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Introduction

The Navier-Stokes equations

The motion of the liquid substances in some domain 2 C R", n = 2,3 can be
described (see, e.g., [6]) by the following system of partial differential equations re-
lating the velocity field v = (v(z,t),...,v,(x,t)) and the pressure p = p(x,t) of the
incompressible fluid with the external forcing term f = (fi(x,t),..., fu(x,t)):

{pvt—l/Av+p(v-V)v+Vp = pf, (0.1.1)

divv = 0.

Here the constants p > 0 and v > 0 denotes the density and the viscosity coefficient
of the fluid. Without loss of generality we assume that p = 1. The first equation in
(0.1.1) expresses the conservation of momentum for a selected portion of the fluid.
The second one, called the mass continuity equation, represent the fact that the fluid
under consideration is incompressible. We notice that the last equation can be also

written as

L)
- Oxy o,

Since 1822, when the system (0.1.1) was proposed by the French engineer Claude-

—V-v = 0.

Louis Navier and later justified by the English mathematician George Gabriel Stokes,
these equations attracted attention of many scientists in physics and mathematics.
The Navier-Stokes model for the fluid dynamics is widely used in many practical fields,
e.g., in engineering, biological systems, weather forecasting, oceanology and even in
creating computer games, where the certain version of system (0.1.1) is used to create
realistic fluid-like effects such as swirling smokes (see [95]). On the other hand, despite
the long history of the equations and attention of many prominent mathematicians
(see, e.g., [37], [24], [96]) there are many unsolved problems regarding the Navier-
Stokes equations. For example, the famous existence and regularity problem for the

three-dimensional non-stationary Navier-Stokes equations, included in 2000 by the



Clay Mathematics Institute into the list of seven Millennium Prize problems, or the
well-known Leray problem concerning the flows in domains with multiply connected
boundaries which has been open for more than 80 years'.

Evolutionary problems are most important for the applications. In particular,
Navier-Stokes equations set in domains with cylindrical outlets to infinity (systems
of pipes) are used to model the flow in oil pipelines, blood motion in blood-vessels,
etc. Having in mind medical applications, most interesting become pulsating flows,
i.e., periodic or almost periodic in time (see, e.g., [8], [30], [61] and references therein).
However, the investigation of such flows started a decade ago and relatively little is
known about the solutions of the time-periodic or the general non-steady Navier-

Stokes equations set in systems of pipes.

The time-periodic Stokes problem set in domains

with cylindrical outlets to infinity

In the thesis we consider the time-periodic boundary value problem for the linear

version of (0.1.1), i.e., we consider the following Stokes-problem:

ov—vAv+Vp = f, x,t) € Q x (0,27),
-V-v = 0, (x,t) € Q% (0,27), (01.2)
v = 0, x,t) € 09 x (0,2m), o

v(z,0) = v(z,27), x €.

We assume that the flow domain ) coincides outside some ball with a system of
semi-infinite cylinders Qi of constant bounded cross-sections w’/ C R?, j =1,...,J
(see Figure 1). Moreover, we assume that the external force f is time-periodic’
and, therefore, impose the time-periodicity condition (0.1.24)". Since the fluid is
viscous and does not move at the boundary 02, we impose for the velocity field v
the homogeneous Dirichlet condition (0.1.23) also called the non-slip condition.

The whole domain € is treated in coordinates x = (x1, 22, x3), while in every
semi-infinite cylinder we set the local Cartesian coordinate system 27 = (x]l, ), x%)

in such a way that Q% = w’ x (0, 00). The domain obtained from § after the outlets

"'We notice that the Leray’s problem in 2D case has been recently solved in [36].
iWithout loss of generality we may assume that the period is 27, i.e., f(z,0) = f(z,27) for all
x €.
liffere and in the rest of the thesis, the subscript index ¢ in the label of formula, stands for the
i** line in the considered formula.



Figure 1: Domain €2 in the case J = 3.

to infinity are truncated at the distances a:% = L will be denoted by €7, namely

Q={reQ: ifreQthna}<Lj=1,.,J} (0.1.3)

In the following we also use the notation y/ = (2, 23), 27/ = 3.

