Review

Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy: Applications to Astrophysics

Per Jönsson ${ }^{1, *}$, Gediminas Gaigalas ${ }^{2}$, Pavel Rynkun ${ }^{2}$, Laima Radžiūtė ${ }^{2}$, Jörgen Ekman ${ }^{1}$, Stefan Gustafsson ${ }^{1}$, Henrik Hartman ${ }^{1}$, Kai Wang ${ }^{1}$, Michel Godefroid ${ }^{3}$, Charlotte Froese Fischer ${ }^{4}$, Ian Grant ${ }^{5,6}$, Tomas Brage ${ }^{7}$ and Giulio Del Zanna ${ }^{6}$
1 Materials Science and Applied Mathematics, Malmö University, SE-205 06 Malmö, Sweden; jorgen.ekman@mah.se (J.E.); stefan.gustafsson@mah.se (S.G.); henrik.hartman@mah.se (H.H.); kaiwang1128@aliyun.com (K.W.)
2 Institute of Theoretical Physics and Astronomy, Vilnius University, Saulètekio av. 3, LT-10222 Vilnius, Lithuania; Gediminas.Gaigalas@tfai.vu.lt (G.G.); pavel.rynkun@gmail.com (P.R.); laima.radziute@gmail.com (L.R.)
3 Chimie Quantique et Photophysique, Université libre de Bruxelles, B-1050 Brussels, Belgium; michel.godefroid@ulb.ac.be
4 Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; cff@cs.ubc.ca
5 Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; iangrant15@btinternet.com
6 Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK; gd232@cam.ac.uk
7 Division of Mathematical Physics, Department of Physics, Lund University, 221-00 Lund, Sweden; tomas.brage@fysik.lu.se
* Correspondence: per.jonsson@mah.se; Tel.: +46-40-66-57251

Academic Editor: Joseph Reader
Received: 31 January 2017; Accepted: 7 April 2017; Published: 14 April 2017

Abstract

Atomic data, such as wavelengths, spectroscopic labels, broadening parameters and transition rates, are necessary for many applications, especially in plasma diagnostics, and for interpreting the spectra of distant astrophysical objects. The experiment with its limited resources is unlikely to ever be able to provide a complete dataset on any atomic system. Instead, the bulk of the data must be calculated. Based on fundamental principles and well-justified approximations, theoretical atomic physics derives and implements algorithms and computational procedures that yield the desired data. We review progress and recent developments in fully-relativistic multiconfiguration Dirac-Hartree-Fock methods and show how large-scale calculations can give transition energies of spectroscopic accuracy, i.e., with an accuracy comparable to the one obtained from observations, as well as transition rates with estimated uncertainties of a few percent for a broad range of ions. Finally, we discuss further developments and challenges.

Keywords: transition energies; lifetimes; transition rates; multiconfiguration Dirac-Hartree-Fock

PACS: 31.15.am; 32.30.Jc; 32.70.Cs

1. Introduction

Atomic data, such as wavelengths, spectroscopic labels, broadening parameters, excitation and transition rates, are necessary for many applications, especially in plasma diagnostics, and for interpreting laboratory and astrophysical spectra [1,2]. Plasma diagnostics are commonly applied to
measure the physical state of the plasma, e.g., temperatures, densities, ion and chemical abundances. Atomic databases, such as CHIANTI [3,4], are widely used for such diagnostic purposes. Their accuracy relies on a range of atomic rates, the main ones being electron collision rates and transition rates. For the solar corona, lines from highly charged iron ions, emitted in the extreme ultraviolet (EUV) and soft X-ray region, are commonly used for diagnostics, together with those from all other abundant elements. Atomic data and line identifications involving states of the lowest configurations of an ion are now relatively well known and observed. However, much less data are available for lines from higher configurations; one example is the lack of line identifications and rates for transitions from $n=4$ iron ions in the soft X-rays [5].

Line identification from observed spectra is a very difficult and challenging task. Different methods such as isoelectronic interpolation and extrapolation, perfected by Edlén [6], can be used, but the work is nowadays mostly done with the aid of calculated transition energies and simulated spectra. For calculated transition energies, or wavelengths, to be of practical use, they need to be very accurate with uncertainties of just a few $m \AA$, placing high demands on computational methodologies.

Transition rates and line ratios are needed for diagnostic purposes. Due to the almost complete lack of accurate experimental data for atoms a few times ionized or more, the bulk of the transition rates must be calculated. Not only the rates themselves should be provided, but also uncertainty estimates that can be propagated in plasma models for sensitivity analysis. Both accurate rates and uncertainty estimates pose a challenge, calling for methods for which computed properties can be monitored as the wave functions are systematically improved.

This review summarizes the results from recent accurate relativistic multiconfiguration calculations for lowly charged ions or more of astrophysical importance. Focus is on the transition energies and their uncertainties, but transition rates and the associated uncertainty estimates are also discussed. The astrophysical background is provided in the individual papers covered by the review. Neutral atoms and ions in the lowest charge states are not covered in the review.

2. Multiconfiguration Methods

Multiconfiguration methods are versatile and can, in principle, be applied to any atomic or ionic system [7]. Multiconfiguration methods generate approximate energies and wave functions for the each of the targeted states in a system. The wave functions can then be used to compute measurable quantities, such as transition rates, hyperfine structures or Landé g-factors [8]. Looking at strengths and weaknesses, multiconfiguration methods capture near degeneracies and valence-valence electron correlation very efficiently. They are however less good at accounting for core-core correlation, and here, perturbative methods relying on a complete orbital basis have advantages. Work has been done to combine multiconfiguration and perturbative methods in different ways [9-12], a development that will open up accurate results also for more complex systems [13].

The relativistic multiconfiguration method, to be described below, is implemented in the GRASP2K program package [14]. The package is generally available and utilizes a message passing interface (MPI) for the most time-consuming programs, allowing for large-scale computing on parallel computers.

2.1. Multiconfiguration Dirac-Hartree-Fock

Atomic calculations are based on a Hamiltonian. In the relativistic multiconfiguration Dirac-Hartree-Fock (RMCDHF) method [7,15], as implemented in the GRASP2K package, the Hamiltonian is taken as the Dirac-Coulomb Hamiltonian:

$$
\begin{equation*}
H_{\mathrm{DC}}=\sum_{i=1}^{N}\left(c \boldsymbol{\alpha}_{i} \cdot \boldsymbol{p}_{i}+\left(\beta_{i}-1\right) c^{2}+V_{\mathrm{nuc}}\left(r_{i}\right)\right)+\sum_{i>j}^{N} \frac{1}{r_{i j}}, \tag{1}
\end{equation*}
$$

where $V_{\text {nuc }}\left(r_{i}\right)$ is the nuclear potential modelled from an extended nuclear charge distribution, $r_{i j}$ is the distance between electrons i and j and α and β are the Dirac matrices. Wave functions $\Psi\left(\gamma P J M_{J}\right)$ for fine-structure states labelled by parity, P, and angular quantum numbers, $J M_{J}$, are expanded in antisymmetrized and coupled configuration state functions (CSFs):

$$
\begin{equation*}
\Psi\left(\gamma P J M_{J}\right)=\sum_{j=1}^{N_{\mathrm{CSF}}} c_{j} \Phi\left(\gamma_{j} P J M_{J}\right) \tag{2}
\end{equation*}
$$

The labels $\left\{\gamma_{j}\right\}$ denote the information of the CSFs, such as orbital occupancy and subshell quantum numbers in the angular momentum coupling tree. The CSFs are built from products of one-electron orbitals, having the general form:

$$
\begin{equation*}
\psi_{n \kappa, m}(\mathbf{r})=\frac{1}{r}\binom{P_{n \kappa}(r) \chi_{\kappa, m}(\theta, \varphi)}{\imath Q_{n \kappa}(r) \chi_{-\kappa, m}(\theta, \varphi)}, \tag{3}
\end{equation*}
$$

where $\chi_{ \pm \kappa, m}(\theta, \varphi)$ are two-component spin-orbit functions and where the radial functions are numerically represented on a logarithmic grid. The selection of the CSFs depends on the atomic system at hand and is described in Section 3.

In applications, one often seeks to determine energies and wave functions for a number, sometimes up to a few hundred, of targeted states. This is most conveniently done in the extended optimal level (EOL) scheme [16]. Given initial estimates of the radial functions, the energies E and expansion coefficients $c=\left(c_{1}, \ldots, c_{M}\right)^{t}$ for the targeted states are obtained as solutions to the relativistic configuration interaction (RCI) problem:

$$
\begin{equation*}
H c=E \mathbf{c}, \tag{4}
\end{equation*}
$$

where H is the RCI matrix of dimension $M \times M$ with elements:

$$
\begin{equation*}
H_{i j}=\left\langle\Phi\left(\gamma_{i} P J M_{J}\right)\right| H_{\mathrm{DC}}\left|\Phi\left(\gamma_{j} P J M_{J}\right)\right\rangle \tag{5}
\end{equation*}
$$

Once the expansion coefficients have been determined, the radial functions $\left\{P_{n \kappa}(r), Q_{n \kappa}(r)\right\}$ are improved by solving a set of differential equations that results from applying the variational principle on a weighted energy functional of the targeted states together with additional terms needed to preserve the orthonormality of the orbitals. Appropriate boundary conditions for the radial orbitals exclude undesired negative-energy solutions [15]. The RCI problem and the solution of the differential equations are iterated until the radial orbitals and the energy are converged to a specified tolerance.

2.2. Configuration Interaction

The RMCDHF calculations are used to generate an orbital basis. Given this basis, the final wave functions for the targeted states are obtained in RCI calculations based on the frequency dependent Dirac-Coulomb-Breit Hamiltonian:

$$
\begin{equation*}
H_{\mathrm{DCB}}=H_{\mathrm{DC}}-\sum_{i<j}^{N}\left[\boldsymbol{\alpha}_{i} \cdot \boldsymbol{\alpha}_{j} \frac{\cos \left(\omega_{i j} r_{i j} / c\right)}{r_{i j}}+\left(\boldsymbol{\alpha}_{i} \cdot \nabla\right)\left(\boldsymbol{\alpha}_{j} \cdot \boldsymbol{\nabla}\right) \frac{\cos \left(\omega_{i j} r_{i j} / c\right)-1}{\omega_{i j}^{2} r_{i j} / c^{2}}\right], \tag{6}
\end{equation*}
$$

where $\boldsymbol{\nabla}$ is the gradient operator involving differentiation with respect to $\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}$ and $r_{i j}=\left|\mathbf{r}_{i j}\right|$ [17]. In the RCI calculations leading quantum electrodynamic (QED) effects, vacuum polarization and self-energy are also taken into account. RCI calculations require less computational effort than do RMCDHF calculations, and currently, expansions with millions of CSFs can be handled. The relativistic multiconfiguration and configuration interaction calculations go together and are referred to as RMCDHF/RCI calculations.

2.3. Managing Large Expansions

To manage large expansions, CSFs can a priori be divided into two groups, referred to as a zeroand first-order partitioning. The first group, P, with m elements $(m \ll M)$ contains CSFs that account for the major parts of the wave functions. The second group, Q, with $M-m$ elements contains CSFs that represent minor corrections. Allowing interaction between CSFs in group P, interaction between CSFs in groups P and Q and diagonal interactions between CSFs in Q gives a matrix:

$$
\left(\begin{array}{ll}
H^{(P P)} & H^{(P Q)} \tag{7}\\
H^{(Q P)} & H^{(Q Q)}
\end{array}\right)
$$

where $H_{i j}^{(Q Q)}=\delta_{i j} E_{i}^{Q}$. The restriction of $H^{(Q Q)}$ to diagonal elements results in a huge reduction in the total number of matrix elements and the corresponding time for RCI calculations [12]. A similar reduction in computational time is obtained when constructing and solving the differential equations obtained from the weighted energy functional. Different computational strategies apply: RMCDHF calculations with limited interactions followed by RCI calculations with full interactions or RMCDHF calculations with limited interactions followed by RCI calculations with limited interaction, possibly with more CSFs in group P.

2.4. Labelling

In fully-relativistic calculations, quantum labels for the targeted states are obtained in $j j$-coupling. Most often, this wave function representation is not pure, i.e., there is no dominant CSF whose quantum numbers can be used to label a state in a proper way. Using the methods developed by Gaigalas and co-workers [18], the wave function representation in $j j$-coupling is transformed to an approximate representation in LSJ-coupling. This representation is normally more pure and better suited for labelling. One should be aware of the fact that even in LSJ-coupling, the labelling is not straight forward, and several components in the LSJ-coupling representation must be used in a recursive way to find unique labels [19,20]. Programs for transforming wave functions and assigning unique labels are important parts of the GRASP2K package [21].

2.5. Transition Properties

Given wave functions from RMCDHF/RCI calculations, transition properties, such as rates, A, line strengths, S, and weighted oscillator strengths, $g f$, between two states $\gamma P J$ and $\gamma^{\prime} P^{\prime} J^{\prime}$ are computed in terms of reduced matrix elements:

$$
\begin{equation*}
\left\langle\Psi(\gamma P J)\left\|T^{(\mathrm{EMK})}\right\| \Psi\left(\gamma^{\prime} P^{\prime} J^{\prime}\right)\right\rangle \tag{8}
\end{equation*}
$$

where the operator $T^{(\mathrm{EMK})}$ depends on the multipolarity, E1, M1, E2, M2, etc., of the transition. By including Bessel functions in the definition of the operator, GRASP2K accounts for more high-order effects than the usual transition operator used in non-relativistic calculations with Breit-Pauli corrections [15]. Inserting the CSF expansions for the wave functions, the reduced matrix element reduces to a sum over reduced matrix elements between CSFs. Using Racah algebra techniques, these matrix elements are finally obtained as sums over radial integrals [22,23]. The above procedure assumes that the two states $\gamma P J$ and $\gamma^{\prime} P^{\prime} J^{\prime}$ are built from the same set of orbitals. When this is not the case, e.g., when separate calculations have been done for the even and odd parity states, the representation of the wave functions are changed in such a way that the orbitals become biorthonormal [24,25], in which case the calculation continues along the lines above. For electric transitions, parameters can be computed in both length and velocity gauge [26], where the results in the length gauge are the preferred.

3. General Computational Methodology: The SD-MR Approach

Systematic calculations using multiconfiguration methods follow a determined scheme as described below. Details of the scheme are determined by the shell structure of the atom, the number of targeted states, the desired accuracy of the final results and the available computational resources. The atomic Hamiltonian is invariant with respect to space inversions, and there are no interactions between odd and even parity states. The odd and even parity states are thus often treated in separate sets of calculations. After validation for selected ions and states, computed transition energies and rates can be used to aid the analysis of unknown spectra.

3.1. Multireference and Gross Features of the Wave Functions

For highly ionized systems, a natural starting point is the multireference set (MR). In this review, we define the MR as the set of configurations associated with the targeted states of a given parity together with important closely degenerate configurations. Applying rules for the coupling of angular momenta, the configurations in the MR give rise to a set of CSFs that account for the most important gross features of the wave functions. The expansion coefficients of the CSFs and the orbitals are determined in an initial RMCDHF calculation. The orbitals for the initial calculation are called spectroscopic orbitals. They are required to have the same node structure as hydrogenic orbitals, i.e., the node structure is determined by the principal quantum number. The spectroscopic orbitals are kept frozen in all subsequent calculations.

