DE GRUYTER Open Mathematics 2024; 22: 20240055 a

Research Article

Antanas Laurinc¢ikas and Darius Siaucianas*

On generalized shifts of the Mellin transform
of the Riemann zeta-function

https://doi.org/10.1515/math-2024-0055
received June 12, 2024; accepted August 5, 2024

Abstract: In this article, we consider the asymptotic behaviour of the modified Mellin transform Z(s),
s =g + it, of the Riemann zeta-function using weak convergence of probability measures in the space of
analytic functions defined by means of shifts Z(s + i¢(7)), where ¢(7) is a real increasing to + differentiable
function with monotonically decreasing derivative satisfying a certain estimate connected to the second
moment of Z(s). We prove in this case that the limit measure is concentrated at the point gy(s) = 0.
This result is applied to the approximation of gy(s) by shifts Z(s + ip(7)).
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1 Introduction

In function theory, for the investigation of complicated functions, various transforms are widely applied.
Sometimes it is convenient to calculate a certain transform of the considered function and then, using the
inverse formula, obtain desired information on the initial function. Therefore, investigation of various types of
transforms is an important problem of function theory and has numerous theoretical and practical
applications.

In this article, we are interested in some Mellin transforms. Denote by s = ¢ + it, g, t € R, a complex
variable. Let g(x)x°1 € L(0, ), where L(0, ) denotes the space of integrable over (0, %) functions.
The Mellin transform G(s) of g(x) is defined by

G(s) = jg(x)xs-ldx.
0

Putting y = e* gives

G(o + it) = _[eing(eX)eUde,
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thus, G(o + it) is the Fourier transform of g(e*)e”™, i.e., Mellin transforms are a partial case of Fourier trans-
forms. If, additionally, g(x) is of bounded variation in every finite interval, then the inverse formula

g+ioco a+iT

gX+0)+gx-0) 1 I O .
5 = o I G(s)x™sds = 2ﬂi}£IBJ:[TG(S)X ds

g-ic

is valid.
In analytic number theory, the so-called modified Mellin transforms

G(s) = Jg(x)x‘sdx
1

are very useful for the investigation of moments of zeta-functions. Note that G(s) has a certain advantage
against G(x) because in G(s) there is not a convergence problem at the point x = 0. Moreover, the transforms
G(s) and G(s) are closely connected. Let

g/x), if 0<x<g1,
0, otherwise.

800 =

Then, it is easily seen that the modified Mellin transform of g(x) coincides with the classical Mellin transform
of the function x71g (x) [1].

One of the main objects of analytic number theory is the Riemann zeta-function {(s), which, for > 1,
is defined by

o

1
(©=3

m=1

1—1
1'?]

over primes. Moreover, {(s) has analytic continuation to the whole complex plane, except for a simple pole
at the point s = 1. To be precise, the first modified Mellin transform was the function

or by the Euler product

(=l

p

4
xSdx

g 1 .
Z4(s) = I‘c[g +ix

1
introduced by Motohashi in [2] in connection with the fourth power moment

4
dt, T - oo,

T
MyT) & I‘([% +it
0

(see also [3,4]). Analytic properties and estimates of the function Z5(s) lead to significant results for My(T).
For example, using a method involving Z,(s), the bound

Ex(T) < T?/3*
with every € > 0 was obtained, where
Ey(T) = My(T) - TP(logT)

with a polynomial P of degree 4. Here and in what follows, € is an arbitrary fixed positive number, in different
accuracies not the same, and x <.y, x € C, y > 0, means that there exists a constant ¢ = c(¢) such that
[x] < cy. These examples show the importance of the modified Mellin transforms in the theory of {(s).
In general, the modified Mellin transforms of the Riemann zeta-function are interesting analytic objects,
and this is confirmed by previous studies [5-10].
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In the article, we continue the study of asymptotic behaviour of the function

2
xSdx, o>1

1+ix
2

EON I‘c
1

The analytic theory of Z(s) is given in [4]; Section 3. We recall some results from [4] that will be used below.
Denote by y the Euler constant and set

