Abstract [eng] |
The purpose of the dissertation is to prove universal tight bounds for deviation from the mean probability inequalities for functions of random variables. Universal bounds shows that they are uniform with respect to some class of distributions and quantity of variables and other parameters. The bounds are called tight, if we can construct a sequence of random variables, such that the upper bounds are achieved. Such inequalities are useful for example in insurance mathematics, for constructing effective algorithms. We extend the results for Lipschitz functions on general probability metric spaces. |