3.2. Including Electron Correlation and Determining an Orbital Set

The initial approximation of the wave functions is improved by adding CSFs that account for electron correlation. Guided by a perturbative analysis, the CSFs are generated by the single (S) and double (D) multireference (SD-MR) active space method in which a number of configurations is obtained by SD substitutions of orbitals in the configurations of the MR with orbitals in an active set $[7,8]$. Again, applying rules for the coupling of angular momenta, the generated configurations give rise to the CSFs. Not all of these CSFs are important, and the CSFs are further required to be such that they interact (have non-zero Hamiltonian matrix elements) with the CSFs of the MR. The expansion coefficients of the CSFs and the radial parts of the orbitals in the active set are determined in RMCDHF calculations where, for large expansions, limited interactions are used.

The active set, often denoted by the number of orbitals with a specified symmetry, so that $\{4 s 3 p 2 d 1 f\}$ is a set with four s orbitals, three p orbitals, two d orbitals and one f orbital, is systematically enlarged one orbital layer at the time until the computed excitation energies and transition rates have converged to within some predetermined tolerance. For small systems, SD substitutions are done from all subshells of the configurations in the MR, and the generated CSFs account for valence-valence, core-valence and core-core electron correlation. For larger systems, it becomes necessary to define a core for which restrictions on the substitutions apply. In many cases, the SD-MR substitutions are restricted in such a way that there are only S substitutions from subshells that define a so-called active core. There may also be subshells deep down in the core for which there are no substitutions at all. CSFs obtained from S-MR substitutions from the active core together with SD-MR substitutions from the valence subshells account for valence-valence and core-valence correlation.

3.3. Final Configuration Interaction Calculations Including the Breit Interaction and QED Effects

The frequency dependent Breit (transverse photon) interaction and leading QED effects are included in final RCI calculations. To account for higher order correlation effects, the MR is sometimes enlarged at this final step leading to larger expansions. Full interaction is normally used, although limited interactions have been shown effective for including core-valence and core-core effects in larger systems [12,27].

4. Excitation Energies

In this section, RMCDHF/RCI excitation energies are compared with observations for a range of systems in order to illustrate the predictive power of highly accurate calculations. Generally, there are enough observations to validate computational methodologies and to distinguish between different approaches.

4.1. Energies for $2 s^{2} 2 p^{n}, 2 s 2 p^{n+1}$ and $2 p^{n+2}$ States in the $B-, C-, N-, O$ - and F-Like Sequences

Excitation energies and E1, M1, E2, M2 transition rates between $2 s^{2} 2 p^{n}, 2 s 2 p^{n+1}$ and $2 p^{n+2}$ states of ions in the B-, C-, N-, O- and F-like sequences were calculated using the RMCDHF/RCI and SD-MR method [28-32]. The range of ions, as well as the details of the calculations are summarized in Table 1. Calculations of Landé g_{J} factors, hyperfine structures and isotope shifts were done separately for ions in the $\mathrm{Be}-$, $\mathrm{B}-, \mathrm{C}$ - and N -like sequences $[33,34]$.

Table 1. Multireference (MR), active set, number of generated configuration state functions (CSFs) ($N_{\text {CSFs }}$) and the range of ions for the relativistic multiconfiguration Dirac-Hartree-Fock (RMCDHF) and relativistic configuration interaction (RCI) calculations of the boron-, carbon-, nitrogen-, oxygen- and fluorine-like sequences.

Configuration	MR for RMCDHF	MR for RCI	Active Set	$N_{\text {CSFs }}$
		boron-like, N III to Zn XXVI		
$1 s^{2} 2 s^{2} 2 p$	$1 s^{2}\left\{2 s^{2} 2 p, 2 p^{3}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p, 2 p^{3}, 2 s 2 p 3 d, 2 p 3 d^{2}\right\}$	$\{9 s 8 p 7 d 6 f 5 g 3 h 1 i\}$	200100
$1 s^{2} 2 p^{3}$	$1 s^{2}\left\{2 s^{2} 2 p, 2 p^{3}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p, 2 p^{3}, 2 s 2 p 3 d, 2 p 3 d^{2}\right\}$	$\{9 s 8 p 7 d 6 f 5 g 3 h 1 i\}$	360100
$1 s^{2} 2 s 2 p^{2}$	$1 s^{2} 2 s 2 p^{2}$	$1 s^{2}\left\{2 s 2 p^{2}, 2 p^{2} 3 d, 2 s^{2} 3 d, 2 s 3 d^{2}\right\}$	$\{9 s 8 p 7 d 6 f 5 g 3 h 1 i\}$	300100
		carbon-like, F IV to Ni XXIII		
$1 s^{2} 2 s^{2} 2 p^{2}$	$1 s^{2}\left\{2 s^{2} 2 p^{2}, 2 p^{4}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p^{2}, 2 p^{4}, 2 s 2 p^{2} 3 d, 2 s^{2} 3 d^{2}\right\}$	$\{8 s 7 p 6 d 5 f 4 g 2 h\}$	340100
$1 s^{2} 2 p^{4}$	$1 s^{2}\left\{2 s^{2} 2 p^{2}, 2 p^{4}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p^{2}, 2 p^{4}, 2 s 2 p^{2} 3 d, 2 s^{2} 3 d^{2}\right\}$	$\{8 s 7 p 6 d 5 f 4 g 2 h\}$	340100
$1 s^{2} 2 s 2 p^{3}$	$1 s^{2} 2 s 2 p^{3}$	$1 s^{2}\left\{2 s 2 p^{3}, 2 p^{3} 3 d, 2 s^{2} 2 p 3 d, 2 s 2 p 3 d^{2}\right\}$	$\{8 s 7 p 6 d 5 f 4 g 2 h\}$	1000100
		nitrogen-like, F III to Kr XXX		
$1 s^{2} 2 s^{2} 2 p^{3}$	$1 s^{2}\left\{2 s^{2} 2 p^{3}, 2 p^{5}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p^{3}, 2 p^{5}, 2 s 2 p^{3} 3 d, 2 s^{2} 2 p 3 d^{2}\right\}$	$\{8 s 7 p 6 d 5 f 4 g 1 h\}$	698100
$1 s^{2} 2 p^{5}$	$1 s^{2}\left\{2 s^{2} 2 p^{3}, 2 p^{5}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p^{3}, 2 p^{5}, 2 s 2 p^{3} 3 d, 2 s^{2} 2 p 3 d^{2}\right\}$	$\{8 s 7 p 6 d 5 f 4 g 1 h\}$	382100
$1 s^{2} 2 s 2 p^{4}$	$1 s^{2} 2 s 2 p^{4}$	$1 s^{2}\left\{2 s 2 p^{4}, 2 p^{4} 3 d, 2 s^{2} 2 p^{2} 3 d, 2 s 2 p^{2} 3 d^{2}\right\}$	$\{8 s 7 p 6 d 5 f 4 g 1 h\}$	680100
		oxygen-like, F II to Kr XXIX		
$1 s^{2} 2 s^{2} 2 p^{4}$	$1 s^{2}\left\{2 s^{2} 2 p^{4}, 2 p^{6}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p^{4}, 2 p^{6}, 2 s 2 p^{4} 3 d\right\}$	$\{8 s 7 p 6 d 5 f 4 g 3 h\}$	709690
$1 s^{2} 2 p^{6}$	$1 s^{2}\left\{2 s^{2} 2 p^{4}, 2 p^{6}\right\}$	$1 s^{2}\left\{2 s^{2} 2 p^{4}, 2 p^{6}, 2 s 2 p^{4} 3 d\right\}$	$\{8 s 7 p 6 d 5 f 4 g 3 h\}$	67375
$1 s^{2} 2 s 2 p^{5}$	$1 s^{2} 2 s 2 p^{5}$	$1 s^{2}\left\{2 s 2 p^{5}, 2 p^{5} 3 d, 2 s^{2} 2 p^{3} 3 d\right\}$	$\{8 s 7 p 6 d 5 f 4 g 3 h\}$	702892
		fluorine-like, Si VI to WLXVI		
$1 s^{2} 2 s^{2} 2 p^{5}$	$1 s^{2} 2 s^{2} 2 p^{5}$	$1 s^{2} 2 s^{2} 2 p^{5}$	$\{8 s 7 p 6 d 5 f 4 g 3 h 2 i\}$	73000
$1 s^{2} 2 s 2 p^{6}$	$1 s^{2} 2 s 2 p^{6}$	$1 s^{2} 2 s 2 p^{6}$	$\{8 s 7 p 6 d 5 f 4 g 3 h 2 i\}$	15000

A trend for all atomic structure calculations, including RMCDHF/RCI, is that the accuracy of the excitation energies is, relatively speaking, lower for lowly charged ions and that the accuracy then increases as the effects of electron correlation diminish. For the highly charged ions, the situation is less clear. Often experimental excitation energies are associated with large uncertainties or missing altogether. The situation is illustrated in Tables 2 and 3 for the O-like sequence [31].

In Table 2, excitation energies in Ne III and Fe XIX from different calculations are compared with energies from observations. The most accurate calculations are the RMCDHF/RCI calculation [31] and the multireference second-order Möller-Plesset calculation (MRMP). For Ne III, the relative differences with observation for these two calculations are in the range of $0.2-0.4 \%$ (slightly worse for MRMP). For Fe XIX the relative errors go down by an order of magnitude, and now, the calculated energies are accurate enough to detect misidentifications or errors in observational data, but also to serve as a valuable tool for identifying new lines. The usefulness of computed energies is illustrated in Table 3 for Br XXVIII, where the RMCDHF/RCI and MRMP calculations clearly discriminate between
observed energies [35] and energies from semiempirical fits [36], being in better agreement with the latter. This suggests that there may be some calibration problems in relation to the observed energies [35].

Table 2. Excitation energies in cm^{-1} for O -like Ne and Fe from observations and different calculations. Relative errors in \% for the calculated energies are shown in parenthesis. E ${ }_{\text {obs }}$ observation NIST [37], $E_{R C I}$ energies from RMCDHF/RCI [31], $E_{M R M P}$ energies from Möller-Plesset calculation (MRMP) [38], $E_{M B P T}$ energies from many-body perturbation theory [39], $E_{B P}$ energies from multiconfiguration Hartree-Fock-Breit-Pauli [19], $E_{S S}$ energies from super structure [40], $E_{M C D F}$ energies from RMCDHF [41] and $E_{F A C}$ energies from RCI with the FAC code [42].

Ne III							
Level	J	$E_{\text {obs }}$	$E_{R C I}$	$E_{\text {MRMP }}$	$E_{M B P T}$	$E_{B P}$	$E_{S S}$
$2 s^{2} 2 p^{4}{ }^{3} P$	2	0	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)
	1	643	645 (0.31)	638 (0.77)	645 (0.31)	628 (2.33)	744 (15.70)
	0	921	923 (0.21)	912 (0.97)	926 (0.54)	899 (2.38)	1069 (16.06)
$2 s^{2} 2 p^{41} D$	2	25841	25954 (0.43)	26097 (0.99)	25573 (1.03)	25759 (0.31)	29219 (13.07)
$2 s^{2} 2 p^{41} S$	0	55753	56058 (0.54)	55772 (0.03)	55459 (0.52)	55382 (0.66)	72484 (30.00)
$2 s 2 p^{5}{ }^{3} p^{0}$	2	204290	204608 (0.15)	204718 (0.20)	200686 (1.76)	204635 (0.16)	215348 (5.41)
	1	204873	205200 (0.15)	205297 (0.20)	201276 (1.75)	205236 (0.17)	216008 (5.43)
	0	205194	205603 (0.19)	205617 (0.20)	201598 (1.75)	205539 (0.16)	216367 (5.44)
$2 s 2 p^{5}{ }^{1} P^{o}$	1	289479	290315 (0.28)	290703 (0.42)	288219 (0.43)	291659 (0.75)	315511 (8.99)
Fe XIX							
Level	J	$E_{\text {obs }}$	$E_{\text {RCI }}$	$E_{\text {MRMP }}$	$E_{\text {MBPT }}$	$E_{\text {MCDF }}$	$E_{F A C}$
$2 s^{2} 2 p^{4}{ }^{3}$	2	0	0 (0.000)	0 (0.000)	0 (0.00)	0 (0.00)	0 (0.00)
	0	75250	75313 (0.083)	75218 (0.042)	74742 (0.67)	75446 (0.26)	75198 (0.06)
	1	89441	89434 (0.007)	89251 (0.212)	87559 (2.10)	88791 (0.72)	88821 (0.69)
$2 s^{2} 2 p^{4}{ }^{1} D$	2	168852	168985 (0.078)	168792 (0.035)	167881 (0.57)	170847 (1.18)	170578 (1.02)
$2 s^{2} 2 p^{41}$ S	0	325140	325417 (0.085)	324949 (0.058)	321124 (1.23)	326536 (0.42)	325421 (0.08)
$2 s 2 p^{5}{ }^{3} p^{0}$	2	922890	923044 (0.016)	922855 (0.003)	917435 (0.59)	933081 (1.10)	929231 (0.68)
		984740	984920 (0.018)	984791 (0.005)	978242 (0.65)	995006 (1.04)	991246 (0.66)
	0	1030020	1030199 (0.017)	1029992 (0.002)	1022753 (0.70)	1039692 (0.93)	1036058 (0.58)
$2 s 2 p^{5}{ }^{1} P^{0}$	1	1267600	1268093 (0.038)	1267771 (0.013)	1258927 (0.68)	1287773 (1.59)	1282914 (1.20)
$2 p^{61} S$	0	2134180	2134958 (0.036)	2132810 (0.064)	2120211 (0.65)	2175645 (1.94)	2160701 (1.24)

Table 3. Excitation energies in cm^{-1} for O-like Br. Comparison between calculations, observations and semiempirical estimates. $E_{\text {obs }}$ observation NIST [37] with original data from Kelly [35], $E_{S E}$ semiempirical fit [36] and $E_{R C I}$ energies from RMCDHF/RCI [31], $E_{M R M P}$ energies from MRMP [38]; ΔE_{1}, difference between calculated energies and $E_{o b s} ; \Delta E_{2}$, difference between calculated energies and $E_{S E}$. The calculations support energies from the semiempirical fit.