T
E(T) =J' ([% 4 it]‘ dt - Tlog% - @y - DT,
0

T T
F(T) = J'E(t)dz -Tn,  F(T)= IF(t)dt.
1 1

Then, [4] Z(s) has analytic continuation to the half-plane g > —3/4 except for a double pole at the point s = 1.
Moreover, the representation

Z(s) = % - EQ) + (s + 1) + s(s + (s + 2) [F00x~dx )

1
— +
(s-1% s
1
with a = 2y — log2m holds. Also, the estimate
Z(o+it) < t79%  0<0<1, t=t>0,

and the mean square estimate

T
def
L(T) < j|z(a + iOPdt <, 5 T220% @
1
are valid. In [11], it was shown that
1
I(T) >, T> %07, 2 <o<l (3)

By works of Bohr-Jessen in the beginning of the last century [12-18], it is known that a chaotic behaviour
of the Riemann zeta-function and other Dirichlet series is governed by probabilistic laws. Roughly speaking,
this means that, for g > 1/2, for some classes of sets A, the density

%m{t €[0,T]: {(o + it) € A},

where mA is a certain measure on R, has a limit as T — o, For this, it is convenient to use the weak
convergence of probability measures and its theory. Thus, let 8(X) denote the Borel o-field of the space X
(in the general case, topological), and Pr and P be the probability measures on (X, 8(X)). By the definition,

Py converges weakly to P as T — o if, for every real continuous bounded function g on X,

P, 5 p
-
TTAOO

lim XIgdPT = [gap.

X

Let LA stand for the Lebesgue measure of a measurable set A C R. Then, the modern Bohr-Jessen theorem
is stated as follows: for every fixed o > 1/2,

%L{t €[0,T]: {(c+it) EA}, AEB(C),

converges weakly to a certain probability measure on (C, 8(C)) as T — .
For o = 1/2, a certain normalization of the function {(1/2 + it) is needed [14,15].
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In [19] and [20], a similar approach was applied to the function Z(o + it); however, as it was observed
in [11], the limit measure is degenerated at the point s = 0. Therefore, in [11], in place of

CLUE[0,T]: Z(@+ i€ A, A BO),
for 1/2 < ¢ < 1, the probability measure
TLUEIT,2T]: 2o +ip(t) € 4}, A€ B(C), @

with ¢(t) € W; was considered. The class W, consists of increasing to +c differentiable functions ¢(t)
with monotonically decreasing derivative ¢’(t) such that

lo-@(T) _
@(T) ’
We see that the shifts Z(o + ip(t)) in (4) depend on o because, by (5), ¢(¢t) is connected to o.

Our aim is to extend the aforementioned results to the space of analytic functions. We note
that limit theorems in the space of analytic functions have a certain advantage against those in the space C
because they are closely connected to approximation of analytic functions by shifts Z(s + i¢(7)). Let
D={s€C:1/2 < g <1}.Denote byH = H(D) the space of analytic on D functions endowed with the topology
of uniform convergence on compacts. We will deal with weak convergence, as T — , for

T - o, (5)

Pry(4) = %L{T € [T,2T]: Z(s +ip(1)) € A}, A€ B(H).

Differently, from (4), the function ¢(7) must be the same for all s € D. Therefore, we replace hypothesis (5) by

I,(29(2T))

sup y <1, T- o 6
oezyy T9°CT)

Let V be the class of positive increasing to + differentiable functions ¢(7) on [Ty, ®), Ty > 1, with decreasing
derivative ¢’(7) satisfying (6). For example, the function ¢(7) = exp{(loglog7)*}, a > 1,7 > €?, satisfies hypoth-
eses of class V.

This article is organized as follows. In Section 2, we discuss some types of convergence and state the main
theorem. In Section 3, we prove limit lemmas in the space H for some objects connected to the function Z(s),
including an absolutely convergent integral. Theorems 1 and 2 are proved in Section 4.

