig. 3.

IV. SPECIFIC CONFIGURATIONS

The analytical form of the effective Hamiltonian (16) of the
ground-state manifold can be presented as

Ĥeff = Ĥeff (0) + Ĥeff (1) + Ĥeff (2), (42)

where

Ĥeff (0) := b0

4
(E∗ · E ) = b0

4
|E|2 (43)
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is the scalar component,

Ĥeff (1) := ib1

4h̄
I · (E∗ × E ) = − b1

2h̄
I · (E ′ × E ′′) (44)

is the vector component, and

Ĥeff (2) := b2

4h̄2

[
(E∗ · I)(E · I) − 1

3
|E|2I2 + H.c.

]

= b2

2h̄2

[
(E ′ · I)2 + (E ′′ · I)2 − 1

3
|E|2I2

]
(45)

is the tensor component. In the above expressions, we used the
real and imaginary parts of the complex light field E = E ′ +
iE ′′. This entirely analytical form allows one to explore its
form to design desired atom-light coupling. Below we discuss
three example configurations including a single beam and a
pair of counter-propagating beams and a pair of perpendicular
beams. The last configuration is demonstrated to generate
spin-orbit coupling for the nuclear spin. Finally, in Sec. IV D
we discuss a way of eliminating the tensor light shifts by
combining light fields with highly different frequencies.

A. Single beam

Let us consider first a situation where the system is sub-
jected to a single linearly polarized laser beam,

E = Eeikzez, (46)

where the amplitude E is assumed to be real and no extra
global phase is added. This can be done by properly choosing
the origin of spatial coordinates in all the examples considered
here in Secs. IV A–IV C.

For the single beam the vector light shift (44) is zero and
effective Hamiltonian contains only the position-independent
scalar and tensor components

Ĥeff = E2

4

[
b01 + 2b2

h̄2

(
I2

z − I2

3

)]
, (47)

where 1 is an identity operator. This shifts the ground-state
energies according to Ĥeff |g〉|iI , mI〉 = E (iI )

mI
|g〉|iI , mI〉 with

eigenvalues having a scalar term (independent of mI ) and
tensor shifts (quadratic in mI ), namely E (iI )

mI
= E2/4[b0 +

2b2(m2
I − ī2

I /3)].
In the case of a circularly polarized laser beam,

E = Eeikze±, with e± = 1√
2

(ex ± iey), (48)

the effective Hamiltonian contains additionally the (position-
independent) vector components ∝ Iz:

Ĥeff = E2

4

[
b01 ∓ b1

h̄
Iz + b2

h̄2

(
1

3
I2 − I2

z

)]
. (49)

In this configuration, eigenenergies of the ground-states man-
ifold |g〉|iI , mI〉 contain additional position-independent linear
(vector) shifts, E (iI )

mI
= E2/4[b0 ∓ b1mI − b2(m2

I − ī2
I /3)].

B. Two cross-polarized counter-propagating laser beams

Consider next the effect of two cross-polarized counter-
propagating Raman beams where

E = E2

√
2

(eikzex + e−ikzey). (50)

In that case, the scalar light shift is uniform,

Ĥeff (0) = E2

4
b01, (51)

and there are spatially periodic vector and tensor components,

Ĥeff (1) = E2

4

b1

h̄
sin (2kz)Iz (52)

and

Ĥeff (2) = 1

2

b2

h̄2 E
2

(
cos2 (kz)I2

ỹ + sin2 (kz)I2
x̃ − 1

3
I2

)
, (53)

with

Ix̃ := Ix − Iy√
2

and Iỹ := Ix + Iy√
2

. (54)

The latter Ĥeff (2) can be also represented in terms of the origi-
nal nuclear spin operators Ix,y,z:

Ĥeff (2) = 1

2

b2

h̄2 E
2

(
1

6
I2 − 1

2
I2

z + cos (2kz)

2
{Ix, Iy}

)
, (55)

where anticommutators can be rephrased by using the com-
mutation relations: {Ix, Iy} = [Iy, Ix] + 2IxIy = −ih̄Iz + 2IxIy.