Level	J	$E_{\text {obs }}$	$E_{S E}$	$E_{\text {RCI }}$	ΔE_{1}	ΔE_{2}	$E_{\text {MRMP }}$	ΔE_{1}	ΔE_{2}
$2 s^{2} 2 p^{4}{ }^{3} P$	2 0 1	$\begin{aligned} & \hline 0 \\ & 218800 \\ & 379800 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 153478 \\ & 371663 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 151954 \\ & 371606 \end{aligned}$	$\begin{aligned} & 0 \\ & -66846 \\ & -8194 \end{aligned}$	$\begin{aligned} & 0 \\ & { }_{-1524} \\ & -57 \end{aligned}$	$\begin{aligned} & 0 \\ & 152035 \\ & 371858 \end{aligned}$	$\begin{aligned} & 0 \\ & -66765 \\ & -7942 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -1443 \\ & 195 \end{aligned}$
$2 s^{2} 2 p^{41} D$	2	483040	470699	470643	-12 397	-56	470804	-12236	105
$2 s^{2} 2 p^{41} S$	0	944150	912501	911968	-32182	-533	912282	-31868	-219
$2 \mathrm{~s} 2 p^{5}{ }^{3} P^{0}$	2 1 0		$\begin{aligned} & 1579903 \\ & 1755028 \\ & 1986274 \end{aligned}$	$\begin{aligned} & 1579537 \\ & 1755196 \\ & 1985784 \end{aligned}$		$\begin{aligned} & -366 \\ & 168 \\ & -490 \end{aligned}$	$\begin{aligned} & 1580945 \\ & 1756684 \\ & 1987396 \end{aligned}$		$\begin{aligned} & 1042 \\ & 1656 \\ & 1122 \end{aligned}$
$2 \mathrm{~s} 2 p^{51} P^{0}$	1		2229358	2230149		791	2231636		2278
$2 p^{61} S$	0		3573416	3575415		1999	3579486		6070

Summarizing the mean relative errors in the excitation energies for the $2 s^{2} 2 p^{n}, 2 s 2 p^{n+1}$ and $2 p^{n+2}$ states of B-, C-, N-, O- and F-like Fe from RCI calculations [28-32], we have 0.022% for B-like, 0.022% for C-like, 0.050% for N-like, 0.042% for O-like and 0.011% for F-like Fe.

4.2. Energies of the $2 s^{2} 2 p^{6}$ and $2 s^{2} 2 p^{5} 3 l$ States in the Ne-Like Sequence

The transitions connecting the $2 s^{2} 2 p^{5} 3 l, l=0,1,2$ configurations in Ne-like ions give rise to prominent lines in the spectra of many high temperature light sources. Some of these lines are considered for diagnostics of fusion plasmas. Excitation energies and E1, M1, E2, M2 transition rates between states of the above configurations in Ne-like Mg III and Kr XXVII sequences were calculated using the RMCDHF/RCI and SD-MR method [43]. The calculations were done based on expansions from SD substitutions from the $2 s^{2} 2 p^{6}$ and $2 s^{2} 2 p^{5} 3 l$ configurations to active sets $\{7 s 6 p 5 d 4 f 3 g 2 h 1 i\}$. The $1 s^{2}$ was kept as a closed core. Some triple substitutions were allowed to capture higher order electron correlation effects. In Table 4, the RMCDHF/RCI excitation energies are displayed for Ca XI and Fe XVII. In the same table, the energies are compared with energies from NIST, as well as from MRMP calculations by Ishikawa et al. [44]. Again, the table illustrates the situation when it comes to experiments. For many ions, the excitation energies of the lower states are known from experiments. For other ions, such as Ca XI, energies are only known for a few states. The correlation model from the RMCDHF/RCI calculations predicts the excitation energies extremely well for all of the calculated ions. For Fe XVII, the relative differences with observations are around 0.005%. Calculated energies with this accuracy aid line identification in spectra and can be used to validate previous observations. As can be seen from the table, the RMCDHF/RCI and MRMP calculations both do very well, but the latter lose some of the accuracy at the neutral end of the sequence.

In Table 4, also the LSJ composition is shown for each state. There are many states that are heavily mixed, with terms of almost the same weight. In these cases, labelling becomes difficult, and for many ions in the sequence, there are states that have the same leading term. Labeling is a general problem that needs considerable attention [21].

4.3. Energies for Higher States in the B-, C-, N-, O-, F- and Ne-Like Sequences

In plasma modelling and diagnostics, it is important to provide atomic data for more than just the states of the lowest configurations. To meet this demand, the RMCDHF/RCI and SD-MR calculations for the B-, C-, N-, O-, F- and Ne-like sequences have been extended to hundreds of states in what we refer to as spectrum calculations [45-52]. The range of ions, the targeted configurations and the number of studied states for each sequence are summarized in Table 5. Calculations were done by parity, i.e., odd and even parity states were treated in separate sets of calculations. The targeted configurations define the MR, and the expansions were obtained by SD-MR substitutions from all subshells to increasing active sets of orbitals. In addition to excitation energies, E1, M1, E2 and M2 transition rates were calculated.

Spectrum calculations are challenging for different reasons. The active sets of orbitals often have to be large, since many states with different charge distributions should be represented. The large active sets lead to large CSF expansions, and typically, the number of CSFs are a few millions for each parity. Another challenge is to handle the labelling. With closely degenerate configurations, the states are often not pure, but need to be described by the leading LSJ composition. However, the LSJ composition depends on the details of the calculation and different calculation may lead to different compositions. Thus, it is not unusual that there are inconsistencies in labelling, making comparisons between different sets of calculations, as well as with observations difficult and time consuming.

Table 4. Excitation energies in cm^{-1} for Ne-like Ca and Fe from observations and different calculations. Relative errors in \% for the calculated energies are shown in parenthesis. $E_{o b s}$ observation NIST [37], $E_{R C I}$ energies from RMCDHF/RCI [43] and $E_{M R M P}$ energies from MRMP [44].

Level	LSJ	Composition	$E_{\text {obs }}$	$E_{R C I}$	$E_{M R M P}$
Ca XI					
$2 p^{6}$	${ }^{1} S_{0}$	1.00	0	0	0
$2 p^{5} 3 s$	${ }^{3} P_{2}^{o}$	0.99		2801989	2801819
$2 p^{5} 3 s$	${ }^{3} P_{1}^{0}$	$0.62+0.38{ }^{1} P_{1}^{o}$	2810900	2810834 (0.0023)	2810588 (0.011)
$2 p^{5} 3 s$	${ }^{3} P_{0}^{0}$	0.99		2831800	2831670
$2 p^{5} 3 s$	${ }^{1} P_{1}^{o}$	$0.62+0.38{ }^{3} P_{1}^{o}$	2839900	2839662 (0.0084)	2839386 (0.018)
$2 p^{5} 3 p$	${ }^{3} S_{1}$	0.92		2953791	2953594
$2 p^{5} 3 p$	${ }^{3} D_{2}$	$0.68+0.24{ }^{1} D_{2}$		2978410	2977968
$2 p^{5} 3 p$	${ }^{3} D_{3}$	1.00		2978650	2978276
$2 p^{5} 3 p$	${ }^{3} D_{1}$	$0.43+0.36{ }^{1} P_{1}+0.20{ }^{3} P_{1}$		2986908	2986513
$2 p^{5} 3 p$	${ }^{3} P_{2}$	$0.65+0.34{ }^{1} D_{2}$		2993760	2993336
$2 p^{5} 3 p$	${ }^{3} D_{1}$	$0.54+0.40{ }^{1} P_{1}$		3007301	3006932
$2 p^{5} 3 p$	${ }^{3} P_{0}$	0.98		3009345	3009000
$2 p^{5} 3 p$	${ }^{1} D_{2}$	$0.41+0.31{ }^{3} D_{2}+0.27{ }^{3} P_{2}$		3016749	3016378
$2 p^{5} 3 p$	${ }^{3} P_{1}$	$0.68+0.24{ }^{1} P_{1}$		3017175	3016845
$2 p^{5} 3 p$	${ }^{1} S_{0}$	0.98		3101166	3098308
$2 p^{5} 3 d$	${ }^{3} P_{0}^{o}$	0.99		3196075	3195830
$2 p^{5} 3 d$	${ }^{3} P_{1}^{0}$	0.95	3199300	3199045 (0.0080)	3198902 (0.012)
$2 p^{5} 3 d$	${ }^{3} P_{2}^{0}$	0.85		3205278	3205169
$2 p^{5} 3 d$	${ }^{3} F_{4}^{o}$	1.00		3208351	3208165
$2 p^{5} 3 d$	${ }^{3} F_{3}^{o}$	$0.72+0.23{ }^{1} F_{2}^{o}$		3212392	3212144
$2 p^{5} 3 d$	${ }^{3} F_{2}^{o}$	$0.53+0.29{ }^{1} D_{2}^{o}+0.18{ }^{3} D_{2}^{o}$		3219655	3219428
$2 p^{5} 3 d$	${ }^{3} D_{3}^{o}$	$0.55+0.41{ }^{1} F_{3}^{o}$		3224394	3224078
$2 p^{5} 3 d$	${ }^{3} D_{1}^{o}$	0.89	3239700	3239502 (0.0061)	3239308 (0.012)
$2 p^{5} 3 d$	${ }^{3} F_{2}^{o}$	$0.47+0.38{ }^{1} D_{2}^{o}+0.14{ }^{3} D_{2}^{o}$		3244348	3244161
$2 p^{5} 3 d$	${ }^{3} D_{2}^{o}$	$0.58+0.27{ }^{1} D_{2}^{o}+0.14{ }^{3} P_{2}^{o}$		3248017	3247805
$2 p^{5} 3 d$	${ }^{3} D_{3}^{0}$	$0.40+0.35{ }^{1} F_{3}^{o}+0.24{ }^{3} F_{3}^{o}$		3248345	3248099
$2 p^{5} 3 d$	${ }^{1} P_{1}^{o}$	0.91	3284300	3284444 (0.0044)	3283473 (0.025)
Fe XVII					
$2 p^{6}$	${ }^{1} S_{0}$	1.00	0	0	0
$2 p^{5} 3 s$	${ }^{3} P_{2}^{o}$	1.00	5849490	5849108 (0.0065)	5848891 (0.0102)
$2 p^{5} 3 s$	${ }^{1} P_{1}^{o}$	$0.54+0.45{ }^{3} P_{1}$	5864760	5864469 (0.0049)	5864138 (0.0106)
$2 p^{5} 3 s$	${ }^{3} P_{0}^{o}$	1.00	5951478	5951003 (0.0079)	5950877 (0.0100)
$2 p^{5} 3 s$	${ }^{3} P_{1}^{o}$	$0.54+0.45{ }^{1} P_{1}$	5961022	5960633 (0.0065)	5960410 (0.0102)
$2 p^{5} 3 p$	${ }^{3} S_{1}$	$0.80+0.17{ }^{3} P_{1}$	6093568	6093573 (0.0000)	6093209 (0.0058)
$2 p^{5} 3 p$	${ }^{3} D_{2}$	$0.58+0.30{ }^{1} D_{2}+0.12{ }^{3} P_{2}$	6121756	6121769 (0.0002)	6121253 (0.0082)
$2 p^{5} 3 p$	${ }^{3} D_{3}$	1.00	6134815	6134794 (0.0003)	6134360 (0.0074)
$2 p^{5} 3 p$	${ }^{1} P_{1}$	$0.51+0.25{ }^{3} D_{1}+0.19{ }^{3} P_{1}$	6143897	6143898 (0.0000)	6143431 (0.0075)
$2 p^{5} 3 p$	${ }^{3} P_{2}$	$0.67+0.32{ }^{1} D_{2}$	6158540	6158481 (0.0009)	6158010 (0.0086)
$2 p^{5} 3 p$	${ }^{3} P_{0}$	0.94	6202620	6202542 (0.0012)	6202238 (0.0061)
$2 p^{5} 3 p$	${ }^{3} D_{1}$	$0.67+0.31{ }^{1} P_{1}$	6219266	6219185 (0.0013)	6218795 (0.0075)
$2 p^{5} 3 p$	${ }^{3} P_{1}$	$0.63+0.17{ }^{1} P_{1}+0.13{ }^{3} S_{1}$	6245490	6245346 (0.0023)	6245018 (0.0075)
$2 p^{5} 3 p$	${ }^{3} D_{2}$	$0.41+0.38{ }^{1} D_{2}+0.21{ }^{3} P_{2}$	6248530	6248390 (0.0022)	6248024 (0.0080)
$2 p^{5} 3 p$	${ }^{1} S_{0}$	0.93	6353356	6353605 (0.0039)	6351136 (0.0349)
$2 p^{5} 3 d$	${ }^{3} P_{0}^{o}$	0.99	6464095	6463913 (0.0028)	6463611 (0.0074)
$2 p^{5} 3 d$	${ }^{3} P_{1}^{o}$	0.91	6471233	6471519 (0.0044)	6471317 (0.0012)
$2 p^{5} 3 d$	${ }^{3} P_{2}^{o}$	$0.72+0.18{ }^{3} D_{2}^{o}$	6486440	6486166 (0.0042)	6485977 (0.0071)
$2 p^{5} 3 d$	${ }^{3} F_{4}^{o}$	1.00	6487000	6486745 (0.0039)	6486514 (0.0074)
$2 p^{5} 3 d$	${ }^{3} F_{3}^{o}$	$0.65+0.29{ }^{1} F_{3}^{0}$	6492924	6492689 (0.0036)	6492387 (0.0082)
$2 p^{5} 3 d$	${ }^{1} D_{2}^{o}$	$0.41+0.35{ }^{3} F_{2}^{o}+0.24{ }^{3} D_{2}^{o}$	6506808	6506561 (0.0037)	6506276 (0.0081)
$2 p^{5} 3 d$	${ }^{3} D_{3}^{0}$	$0.64+0.34{ }^{1} F_{3}^{o}$	6515479	6515276 (0.0031)	6514936 (0.0083)
$2 p^{5} 3 d$	${ }^{3} D_{1}^{o}$	$0.74+0.20{ }^{1} P_{1}^{o}$	6552221	6552697 (0.0072)	6552491 (0.0041)
$2 p^{5} 3 d$	${ }^{3} F_{2}^{o}$	$0.63+0.29{ }^{1} D_{2}^{o}$	6594617	6594260 (0.0054)	6594099 (0.0078)
$2 p^{5} 3 d$	${ }^{3} D_{2}^{o}$	$0.50+0.27{ }^{3} P_{2}^{o}+0.21{ }^{1} D_{2}^{o}$	6601210	6600855 (0.0053)	6600688 (0.0079)
$2 p^{5} 3 d$	${ }^{1} F_{3}^{o}$	$0.37+0.33{ }^{3} F_{3}^{o}+0.30{ }^{3} D_{3}^{o}$	6605469	6605078 (0.0059)	6604858 (0.0092)
$2 p^{5} 3 d$	${ }^{1} P_{1}^{o}$	$0.78+0.18{ }^{3} D_{1}^{o}$	6660894	6661101 (0.0031)	6660232 (0.0099)

Table 5. Sequence, ions and targeted configurations for the RMCDHF/RCI calculations. N is the number of studied states for each ion. In the table, $l=0,1,2, l^{\prime}=0,1,2,3, l^{\prime \prime}=0, \ldots, n-1$.