State of the art

In 1976 Heywood investigated the Stokes and Navier-Stokes equations set in the
aperture domain® (see [28]). He showed that the flow of the viscous incompressible
fluid in such domain is not necessary uniquely determined by the applied external
forces and the initial and boundary values of the solution, i.e., in some cases there may
exist an infinite family of solutions. Therefore one shall impose (next to the standard
initial and boundary conditions) some functionals of the unknown functions. It was
proposed in [28] (see also [71], [89]) to specify the solution of the Stokes system by
prescribing either the flux through the aperture M, or the difference between the
limits p, = lim p(x)andp_ = lim  p(z) of the pressure function, i.e., the
|| =00, 23>0 |z|—00, 23<0

pressure drop.

After the appearance of the paper [28] much effort was given and the large progress
was made in studies of the Navier-Stokes equations set in domains that become
infinite in one or several directions, i.e., in domains with outlets to infinity. Examples
of such domains are the infinite layers (thin and expanding at infinity), the exterior
domains, the domains with paraboloidal and, of course, cylindrical outlets to infinity.

At first, the attention was turned to the solvability of the steady and non-steady
Navier-Stokes equations in the classes of functions having finite energy dissipation,
i.e., possessing bounded Dirichlet integrals [, |Vv|?dz. It was proved in [38], [39)],
[89], [94] that looking for the solution of this type it is necessary to impose additional

conditions (fluxes or the pressure drops) in each outlet which expands at infinity

MThe aperture domain is the union R? UM UR? of the half-spaces R3 joined by the bounded
"aperture’” M C R? lying on the hyperplane {z € R3 : 23 = 0}



"sufficiently fast'.

The next step was the analysis of the Navier-Stokes equations in domains with
"narrow" outlets to infinity, for example, cylindrical ones. The advance in this direc-
tion was possible due to technique of special integral estimates’, so called "technique
of the Saint-Venant principle', developed and applied for the steady Navier-Stokes
problem by Ladyzhenskaya and Solonnikov in [40]. The solvability of time-dependent
Navier-Stokes problems, either for small data or for small time intervals, was proved
in [41], [42], [90], [92], [93].

Such questions as the regularity properties, uniqueness or asymptotic behaviour
of the solution were also extensively investigated. We refer the reader to papers [51],
[52], [53], [55], [75], [85] where the steady Stokes and Navier-Stokes problems were
considered in layer-like domains; to papers [12], [13], [15], [18], [26], [48], [60], [20]-[23]
for results concerning steady flows in the aperture domain and in the slightly curved
channels. We also mention numerous papers [1], [49], [50], [72]-[74], [81]-[84], [91]
devoted to analysis of problems set in strip-like domains or domains with periodically
varying cross-sections. A lot of progresses have been made in studies of asymptotic
behaviour of solutions to the steady problems set in infinite cylindrical domains (see,
e.g., [16], [17], [47]) or in the finite tube structures (see [10], [14], [62]-[65]).

In the case of domains with cylindrical outlets an important role is played by
the Poiseuille flow — the exact solution to the homogeneous Stokes system set in an
infinite cylinder II = w X R (w C R™", n > 1). In the 3D case the Poiseuille flow has
a velocity field v, = (0,0, v,(x1, x2,t)) directed along the axis of II and a pressure
function p, = p,(xs,t), which is linear with respect to the space variable xs. This
vector-field (v, p,) is usually used to describe the asymptotic behaviour of solutions
to the Stokes and Navier-Stokes problems set in systems of pipes. The Poiseulle
flow can be determined by prescribing either the pressure gradient Vp, or the flow-
rate ¢ = [, v,dy. When the flow is steady, these two quantities are proportional
according to the Poiseuille Law. However in the case of a time-dependent flow the
relation between the flow-rate and the pressure gradient becomes non-local.