2 Some convergence remarks

Let (X, d) be a certain metric space and X a X-valued random element defined on the probability space
(Q, A, u). We say that the random element X is degenerated at the point x € X if
1, if xeA,

€ ¢ . 7
0, otherwise, A€ B(X) @

X € A} = [
Let X;, n € N, be X-valued random elements, and x € X. If, for every € > 0,

lim p{d(Xy, x) = €} = 0,

n—-o

. Moreover, X,, asn — o, converges to X

P
then we say that X, converges in probability to x asn — o [X,, X

D
in distribution |X, e X ] if the distribution p{X, € A}, A € B8(X), as n - o, converges weakly to the dis-

tribution u{X € A}, A € B(X).

P D
It is well known, see Section 1.4 of [21], that X, o X is equivalent to X, i X, when X has the distribu-
tion (7).



DE GRUYTER On the Mellin transform == 5

Let Py be a probability measure on (H, B(H)),

1, if g, €A,

Py (4) =
on(4) 0, otherwise,

i.e, the mass of Pyy is concentrated at the point gy(s) = 0 of the space H. We will consider the weak
convergence Pry T%V»m Py For this, we recall a metric on the space H. Let {K; : j € N} C D be a sequence

of compact embedded sets satisfying the conditions:
M

(2) If K C D is a compact set, then K C K; for some j.

We observe that such a sequence {K;} always exists. For example, we may take rectangles with edges parallel
to the axes.
Now, for f}, f, € H, set

0

1
P h) = 2 55ph ),

j=1
where

L AORSAO]
1+ supseglfy () = f(I

pifi:fp) =

Then, p is the desired metric on the space H inducing its topology of uniform convergence on compact sets.

The aforementioned remarks imply that the relation Pr T%’»w Py holds if, for every € > 0,

lim %L{T € [T, 2T] : p(Z(s + ip(7)),0) = €} = 0. ®

T—o

In view of the Chebyshev-type inequality, we have
1 1 2T
TLT € [T,2]: p(Z(s + (D)), 0) > &} < EIP(Z(S + ip(1)), 0)dr.
T

Hence, by the definition of the metric p, the left-hand side of (8) does not exceed

. 2T
111

=2 57| supl<Z(s + ip())[dz.
8]-:12] TJT’sex,-

Thus, equality (8) is true in the case when, for all j € N,

2T
J sup|Z(s + ip(7))|dr = o(T), T — oo, 9
T SGKj
If ¢(7) = 7, then the later estimate is true. Actually, let [; be a simple closed contour enclosing set K; lying
in the strip D, and

inf inf|s - z| >, 1.
)
SEK; z€l;

By the Cauchy integral formula, we have
|Z(z + it)|
|z -

dz|.
ol

Z(s+it) < J
U
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Thus,

sup|Z(s + in)] <, [1Z(z + i0)] |dal.
SEK]' l]

Therefore, for z = o + it, 1/2 < ¢ < 1, an application of (2) gives

2T 2T 2T 1/2
[ supiz(s + iniar <, [ [12(z + wdridzl <, |1 1202 + i)z | 1dz)
T <K T T
2T+]1] 1/2
<, [|T [ 12+ inpde| 1dz <, [TV@T + (1))
LT 1,

] ]

<<l]',£ Tl_a) 6 > 01

because o > 1/2, and ¢ > 0 is arbitrary, and we obtain (9).
We will prove the following statement.

Theorem 1. Suppose that ¢ € V, where V is the class defined in p. 4. Then, Pry converges weakly to Py
asT — oo,

We observe that the theorem does not follow directly from the estimate for the second moment.
Let k = minseg{Rez}. Similar to the aforementioned arguments, properties of the function ¢(7) imply that,

for minzelm{z Eljl=x-¢
1/2
|dz|

2T 2T
1 . 1 .
7 | sz (s + io@piar <, [|7 LZ(Z + ip(r))Pde

SEK;
T J l/'o

1/2
|dz|

2T

<, I I|Z(K - e+ ilmz + igo(‘z'))l2 dr
LT

Jo

1/2

1 . . 1
<, J|7 120 e+ iz + ipo)f o sdloo + Imz)] dz|

l/b

1 (2T)+|Imz| 12
_ _ 7 2

<<ljoj anT j 1Z(k - & + iw)Pdu|  |dz]

