Title Analysis and application of empirical Bayes methods in data mining /
Translation of Title Duomenų tyrybos empirinių Bajeso metodų tyrimas ir taikymas.
Authors Jakimauskas, Gintautas
Full Text Download
Pages 40
Keywords [eng] empirical Bayes methods ; data mining ; large populations
Abstract [eng] The research object is data mining empirical Bayes methods and algorithms applied in the analysis of large populations of large dimensions. The aim and objectives of the research are to create methods and algorithms for testing nonparametric hypotheses for large populations and for estimating the parameters of data models. The following problems are solved to reach these objectives: 1. To create an efficient data partitioning algorithm of large dimensional data. 2. To apply the data partitioning algorithm of large dimensional data in testing nonparametric hypotheses. 3. To apply the empirical Bayes method in testing the independence of components of large dimensional data vectors. 4. To develop an algorithm for estimating probabilities of rare events in large populations, using the empirical Bayes method and comparing Poisson-gamma and Poisson-Gaussian mathematical models, by selecting an optimal model and a respective empirical Bayes estimator. 5. To create an algorithm for logistic regression of rare events using the empirical Bayes method. The results obtained enables us to perform very fast and efficient partitioning of large dimensional data; testing the independence of selected components of large dimensional data; selecting the optimal model in the estimation of probabilities of rare events, using the Poisson-gamma and Poisson-Gaussian mathematical models and empirical Bayes estimators. The nonsingularity condition in the case of the Poisson-gamma model is presented.
Type Summaries of doctoral thesis
Language English
Publication date 2014