The existence of the time-periodic Poiseuille solution with additionally prescribed
time-periodic flow rate ¢ = ¢(t) was proved by Beirao da Veiga in 2005 (see [7]). In
[27] the relation between the Fourier coefficients of Vp, and ¢ was derived. The

time-periodic Stokes problem in general domain having cylindrical outlets was stud-

vStandard energy estimates method became insufficient in this case since the incompressible fluid
in the "narrow" outlet can be "transported' to infinity only by the vector-field v with the infinite
Dirichlet integral.
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ied in [33]. It was proved there that prescribing the time-periodic flow-rates in every
semi-infinite cylinder Qi, j=1,...,J, ensures the existence of a time-periodic solu-
tion which tends in every outlet to the corresponding Poiseuille flow. The analogous
results in the non-linear setting were obtained also for the general non-steady case.
It was proved (see [25], [34], [76]-[78] and Chapter 8 in [80]) that the solutions of
the non-stationary Stokes and Navier-Stokes problems set in the domain with cylin-
drical outlets to infinity tends in each cylinder to the corresponding non-stationary
Poiseuille-type solution. Also we would like to mention the paper [9], where the
existence of the almost time-periodic Poiseuille solution was proved and the almost
time-periodic flows in the two pipes system was considered. Finally, we refer the
reader to [66]-[69] where the asymptotic properties of the non-steady flows in tubes
with elastic walls are considered (we notice that in these papers the Navier-Stokes
equations are coupled with the equations describing the movement of the elastic wall
of the blood-vessel).
We would like to emphasize that all above mentioned results are related to the
two types of asymptotic conditions at infinity: either prescribed fluxes, or prescribed
pressure drops. However, these conditions do not cover all possible physical phenom-
ena which can occur in reality. For example, the flux or the pressure drop conditions
are not suitable if one is interested in values of the total pressure at the ends of the
outlets. It can happen also that the flow-rates are known only in part of cylinders,
while the flow in the rest of cylinders is controlled by some devices, e.g., plugs, mem-
branes, etc. In this case it is natural to ask what will be the flow-rates in these
outlets, how does the flux distribution depend on the geometry of the domain or the
devices attached to the ends of the outlets. Moreover, there are phenomena that
shall be modelled using the variational inequalities, for example, the flow controlled
by the check-valve which is open/closed when the pressure reaches some limit value.
Theory of asymptotic conditions at infinity for elliptic problems was developed by
S.A. Nazarov and co-authors in [56]-[59]. Methods proposed in the book [59] were
applied in [54] for analysis of the steady Stokes and Navier-Stokes equations set in
domains with cylindrical outlets to infinity, where these problems were considered
in weighted Sobolev spaces. Namely, the solutions u = (v,p) having the special
structure ;
u=>Y \(au}+tul) + 1 (0.1.4)

j=1
were considered. In the last formula, a/ and b’ are constants, x’ is a smooth cut-off
function with supp(x’) C . and such that y/(z) =1, for 2} > 1, j =1,...,.J. The

11



vector-field 1 = (v, p) decays in each outlet Qﬁr, j=1,...,J, exponentially as xé —
co. The main terms u) and uj in (0.1.4) are special solutions to the homogeneous

Stokes problem set in the single cylinder €/ = w’ x R. The solution u becomes unique

if one fixes coefficients @/ and ¥/, j = 1,...,J, in expression (0.1.4). We would like to
emphasize that these quantities have special physical meaning — constants b', ..., b’
are equal to flow-rates in the corresponding cylinders, while constants a',...,a”’

form the part of the pressure p in every outlet. As a consequence, there appear
natural limitations to selection of coefficients in (0.1.4). For example, due to the
incompressibility of a fluid the sum b' + - - - + b/ must be equal to zero.

Having in mind that for the time-periodic Stokes problem (0.1.2) the only known
correct asymptotic conditions at infinity are of the flow-rate type or of the pressure

drop type, we have formulated the following research objectives.

Aims and objectives of the thesis

The purpose of our thesis is the analysis of the time-periodic Stokes system set in

domains with cylindrical outlets to infinity. Our aim is:

e to propose the methods of imposing general asymptotic conditions at infinity

for the time-periodic Stokes problem set in the system of infinite cylinders;

» to construct some classes of physically reasonable asymptotic conditions at in-
finity that ensure existence and uniqueness of the solution to the time-periodic
Stokes problem and are different from prescribtion of the flow-rates or the pres-

sure drops only.