9 T-|Imz|

Jo

. 12
<1, I WIK_S(ZgD(ZT))] |dz]

Ly

1 1/2
<, [fo—a(w(ﬂ))]

< o sup
oe(1/2,1)

1
Wlo(Z(D(ZT))] <, 1.

However, this does not ensure that

2T
1 .
FJ sup|Z(s + ip(7))|dt o 0.

T SEKj
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For A € B(C), define

Pre(4) = 7 LT € 1,271 Z(0 + ig() € 4}

and

1, if 0 € 4,

Poc(4) = 0, otherwise.

Then, we have the following.

Proposition 2. Suppose that 1/2 < g < 1 is fixed. Then, the weak convergence of Pry to Poy implies that of Pr ¢
to Poc as T — oo,
Proof. Consider the mapping h : H — C defined by

h(g) = g(o), g(s) EH(D), s=a+ it

Moreover, we have, for VA € 8(C),
%L{T € [T, 2T] : |Z(0o + ip(7))| € A} = %L{r € [T, 2T] : h(Z(o + ip(1))) € A}
= %.E{T € [T, 2T] : | Z(o + ip(7))| € h™'A}.

Thus, by the definitions of Pry and Pr ¢, it follows that Pr¢ = Pryh™, where
Pryh’(A) = Pre(h'A), A € B(C).

. w . . . .
Therefore, the relation Pr e Py and the principle of preservation of weak convergence under continuous
— 00

mappings, see Section 1.5 of [21], show that

w
PT c . PO [Hh_l.
€l T 0

By the definition of Py,
1, if 0 € 4,

0, otherwise.

1, if g € hla,

Pophi(A) = Pyy(h14) =
ol (4) o ) 0, otherwise,

Hence,
P()y[H h_1 = P()’C .

From the latter remark, we obtain that if Py ¢ does not converge weakly to Py ¢, then Py, does not converge
weakly to Py as T — « as well. O

Theorem 1 can be applied to the approximation of the function gy(s) by shifts Z(s + ip(7)).

Theorem 3. Suppose that ¢ € V. Then, for arbitrary compact set K C D and € > 0,

.1
liminf TL

T—o

T € [T, 2T] : sup|Z(s + ip(1))| < e} > 0.

SEK

Moreover, the limit

1
lim TL

T—oo

rewlﬂrwm26+w&m<4

SEK

exists and is positive for all but at most countably many € > 0.

As it was observed in p. 4, the function ¢(7) = exp{(loglogr)?}, a > 1, 7 > €?, satisfies the hypotheses
of Theorems 1 and 3.
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3 Limit lemmas for integrals

Proofs of all statements on weakly convergent probability measures are based on a theorem from [21] on

D
-

convergence in distribution |—|. For convenience of application, we state this theorem as a separate lemma.

Lemma 4. [21, Theorem 4.2] Suppose that the metric space (X, d) is separable, and X-valued random elements
Xnk and Yy, n, k € N, are defined on a certain probability space (Q, A, u). Let, for allk € N,

D
Xoe = Xk
n—o
and

D
Xk—>X.

k—o

Moreover, for every & > 0,

lim limsup{d(Xue, ¥r) > £} = 0.

n-o

Then,
D
Y, - X.

n—-o

Let n > 1/2 be a fixed number, and, for x, y € [1, ),

{1
o

600 = |5 + o

alx,y) = exp[—

For brevity, use the notations

and
Zy(9) = JG(X)a(x, y)x~Sdx.
1

Thus, Zy(s) is the modified Mellin transform of the function §i(x)a(x, y). Since, by the classical estimate,
G(x) < (1 + |x])V/6 [22], and a(x, y) decreases exponentially with respect to x, the integral for Zy(s) is abso-
lutely convergent in every half-plane g > gy, gy < .