Therefore, in addition to uniform position-independent
light shifts, in this configuration involving counterpropagating
light beams there is also a state-dependent periodic lattice
potential due to the scalar and vector terms Ĥeff (1) and Ĥeff (2),
Eqs. (52)–(55).

C. Two perpendicular light beams for spin-orbit coupling

In the typical situations presented in the previous sub-
sections, the effective Hamiltonian contains both vector and
tensor shifts. Here we will consider a scheme in which these
light shifts describe the spin-orbit coupling (SOC) of the NIST
type [18,23] supplied with an extra quadratic term (tensor
light shift). For additional flexibility, we will allow a small fre-
quency difference δω with |δω/AHF| 
 1 between two beams
enabling us to remove or modify the position-independent
linear shift in the effective Hamiltonian.

The scheme involves two light beams of equal amplitudes
propagating at a right angle. One of them is propagating along
the z axis and is circularly e+ polarized. The second beam is
propagating along the y axis with a linear polarization ez and
a frequency difference δω with respect the the first beam, so
that

E = E√
2

(e+eikz + eze
i(ky−δωt ) ). (56)

The scalar light shift is then uniform, Ĥeff (0) = 1
4 b0E2, and

thus will be omitted by redefining the detuning energy �. The
vector and tensor components are

Ĥeff (1) = −E2

8

b1

h̄
(Iz −

√
2Ixy(s)), (57)
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Ĥeff (2) = −E2

4

b2

h̄2

(
I2

6
− I2

z

2
− {Ixy(s), Iz}√

2

)
, (58)

where

Ixy(s) := Ix cos (s) + Iy sin (s) (59)

and s = ky − kz − δωt . Alternatively, the operator Ixy(s) can
be cast in terms of the spin raising and lowering operator I± =
Ix ± iIy as

Ixy(s) = I+eis + I−e−is. (60)

The time dependence of linear and quadratic shifts can be
eliminated by a unitary transformation describing the time-
dependent spin rotation around the z axis,

Û = exp (−iIzδωt/h̄). (61)

Consequently, Ixy(s) entering Ĥeff (1) and Ĥeff (2) transforms
into the time-independent operator Û †Ixy(s)Û = Ixy(ky − kz),
and the light shifts take the form

Ĥeff(1) = −E2

8

b1

h̄
[Iz −

√
2Ixy(ky − kz)] + δωIz (62)

and

Ĥeff(2) = E2

4

b2

h̄2

[
− I2

6
+ I2

z

2
+ {Ixy(ky − kz), Iz}√

2

]
, (63)

where an extra linear Zeeman shift term δωIz appears in Ĥeff (1)

due to the time-dependence of the unitary transformation Û .
In particular, by choosing δω = b1E2/8h̄, the linear shift ∝ Iz

is eliminated in Eq. (62), giving

Ĥeff(1) = E2

4
√

2

b1

h̄
Ixy(ky − kz). (64)

The operator Ixy(ky − kz) defined by Eq. (59) and featured
in Ĥeff (1) and Ĥeff (2) represents the spin rotating in the xy
plane when the atomic position changes in the y-z direc-
tion. This provides a linear SOC of the NIST type [18,23]
in the vector component of the effective Hamiltonian Ĥeff (1)

given by Eq. (62) or Eq. (64), and a more complex quadratic
SOC in the tensor component Ĥeff (2) given by Eq. (63). Note
that the position dependence of both linear and quadratic
terms can be eliminated by an additional unitary operation
Û1 = exp[−i(kz − ky)Iz/h̄] transforming Ixy(ky − kz) to the
position-independent spin operator Ix. As in the case of
spin-1/2 [18,23], the SOC is then represented by the spin-
dependent momentum shift when the atomic kinetic energy
is included.