Methodology

Our research is based at the high extent on the methodology of setting the conditions
at infinity for the steady Stokes and Navier-Stokes systems (see [54] and the book
[59]). We benefit from the use the operator theory and theory of general elliptic and
parabolic equations. Existence and uniqueness of the solutions to the problems con-
sidered in the thesis is shown using the Fourier transforms, energy estimate methods,
the operator theory. The behaviour of solutions to the problems set in unbounded

domains is described using the approach of weighted Sobolev spaces*!.

ViWe recall that the Sobolev space H™(G), G C R™ is a vector space of functions equipped with
the norm

lull ey =Y IDSullL2c),

lo|<m

12



Structure of the thesis

The thesis consists of the following parts — Introduction, two main Chapters, Con-
clusions, two Appendices and Bibliography. Introduction provides the reader with
the formulation and state of the art of the problem, also contains the necessary in-
formation related to the dissemination of results presented in the dissertation.

In Chapter 1 we reduce the time-periodic Stokes problem into the sequence of el-
liptic Stokes-type problems for the Fourier coefficients of the time-periodic solution.
For each of these problems questions of existence and uniqueness of the solutions
from certain weighted Sobolev spaces are discussed in Subsection 1.1. The special
asymptotic representation of the solution with unbounded Dirichlet integral is pre-
sented in this Subsection. In Subsection 1.2 we show that all problems can be treated
in the same weighted function space, i.e., that we may use the same weight function
for all Stokes-type problems. The generalized Green formula is derived in Subsection
1.3. Two following Subsections are devoted to the construction of the basis in the
set of solutions to the homogeneous Stokes-type problems. In Subsection 1.6 we con-
sider Stokes-type problems supplied with the general conditions at infinity and prove
the Fredholm type theorem concerning the solvability of these problems. The class
of matrices, necessary to model certain pressure related conditions, is presented in
Subsection 1.7.

The second Chapter is devoted to analysis of the time-periodic Stokes problem.
The results obtained in Chapter 1 are used here to construct the special class of the
time-periodic solutions (see Subsections 2.1-2.3). The generalized Greens formula
is derived and the asymptotic conditions at infinity are described in Subsection 2.4.
The theorem concerning the existence and uniqueness of the time-periodic solution is
proved. In Subsection 2.5 we present several different versions of the Green formula
and the conditions at infinity corresponding to these Green formulas. Examples of
particular conditions, that enable to select a unique solution and are different from
prescribing only flow-rates, are provided in Section 2.5.

Finally, several technical questions related to the Stokes-type problems are con-

sidered in two Appendices.

olel
where DY = ———— |a] = aq + -+ 4+ a,,. For the reader’s convenience we define new
& aalxl...aanxn7

function spaces in the sections where they are used.
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Chapter 1

Stokes-type problems

1.1 Asymptotics of the solution

Looking for the solution of problem (0.1.2) in the form

0 1S
v(z,t) = Yo 4 > {ver(x) coskt + vy (z) sin kt},
2w
' (1.1.1)
p(z,t) = 2 > {per(x) cos kt + pgi(z) sin kt},
2 w3

and substituting series (1.1.1) into equations (0.1.2) we get for the coefficients v,

Deks Vsk, Psk @ sequence of the Stokes-type elliptic problems

—VAVy + Vper + kvge = £, xr €€,
-V Ve = O, T € Q,
VAV +Vpg — kv = f4, 2€Q, k=0,1,... (1.1.2)
—V.vg = 0, x € €,
v, =0, vy = 0, x € 0.
Here f./(2m), for/m, £/, k = 1,2,..., are the Fourier coefficients of the function

f = f(z,t)". For k = 0 the system (1.1.1) splits into the steady-state Stokes systems
for coefficients (v, peo) and (v, pso), i-e., into the problems considered in [54].

Denote u; = (Vek, Deks Vs, Psk)s Vi = (Vek, Var)s T = (£, 0, fsx, 0) and rewrite

At the moment we do not specify function spaces for the solution (v,p) and the data of the
problem. We assume that the function f is regular enough and, therefore, it’s Fourier series exists.