Let b > 1 be a fixed number. Our first step consists of a limit lemma for the integral

b
Zuy(s) = [G00ate, s,
1
Define

1
Qrpy(4) = ;L{T € [T, 2T] : Zpy(s + ip(7)) € A}, A€ B(H).

Lemma 5. Suppose that ¢ € V. Then, for every fixed b and y, Qr ,, converges weakly to Poy as T — .

Proof. It suffices to show that, for every compact set K C D,

2T
%J’ SUp | Zpy(s + ip(D)Pd = 0(1), T~ o, (10)

T SEK
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An application of the Cauchy integral formula reduces the estimation of the aforementioned integral to that of

2T

1 .

7 1Zoy(0 + o),
T

with o > 1/2. By the definition of Z;,(s), denoting by Z the complex conjugate of z € C, we have

|Zby(0 + ()P = Zpy(0 + ip(1)Zpy(0 + ip(D))

b b
= JG(X Ya(x, y)x o ®Odx I(l(x)a(x, YIXTHPOAX
1 1

b
_[ (l(Xl)Zl(Xz)a(Xl,y)a(xz,y)xl - “P(T) O’+l(p('[)dx dx,.
1
X2

Thus,

(1)
GODG0R)a04, Y)ate, )(0ie) j[ ] dr |dxde. 1)

2T b
1 1
_ . 2 _ .
T 'Il-Zb,y(U +ip(o)Pde = Jl'

By the second mean value theorem,

2T X io(c) 2T -12T
2 _ —
Re JT'[;l dr = JT' cos[(p(r) log[ ]]dr ll g[ ]] I dsm o(7) log[ ”
x| 1 B
= 22
=|log x| ol )Id31n o(7)log|— ] log 0 2T)’

where T < £ < 2T. The same estimate is valid for

2T
ImI
T

(1)
dr

X
X

as well. Therefore, by (11),
-1

b b
[ Jataonats, y)ate, y)oax) bade. )

1
Ty'@r)

X1#X2

o)

2T

1 .

7125500 + ip(o)Pdr <
T

In view of the lower bound (3), for 1/2 < o < 1,
I,(2T) » 0 as T — oo,
Therefore, the definition of the class V implies that

1
Tg/(2T)

=0(), T- o,
This together with (12) shows that, for 1/2 < g < 1,
1Zoy(o + io@)Par = o)), T oo
T by (P 5 .
T

Thus, (10) is true, and the lemma is proved. O
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For A € B(H), define

1
Qry(A) = L LI € [T, 2T] : Zy(s + ip(1)) € A}.

Lemma 6. Suppose that ¢ € V. Then, for every fixed y, Qr, converges weakly to Poy as T — .

Proof. Introduce a random variable & defined on a certain probability space (2, A, v) and suppose that &r
is uniformly distributed in [T, 2T]. Define the H-valued random element X,y = X;,(s) having the distribution
PO,[H: and

Xrpy = Xrpy(S) = Zpy(s + i9(&r)).

Then, by Lemma 5,

D
XT,by Tjoo Xp,y- (13)

Since the distribution of x;,, for all b and y is Py, we have
D
Xy 7, Pyp. (14)

Define one more H-valued random element
Xry = XT,y(s) = Zy(s + ip(ér)).

Let K C D be a compact set. Then, for s € K,
Zy(s + i9(0)) = Zny(s + (D) = GO0,y 0@dr < [G00ate, yyxresdx = oy(1),
b b

as b — oo, From this, we obtain that
1 2T
lim limsup—j sup|Zy(s + ip(7)) — Zpy(s + ip(7))|d7 <« lim oy(1) = 0.
boo e 1 T S€K b—w

Hence, for every € > 0,

Il)im Limsupv{p(xr (), Xr.py(s)) = €}

T—oo

= ll)im limsup%L{r € [T, 2T] : p(Zy(s + ip(7)), Tpy(s + i9(1))) = €}

20 T

2T o
1 .
< lim limsup— _[ Y 27 sup| Zy(s + ip(1)) = Zpy(s + ip(z))] = 0.
bow e €T Tl s€k;
This together with (13) and (14) shows that all hypotheses of Lemma 4 are fulfilled. Therefore,