| Sequence | Ions | Configurations | \boldsymbol{N} | Ref. |
| :--- | :--- | :--- | :---: | :---: | :---: |
| B-like | $\mathrm{Si}, \mathrm{Ti}-\mathrm{Cu}$ | $2 s^{2} 2 p, 2 s 2 p^{2}, 2 p^{3}, 2 s^{2} 3 l, 2 s 2 p 3 l, 2 p^{2} 3 l, 2 s^{2} 4 l^{\prime}, 2 s 2 p 4 l^{\prime}, 2 p^{2} 4 l^{\prime}$ | 291 | $[45]$ |
| B-like | Na | $2 s^{2} 2 p, 2 s 2 p^{2}, 2 p^{3}, 2 s^{2} 3 l, 2 s 2 p 3 l, 2 p^{2} 3 l, 2 s^{2} 4 l^{\prime}, 2 s 2 p 4 s$ | 133 | $[46]$ |
| $\mathrm{C}-\mathrm{like}$ | $\mathrm{Ar}-\mathrm{Zn}$ | $2 s^{2} 2 p^{2}, 2 s 2 p^{3}, 2 p^{4}, 2 s^{2} 2 p 3 l, 2 s 2 p^{2} 3 l, 2 p^{3} 3 l, 2 s^{2} 2 p 4 l$ | 262 | $[47]$ |
| N-like | $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Zn}$ | $2 s^{2} 2 p^{3}, 2 s 2 p^{4},^{2} 2 p^{5}, 2 s^{2} 2 p^{2} 3 l, 2 s 2 p^{3} 3 l, 2 p^{4} 3 l$ | 272 | $[48]$ |
| $\mathrm{N}-l i k e$ | $\mathrm{Ar}-\mathrm{Zn}$ | $2 s^{2} 2 p^{3}, 2 s 2 p^{4}, 2 p^{5}, 2 s^{2} 2 p^{2} 3 l, 2 s 2 p^{3} 3 l, 2 p^{4} 3 l, 2 s^{2} 2 p^{2} 4 l^{\prime}$ | 359 | $[49]$ |
| O-like | $\mathrm{Cr}-\mathrm{Zn}$ | $2 s^{2} 2 p^{4}, 2 s 2 p^{5}, 2 p^{6}, 2 s^{2} 2 p^{3} 3 l, 2 s 2 p^{4} 3 l$ | 200 | $[50]$ |
| F-like | $\mathrm{Cr}-\mathrm{Zn}$ | $2 s^{2} 2 p^{5}, 2 s 2 p^{6}, 2 s^{2} 2 p^{4} 3 l, 2 s 2 p^{5} 3 l, 2 p^{6} 3 l, 2 s^{2} 2 p^{4} 4 l^{\prime}$ | 200 | $[51]$ |
| Ne-like | $\mathrm{Cr}-\mathrm{Kr}$ | $2 s^{2} 2 p^{6}, 2 s 2 p^{6} 3 l, 2 s^{2} 2 p^{5} 4 l, 2 s 2 p^{6} 4 l, 2 s^{2} 2 p^{5} 5 l^{\prime \prime}, 2 s^{2} 2 p^{5} 6 l^{\prime \prime}$ | 201 | $[52]$ |

For many ions, excitation energies for lower lying states are known from observations. Going higher, comparatively less data are available, and these are often associated with large uncertainties. The situation is well illustrated for C-like Fe, and in Table 6, the RMCDHF/RCI excitation energies by Ekman et al. [47] are compared with observations. Due to near degeneracies, many states have the same leading LSJ term. In these cases, labelling can be done either by giving the leading terms in the composition or, more simply, introducing an additional index A and B to separate the states. For the 20 first states belonging to the $n=2$ configurations, observations are available from the NIST [37] and CHIANTI databases [3,4]. There is an agreement between the RMCDHF/RCI and relativistic many body calculations (RMBPT) by Gu [53] and observations at the $0.028-0.032 \%$ level (slightly worse for RMBPT). The RCI calculation using the Flexible Atomic Code (FAC) [42] is less accurate. For the higher lying states, experimental data are sparse. In many cases, there is excellent agreement between observations and calculations also for these states, but in some cases, there are obvious disagreements. For State Number 36, the excitation energy from NIST and CHIANTI disagree, and the calculations by Ekman et al. and Gu support the energy from the CHIANTI database. For State 54, all calculations agree, but differ markedly from the energies given by NIST and CHIANTI.

Table 6. Energies in cm^{-1} for levels in Fe XXI. $E_{R C I}$ energies from RMCDHF/RCI calculations [47], $E_{R M B P T}$ energies from RMBPT [53], $E_{F A C}$ energies from RCI calculations with FAC [42], $E_{\text {NIST }}$ NIST recommended values [37] and $E_{\text {CHI }}$ observed energies from the CHIANTI database [3,4].

No.	Level	$E_{R C I}$	$\boldsymbol{E}_{R M B P T}$	$\boldsymbol{E}_{\boldsymbol{F A C}}$	$\boldsymbol{E}_{\boldsymbol{N I S T}}$	$\boldsymbol{E}_{\boldsymbol{C H I}}$
1	$2 s^{2} 2 p^{2}{ }^{3} P_{0}$	0	0	0	0	0
2	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	73864	73867	73041	73851	73851
3	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	117417	117372	117146	117354	117367
4	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	244751	244581	245710	244561	244568
5	$2 s^{2} 2 p^{2}{ }^{1} S_{0}$	372137	372261	373060	371980	371744
6	$2 s 2 p^{3} S_{2}$	486584	487683	479658	486950	486991
7	$2 s 2 p^{3}{ }^{3} D_{1}$	776775	777005	779724	776690	776685
8	$2 s 2 p^{3}{ }^{3} D_{2}$	777404	777655	779963	777340	777367
9	$2 s 2 p^{3}{ }^{3} D_{3}$	803618	803869	805768	803540	803553
10	$2 s 2 p^{3}{ }^{3} P_{0}$	916444	916773	920272	916330	916333
11	$2 s 2 p^{3}{ }^{3} P_{1}$	925074	925408	928822	924920	924920
12	$2 s 2 p^{3} P_{2}$	942621	942986	946135	942430	942364
13	$2 s 2 p^{3} S_{1}$	1096019	1095820	1105578	1095670	1095679
14	$2 s 2 p^{3}{ }^{1} D_{2}$	1127672	1127460	1137533	1127240	1127250
15	$2 s 2 p^{3} P_{1}$	1261577	1261240	1272627	1261140	1260902
16	$2 p^{4} P_{2}$	1646437	1646467	1657411	1646300	1646409
17	$2 p^{4} P_{0}$	1735823	1735813	1747301	1735700	1735715
18	$2 p^{4} P_{1} P_{1}$	1740623	1740707	1750848	1740500	1740453
19	$2 p^{4} D_{2}$	1817786	1817362	1832102	1817100	1817041
20	$2 p^{4} S_{0}$	2048512	2047850	2066463	2048200	2048056
21	$2 s^{2} 2 p 3 s s^{3} P_{0}$	7663283	7664054	7654119		
22	$2 s^{2} 2 p 3 s^{3} P_{1}$	7671971	7672703	7663398		7661883

Table 6. Cont.

No.	Level	$E_{R C I}$	$E_{\text {RMBPT }}$	$E_{F A C}$	$E_{\text {NIST }}$	$E_{\text {CHI }}$
23	$2 s^{2} 2 p 3 s{ }^{3} P_{2}$	7780298	7781147	7770895		
24	$2 s^{2} 2 p 3 s{ }^{1} P_{1}$	7803764	7804419	7796397		
25	$2 s^{2} 2 p 3 p^{3} D_{1}$	7841903	7842922	7834847		
26	$2 s^{2} 2 p 3 p^{3} P_{1}: A$	7898154	7898974	7891978		
27	$2 s^{2} 2 p 3 p^{3} D_{2}$	7901553	7902378	7895497		
28	$2 s^{2} 2 p 3 p{ }^{3} P_{0}$	7914849	7915811	7909434		7915463
29	$2 s^{2} 2 p 3 p^{3} P_{1}$: B	7983446	7984350	7977011		
30	$2 s^{2} 2 p 3 p^{3} D_{3}$	7994588	7995388	7987318		
31	$2 s^{2} 2 p 3 p^{3} S_{1}$	8004987	8005793	7998341		
32	$2 s^{2} 2 p 3 p^{3} P_{2}$	8007326	8008319	8002052		
33	$2 s^{2} 2 p 3 p{ }^{1} D_{2}$	8068537	8069071	8065382		
34	$2 s^{2} 2 p 3 d^{3} F_{2}$	8078540	8079119	8072911		8074160
35	$2 s 2 p^{2}(4 P) 3 s{ }^{5} P_{1}$	8080551	8082001	8070805		
36	$2 s^{2} 2 p 3 d{ }^{3} F_{3}$	8116048	8116480	8111336	8101400	8118008
37	$2 s^{2} 2 p 3 d^{3} P_{2}: A$	8121922	8122529	8118025		8124085
38	$2 s^{2} 2 p 3 p^{1} S_{0}$	8128645	8129396	8126192		8143710
39	$2 s 2 p^{2}(4 P) 3 s^{5} P_{2}$	8131973	8133460	8121258		
40	$2 s^{2} 2 p 3 d^{3} D_{1}$	8139290	8140735	8135992	8140000	8141785
41	$2 s 2 p^{2}(4 P) 3 s{ }^{5} P_{3}$	8181331	8182599	8170876		
42	$2 s 2 p^{2}(4 P) 3 s^{3} P_{0}$	8182172	8182844	8179292		8180254
43	$2 s^{2} 2 p 3 d^{3} F_{4}$	8202073	8202670	8195771		
44	$2 s^{2} 2 p 3 d{ }^{1} D_{2}$	8208705	8209597	8204329		
45	$2 s 2 p^{2}(4 P) 3 s^{3} P_{1}$	8222156	8222948	8217390		
46	$2 s^{2} 2 p 3 d^{3} D_{3}$	8230918	8231868	8227144	(8195000)	8229642
47	$2 s^{2} 2 p 3 d^{3} P_{2}: B$	8245453	8246428	8241436	8230900	8229642
48	$2 s^{2} 2 p 3 d^{3} P_{1}$	8245737	8247075	8241557		
49	$2 s^{2} 2 p 3 d^{3} P_{0}$	8247732	8249164	8243033		
50	$2 s 2 p^{2}(4 P) 3 p^{5} D_{0}$	8267963	8269220	8259742		
51	$2 s 2 p^{2}(4 P) 3 p^{5} D_{1}$	8270558	8272088	8262373		
52	$2 s 2 p^{2}(4 P) 3 s{ }^{3} P_{2}$	8274704	8275427	8270235		
53	$2 s^{2} 2 p 3 d{ }^{1} F_{3}$	8300618	8301128	8301379	8313600	
54	$2 s^{2} 2 p 3 d^{1} P_{1}$	8303730	8307428	8305376	8293900	8293791
55	$2 s 2 p^{2}(4 P) 3 p^{5} D_{2}$	8305917	8309162	8297457		
56	$2 s 2 p^{2}(4 P) 3 p^{3} S_{1}$	8312499	8309359	8300070		
57	$2 s 2 p^{2}(4 P) 3 p^{5} P_{1}$	8349456	8350857	8342324		8350731
58	$2 s 2 p^{2}(4 P) 3 p^{5} D_{3}$	8351775	8353277	8342522		
59	$2 s 2 p^{2}(4 P) 3 p^{5} P_{2}$	8352117	8353731	8343801		
60	$2 s 2 p^{2}(4 P) 3 p^{3} D_{1}$	8379967	8380890	8373689		8376741
61	$2 s 2 p^{2}(4 P) 3 p^{5} P_{3}$	8388634	8390292	8380281		
62	$2 s 2 p^{2}(4 P) 3 p^{5} D_{4}$	8399557	8401039	8390478		
63	$2 s 2 p^{2}(4 P) 3 p^{3} D_{2}$	8410077	8411182	8404386		
64	$2 s 2 p^{2}(2 D) 3 s^{3} D_{1}$	8420588	8421426	8420569		
65	$2 s 2 p^{2}(2 D) 3 s^{3} D_{2}$	8428405	8429248	8428172		
66	$2 s 2 p^{2}(2 D) 3 s^{3} D_{3}$	8440926	8441758	8437725		
67	$2 s 2 p^{2}(4 P) 3 p^{3} P_{0}$	8442813	8443776	8438241		
68	$2 s 2 p^{2}(4 P) 3 p^{5} S_{2}$	8443646	8445037	8440027		
69	$2 s 2 p^{2}(4 P) 3 p^{3} D_{3}$	8462365	8463510	8456502		
70	$2 s 2 p^{2}(4 P) 3 p^{3} P_{1}$	8467690	8468680	8462413		
71	$2 s 2 p^{2}(4 P) 3 p^{3} P_{2}$	8470871	8471913	8466158		
72	$2 s 2 p^{2}(4 P) 3 d^{5} F_{1}$	8480620	8481735	8471575		
73	$2 s 2 p^{2}(4 P) 3 d^{5} F_{2}$	8488782	8489971	8479898		8486331
74	$2 s 2 p^{2}(2 D) 3 s{ }^{1} D_{2}$	8496990	8497512	8498660		
75	$2 s 2 p^{2}(4 P) 3 d^{5} F_{3}: A$	8506111	8507343	8497311		8511385
76	$2 s 2 p^{2}(4 P) 3 d^{5} F_{4}$	8544575	8545928	8534831		
77	$2 s 2 p^{2}(2 P) 3 s^{3} P_{1}$	8545485	8546507	8544603		
78	$2 s 2 p^{2}(2 P) 3 s^{3} P_{0}$	8553885	8554716	8545420		
79	$2 s 2 p^{2}(4 P) 3 d^{5} D_{0}$	8554798	8555918	8546365		
80	$2 s 2 p^{2}(4 P) 3 d^{5} D_{1}$	8555297	8556534	8547553		
81	$2 s 2 p^{2}(4 P) 3 d^{5} D_{2}$	8555491	8556850	8558611		
82	$2 s 2 p^{2}(4 P) 3 d^{5} F_{3}: B$	8561662	8562969	8552789		8564535
83	$2 s 2 p^{2}(4 P) 3 d^{3} P_{2}$	8581274	8582755	8576965		8575780

Table 6. Cont.