17



problem (1.1.2) in a short form

Sy(Vo)ue = fi, Q,
{ W(Ve)u b EE (1.1.3)

Vi = 0, x € 0.

First we consider problem (1.1.1) set in the cylinder IV = {27 € R3 : o/ € w’, 2/ € R}

(bellow we omit the index j):

Sk(Vy,az)uk = fk, (y,Z) EH,
V., = 0, z € Ol

Applying the Fourier transform (with respect to the variable z) to the above problem

we get the boundary-value problem on the cross-section w:

{Sk(vwi/\)ﬁk(y) = k(. vew (1.1.4)

vi(y) = 0, y € 0w,

where 6y = t(y), Vi = V(y) and £, = f,(y) are the Fourier transforms of u;, =
ui(z), vi = vi(z) and £ = f(z), respectively. Problem (1.1.4) may be identified

with a family of mappings

AN D'H(w) — RYH (W), -

where

D'H(w) = (H'(w)) x H ' (w) x (H'(w)) x 5 (w),
RUH(w) = (H (W)’ x B (@) x H-(0w)

x (H2(w))” x H' ™ (w) x B2 (0w),

Here H'(w) and H'"'/2(0w) denotes the Sobolev spaces with [ > 2.

The rest of the Section is based on the classical results for elliptic partial differ-
ential equations (see, e.g., the monograph of Lions, Magenes [44], papers of Agmon,
Douglis and Nirenberg [2], [3], Solonnikov [88] and Agranovich, Vishik [4]). As well
we use the theory concerning the elliptic PDE’s set in cylindrical domains presented
in the papers of Pazy [70], Kondratiev [35] and numerous works of Maz’ya, Nazarov,

Plamenevsky and co-authors (see, e.g., the monographs [45], [46], [59] and references

18



therein). These well known results are provided without proofsi, while the facts that
are peculiar for the Stokes-type problems (1.1.2) are examined in details.

Let B(A) be the operator bundle (depending on the complex parameter \) in a
Hilbert space H, and let the number \y € C be such that there exists a non-trivial
vector-function ul® satisfying the equation B(\o)u® = 0. Then )\ and u® are

called the eigenvalue and the eigenvector of B(\). The associated vectors (also called

the generalized eigenvectors) u) ... u™ are defined by the equation
!
10"B
— A= =0, 1=01,...,m. 1.1.6
nzon! 8)\"( O)u ’ ) L , M ( )

Theorem 1.1.1. 1. The only real eigenvalue of the operator Ak(\) defined by

(1.1.5) is A = 0. There are two eigenvectors corresponding to A = 0:

u? =(0,0,0,-1,0,0,0,0) and u'? =(0,0,0,0,0,0,0,—1).

2. The vector u((:? = (0,0, 7k, 0,0,0, —it)y, 0) is the associated vector to the eigen-
vector uﬁ?j while the vector ug? = (0,0, iy, 0,0,0, ipg, 0) is the associated vec-
tor to ugt,?. Here the pair of functions i, V¥r € H*(w) is the solution to the

following problem!

ki +vApr = -1, y€w,
ngk — UA'Lbk = 0, Y€ w, (117)
o =0, U, =0, Y € Ow.

3. The Jordan chains {uég),uéz)}, {ug%),ugk)} cannot be prolonged, i.e. there are
no associated vectors of the second order.

Proof. 1. The equation Ak(A)ug)) = 0 can be written as the boundary value problem

in the domain w (omitting the index k):

We refer the reader to the monographs [45] and [59] for more detailed analysis of elliptic problems
in domains with cylindrical outlets to infinity.

iiThe elliptic problem (1.1.7) is uniquely solvable in (H*(w))2. Moreover, if dw € C? then the
solution (¢4, 1y) belongs to (H?(w))?. For more details see Appendix A.
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0
—VAyugo) + uA2u§0) + —uflo) + kuéo) = 0,
8951
0
—VAyuéo) + 1/)\211;0) + Tuio) + kuéo) = 0,
T2
—I/Ayugo) + V/\zu;(so) + z‘Aqu” + ku(70) = 0,
0 40— 9 10 5,©
L0 pa® = 0
axl 8:62112 il ’
0
N Y LR (1.1.8)
T
0
—vAu +Xu + o — k=0,
Ty
—uAyugo)%—V)\ngo + ixu —kuéo) = 0,
9 @ _ 0 (0)
-7 Al = 0
85(71U5 81'2 T At ’
W0 = 0, 1=1,2,35,6,T.