D. Combining significantly different frequencies
for eliminating tensor light shifts

As exemplified above, realizing purely linear light shifts,
in particular the linear SOC, can be complicated for atoms
with a large spin, as the tensor terms are present in typical
configurations. It has been proposed to tune these out by
stroboscopically alternating different polarization configura-
tions at a rate exceeding the atomic response rate [7]. As an
alternative relying on continuous illumination, we propose to

use a bichromatic light with two widely different frequencies,
ensuring that the resulting vector light shifts are of the same
sign. Yet, perfectly opposing tensor terms cancel each other.

In this way, let us consider two laser fields α and β with
the same configurations, but significantly different detunings
�α and �β . Specifically, the frequency difference �α − �β

should be large compared to the characteristic frequencies of
the vector and tensor light shifts, so that the fast oscillating
cross terms of the effective Hamiltonian average out. The re-
sulting effective Hamiltonian is thus additive, namely is given
by the sum of the effective Hamiltonians due to the separate
fields α and β,

Ĥeff = Ĥeff,α + Ĥeff,β . (65)

In all situations considered in Secs. IV A–IV C, the linear
and quadratic light shifts are characterized by the factors
E2b1 ≡ E2b1(�) and E2b2 ≡ E2b2(�). For the bichromatic
field these factors are to be replaced by E2

αb1(�α ) + E2
βb1(�β )

and E2
αb2(�α ) + E2

βb2(�β ), respectively, where the normal-
ization condition E2

α + E2
β = 1 applies to the amplitudes of

the electric field. The quadratic light shift can be eliminated
by properly choosing detunings and amplitudes of the electric
fields such that E2

αRe[b2(�α )] + E2
βRe[b2(�β )] = 0.

The analytical expressions for the vector and tensor co-
efficients b1 and b2 make it easy to determine suitable
configurations. In particular, we note that b2 changes sign
when crossing the central hyperfine line at � = EiI , while b1

does not (apart from a tiny spectral window), as one can see in
Figs. 2 and 3. Thus, one can eliminate the quadratic light shift
by taking the detunnings �α and �β to be on different sides
of the central hyperfine line. For example, one can choose de-
tunings to be symmetric with respect to the central hyperfine
line: �α = EiI + δ and �β = EiI − δ.3

As shown in Fig. 4, for iI = 9/2 corresponding to
87Sr, at δoptimal � 3|AHF| there is a local optimal ratio
between vector shift and loss rate due to spontaneous
emission, Re b̄1,
/Im b̄0,
 , is 104, where b̄i,
 = E2

α b̄i(�α ) +
E2

β b̄i(�β ) (with i = 0, 1, 2) are the dimensionless bichromatic
coefficients.

Using two light fields even further detuned, away from the
hyperfine structure, one can also have the opposite signs of
b2 and same signs of b1 needed for the cancellation of the
tensor light shifts without canceling the vector ones. There
are however two drawbacks: (i) vector shifts smaller in ab-
solute value, (ii) a complication in the implementation of
spin-dependent lattices or vector spin-orbit coupling. Indeed,
the schemes considered in Secs. IV B and IV C involve a local
phase related to optical path differences between two beams.
When superimposing two spin-dependent lattices created with
light beams at differing wavelengths, the slight difference
k = kα − kβ in wave vectors kα and kβ might matter. These
difficulties can be overcome by working at the relatively
small detuning within the hyperfine structure, as discussed

3The frequency difference δ in the bichromatic scheme should not
be confused with a much smaller frequency difference δω included
in the scheme considered in Sec. IV C to have an adjustable linear
Zeeman shift.

033293-7



D. BURBA et al. PHYSICAL REVIEW RESEARCH 6, 033293 (2024)

FIG. 4. The ratio Re b̄1,
/Im b̄0,
 (a, upper panel) and Re b̄1,


(b, lower panel) vs the dimensionless detuning imbalance δ̄ =
δ/(h̄AHF ), where b̄i,
 = E2

α b̄i(�α ) + E2
β b̄i(�β ) (with i = 0, 1, 2) are

the dimensionless bichromatic coefficients. Here the normalization
condition E2

α + E2
β = 1 is used and the calculations were carried out

for �/|AHF| ≈ 3×10−5. The amplitudes of bichromatic light beams
were chosen such that the condition E2