No.	Level	$E_{R C I}$	$E_{\text {RMBPT }}$	$E_{F A C}$	$E_{\text {NIST }}$	$E_{\text {CHI }}$
84	$2 s 2 p^{2}(4 P) 3 d^{5} F_{5}$	8586636	8588014	8577151		
85	$2 s 2 p^{2}(4 P) 3 d^{5} D_{4}$	8597735	8599106	8588388		
86	$2 s 2 p^{2}(2 D) 3 p^{3} F_{2}$	8606110	8606654	8607148		8605427
87	$2 s 2 p^{2}(4 P) 3 d^{3} F_{2}$	8611432	8611843	8608283		
88	$2 s 2 p^{2}(4 P) 3 d^{5} P_{3}$	8619312	8620847	8611148		
			\vdots			
228	$2 p^{3}\left({ }^{2} P\right) 3 d^{3} F_{4}$	9735480	9736111	9746771		
229	$2 p^{3}\left({ }^{2} P\right) 3 d^{3} P_{1}$	9740645	9742719	9754847		
230	$2 p^{3}\left({ }^{2} P\right) 3 d^{3} P_{0}$	9748184	9749774	9758859		
231	$2 p^{3}\left({ }^{2} P\right) 3 d^{3} P_{2}: B$	9757890	9758107	9770963		
232	$2 p^{3}\left({ }^{2} P\right) 3 d^{3} D_{1}$	9765663	9766056	9781499		
233	$2 p^{3}\left({ }^{2} P\right) 3 d^{3} D_{3}$	9780738	9781044	9794389		
234	$2 p^{3}\left({ }^{2} P\right) 3 d^{1} F_{3}$	9800368	9800742	9819206		
235	$2 p^{3}\left({ }^{2} P\right) 3 d^{3} D_{2}$	9800852	9801738	9819939		
236	$2 p^{3}\left({ }^{2} P\right) 3 d^{1} P_{1}$	9879471	9879655	9902175		
237	$2 s^{2} 2 p 4 s^{3} P_{0}$	10368077		10362393		
238	$2 s^{2} 2 p 4 s^{3} P_{1}$	10371121		10365585	10380000	
239	$2 s^{2} 2 p 4 p^{3} D_{1}$	10442616		10437633		
240	$2 s^{2} 2 p 4 p^{3} P_{1}$	10466102		10460676		
241	$2 s^{2} 2 p 4 p^{3} D_{2}$	10468322		10462978		
242	$2 s^{2} 2 p 4 p^{3} P_{0}$	10470990		10465993		
243	$2 s^{2} 2 p 4 s^{3} P_{2}$	10485597		10479693		
244	$2 s^{2} 2 p 4 s{ }^{1} P_{1}$	10492966		10487317		
245	$2 s^{2} 2 p 4 d^{3} F_{2}$	10532099		10526459		
246	$2 s^{2} 2 p 4 d^{3} P_{2}: A$	10548542		10542323	(10547 000)	10547249
247	$2 s^{2} 2 p 4 d^{3} F_{3}$	10549480		10543488	10548000	10548160
248	$2 s^{2} 2 p 4 d^{3} D_{1}$	10554447		10548345	10553000	10553955
249	$2 s^{2} 2 p 4 p^{1} P_{1}$	10568810		10563327		
250	$2 s^{2} 2 p 4 p^{3} D_{3}$	10574912		10569412	10664000	
251	$2 s^{2} 2 p 4 p^{3} P_{2}$	10575111		10569433		
252	$2 s^{2} 2 p 4 p^{3} S_{1}$	10578203		10572657		
253	$2 s^{2} 2 p 4 p{ }^{1} D_{2}$	10597862				
254	$2 s^{2} 2 p 4 p{ }^{1} S_{0}$	10619563				
255	$2 s^{2} 2 p 4 d^{3} F_{4}$	10652979				
256	$2 s^{2} 2 p 4 d^{1} D_{2}$	10653631			10675000	
257	$2 s^{2} 2 p 4 d^{3} D_{3}$	10660593				
258	$2 s^{2} 2 p 4 d^{3} P_{2}: B$	10666807				
259	$2 s^{2} 2 p 4 d^{3} P_{1}$	10666946			10688000	
260	$2 s^{2} 2 p 4 d^{3} P_{0}$	10667948				
261	$2 s^{2} 2 p 4 d{ }^{1} F_{3}$	10683984			10681000	
262	$2 s^{2} 2 p 4 d{ }^{1} P_{1}$	10687400				

One should note the excellent agreement between the energies from RMCDHF/RCI and RMBPT, the mean difference being less than 0.013%. Although the energies are in very good agreement, there seems to be a small systematic shift for the higher states, as depicted in Figure 1. The reason for this shift is not known, and further research is needed to shed light on this. To further access the accuracy of the excitation energies, calculations for the N -, $\mathrm{O}-, \mathrm{F}$ - and Ne-like sequences [49-52] were done using both the RMCDHF/RCI and RMBPT methods. Cross-validations show that the mean energy differences for N-like, O-like, F-like and Ne-like Fe are $0.023 \%, 0.011 \%, 0.01 \%$ and 0.029%, respectively. The energy differences increase for the ions closer to the neutral end, where the RMBPT method is less efficient in capturing correlation effects.

Obviously, calculations with high accuracy that also give the leading $L S J$ compositions are indispensable tools for analysing astrophysical observations.

Figure 1. Difference between RMCDHF/RCI and MBPT excitation energies in percent for C-like Fe as a function of the excitation energy in kcm^{-1}. The dashed lines show the 0.02% levels.

4.4. Energies for Higher Lying States in the Mg-, Al- and Si-Like Sequences

For larger atomic systems, one needs to think in terms of a core and a number of valence electrons. In many calculations, only valence-valence (VV) correlation is included. More accurate results are obtained when accounting for the interactions with the core through the inclusion of core-valence correlation (VV + CV). The final step is to include core-core correlation (VV $+\mathrm{CV}+\mathrm{CC}$). The situation has been analysed by Gustafsson et al. [12] for $3 l 3 l^{\prime}, 3 l 4 l^{\prime}, 3 s 5 l$ states in Mg -like Fe where $1 s^{2} 2 s^{2} 2 p^{6}$ is taken as the core. The results of the analysis can be inferred from Figure 2 that shows the difference between the computed excitation energies and the observed energies from the NIST database as a function of the excitation energies for the three computational models: VV, VV +CV and $\mathrm{VV}+\mathrm{CV}+\mathrm{CC}$.

Figure 2. Difference between observed and RMCDHF/RCI excitation energies in cm^{-1} for Mg -like Fe [12] as a function of the excitation energy in kcm^{-1}. valence-valence (VV) (blue squares), VV + core-valence (CV) (red circles) and VV + CV + CC (black+).

From the figure, we see that the differences between the RMCDHF/RCI energies and observed energies are quite large, of the order of several thousand cm^{-1}, for the VV model. For many of
the low lying states, calculated energies are too high, whereas for the more highly lying states, calculated energies are too low. Adding core-valence correlation (VV +CV) substantially improves the calculated energies. To explain the difference in behaviour, as shown in the figure, between the low lying states and the more high lying states when core-valence correlation is added, we note that core-valence correlation is a combination of core polarization, an electrostatic long range rearrangement and an electron-electron cusp correcting effect $[7,8]$. The cusp correcting effect lowers all energies with an amount that depends on the overlap of the valence electron charge distribution and the core. The charge distributions of the low lying states from the $3 l 3 l^{\prime}$ configurations are to a larger extent overlapping the core region compared to the charge distributions from the higher states of the $3 l 4 l^{\prime}$ and $3 l 5 l^{\prime}$ configurations, leading to a more pronounced energy lowering for the former states. The core polarization, in turn, lowers all energies except the $3 s^{2}{ }^{1} S_{0}$ ground state for which the valence electron charge density is spherically symmetric. In total, these two effects explain the observed behaviour. Whereas the low lying states are now in very good agreement with observations, the high lying states are still a little high compared to observations. The effect of the core-core correlation (VV $+\mathrm{CV}+\mathrm{CC}$) is small for the low lying states, but brings down the more highly states that are now in perfect agreement with observations.

The increased accuracy comes with a price. For an orbital set $\{8 s 7 p 6 d 5 f 4 g 3 h 2 i\}$, the valence-valence (VV) expansions sizes are less than 3000 CSFs for each parity. Including the core-valence correlation $(V V+C V)$ increases the expansions sizes to around 650,000 CSFs for each parity. Finally, including also core-core ($\mathrm{VV}+\mathrm{CV}+\mathrm{CC}$) make the expansion sizes grow to around 6,000,000 CSFs for each parity. For these large expansions, it becomes necessary to use a zero- and first-order partition of the CSFs and include part of the interactions perturbatively as described in Section 2.3.

Based on the valence-valence and core-valence model (VV + CV), RMCDHF/RCI and SD-MR calculations have been done for the Mg -, Al- and Si-like sequences [54-56]. The range of ions, the targeted configurations and the number of studied states for each sequence are summarized in Table 7. Calculations were done by parity, i.e., odd and even parity states were treated in separate sets of calculations. The targeted configurations define the MR, and the expansions were obtained by SD-MR substitutions to increasing active sets of orbitals with the restriction that only one substitution is allowed from the $2 s^{2} 2 p^{6}$ core. $1 s^{2}$ is treated as an inactive core and is always closed.

Table 7. Sequence, ions and targeted configurations for the calculations. N is the number of studied states for each ion. In the table, $l=0, \ldots, n-1, l^{\prime}=0, \ldots, n-1$.

Sequence	Ions	Configurations	\boldsymbol{N}	Ref.
Mg-like	$\mathrm{Ca}-\mathrm{As}, \mathrm{Kr}$	$3 l 3 l^{\prime}, 3 l 4 l^{\prime}, 3 s 5 l$	146	$[54]$
Al-like	$\mathrm{Ti}-\mathrm{Kr}, \mathrm{Xe}, \mathrm{W}$	$3 s^{2}\{3 l ; 4 l ; 5 l\}, 3 p^{2}\{3 d ; 4 l\}, 3 s\left\{3 p^{2} ; 3 d^{2}\right\}$, $3 s\left\{3 p 3 d ; 3 p 4 l ; 3 p 5 s ; 3 d 4 l^{\prime}\right\}, 3 p 3 d^{2}, 3 p^{3}, 3 d^{3}$	360	$[55]$
Si-like	$\mathrm{Ti}-\mathrm{Ge}, \mathrm{Sr}, \mathrm{Zr}, \mathrm{Mo}$	$3 s^{2} 3 p^{2}, 3 s 3 p^{3}, 3 s^{2} 3 p 3 d$	27	$[56]$

To illustrate the accuracy of the RMCDHF/RCI calculation accounting for valence-valence and core-valence effects, we look at Si-like Fe [56]. In Table 8, the computed excitation RMCDHF/RCI energies are compared with observed energies from Del Zanna [57], as well as with energies by Vilkas and Ishikawa [58] using the MRMP method. The mean deviation is 0.076% for RMCDHF/RCI and only 0.034% for MRMP. The expansions for the even and odd states contained 1,500,000 and 4,500,000 CSFs, respectively.

The mean energy deviations for Mg-like, Al-like and Si-like iron from RMCDHF/RCI calculation accounting for valence-valence and core-valence effects are $0.051 \%, 0.039 \%$ and 0.076%, respectively. To improve the energies for the RMCDHF/RCI calculations, core-core correlation effects can be included as perturbative corrections, and work is in progress to develop tractable computational methods. For systems with five and more valence electrons, the expansions grow rapidly, and it
may be necessary to start with valence-valence correlation and include core-valence effects as perturbative corrections.

Table 8. Comparison of calculated and observed excitation energies in cm^{-1}. $E_{R C I}$ RMCDHF/RCI energies from [56], $E_{M R M P}$ MRMP energies from [58] and $E_{D Z}$ observed energies from [57]. Relative errors in \% for the calculated energies are shown in parenthesis.

Fe XIII			
Level	$E_{\text {RCI }}$	$E_{M R M P}$	$E_{D Z}$
$3 s^{2} 3 p^{2}{ }^{3} P_{0}$	0	0	0
$3 s^{2} 3 p^{2}{ }^{3} P_{1}$	9281 (0.237)	9295 (0.086)	9303.1
$3 s^{2} 3 p^{2}{ }^{3} P_{2}$	18553 (0.048)	18576 (0.075)	18561.7
$3 s^{2} 3 p^{21} D_{2}$	48236 (0.344)	47985 (1.077)	48069.7
$3 s^{2} 3 p^{21} S_{0}$	91839 (0.357)	91508 (0.003)	91511.0
$3 s 3 p^{35} S_{2}^{0}$	214152 (0.220)	214540 (0.039)	214624.0
$3 s 3 p^{3}{ }^{3} D_{1}^{o}$	287123 (0.028)	287199 (0.002)	287205.0
$3 \mathrm{~s} 3 p^{3}{ }^{3} D_{2}^{o}$	287270 (0.029)	287348 (0.002)	287356.0
$3 s 3 p^{3}{ }^{3} D_{3}^{0}$	290095 (0.029)	290179 (0.000)	290180.0
$3 s 3 p^{3}{ }^{3} P_{0}^{o}$	328974 (0.014)	328980 (0.016)	328927.0
$3 s 3 p^{3}{ }^{3} P_{1}^{o}$	329689 (0.015)	329702 (0.019)	329637.0
$3 s 3 p^{3}{ }^{3} P_{2}^{o}$	330323 (0.012)	330334 (0.015)	330282.0
$3 \mathrm{~s} 3 p^{31} D_{2}^{o}$	362482 (0.020)	362416 (0.002)	362407.0
$3 s 3 p^{3}{ }^{3}{ }_{1}^{o}$	415577 (0.027)	415519 (0.013)	415462.0
$3 s^{2} 3 p 3 d^{3} F_{2}^{o}$	430277 (0.035)	430129 (0.001)	430124.0
$3 s^{2} 3 p 3 d^{3} F_{3}^{o}$	437064 (0.033)	436905 (0.003)	436919.0
$3 s 3 p^{31} P_{1}^{o}$	438365 (0.063)	438005 (0.018)	438086.0
$3 s^{2} 3 p 3 d^{3} F_{4}^{o}$	447134 (0.029)	446959 (0.009)	447001.0
$3 s^{2} 3 p 3 d^{3} P_{2}^{o}$	486542 (0.037)	486403 (0.009)	486358.0
$3 s^{2} 3 p 3 d^{3} P_{1}^{o}$	495102 (0.032)	495242 (0.060)	494942.0
$3 s^{2} 3 p 3 d^{1} D_{2}^{o}$	499060 (0.038)	498925 (0.011)	498870.0
$3 s^{2} 3 p 3 d^{3} P_{0}^{o}$	501676 (0.032)	501667 (0.030)	501514.0
$3 s^{2} 3 p 3 d^{3} D_{1}^{o}$	506661 (0.030)	506681 (0.034)	506505.0
$3 s^{2} 3 p 3 d^{3} D_{3}^{o}$	509303 (0.024)	509479 (0.059)	509176.0
$3 s^{2} 3 p 3 d^{3} D_{2}^{o}$	509394 (0.028)	509441 (0.037)	509250.0
$3 s^{2} 3 p 3 d^{1} F_{3}^{o}$	557432 (0.093)	557303 (0.070)	556911.0
$3 s^{2} 3 p 3 d^{1} P_{1}^{o}$	571376 (0.110)	571187 (0.077)	570743.0

5. Transition Probabilities

Whereas there are enough observations to validate calculated excitation energies, the situation is very different for transition rates. For highly charged ions, there are few experimental methods available to determine transition rates. Lifetimes for long-lived states of the ground configuration or the lowest excited configurations have been determined in accurate storage-ring and trapping experiments (see for example, the review by Träbert [59]) and are used for benchmarking. Lifetimes for a large range of short-lived states have been determined using beam-foil spectroscopy [60]. However, even if these beam-foil data are very valuable, they are in general not accurate enough to discriminate between different computational approaches. In addition, lifetimes are dominated by the strong decay channels down to the lower configurations, and the lack of experimental transition rates, including weak transitions, between states of the excited configurations is of a major concern.