Here A, is the Laplace operator with respect to variables y = (z1,z2). Multiplying
(1.1.8), (1.1.85), (1.1.85), (1.1.85), (1.1.8¢), (1.1.8;) by the vector-fields w\"’, uy”, uy”,
ﬁgo), ﬁgo), ﬁ(70), respectively, summing the obtained equalities and then integrating by

parts in w, we derive
3

v 27: /(‘Vu§0)‘2+)\2‘ul >dy—|—k2/ ,+4 — z+4)

1=1,1#£4 "%
oal” ol ony”  ouy
@ _ duil oW (0) @ _ 98 6
+/w ((z Us 0xq 0T R 0y 0xs

U u
Z /8 e o)dS —l—Z/ ul nlu4 +ul+4nlu8 )dSy
=1,

here n = (ny,ng,n3) is an outward normal vector to the surface dw. According to
(1.1.84), (1.1.85) and (1.1.89) the last two lines in the above relation are equal to zero.

Hence,

3 ([0 [R5 22 2 )
=1

+2ki Z/ Reul(o)]mul+4 Reul(i)4fmul(0)) dy =0,
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where Re v and I'm u denote the real and the imaginary parts of the complex function
u. Since by the assumption A is real, we obtain from the last formula, after the

separation of the real and the imaginary parts, the identity

3 2 2 2 2
o [ ([ + [ 52l 32 ) iy =0
=1"%

Thus ul(o) = ul(+4 = 0,1 = 1,2,3. Assume that A\ # 0. Then equations (1.1.83),
(1.1.87) yield u4 = uéo) = 0. Hence, only A\g = 0 could be an eigenvalue. It is easy

to compute that for Ay = 0 the only linearly independent eigenvalues are

u? =(0,0,0,-1,0,0,0,0), u'9 =(0,0,0,0,0,0,0,—1).

2. For the associated vector ugi) = (ug), . ,ugé)) (when Ay = 0) we get the

following boundary value problem (the index ck is omitted):

0

—vA, u(l) 5 ui1)+kué1) = 0,
ﬂaUl

—vAu) + 5 i + k) = o0,
)

—I/Ayuél)+ku(71) = 1,

9w 9w

8371 ! 8x2 ’

—VvA uél)—ka ku(ll) = 0,
a1

BN R ) B OB

v yu6 +ax2 8 u )

—VAyug —kugl) = 0,

9 o _ 9 @
_ 4w _ <2 - 0
61'1U5 8m2u6 ’
W = 0, 1=1,2,35,6,T.

One can straightforwardly verify that u(? = (0,0, i¢x,0,0,0, —it)x, 0) is a solu-

tion of the above problem. Analogously could be proved that the vector u( ) =

(0,0, i1y, 0,0,0, ipg, 0) is associated for the eigenvector u( )

3. From (1.1.6) we get the relation
0A

A (Xo)ugy U W(/\()) ul) + ok

D*Ay,

oy = 0.
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O0A,
One can straightforwardly verify that aT()\O) u) = (0,0, ¢%,0,0,0, =%, 0) and
0?A
k (/\0) k = 0. Therefore the first two coordinates of the associated vector u( )

should be equal to zero on dw and should satisfy in the domain w the divergence

equation (the index ck is omitted)

) )
= / <_0qu) - 6U§2)> dy = —/ ordy
©\ on 2 “ (1.1.9)
= [ e+ ki) grdy = —v [ (IVarl* + [Vinl?) dy < 0

which proves the third claim of the theorem. The same arguments hold true for the
Jordan chain {ug(,?, usc)}. []