αRe b̄2(�α ) + E2
βRe b̄2(�β ) =

0 holds, and the tensor light shift is eliminated. This requirement can
be always satisfied for values of δ̄ shown in this plot, but not for
arbitrary δ̄, as beyond this region signs of Re b̄2(�α ) and Re b̄2(�β )
may become the same.

above (δoptimal � 3|AHF| for iI = 9/2). In that case, one can
ensure that the two polarization lattices are in phase over the
lengthscale of the atomic cloud. For example, in the coun-
terpropagating beam configuration, where the optical path
difference 2k(z − z0) is typically controlled by the position
z0 of a mirror, this rephasing occurs every z − z0 = n×πc/2δ

with n ∈ N. For 87Sr, one has πc/2δoptimal � 10 cm. This is a
macroscopic distance, so it is possible to tune the optical path
length accurately enough and thus realize a good cancellation
of the tensor light shift.

V. SUMMARY AND DISCUSSIONS

We have analyzed the effective Hamiltonian describing the
scalar, vector, and tensor light shifts of nuclear spin states in
alkaline earth atoms. Our approach, rooted in the Dyson iden-
tity, circumvents the need for explicit scrutiny of transitions
within the excited state manifold’s specific hyperfine states.
Instead, we have derived simple analytical expressions for the
coefficients defining the scalar, vector, and tensor light shift
in the effective Hamiltonian. Our work on one-body Hamilto-
nians can be a stepping stone to design experiments where ad
hoc one-body terms (such as SOC) combined with interatomic
interactions lead to emerging phenomena (quantum phases,
spintronic applications). We have explored typical examples
of light configurations capable of inducing light shifts for the
nuclear spin states in the ground electronic state manifold. Ad-
ditionally, we have discerned configurations governing SOC
that encompass both linear and quadratic shifts, alongside
those characterized by purely linear SOC effects.

The breadth of our analytical findings is broad-reaching
and can be applied to other alkaline earth (or alkaline-earth-
like) atoms with analogous structures. We anticipate that the

straightforward analytical expressions for scalar, vector, and
tensor terms we have provided will prove helpful in guid-
ing future experimental endeavours and fostering a more
profound theoretical comprehension of systems subjected to
off-resonance light coupling.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with Bruno
Laburthe-Tolra. This work was supported by DAINA
project of the Polish National Science Center UMO-
2020/38/L/ST2/00375 and Lithuanian Research Council S-
LL-21-3. E.W. acknowledges support of the Polish National
Science Centre Project No. UMO-2016/22/E/ST3/00045.
M.R.D.S.V. acknowledges support from Agence Nationale de
la Recherche, Project No. ANR-23-CE47-0006-01. A part of
this work was initiated during the Polish-French Symposium
that took place at the Scientific Center of the Polish Academy
of Sciences in Paris.

APPENDIX A: DYSON EQUATION/IDENTITY

Let us consider a Hamiltonian represented in terms of the
zero-order Hamiltonian H0 and the interaction operator V as:
H = H0 + V . We define the full Green operator G = (� −
H )−1 and the zero-order Green operator G0 = (� − H0)−1,
where � is some parameter in energy units; in the present
situation it is the detuning. The Green operator obeys the
Dyson equation (identity),

G = G0 + G0V G. (A1)

The validity of the Dyson identity can be proved by rearrang-
ing the Green operator in the following way:

G = G0(� − H0)G = G0(� − H + V )G = G0 + G0V G.

(A2)

The Dyson equation (A1) is exact and valid for any H0 and
V , no approximation or assumption has been made. Note also
that in this work we take H0 = 0 and V = HHF. In that case,
Eq. (A1) reduces to Dyson equation presented in the main text
in Eq. (13).