5.1. Internal Validation and Uncertainty Estimates

Due to the almost complete lack of experimental transition rates for highly charged ions, internal validation becomes important. For RMCDHF/RCI calculations, the convergence of the transition rates should be monitored as the active set is increased. Then, based on the same logic, the convergence of the transition rates should be monitored as the more involved correlation models are used, e.g., VV, VV +CV and VV $+\mathrm{CV}+\mathrm{CC}$. Considering the fact that there often are tens of thousands of transitions for extended spectrum calculations, this validation method is impractical,
and only smaller numbers of selected transitions can be monitored. Another internal validation method is based on the accuracy of the transition energy and the agreement between the computed line strength S in the length and velocity gauge. Along these lines, Froese-Fischer [61] has suggested that the uncertainties δA^{\prime} of the calculated transition rates for $L S$ allowed transitions can be estimated according to:

$$
\begin{equation*}
\delta A^{\prime}=(\delta E+\delta S) A^{\prime} \tag{9}
\end{equation*}
$$

where A^{\prime} is the energy-scaled transition rate computed from the observed transition energy $\left(E_{o b s}\right), \delta E=$ $\left|E_{\text {calc }}-E_{\text {obs }}\right| / E_{\text {obs }}$ is the relative error in the transition energy and $\delta S=\left|S_{\text {len }}-S_{\text {vel }}\right| / \max \left(S_{\text {len }}, S_{v e l}\right)$ is the relative discrepancy between the length and velocity forms of the line strengths. In cases where the transition energies are not known, the expression reduces to:

$$
\begin{equation*}
\delta A=(\delta S) A \tag{10}
\end{equation*}
$$

Based on a statistical analysis of large datasets of accurate E1 transition rates from many independent calculations, Ekman et al. [62] found that the estimated errors from Equation (10) are correlated with and very close to the presumed actual errors. A validation of the method extended to intercombination lines reveals a smaller correlation in the statistical analysis and suggests that the uncertainty estimate in this case should only be used if averaging over a larger sample. The analysis further confirms the well-known fact that the uncertainty is large for weaker transitions, the general explanation being cancellations between the contributions to the matrix elements from different pairs of CSFs [63] or cancellations in the integrands of the transition integrals.

5.2. Transition Rates for the B- to Si-Like Sequences

The RMCDHF/RCI and SD-MR method has been used to compute tens of thousands of E1, M1, E2, M2 transitions rates for the B- to Si-like sequences [28-32,43,45-52,54-56]. The E1 and E2 rates are internally validated by giving $\delta A / A$ along with A. The results for C-like Fe [29], shown in Table 9, illustrate the typical uncertainties. The table displays computed transition energies along with relative uncertainties obtained by comparing with observations from NIST. The uncertainties for the transition energies are all well below 1%, and many of them are around 0.1%, which is highly satisfactory. The transition rates in the length form are given together with the uncertainty estimate $\delta A / A$. The uncertainties for the transition rates are a few percent or less for the strong transitions, but go up to around 20% for some of the weak intercombination transitions. To further shed light on the situation, we compare the RMCDHF/RCI rates for Ne-like S [43] with rates from accurate MCHF-BP calculations [19] and with CI calculations using CIV3 [64] in Table 10. From the table, we see that there is in general a very good agreement between the rates from the different calculations. It is clear that the largest differences are for the weak transitions.

Table 9. Transition energies in cm^{-1} and E1 rates A in s^{-1} in the length gauge for Fe XXI from RMCDHF/RCI calculations [29]. Relative errors in \% for the calculated transition energies and rates are shown in parenthesis. For the transition energies, the relative errors were obtained by comparison with observations from NIST. For the transition rates, the relative errors are estimated from Equation (10).

Upper	Lower	$\Delta \boldsymbol{E}_{\text {calc }}$	\boldsymbol{A}
		Fe XXI	
$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{0}$	$776750(0.049)$	$1.156 \mathrm{E}+10(0.00)$
$2 s 2 p^{3}{ }^{3} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{0}$	$925023(0.120)$	$4.213 \mathrm{E}+09(0.07)$
$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{0}$	$1096012(0.089)$	$9.460 \mathrm{E}+09(0.16)$
$2 s 2 p^{3}{ }^{1} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{0}$	$1261529(0.205)$	$2.850 \mathrm{E}+07(1.82)$
$2 s 2 p^{3}{ }^{5} S_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	$412701(0.293)$	$3.597 \mathrm{E}+07(8.72)$

Table 9. Cont.

Upper	Lower	$\Delta E_{\text {calc }}$	A
$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	702930 (0.049)	$7.606 \mathrm{E}+08$ (1.64)
$2 \mathrm{~s} 2 p^{3}{ }^{3} D_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	703550 (0.048)	$9.240 \mathrm{E}+09$ (0.66)
$2 s 2 p^{3}{ }^{3} P_{0}^{0}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	842581 (0.122)	$2.200 \mathrm{E}+10(0.31)$
$2 \mathrm{~s} 2 p^{3}{ }^{3} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	851203 (0.119)	$1.602 \mathrm{E}+10$ (0.12)
$2 \mathrm{~s} 2 p^{3}{ }^{3} P_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	868735 (0.120)	$3.820 \mathrm{E}+08$ (1.85)
$2 \mathrm{~s} 2 p^{3}{ }^{3} S_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	1022191 (0.133)	$2.533 \mathrm{E}+10(0.11)$
$2 s 2 p^{31} D_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	1053811 (0.089)	$3.907 \mathrm{E}+08$ (1.68)
$2 \mathrm{~s} 2 p^{3}{ }^{1} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{1}$	1187709 (0.205)	$4.909 \mathrm{E}+09$ (0.34)
$2 s 2 p^{3}{ }^{5} S_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	369157 (0.293)	$3.272 \mathrm{E}+07$ (11.61)
$2 \mathrm{~s} 2 p^{3}{ }^{3} D_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	659387 (0.050)	$8.335 \mathrm{E}+07$ (6.39)
$2 s 2 p^{3}{ }^{3} D_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	660006 (0.050)	$4.535 \mathrm{E}+06$ (22.51)
$2 \mathrm{~s} 2 p^{3}{ }^{3} D_{3}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	686197 (0.050)	$6.105 \mathrm{E}+09$ (0.80)
$2 \mathrm{~s} 2 p^{3}{ }^{3} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	807659 (0.120)	$2.681 \mathrm{E}+09$ (1.30)
$2 \mathrm{~s} 2 p^{3}{ }^{3} P_{2}^{0}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	825192 (0.121)	$2.038 \mathrm{E}+10$ (0.04)
$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	978647 (0.134)	$6.104 \mathrm{E}+10(0.24)$
$2 \mathrm{~s} 2 p^{31} D_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	1010267 (0.090)	$8.020 \mathrm{E}+09$ (0.39)
$2 s 2 p^{3}{ }^{1} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{3} P_{2}$	1144165 (0.206)	$2.491 \mathrm{E}+08$ (0.16)
$2 s 2 p^{3}{ }^{5} S_{2}^{0}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	241853 (0.714)	$1.307 \mathrm{E}+06$ (19.51)
$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	532083 (0.048)	$1.808 \mathrm{E}+08$ (6.63)
$2 \mathrm{~s} 2 p^{3}{ }^{3} D_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	532703 (0.048)	$3.827 \mathrm{E}+07$ (6.27)
$2 \mathrm{~s} 2 p^{3}{ }^{3} D_{3}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	558894 (0.049)	$9.767 \mathrm{E}+08$ (3.61)
$2 s 2 p^{3}{ }^{3} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	680356 (0.051)	$2.577 \mathrm{E}+08$ (2.44)
$2 s 2 p^{3}{ }^{3} P_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	697888 (0.052)	$1.435 \mathrm{E}+08$ (4.80)
$2 \mathrm{~s} 2 p^{3}{ }^{3} S_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	851344 (0.084)	$3.607 \mathrm{E}+08$ (3.16)
$2 s 2 p^{31} D_{2}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	882963 (0.037)	$4.485 \mathrm{E}+10$ (0.37)
$2 \mathrm{~s} 2 p^{31} P_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} D_{2}$	1016862 (0.170)	$6.583 \mathrm{E}+10$ (0.15)
$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} S_{0}$	404698 (0.165)	$4.070 \mathrm{E}+07$ (2.97)
$2 \mathrm{~s} 2 p^{3}{ }^{3} P_{1}^{0}$	$2 s^{2} 2 p^{2}{ }^{1} S_{0}$	552971 (0.014)	$1.492 \mathrm{E}+08$ (7.10)
$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} S_{0}$	723959 (0.008)	$6.511 \mathrm{E}+08$ (2.13)
$2 \mathrm{~s} 2 p^{31}{ }_{1}^{o}$	$2 s^{2} 2 p^{2}{ }^{1} S_{0}$	889477 (0.147)	$1.727 \mathrm{E}+10(0.52)$
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{3}{ }^{5} S_{2}^{o}$	1159940 (0.180)	$1.422 \mathrm{E}+09$ (2.39)
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{3}{ }^{5} S_{2}^{o}$	1254085 (0.181)	$2.381 \mathrm{E}+08$ (3.65)
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{35} S_{2}^{o}$	1331255 (0.201)	$5.282 \mathrm{E}+07$ (2.48)
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	869710 (0.102)	$3.455 \mathrm{E}+09$ (0.75)
$2 p^{4}{ }^{3} P_{0}$	$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	959080 (0.137)	$3.474 \mathrm{E}+10(0.43)$
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	963855 (0.102)	$1.434 \mathrm{E}+10(0.27)$
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	1041025 (0.103)	$4.033 \mathrm{E}+06$ (20.67)
$2 p^{4}{ }^{1} S_{0}$	$2 s 2 p^{3}{ }^{3} D_{1}^{o}$	1271738 (0.137)	$2.331 \mathrm{E}+08$ (1.32)
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{3}{ }^{3} D_{2}^{o}$	869090 (0.103)	$1.335 \mathrm{E}+10(0.00)$
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{3}{ }^{3} D_{2}^{o}$	963235 (0.104)	$2.124 \mathrm{E}+10(0.28)$
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{3}{ }^{3} D_{2}^{o}$	1040406 (0.106)	$7.878 \mathrm{E}+08$ (0.20)
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{3}{ }^{3} D_{3}^{o}$	842899 (0.137)	$2.822 \mathrm{E}+10(0.53)$
$2 p^{41} D_{2}$	$2 s 2 p^{3}{ }^{3} D_{3}^{o}$	1014215 (0.260)	$5.622 \mathrm{E}+09$ (0.85)
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{3}{ }^{3} P_{0}^{o}$	824204 (0.038)	$4.813 \mathrm{E}+09$ (0.02)
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{3}{ }^{3} P_{1}^{o}$	721437 (0.039)	$3.678 \mathrm{E}+09(0.32)$
$2 p^{4}{ }^{3} P_{0}$	$2 s 2 p^{3}{ }^{3} P_{1}^{o}$	810807 (0.040)	$1.827 \mathrm{E}+10$ (0.93)
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{3}{ }^{3} P_{1}^{o}$	815582 (0.043)	$1.273 \mathrm{E}+08$ (3.29)
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{3}{ }^{3} P_{1}^{o}$	892752 (0.085)	$1.241 \mathrm{E}+09$ (1.85)
$2 p^{4}{ }^{1} S_{0}$	$2 s 2 p^{3}{ }^{3} P_{1}^{o}$	1123465 (0.233)	$4.222 \mathrm{E}+09$ (1.30)
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{3}{ }^{3} P_{2}^{o}$	703905 (0.039)	$3.629 \mathrm{E}+09(0.88)$
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{3}{ }^{3} P_{2}^{o}$	798050 (0.040)	$1.598 \mathrm{E}+10(0.75)$
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{3}{ }^{3} P_{2}^{o}$	875220 (0.085)	$2.512 \mathrm{E}+09$ (1.79)
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	550450 (0.021)	$6.005 \mathrm{E}+09(0.76)$
$2 p^{4}{ }^{3} P_{0}$	$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	639819 (0.020)	$1.733 \mathrm{E}+10(0.28)$
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	644594 (0.049)	$1.290 \mathrm{E}+10(0.00)$
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	721764 (0.059)	7.002E+06 (0.68)
$2 p^{4}{ }^{1} S_{0}$	$2 s 2 p^{3}{ }^{3} S_{1}^{o}$	952477 (0.060)	$5.111 \mathrm{E}+09$ (0.25)
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{31} D_{2}^{o}$	518830 (0.065)	$7.538 \mathrm{E}+08$ (1.85)
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{31} D_{2}^{o}$	612975 (0.124)	$3.767 \mathrm{E}+08$ (3.31)
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{31} D_{2}^{o}$	690145 (0.311)	$3.182 \mathrm{E}+10(0.28)$
$2 p^{4}{ }^{3} P_{2}$	$2 s 2 p^{31} P_{1}^{o}$	384932 (0.274)	$8.409 \mathrm{E}+07$ (3.44)
$2 p^{4}{ }^{3} P_{0}$	$2 s 2 p^{31} P_{1}^{o}$	474302 (0.271)	$9.885 \mathrm{E}+06$ (20.99)
$2 p^{4}{ }^{3} P_{1}$	$2 s 2 p^{31} P_{1}^{o}$	479076 (0.265)	$6.387 \mathrm{E}+08$ (1.58)
$2 p^{4}{ }^{1} D_{2}$	$2 s 2 p^{31} P_{1}^{o}$	556247 (0.139)	$4.499 \mathrm{E}+09$ (1.15)
$2 p^{4}{ }^{1}{ }_{0}$	$2 s 2 p^{31} P_{1}^{o}$	786959 (0.156)	$7.549 \mathrm{E}+10$ (0.09)

Table 10. Transition rates for Ne-like S. $A_{R C I}$ transition rates from RMCDHF/RCI [43], $A_{B P}$ transition rates from multiconfiguration Hartree-Fock-Breit-Pauli [19] and $A_{\text {CIV3 }}$ transition rates from CI calculations using CIV3 [64].