D
Xry 7. Py, 15

and the lemma is proved. O

4 Proofs of theorems

The scheme of the proof of Theorem 1 is similar to that of used in the proof of Lemma 6; however, with full
application of hypotheses for the function ¢(7), first, we recall the integral representation for Z (s).
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Lemma 7. [19, Lemma 7] Suppose that 1/2 < g < 1. Then,
l’]+l°°

200 = 5 [ 265+ gz iz

nlm

1 ]s
(s,) = —F[—'ys,
8.,y 7 n

Define the H-valued random element X = x¢(s) by
xp(s) = Z(s + ip(¢r)),

where &, as in the proof of Lemma 6, is a random variable uniformly distributed on [T, 2T].

where

and I'(s) is the Euler gamma-function.

Lemma 8. Suppose that ¢ € V. Then, for every € > 0,
hm limsupv{p(xr(s), Xry(s)) > €} = 0.

-0 T L
Proof. Using the uniform distribution of the random variable &7, and the Chebyshev-type inequality, we find

1
vip(xr(8), Xr(8)) = €} = ;L{T € [T,2T] : p(Z(s + ip(1)), Zy(s + ip(7))) = €}
2T
1
< T Ip(Z(s +19(7)), Zy(s + ip(1)))dr.
T

Thus, by the definition of the metric p,
2T

1¢1
VipO3(5),37(5) > €} < G 3 35| SUPIZ (s + p(e) = Z3(s + (e a6)

T S€K;

Properties of the class V show that1/2 + 2k < o<1 - K, K < kKi>0,fors=0+it€K « K. Letn =1/2 + k,
and define n, = 0 - k — 1/2. Then, we have nj; > 0 for all s € K. Since the function I'(z) has a simple pole at the
point z = 0 and the function Z(s + z) has a double pole at the point z = 1 - s, the integrand in Lemma 7 has only
the above poles in the strip -1, < Rez < n. Therefore, Lemma 7 and the residue theorem, for all s € K, yield

“nytie
1
Z,(5) - Z(s) = qu_iwzw + 2)g(z,y)dz + 1y(s),
with
ry(s) = Res;=1-sZ(s + 2)g(z,y). 17
Hence, for all s € K,
Zy(s + ip(7)) - Z(s + ip(7))

e
wlZ

%JZ[% + K+ ip(T) + iu]g[% +K-8§+ iu,y]du +1y(s + ip(7))

du + ry(s + ip(1))

; 1 . ] [1 ;
O'+lt—O'+E+K+l(p(T)+lu §+K—o+lu,y

[

«

—00

sup
SEK

+ K= S+ iuy||du + sup|ry(s + igp(7))].

SEK

Z[%+K+iq)(r)+iu g%
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Therefore,

= I sup|Zy(s + ig(0)) = Z(s + ip(r)ldr

T SEK
oo 2T
1 1 1 (18)
< I —I Z[— + K+ ip(7) + iu||dr|sup |g|- +Kk-s+iu y] du + - J sup|ry(s + ip(7))|dr
o T T 2 SEK T SEK
def
=hth
First, we estimate the quantity
1/2
1
Ar(u) « —I‘Z + K+ ip(7) + lu] dr < I’Z + K +ip(7) + || dr| ,
for all u € R. Using properties of the function ¢(7) gives
1 2T 1 2
AW = o l W) ‘z[g + K+ ip(r) + iu] do(7)
< ! Z[ +K+1 (T)+lu] do(7)
S Tpen) 4 4
1 ¢(2T)+Iu| 2
< Z[— +K+ iv] dv
To'(2T 2
p@r) o(T)-ul
<k < To (ZT)11/2+K((P(2T) + ul).
If lu| < @(2T), then this yields
15(29(2T))
ARUW) <¢ =————L2:(202T)) < sup || <, 1,
7( T (ZT) 172+x(20(2T)) 06(1/12),1) To'(2T) K
by the definition of class V. If |u| > ¢(2T), then, in view of (2),
2 1-2k+e
Ar(u) < X To (ZT)11/2+K(2|U|) T(p’(ZT)lul -
Since 1/(To’(2T)) = o(1), the latter estimates show that
Ar(u) < (1 + u2. 19
For the estimate of
1 . ]
sup|g|l- +tk-s+iwyl|,
SEK
we apply the bound
I(o + it) < exp{-c|t]}, c>0, (20)