APPENDIX B: DERIVATION OF THE EQUATION
FOR K AND ITS SOLUTION

1. Equation for K

The vector operator K with the Cartesian components Ki is
defined as

Ks = Ds,qEq, (B1)

where Ds,q is a tensor describing the second-order light-
induced interaction for the ground-state atoms:

Ds,q = PgdsPeGPedqPg. (B2)

Applying the Dyson identity for G given by Eq. (13) or
Eq. (A1), one gets the following relation for Ds,q:

Ds,q =
∣∣d2

ge

∣∣
�

Pgδsq + PgdsPeHHFGPedqPg. (B3)
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Combining it with the expression (B1) for K, one has

K = 1

�
Pg

∣∣d2
ge

∣∣E + AHF

h̄�
PgdPe(I · J)

×
(

1 + γ

h̄2 I · J
)

GPe(d · E )Pg. (B4)

Our aim is to get a closed equation [Eq. (B17)] for K contain-
ing only the spin operators I and the electric field amplitude
E . For this, we will carry out the following steps. Since J
commutes with Pe and gives zero when acting on the ground-
state manifold (PgJ = 0), one has

PgdiPe(J · I) = Pgdi(J · I)Pe

= Pg[di, (J · I)]Pe

= −ih̄εlikPgdkPeIl , (B5)

where the use has been made of the commutator relations [24]:

[Ji, d j] = [Li, d j] = ih̄εi jkdk . (B6)

Equation (B5) can be represented in a vector form as

PgdPe(J · I) = ih̄PgI × dPe. (B7)

With this Eq. (B4) reduces to

K = 1

�
Pg

∣∣d2
ge

∣∣E + i
AHF

�
Pg

[
I × dPe + γ

h̄2 (I × d)Pe(I · J)

]
× GPe(d · E )Pg. (B8)

Using the commutation relation (B6), one has for the Carte-
sian components of the operator Pg(I × d)Pe(I · J):

Pg(I × d)iPe(I · J) = εilkIlPgdkPe(I · J)

= ih̄εilkεkpqIlPgdqPeIp. (B9)

Since εilkεkpq = εilkεpqk = δipδlq − δiqδl p, then

Pg(I × d)iPe(I · J) = ih̄Pg(Ildl Ii − IldiIl )Pe

= ih̄Pg(IiIldl − diIl Il )Pe − h̄2εikl IkPgdlPe.

(B10)

In vector form this reads

Pg(I × d)Pe(I · J) = ih̄Pg[I(I · d) − I2d]Pe − h̄ 2Pg (I × d)Pe.

(B11)

Therefore, the relation (B8) transforms to

K = 1

�
Pg

∣∣d2
ge

∣∣E + i
AHF

�
Pg

[
(1 − γ )(I × d)

+ i
γ

h̄
(I(I · d) − I2d)

]
PeGPe(d · E )Pg. (B12)

The final step is to form the operator K from d and G in
Eq. (B12). Using Eqs. (B1) and (B2), one can write

PgdiGPe(d · E )Pg = PgdiPeGPeduPgEu = DiuEu = Ki. (B13)

Equivalently, in the vector form one has

PgdPeGPe(d · E )Pg = K. (B14)

Analogously, the following relations hold:

Pg(I × d)PeGPe(d · E )Pg = I × K, (B15)

Pg(I · d)PeGPe(d · E )Pg = I · K. (B16)

Hence, the relation (B12) provides the required equation
for K:

ηK = 1

�
Pg

∣∣d2
ge

∣∣E + i
AHF

�
(1 − γ )(I × K) − γ

AHF

h̄�
I(I · K),

(B17)

where

η = 1 − γ AHF h̄iI (iI + 1)/�. (B18)

2. Solution of equation for K

As explained in the main text, we are looking for the
solution of Eq. (B17) in the form

K =
[

a0E − i
a1

h̄
I × E + a2

h̄2 I(I · E )

]
Pg. (B19)

Substituting this ansatz into Eq. (B17), one finds

ηK = 1

�
Pg

∣∣d2
ge

∣∣E + i
AHF

�
(1 − γ )Pg

[
a0I × E − i

a1

h̄
I

× (I × E ) + a2

h̄2 I × I(I · E )

]
+ Kγ , (B20)

where

Kγ = −γ
AHF

h̄�
I(I · K)

= −γ
AHF

h̄�
PgI

[
a0(I · E ) − i

a1

h̄
I · (I × E )

+ a2

h̄2 (I · I)(I · E )

]
. (B21)

The above relation can be rewritten as

Kγ = −γ
AHF

h̄�
Pg

[
a0 + a1 + a2

I2

h̄2

]
I(I · E ), (B22)

where we used cyclic commutation relations for the compo-
nents of the nuclear spin operator I, that gives I × I = ih̄I (a
general property of quantum angular momenta operators), and
also the relation I · (I × E ) = E · (I × I) = ih̄I · E .