States			$\Delta E\left(\mathrm{~cm}^{-1}\right)$	Type	$A_{\text {RCI }}$	$A_{\text {BP }}$	$A_{\text {CIV } 3}$
Upper	Lower						
S VII							
$2 p^{5} 3 s^{3} P_{2}^{o}$	$2 p^{6}{ }^{1} S_{0}$		1371667	M2	$7.638 \mathrm{E}+02$	7.617E+02	
$2 p^{5} 3 s^{3} P_{1}^{o} 0.81+0.18{ }^{1} P_{1}^{o}$	$2 p^{6}{ }^{1} S_{0}$		1376084	E1	$1.855 \mathrm{E}+10$	$1.816 \mathrm{E}+10$	$1.989 \mathrm{E}+10$
$2 p^{5} 3 s^{1} P_{1}^{o} 0.81+0.18{ }^{3} P_{1}^{o}$	$2 p^{6}{ }^{1} S_{0}$		1388242	E1	$8.421 \mathrm{E}+10$	$8.507 \mathrm{E}+10$	$8.777 \mathrm{E}+10$
$2 p^{5} 3 p^{3} D_{2} \quad 0.79+0.16{ }^{1} D_{2}$	$2 p^{6}{ }^{1} S_{0}$		1484530	E2	$3.021 \mathrm{E}+06$	$2.964 \mathrm{E}+06$	
$2 p^{5} 3 p^{3} P_{2} \quad 0.56+0.42{ }^{1} D_{2}$	$2 p^{6}{ }^{1} S_{0}$		1492576	E2	$8.028 \mathrm{E}+06$	$8.008 \mathrm{E}+06$	
$2 p^{5} 3 d^{3} P_{1}^{o}$	$2 p^{6}{ }^{1} S_{0}$		1624769	E1	$2.160 \mathrm{E}+09$	$2.182 \mathrm{E}+09$	$2.312 \mathrm{E}+09$
$2 p^{5} 3 d^{3} P_{2}^{o}$	$2 p^{6}{ }^{1} S_{0}$		1627240	M2	$1.710 \mathrm{E}+04$	$1.728 \mathrm{E}+04$	
$2 p^{5} 3 d^{3} D_{1}^{o}$	$2 p^{6}{ }^{1} S_{0}$		1644545	E1	$6.122 \mathrm{E}+10$	$6.206 \mathrm{E}+10$	$6.230 \mathrm{E}+10$
$2 p^{5} 3 d^{1} P_{1}^{0}$	$2 p^{6}{ }^{1} S_{0}$		1662346	E1	$9.452 \mathrm{E}+11$	$9.448 \mathrm{E}+11$	$9.087 \mathrm{E}+11$
$2 p^{5} 3 s^{3} P_{1}^{o} 0.81+0.18{ }^{1} P_{1}^{o}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		4417	M1	$1.587 \mathrm{E}+00$	$1.601 \mathrm{E}+00$	
$2 p^{5} 3 s^{1} P_{1}^{o} 0.81+0.18{ }^{3} P_{1}^{o}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		16575	M1	$1.849 \mathrm{E}+01$	$1.867 \mathrm{E}+01$	
$2 p^{5} 3 p^{3} S_{1}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		95373	E1	$6.393 \mathrm{E}+08$	$6.504 \mathrm{E}+08$	$6.480 \mathrm{E}+08$
$2 p^{5} 3 p^{3} D_{3}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		111609	E1	$1.566 \mathrm{E}+09$	$1.608 \mathrm{E}+09$	$1.594 \mathrm{E}+09$
$2 p^{5} 3 p^{3} D_{2} 0.79+0.16{ }^{1} D_{2}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		112863	E1	$6.439 \mathrm{E}+08$	$6.627 \mathrm{E}+08$	$6.418 \mathrm{E}+08$
$2 p^{5} 3 p^{3} D_{1} 0.72+0.17{ }^{1} P_{1}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		116432	E1	$1.994 \mathrm{E}+08$	$2.060 \mathrm{E}+08$	$2.023 \mathrm{E}+08$
$2 p^{5} 3 p^{3} P_{2} 0.56+0.42{ }^{1} D_{2}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		120909	E1	$1.000 \mathrm{E}+09$	$1.031 \mathrm{E}+09$	$1.006 \mathrm{E}+09$
$2 p^{5} 3 p^{1} P_{1} 0.55+0.27{ }^{3} D_{1}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		124214	E1	$7.124 \mathrm{E}+07$	$7.315 \mathrm{E}+07$	$6.807 \mathrm{E}+07$
$2 p^{5} 3 p^{1} D_{2} \quad 0.42+0.38{ }^{3} P_{2}$	$2 p^{5} 3 s^{3} P_{2}^{o}$		127448	E1	$2.464 \mathrm{E}+08$	$2.501 \mathrm{E}+08$	$2.832 \mathrm{E}+08$
$2 p^{5} 3 p^{3} S_{1}$	$2 p^{5} 3 s^{1} P_{1}^{o}$	$0.81+0.18{ }^{3} P_{1}^{o}$	78797	E1	$1.188 \mathrm{E}+07$	$1.206 \mathrm{E}+07$	$1.253 \mathrm{E}+07$
$2 p^{5} 3 p^{3} D_{2} \quad 0.79+0.16{ }^{1} D_{2}$	$2 p^{5} 3 s^{1} P_{1}^{o}$	$0.81+0.188^{3} P_{1}^{o}$	96287	E1	$6.945 \mathrm{E}+06$	7.197E+06	$5.508 \mathrm{E}+06$
$2 p^{5} 3 p^{3} D_{1} 0.72+0.17{ }^{1} P_{1}$	$2 p^{5} 3 s^{1} P_{1}^{o}$	$0.81+0.188^{3} P_{1}^{o}$	99856	E1	$3.825 \mathrm{E}+06$	$4.290 \mathrm{E}+06$	$4.536 \mathrm{E}+06$
$2 p^{5} 3 p^{3} P_{2} \quad 0.56+0.42{ }^{1} D_{2}$	$2 p^{5} 3 s^{1} P_{1}^{o}$	$0.81+0.18{ }^{3} P_{1}^{o}$	104333	E1	$2.932 \mathrm{E}+08$	$2.977 \mathrm{E}+08$	$3.152 \mathrm{E}+08$
$2 p^{5} 3 p^{1} P_{1} 0.55+0.27{ }^{3} D_{1}$	$2 p^{5} 3 s^{1} P_{1}^{o}$	$0.81+0.18{ }^{3} P_{1}^{o}$	107638	E1	$7.415 \mathrm{E}+08$	7.625E+08	$7.557 \mathrm{E}+08$

Table 10. Cont.

States		$\Delta E\left(\mathrm{~cm}^{-1}\right)$	Type	$A_{\text {RCI }}$	$A_{\text {BP }}$	$A_{\text {CIV } 3}$
Upper	Lower					
$2 p^{5} 3 p^{3} P_{0}$	$2 p^{5} 3 s^{1} P_{1}^{o} 0.81+0.18{ }^{3} P_{1}^{o}$	110460	E1	$1.908 \mathrm{E}+08$	$1.974 \mathrm{E}+08$	$2.006 \mathrm{E}+08$
$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	$2 p^{5} 3 s^{1} P_{1}^{o} 0.81+0.18{ }^{3} P_{1}^{o}$	110872	E1	$1.206 \mathrm{E}+09$	$1.243 \mathrm{E}+09$	$1.199 \mathrm{E}+09$
$2 p^{5} 3 p^{3} P_{1} 0.70+0.27{ }^{1} P_{1}$	$2 p^{5} 3 s^{1} P_{1}^{o} 0.81+0.18{ }^{3} P_{1}^{o}$	112070	E1	$7.082 \mathrm{E}+08$	$7.307 \mathrm{E}+08$	$7.000 \mathrm{E}+08$
$2 p^{5} 3 p^{3} P_{1} 0.70+0.27{ }^{1} P_{1}$	$2 p^{5} 3 s^{1} P_{1}^{o} 0.81+0.18{ }^{3} P_{1}^{o}$	112070	M2	$1.139 \mathrm{E}-01$	$1.191 \mathrm{E}-01$	
$2 p^{5} 3 p^{1} S_{0}$	$2 p^{5} 3 s^{1} P_{1}^{o} 0.81+0.18{ }^{3} P_{1}^{o}$	165149	E1	$5.082 \mathrm{E}+09$	$5.118 \mathrm{E}+09$	$5.073 \mathrm{E}+09$
$2 p^{5} 3 d^{3} P_{1}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	125654	E1	$1.229 \mathrm{E}+08$	$1.235 \mathrm{E}+08$	$1.323 \mathrm{E}+08$
$2 p^{5} 3 d^{3} P_{2}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	128125	E1	$3.010 \mathrm{E}+08$	$3.017 \mathrm{E}+08$	$3.358 \mathrm{E}+08$
$2 p^{5} 3 d^{3} P_{2}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	128125	M2	$1.161 \mathrm{E}-01$	$1.175 \mathrm{E}-01$	
$2 p^{5} 3 d^{3} F_{3}^{o} 0.77+0.20{ }^{1} F_{3}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	132832	E1	$1.471 \mathrm{E}+06$	$1.472 \mathrm{E}+06$	$1.078 \mathrm{E}+06$
$2 p^{5} 3 d^{3} F_{2}^{o} 0.71+0.17{ }^{1} D_{2}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	136157	E1	$1.190 \mathrm{E}+06$	$1.370 \mathrm{E}+06$	$1.643 \mathrm{E}+06$
$2 p^{5} 3 d^{1} F_{3}^{o} 0.53+0.40{ }^{3} D_{3}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	138763	E1	$1.511 \mathrm{E}+08$	$1.519 \mathrm{E}+08$	$1.131 \mathrm{E}+08$
$2 p^{5} 3 d^{3} D_{1}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	145430	E1	$3.071 \mathrm{E}+06$	$3.159 \mathrm{E}+06$	$1.717 \mathrm{E}+06$
$2 p^{5} 3 d^{1} D_{2}^{o} 0.52+0.28{ }^{3} F_{2}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	145447	E1	$6.172 \mathrm{E}+08$	$6.286 \mathrm{E}+08$	$6.276 \mathrm{E}+08$
$2 p^{5} 3 d^{3} D_{3}^{o} 0.57+0.27{ }^{1} F_{3}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	146716	E1	$4.030 \mathrm{E}+09$	$4.093 \mathrm{E}+09$	$4.183 \mathrm{E}+09$
$2 p^{5} 3 d^{3} D_{3}^{o} 0.57+0.27{ }^{1} F_{3}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	146716	M2	$1.029 \mathrm{E}+00$	$1.054 \mathrm{E}+00$	
$2 p^{5} 3 d^{3} D_{2}^{o} 0.65+0.27{ }^{1} D_{2}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	147358	E1	$1.521 \mathrm{E}+08$	$1.531 \mathrm{E}+08$	$1.489 \mathrm{E}+08$
$2 p^{5} 3 d^{1} P_{1}^{o}$	$2 p^{5} 3 p^{1} D_{2} 0.42+0.38{ }^{3} P_{2}$	163231	E1	$4.854 \mathrm{E}+07$	$4.851 \mathrm{E}+07$	$5.550 \mathrm{E}+07$

5.3. Systematic Comparisons between Methods

Wang and co-workers have systematically compared large sets of transition rates from accurate RMCDHF/RCI and RMBPT calculations [49-52]. These comparisons show that the rates from the two methods agree within a few percent for the strong transitions and that the agreement gets slightly worse for the weak intercombination and the two-electron, one photon transitions ${ }^{1}$. The comparisons also show that the differences between the methods are large for transitions for which there are large differences between the rates in the length and velocity form, thus confirming the usefulness of $\delta A / A$ as an uncertainty estimate. In Figure 3, we show the results of a comparison between methods for O-like Fe [31]. The figure clearly shows the consistency of the RMCDHF/RCI and RMBPT transitions rates, but also the comparatively large differences with rates from the CHIANTI database. These types of comparisons point to the fact that transition rates can be computed with high accuracy, but that much effort remains in order to make data practically available for astronomers and astrophysicist in updated databases.

Figure 3. Results of a comparison between methods for O-like Fe [31]. Deviation in percent between RMCDHF/RCI and RMBPT transition rates as a function of the transition rate in s^{-1}. Deviations from the values of the CHIANTI database $[3,4]$ are given in red. The dashed lines give the 10% levels.

6. Conclusions

Current computational methodologies make it possible to compute excitation and transition energies to almost spectroscopic accuracy for many ionized systems. In an astrophysical context, this means that calculated transition energies can be used to unambiguously identify new lines from spectra or correct old identifications. Transition data are lacking for many ions, and calculated values fill this gap. Whereas many of the calculations have been done for systems with relatively few electrons with a full RCI matrix, zero- and first-order methods, allowing for parts of the interactions to be treated perturbatively, have extended the range of applicability, and many calculations with high accuracy are in progress for isoelectronic sequences starting from the third and fourth row of the periodic table.

Accurate and consistent transition rates are essential for collisional and radiative plasma modelling and for diagnostic purposes. Very few experimental data are available for the rates, and thus, the bulk of the data must be computed. The lack of experimental data means that internal validation of

[^0]computed data becomes important. For accurate calculations that predict the energy structure at the per millelevel, the differences between E1 rates in the length and velocity forms can be used to estimate the uncertainties. Internal validation based on convergence analysis and agreement between rates in length and velocity, as well as systematic comparisons of rates from RMCDHF/RCI and RMBPT calculations show that the uncertainties of the E1 rates are at the level of a few percent for the strong transitions. For the weakest transitions, the uncertainties are higher and come with a more irregular pattern.

7. Further Developments and Outlook

The time for angular integration is a limiting factor for very large RCI calculations. This time can be cut down by regrouping CSFs from SD-MR expansions in blocks that can be represented symbolically. For example, in non-relativistic notation, $1 s^{2} n s m p^{3} P$ and $1 s^{2} n p m d^{3} P$ with $n=2, \ldots, 12$ and $m=2, \ldots, 12$ represent two blocks where the angular integration between CSFs in the blocks, as well as between CSFs in the different blocks is independent of the principal quantum numbers or can be reduced to only a few cases. For large n and m, the reduction in computing time is substantial. Discussed already decades ago [65], it seems essential that these ideas are now broadly implemented in the generally available computer codes.

With angular integration being a negligible part of the computation comes the possibility to extend the orbital set to higher n. Currently, the orbitals are variationally determined on a grid in RMCDHF calculations. The variational determination is computationally costly, and it would be valuable to augment the variationally-determined orbitals with analytical orbitals or orbitals determined in simplified and fast procedures. Work along these lines is in progress.

Among the targeted systems for improved computer codes are the α-elements, including Mg, Si, Ca and the iron group elements $\mathrm{Sc}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$ at lower ionization states. These elements are of key importance for stellar and galactic evolution studies [66].

Acknowledgments: Per Jönsson, Henrik Hartman, Jörgen Ekman and Tomas Brage acknowledge support from the Swedish Research Council under Contract 2015-04842. Laima Radziute is thankful for the high performance computing resources provided by the Information Technology Open Access Center of Vilnius University. Michel R. Godefroid acknowledges support from the Belgian F.R.S.-FNRS Fonds de la Recherche Scientifique under CDR J.0047.16.