which is uniform in every finite interval of o. Thus, by the definition of g(z,y), we obtain that,
fors=o0+it €K,

1
gy tK-s+ iu,y] <, yl/2rK-o exp[—%lu - t|’ < x Y€ exp{-alul}, ¢>0.
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This together with (19) implies the bound

h <k Y™ I(l + |uD'? exp{-alulldu < x y™.

It remains to estimate J,. Taking into account formula (1), we find that

Res,—1-sZ(s + 2)g(z,y) = g0 - s,y) + ag(1 - s,y).

1_J]1-5s 1]1-5s a_l|l-s
ry(s) = S T|—— s + —F[ ]yl‘s logy + —F[ lyl‘s
o [ n ]y n{n &

= YysST(n(A - s))[n*%(n‘l(l -s)+ta+ 10gy]-

Hence,

This, (20), and the estimate for the digamma-function
I .
T (o + it) < log(je] +2),

lead, fors =0+ it € K, to

ry(s + (1)) <, yY2 % logy exp{-o|t + @(DI} <k YV ¥ exp{-ap(1)}, ¢ >0, ¢>0.

Therefore,

1/2-x2T
I exp{-ae(T)HT < x y1/2—;< exp
T

]2 <<K,K

G
5 fp(T)’.
Now, (18), (21), and (22) imply

2T
1 . )
) SupIZ(s + i9(0) ~ Z(s + ip(@)ldT <y + Y expl—%wml.

T SEK

Thus, by (16),

lim limsupv{p(xr(s), Xr,,(s)) > €} = 0,
y-o

T—oo

and the lemma is proved.

Proof of Theorem 1. By (15),

D
X1y 1o X

where x, = x,(s) is the H-valued random element, for all y > 0, having the distribution Pyy. Hence,

D
Xy d P0,|H .

T—o

This, (23), and Lemmas 8 and 4 show that

D
Xr = Py,
T—o

and this relation is equivalent to the assertion of the theorem.

@D

(22)

(23)

O

We recall the equivalence of weak convergence of probability measures in terms of open and continuity
sets. Recall that a set A is a continuity set of the probability measure P if P(0A) = 0, where 9A is the boundary

of A.
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Lemma 9. [21, Theorem 2.1] Let B, n € N, and P be probability measures on (X, B8(X)). Then, the following
Statements are equivalent:
@

(2) For every open set G C X,
liminf B,(G) = P(G);
n—o

(3) For every continuity set A of P,
lim B,(A) = P(A).

n—oo

Proof of Theorem 3. The support of the measure Py is the set {g,}, where gy(s) = 0 for s € D. Therefore,
the set

G: =g €H : suplg(s)| < e

SEK
is an open neighbourhood of a support of the measure Py;. Hence, by the support property,
Pyn(Ge) > 0. (24)
This, Theorem 1, and (1) and (2) of Lemma 9 imply
hg}lio?fPT,H(Gs) 2 Pou(Ge) > 0,

and the definitions of Pr iy and G, give the first assertion of the theorem.

For the proof of the second assertion, we observe that the boundaries of the sets G, and G,, do not
intersect for different positive & and &,. This remark implies that the set G; is a continuity set of the measure
Py, for all but at most countably many € > 0. Therefore, the second assertion of the theorem is a consequence
of Theorem 1, (1) and (3) of Lemma 9, and (24). The theorem is proved. O
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