Rearranging the vector operators entering the right-hand
side of Eq. (B20), one has

ηK = 1

�
Pg

∣∣d2
ge

∣∣E + i
AHF

�
(1 − γ )Pg

[
(a0 + a1)I × E

+ i

h̄
(−a1 + a2)I(I · E ) + i

a1

h̄
EI2

]
+ Kγ , (B23)

where in the term proportional to a2 relation I × I = ih̄I was
applied, while in the term proportional to a1 the calculation is
as follows:

(I × (I × E ))k = εki jεmn jIiImEn

= IiEiIk − IiIiEk

= IkIiEi − IiIiEk + ih̄εiklEiIl

= Ik (I · E ) − EkI2 + ih̄(I × E )k. (B24)
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Putting to Eq. (B23) the expression (B22) for Kγ and
grouping terms proportional to E , I × E and I(I · E ), the
following equation is obtained:

η� · K =
[∣∣d2

ge

∣∣ − AHF(1 − γ )I2 a1

h̄

]
E Pg

+ i

h̄
[h̄AHF(1 − γ )(a0 + a1)]I × E Pg

+ 1

h̄2

[
AHF h̄

(
(1 − γ )(a1 − a2)

− γ

(
a0 + a1 + I2

h̄2 a2

))]
I(I · E )Pg. (B25)

Substituting Eq. (B19) into Eq. (B25) and comparing the fac-
tors at terms proportional to E , I × E and I(I · E ), one arrives
at the following closed set of equations for the coefficients a0,
a1, and a2:

η�a0 = ∣∣d2
ge

∣∣ − AHF(1 − γ )I2 a1

h̄
, (B26)

η�a1 = −h̄AHF(1 − γ )(a0 + a1), (B27)

η�a2 = h̄AHF

[
(1 − γ )(a1 − a2) − γ

(
a0 + a1 + I2

h̄2 a2

)]
.

(B28)

The solution of this system of equations reads

a0 =
∣∣d2

ge

∣∣(� + h̄AHF(1 − γ (I2/h̄2 + 1)))(
� − EiI +1

)(
� − EiI −1

) , (B29)

a1 = − h̄AHF

∣∣d2
ge

∣∣(1 − γ )(
� − EiI +1

)(
� − EiI −1

) , (B30)

a2 = − h̄AHF

∣∣d2
ge

∣∣[h̄AHF + γ (� − 2h̄AHF) − γ 2h̄AHF(I2/h̄2 − 1)](
� − EiI +1

)(
� − EiI

)(
� − EiI −1

) , (B31)

where EiI and EiI ±1 featured in denominators are eigenen-
ergies given by Eqs. (4)–(6) The numerators can also be
represented in terms of eigenenergies, as in Eqs. (22)–(24) of
the main text.

APPENDIX C: A CLEBSCH-GORDAN APPROACH
FOR CALCULATING EFFECTIVE HAMILTONIAN

Throughout this paper, we used the Dyson equation method
for calculating the Green operator and thus the effective
Hamiltonian. The method has the advantage of being ana-
lytically solvable and providing a physical intuition. Here,
we summarize another method, a commonly used Clebsch-
Gordan approach which works well for numerical analysis
but is not convenient for analytics. The calculations based on
the Clebsch-Gordan approach will then be compared with the
ones based on the Dyson equation approach.