Author Contributions: All authors contributed equally to the work presented here.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Editorial. Nailing fingerprints in the stars. Nature 2013, 437, 503.
2. Pradhan, A.K.; Nahar, S.N. Atomic Astrophysics and Spectroscopy; Cambridge University Press: Cambridge, UK, 2011.
3. Dere, K.P.; Landi, E.; Mason, H.E.; Monsignori Fossi, B.C.; Young, P.R. CHIANTI—An atomic database for emission lines—Paper I: wavelengths greater than $50 \AA$ (Version 1). Astron. Astrophys. Suppl. Ser. 1997, 125, 149-173.
4. Landi, E.; Young, P.R.; Dere, K.P.; Del Zanna, G.; Mason, H.E. CHIANTI—An atomic database for emission lines. XIII. Soft X-ray improvements and other changes: Version 7.1 of the database. Astrophys. J. 2013, 763, 86.
5. Del Zanna, G. Benchmarking atomic data for astrophysics: A first look at the soft X-ray lines. Astron. Astrophys. 2012, 546, A97.
6. Edlén, B. Atomic Spectra. Encyclopedia of Physics; Flügge, S., Ed.; Springer-Verlag: Berlin, Germany, 1964.
7. Froese Fischer, C.; Godefroid, M.; Brage, T.; Jönsson, P.; Gaigalas, G. Advanced multiconfiguration methods for complex atoms: Part I-Energies and wave functions. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 182004.
8. Froese Fischer, C.; Brage, T.; Jönsson, P. Computational Atomic Structure—An MCHF Approach; CRC Press: Boca Raton, FL, USA, 1997.
9. Kozlov, M.G.; Porsev, S.G.; Safronova, M.S.; Tupitsyn, I.I. CI-MBPT: A package of programs for relativistic atomic calculations based on a method combining configuration interaction and many-body perturbation theory. Comput. Phys. Commun. 2015, 195, 199-213.
10. Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M. A partitioned correlation function interaction approach for describing electron correlation in atoms. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 085003.
11. Dzuba, V.A.; Berengut, J.; Harabati, C.; Flambaum, V.V. Combining configuration interaction with perturbation theory for atoms with large number of valence electrons. Phys. Rev. A 2016, 95, 012503.
12. Gustafsson, S.; Jönsson, P.; Froese Fischer, C.; Grant, I.P. Combining Multiconfiguration and Perturbation Methods: Perturbative Estimates of Core-Core Electron Correlation Contributions to Excitation Energies in Mg-Like Iron. Atoms 2017, 5, 3.
13. Radžiūtè, L.; Gaigalas, G.; Kato, D; Jönsson, P.; Rynkun, P.; Kučas, S.; Jonauskas, V.; Matulianec, R. Energy level structure of Er^{3+}. J. Quant. Spectrosc. Radiat. Transf. 2015, 152, 94-106.
14. Jönsson, P.; Gaigalas, G.; Bieroń, J.; Froese Fischer, C.; Grant, I.P. New Version: grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197-2203.
15. Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules; Springer: New York, NY, USA; 2007.
16. Dyall, K.G.; Grant, I.P.; Johnson, C.T.; Parpia, F.A.; Plummer, E.P. GRASP: A general-purpose relativistic atomic structure program. Comput. Phys. Commun. 1989, 55, 425-456.
17. Grant, I.P.; Pyper, N.C. Breit-interaction in multi-configuration relativistic atomic calculations. J. Phys. B 1976, 9, 761-774.
18. Gaigalas, G.; Žalandauskas, T.; Rudzikas, Z. LS-jj transformation matrices for a shell of equivalent electrons. At. Data Nucl. Data Tables 2003, 84, 99-190.
19. Froese Fischer, C.; Tachiev, G. Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences. At. Data Nucl. Data Tables 2004, 87, 1-184.
20. Froese Fischer, C.; Gaigalas, G. Multiconfiguration Dirac-Hartree-Fock energy levels and transition probabilities for W XXXVIII. Phys. Rev. A 2012, 85, 042501.
21. Gaigalas, G.; Froese Fischer, C.; Rynkun, P.; Jönsson, P. JJ2LSJ transformation and unique labeling for energy levels. Atoms 2017, 5, 6.
22. Gaigalas, G.; Rudzikas, Z.; Froese Fischer, C. An efficient approach for spin-angular integrations in atomic structure calculations. J. Phys. B At. Mol. Opt. Phys. 1997, 30, 3747-3771.
23. Gaigalas, G.; Fritzsche, S.; Grant, I.P. Program to calculate pure angular momentum coefficients in jj-coupling. Comput. Phys. Commun. 2001, 139, 263-278.
24. Olsen, J.; Godefroid, M.; Jönsson, P.; Malmqvist, P.Å.; Froese Fischer, C. Transition probability calculations for atoms using nonorthogonal orbitals. Phys. Rev. E 1995, 52, 4499-4508.
25. Jönsson, P.; Froese Fischer, C. Multiconfiguration Dirac-Fock calculations of the $2 s^{2}{ }^{1} S_{0}-2 s 2 p{ }^{3} P_{1}$ intercombination transition in C III. Phys. Rev. A 1998, 57, 4967-4970.
26. Grant, I.P. Gauge invariance and relativistic radiative transitions. J. Phys. B At. Mol. Phys. 1974, 7, 1458-1475.
27. Froese Fischer, C.; Gaigalas, G.; Jönsson, P. Core effects on transition energies for $3 d^{k}$ configurations in Tungsten ions. Atoms 2017, 5, 7.
28. Rynkun, P.; Jönsson, P.; Gaigalas, G. Energies and E1, M1, E2, M2 transition rates for states of the $2 s^{2} 2 p$, $2 s 2 p^{2}$, and $2 p^{3}$ configurations in boron-like ions between N III and Zn XXVI. At. Data Nucl. Data Tables 2012, 98, 481-556.
29. Jönsson, P.; Rynkun, P.; Gaigalas, G. Energies, E1, M1, and E2 transition rates, hyperfine structures, and Landé g_{J} factors for the states of the $2 s^{2} 2 p^{2}, 2 s 2 p^{3}$, and $2 p^{4}$ configurations in carbon-like ions between F IV and Ni XXIII. At. Data Nucl. Data Tables 2011, 97, 648-691.
30. Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C. Energies and E1, M1, E2, and M2 transition rates for states of the $2 s^{2} 2 p^{3}, 2 s 2 p^{4}$, and $2 p^{5}$ configurations in nitrogen-like ions between FIII and Kr XXX . At. Data Nucl. Data Tables 2014, 100, 315-402.
31. Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C. Energies and E1, M1, E2, and M2 transition rates for states of the $2 s^{2} 2 p^{4}, 2 s 2 p^{5}$, and $2 p^{6}$ configurations in oxygen-like ions between F II and Kr XXIX. Astron. Astrophys. 2013, 557, A136.
32. Jönsson, P.; Alkauskas, A.; Gaigalas, G. Energies and E1, M1, E2 transition rates for states of the $2 s^{2} 2 p^{5}$ and $2 s 2 p^{6}$ configurations in fluorine-like ions between Si VI and W LXVI. At. Data Nucl. Data Tables 2013, 99, 431-446.
33. Nazé, C.; Verdebout, S.; Rynkun, P.; Gaigalas, G.; Godefroid, M.; Jönsson, P. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. At. Data Nucl. Data Tables 2014, 100, 1197-1249.
34. Verdebout, S., Nazé, C.; Jönsson, P.; Rynkun, P.; Godefroid, M.; Gaigalas, G. Hyperfine structures and Landé g_{J}-factors for $n=2$ states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. At. Data Nucl. Data Tables 2014, 100, 1111-1155.
35. Kelly, R.L. Atomic and Ionic Spectrum Lines Below 2000 Angstroms: Hydrogen Through Krypton. J. Phys. Chem. Ref. Data Suppl. 1987, 16, 1-1698.
36. Edlén, B. Comparison of Theoretical and Experimental Level Values of the $\mathrm{n}=2$ Complex in Ions Isoelectronic with Li, Be, O and F. Phys. Scr. 1983, 28, 51-67.
37. Kramida, A.E.; Ralchenko, Y.; Reader, J.; NIST ASD Team (2015). NIST Atomic Spectra Database (ver. 5.3). National Institute of Standards and Technology: Gaithersburg, MD. Available online: http:/ / physics.nist. gov/asd (accessed on 28 December 2016).
38. Vilkas, M.J.; Ishikawa, Y.; Koc, K. Relativistic multireference many-body perturbation theory for quasidegenerate systems: Energy levels of ions of the oxygen isoelectronic sequence. Phys. Rev. A 1999, 60, 2808-2821.
39. Gaigalas, G.; Kaniauskas, J.; Kisielius, R.; Merkelis, G.; Vilkas, M.J. Second-order MBPT results for the oxygen isoelectronic sequence. Phys. Scr. 1994, 49, 135-147.
40. Bhatia, A.K.; Thomas, R.J.; Landi, E. Atomic data and spectral line intensities for Ne III. At. Data Nucl. Data Tables 2003, 83, 113-152.
41. Jonauskas, V.; Keenan, F.P.; Foord, M.E.; Heeter, R.F.; Rose, S.J.; Ferland, G.J.; Kisielius, R.; van Hoof, P.A.M.; Norrington, P.H. Dirac-Fock energy levels and transition probabilities for oxygen-like Fe XIX. Astron. Astrophys. 2004, 424, 363-369.
42. Landi, E.; Gu, M.F. Atomic Data for High-Energy Configurations in Fe XVII-XXIII. Astrophys. J. 2006, 640, 1171-1179.
43. Jönsson, P.; Bengtsson, P.; Ekman, J.; Gustafsson, S.; Karlsson, L.B.; Gaigalas, G.; Froese Fischer, C.; Kato, D.; Murakami, I.; Sakaue, H.A.; et al. Relativistic CI calculations of spectroscopic data for the $2 p^{6}$ and $2 p^{5} 3 l$ configurations in Ne-like ions between Mg III and Kr XXVII. At. Data Nucl. Data Tables 2014, 100, 1-154.
44. Ishikawa, Y.; Lopez Encarnacion, J.M.; Träbert, E. $N=3-3$ transitions of Ne-like ions in the iron group, especially Ca ${ }^{10+}$ and Ti ${ }^{12+}$. Phys. Scr. 2009, 79, 025301.
45. Jönsson, P.; Ekman, J.; Gustafsson, S.; Hartman, H.; Karlsson, L.B.; du Rietz, R.; Gaigalas, G.; Godefroid, M.R.; Froese Fischer, C. Energy levels and transition rates for the boron isoelectronic sequence: Si X, Ti XVIII - Cu XXV. Astron. Astrophys. 2013, 559, A100.
46. Jönsson, P.; Ekman, J.; Träbert, E. MCDHF Calculations and Beam-Foil EUV Spectra of Boron-like Sodium Ions (Na VII). Atoms 2015, 3, 195-259.
47. Ekman, J.; Jönsson, P.; Gustafsson, S.; Hartman, H.; Gaigalas, G.; Godefroid, M.R.; Froese Fischer, C. Calculations with spectroscopic accuracy: Energies, Landé g_{J}-factors, and transition rates in the carbon isoelectronic sequence from Ar XIII to Zn XXV. Astron. Astrophys. 2014, 564, A24.
48. Radžiūtè, L.; Ekman, J.; Jönsson P.; Gaigalas, G. Extended calculations of level and transition properties in the nitrogen isoelectronic sequence: Cr XVIII, Fe XX, Ni XXII, and Zn XXIV. Astron. Astrophys. 2015, 582, A61.
49. Wang, K.; Guo, X.L.; Li, S.; Si, R.; Dang, W.; Chen, Z.B.; Jönsson, P.; Hutton, R.; Chen, C.Y.; Yan, J. Calculations with spectroscopic accuracy: Energies and transition rates in the nitrogen isoelectronic sequence from Ar XII to Zn XXIV. Astrophys. J. Suppl. 2016, 223, 3.
50. Wang, K.; Jönsson, P.; Ekman, J.; Gaigalas, G.; Godefroid, M.R.; So, R.; Chen, Z.B.; Li, S.; Chen, C.Y.; Yan, J. Extended Calculations of Spectroscopic Data Energy Levels, Lifetimes and Transition Rates for O-like Ions from Cr XVII to Zn XXIII. Astrophys. J. Suppl. 2017, 229, 37.
51. Si, R.; Li, S.; Guo, X.L.; Chen, Z.B.; Brage, T.; Jönsson, P.; Wang, K.; Yan, J.; Chen, C.Y.; Zou, Y.M. Extended calculations with spectroscopic accuracy: energy levels and transition properties for the fluorine isoelectronic sequence with $Z=24-30$. Astrophys. J. Suppl. 2016, 227, 16.
52. Wang, K.; Chen, Z.B.; Si, R.; Jönsson, P.; Ekman, J.; Guo, X.L.; Li, S.; Long, F.Y.; Dang, W.; Zhao, X.H.; et al. Extended relativistic configuration interaction and many-body perturbation calculations of spectroscopic data for the $n \leq 6$ configurations in Ne-like ions between Cr XV and Kr XXVII. Astrophys. J. Suppl. 2016, 226, 14.
53. Gu, M.F. Wavelengths of $2 l \rightarrow 3 l^{\prime}$ transitions in L-shell ions of iron and nickel: A combined configuration interaction and many-body perturbation approach. Astrophys. J. Suppl. 2005, 156, 105-110.
54. Gustafsson, S.; Jönsson, P.; Froese Fischer, C.; Grant, I.P. MCDHF and RCI calculations of energy levels, lifetimes and transition rates for $3 l 3 l^{\prime}, 3 l 4 l^{\prime}$ and $3 s 5 l$ states in Ca IX—As XXII and Kr XXV. Astron. Astrophy 2017, 505, A76.
55. Ekman, J.; Jönsson, P.; Radžiūtè, L.; Gaigalas, G.; Del Zanna, G.; Grant, I.P. Large-scale calculations of atomic level and transition properties in the aluminium isoelectronic sequence from Ti X through Kr XXIV, Xe XLII, and W LXII. At. Data Nucl. Data Tables 2017, submitted.
56. Jönsson, P.; Radžiūtè, L.; Gaigalas, G.; Godefroid, M.R.; Marques, J.P.; Brage, T.; Froese Fischer, C.; Grant, I.P. Accurate multiconfiguration calculations of energy levels, lifetimes and transition rates for the silicon isoelectronic sequence: Ti IX—Ge XIX, Sr XXV, Zr XXVII, Mo XXIX. Astron. Astrophys. 2016, 585, A26.
57. Del Zanna, G. Benchmarking atomic data for astrophysics: Fe XIII EUV lines. Astron. Astrophys. 2011, 533, A12.
58. Vilkas, M.J.; Ishikawa, Y. High-accuracy calculations of term energies and lifetimes of silicon-like ions with nuclear charges $Z=24-30$. J. Phys. B At. Mol. Opt. Phys. 2004, 37, 1803-1816.
59. Träbert, E. Critical Assessment of Theoretical Calculations of Atomic Structure and Transition Probabilities: An Experimenter's View. Atoms 2014, 2, 15-85.
60. Träbert, E.; Curtis, L.J. Isoelectronic trends of line strength data in the Li and Be isoelectronic sequences. Phys. Scr. 2006, 74, C46-C54.
61. Froese Fischer, C. Evaluating the accuracy of theoretical transition data. Phys. Scr. 2009, 134, 014019.
62. Ekman, J.; Godefroid, M.R.; Hartman, H. Validation and Implementation of Uncertainty Estimates of Calculated Transition Rates. Atoms 2014, 2, 215-224.
63. Ynnerman, A.; Froese Fischer, C. Multiconfigurational-Dirac-Fock calculation of the $2 s{ }^{1} S_{0}-2 s 2 p{ }^{3} P_{1}$ spin-forbidden transition for the Be-like isoelectronic sequence. Phys. Rev. A 1995, 51, 2020-2030.
64. Hibbert, A.; Ledourneuf, M.; Mohan, M. Energies, Oscillator Strengths, and Lifetimes for Neon-like Ions Up to Kr XXVII. At. Data Nucl. Data Tables 1993, 53, 23-112.
65. Froese Fischer, C.; Jönsson, P. MCHF calculations for atomic properties. Comput. Phys. Commun. 1994, 84, 37-58.
66. Pagel, B.E.J. Nucleosynthesis and Chemical Evolution of Galaxies; Cambridge University Press: Cambridge, UK, 2009.
(C) 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

[^0]: 1 Transitions between two states for which the configurations differ by more than one electron. These transitions are zero in the lowest approximation and are induced by CSFs that enter the calculation to correct for electron correlation effects.