It is well known (e.g., Lemma 3.1.2 in [59]) that the functions

s

, 1
us(y, z) = e Z k'(zz) Fue=h s =0,1,...,m, (1.1.10)

where {u(o), u® ,u(m)} is the Jordan chain corresponding to eigenvalue A of the

operator bundle A ()), satisfy the equation

Hence, using the Jordan chain { ik), ) } we get two solutions of the homogeneous

Stokes-type problem (1.1.2) set in the cylinder w x R. The first one is
uy, = (0,0,0,1,0,0,0,0),
while the second one is equal to
ul) +izul) = (0,0, gy, —iz,0,0, i, 0).
Multiplying the last vector by —i we obtain the vector-field

uik = <O7 OJ Pk, —%, 07 07 _wku O)
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Analogously, the Jordan chain {ug,?,ugc)} generates another two solutions to the

homogeneous Stokes-type problem:
u’, = (0,0,0,0,0,0,0,1), ul. = (0,0,%y,0,0,0, ¢k, —2).

Applying this procedure for the cylinders ¥ = w’ x R, j = ,J, and taking into
account the notation 2/ = ZL‘3, we obtain in every outlet to mﬁnlty four solutions to

the homogeneous problem (1.1.2):
) =(0,0,0,1,0,0,0,0), ul} =(0,0,¢L, —23%,0,0,—1,0), (1.1.11)

u’? =(0,0,0,0,0,0,0,1), u’, =(0,0,47,0,0,0, ., —x}). (1.1.12)

Consider now problem (1.1.2) in the whole domain 2. Denote by HJ'(£2) a weighted

Sobolev space which is the closure of C§°(Q)™ with respect to the norm

lullfp@ = 3 [ pole) IDsu(a)l da.

|| <m

here the weight function pgs is defined as

1, zeQ\u_,%,
ps(x) = 250l L
e“Prs, reQ,j=1,...,J

As usually we denote L3(€2) = HJ(Q). If 3 > 0, elements of the space H*(Q2) decay

exponentially as xé tends to infinity, and they may grow, if 8 < 0.

Define the following weighted function spaces

DLH(Q) = (HY(Q) x HH(Q) x (Hy(9))” x HY (@),

5 . (1.1.13)
RLH(Q) = (HE*(Q)" x Hy ' () x (Hy Q) x HEH(Q).

and the operator

Al : DH,(Q) — RH,(Q). (1.1.14)

According to results for general elliptic equations (see [4]), the mapping (1.1.5) is an
isomorphism for all A € C, except the countable set A of isolated points. The set A
consists from eigenvalues of the operator bundle Ax(\) and is located, with exception
of finite number of points, in the two-sided sector {\ € C : |ReA| < C|Im\|} (the

V08 (Q) is a class of infinitely differentiable functions with compact supports in Q.
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constant C' is independent of \). This result was used in [35] to prove analogous
statement for the general elliptic problems set in the single infinite cylinder (see also
Theorem 3.1.2 in [45]). Namely, let &, = 277 denotes the weight-function defined in
the infinite cylinder €/ = w’/ X R, and let the weighted Sobolev spaces D! H () and
R H (V) be defined analogously as (1.1.13) (by using the weight function &, instead
of pg). Then the following holds:

Theorem 1.1.2. Assume that the line R + iy = {\ € C : Im\ = ~} contain no
eigenvalues of the operator bundle Aﬁj)(A) (here j refers to the number of the outlet
V,j=1,...,J). Then for arbitrary f, € R! H() problem (1.1.2) set in the cylinder
V7 is uniquely solvable in DLH (V) and the estimate

kot erosy < |Ifllre ms

holds. If on the line R+iv an eigenvalue ofA,(gj)(/\) lies, then the range of the operator

1s not closed.

Consider problem (1.1.2) set in the domain ) with several outlets to infinity and
the corresponding operator (1.1.14). Below we define another Stokes-type problem
(see (1.1.16)) which is formally adjoint to (1.1.2). These two problems differs by
signs of the terms kv, and kvg,. Consequently, the operator Aﬁcw@ is not formally
self-adjoint. However, it can be shown that the operator A%, i 1s Fredholm" if and only
if the line R+i3 does not contain eigenvalues of the operator bundles AM ... AUV,