We are interested in the effective Hamiltonian Ĥeff describ-
ing the light-induced coupling between the atomic nuclear
spin states in the ground electronic state manifold. It is given
by Eqs. (10)–(12) in the main text, i.e.,

Ĥeff = 1
4E

∗
s Ds,qEq, (C1)

where

Ds,q = PgdsPeGPedqPg, with G = (� − HHF)−1. (C2)

Here Pg and Pe are unit projector operators onto the ground
state (1S0) and excited state (3P1) manifolds, respectively.
In the latter 3P1 manifold the eigenstates of the hyperfine
Hamiltonian HHF are | je iI f m f 〉, where je = 1 is electron
total angluar momentum and iI − 1 � f � iI + 1 is the total
angular momentum of the atom. The corresponding hyperfine

energies E f are given by Eqs. (4) and (6) in the main text.
The Green operator projected onto this excited state manifold
is diagonal in the basis of eigenstates | je iI f m f 〉 and reads
explicitly

PeGPe =
iI + je∑

f =iI − je

f∑
m f =− f

| je iI f m f 〉〈 je iI f m f |
� − E f

. (C3)

Expressing hyperfine eigenstates | je iI f m f 〉 in terms of the
bare electron and spin states | je iI m je mi〉 ≡ | je mje〉|iI mi〉 via

the Clebsch-Gordan coefficients C
f m f

jeiI m je mi
, one has

PeGPe =
∑

mj ,mi,m′
j ,m

′
i, f ,m f

| je mje〉|iI mi〉
C

f m f

jeiI m je mi
C

f m f ∗
jeiI m′

je
m′

i

� − E f

× 〈
je m′

je

∣∣〈iI m′
i

∣∣. (C4)

Finally, since the dipole operator acts only on the electronic
degrees of freedom, Eq. (C2) for the tensor Ds,q takes the form

Ds,q = Pg

∑
mi,m′

i

|iI mi〉Dmi,m′
i

s,q 〈iI m′
i|, (C5)

with

Dmi,m′
i

s,q =
∑

mj ,m′
j , f ,m f

〈
jg mjg

∣∣ds| je mj〉
C

f m f

jeiI m je mi
C

f m f ∗
jeiI m′

je
m′

i

� − E f

× 〈
je m′

je

∣∣dq

∣∣ jg m′
jg

〉
, (C6)

where jg = 0 and mjg = 0 are, respectively, the electron an-
gular momentum and its projection quantum numbers for the
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ground-state manifold 1S0, and the unit projection operator
onto this manifold is Pg = | jg mjg〉〈 jg mjg|.

We now define the dipole moment matrix elements
〈 jg mjg|ds| je mj〉 ≡ 〈1S0 |ds| 3P1, mj〉 featured in Eq. (C6). As
discussed in Ref. [25] (Chap. 3, p. 50; Chap. 10, pp. 350–351),
if we identify the two-photon polarization states |σ±〉 to pho-
ton angular momentum states | j = 1, m = ±1〉, and defining
the photon angular momentum operator �J , the states must
transform as exp −iπJy|σ+〉 = +|σ−〉 to satisfy the standard
raising and lowering operator conventions. The commonly
used relations between circular and linear polarization states
|σ±〉 = (|x〉 ± i|y〉)/

√
2 do not satisfy that, and will lead to

erroneous tensorial shift calculations. Instead one must use

|σ±〉 = (∓|x〉 − i|y〉)/
√

2. Consequently, the matrix elements

of the atomic dipole operators dx,y,z = �d · �ex,y,z are〈
1S0

∣∣dx

∣∣ 3P1, mj
〉 = dge√

2

(
δmj ,−1 − δmj ,1

)
, (C7)

〈
1S0

∣∣dy

∣∣ 3P1, mj
〉 = − dge

i
√

2

(
δmj ,1 + δmj ,−1

)
, (C8)

〈
1S0

∣∣dz

∣∣ 3P1, mj
〉 = dgeδmj ,0. (C9)

Using Eqs. (C1), (C5), (C6), and (C7)–(C9), the matrix
elements of the effective Hamiltonian were numerically cal-
culated and compared with analytical results in Fig. 2 showing
a perfect agreement between numerical and analytical results.
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