According to the Part (1) in Theorem 1.1.1, A = 0 is the only real eigenvalue of
the operator bundles A,(fl)()\), . ,A,(f‘])()\) for all £ = 0,1,.... Since the eigenvalues
of Ag )()\) for each j = 1,...,J are isolated, there exists a positive constant 3 such
that the strips {\ € C: 0 < |Im\| < 82} are free of the eigenvalues of the operator
bundles A,(Cj)()\), j=1,...,J. Consequently, for all 0 < 8 < /32 the operators

Al i DHL(Q) = RHL(Q), Al :DH 4(Q) = RH 4(Q)

are of the Fredholm type. In Section 1.2 we show that it is possible to select one
bound /3%, independent of k, for all Stokes-type problems (1.1.2). At the moment for

YWe recall that the operator A : By — By between two Banach spaces is called a Fredholm
operator if its range ImA is closed and the subspaces ker A and cokerA have finite dimensions.

ViThis fact can be proved by repeating the same steps as in the proofs of Theorems 4.1.2, 5.1.4 in
[59], where the self-adjoint Stokes problem is studied. The proof that the operator corresponding to
the steady Stokes system is Fredholm, is based on the local estimates (see Theorem 4.1.2 in [59]).
Exploiting the structure of the equations (1.1.2) one can derive the same estimates in the case of
the Stokes-type problem.
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every k=0, 1,... we fix some 8 form the interval (0, 37).

Formally adjoint problem

It is well known that the elliptic problems with the Fredholm operators are solvable if
and only if their data satisfy certain compatibility conditions, which are described in
terms of orthogonality of the data to solutions of the homogeneous formally adjoint
problems. These problems are defined via so-called Green’s formula (see, e.g., [44]).

Assume for a while that functions ux = (Veg, Pek, Vsk, Psk) and Uy = (Vg Pe,
Vi, Pa) are smooth (of class C5°(€Q2), for example). Multiplying Syuy, (the left-hand
side of the equations in problem (1.1.2)) by Uy and integrating by parts one gets

Green’s formula

(_VAVck + vpck + szka Vck)ﬂ + (_v *Vek, Pck)ﬂ
+(_VAVSI~: + vpskz - kvckza Vsk)ﬂ + (—V * Vs, Psk)Q
+(Vers NPe, — 00 Ver)aa + (Vsk, NPy — 100 V) o
(1.1.15)
_(Vclm _VAVck + vpck' - szk)Q - (polm -V Vck)Q
_(Vska _VAVsk + vPsk + chk)Q - (psk7 -V Vsk)Q
_(npck - Vanvck:a Vck)@Q - (npsk - Vanvsk’a Vsk)@ﬂ =0.
Here (-, )¢ stands for the inner product in L?(G), n and 9, denotes the outer normal

vector to the surface 0§2 and the normal derivative, respectively. The Green formula

(1.1.15) defines for problem (1.1.2) the following formally adjoint problem:

—VvAV . + VP, —kVy = Fu, 1€,
-V-Vy = 0, x €€,
—VvAV gy, + VP +kVy = Fg, €9, (1.1.16)
—V-Vg = 0, xr € QQ,
Va=0, Vg, = 0, x € 0N.

This problem has similar properties as problem (1.1.2). For example, in the same
way, one can show that in every cylinder €/ the homogeneous system (1.1.16) has

four linearly independent solutions:

U’) =(0,0,0,1,0,0,0,0), U’ = (0,0, ¢}, —23%,0,0,41,0), (1.1.17)
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U’ = (0,0,0,0,0,0,0,1), U’ =(0,0,47,0,0,0, —¢l, %), (1.1.18)

where functions ¢}, and v are defined by (1.1.7).
Let us define the vector fields Vi = (Vg, Vi), Fr. = (Fer, 0, Fgr, 0) and denote
problem (1.1.16) by

SZUk =F,, z€Q, V,.=0, xze€d.
Now we can rewrite formula (1.1.15) in the following form:

(Skug, Up)a + (Vi, 0P, — v0n Vi) an
(1.1.19)
= (ug, S;Uk)a + (pr, — vOnvE, Vi)aq.

Remark 1.1.3. Green’s formula (1.1.19) holds also if one of the functions, u or Uy,
grows, provided that the other function decays at infinity fast enough. For example,
this is the case when u, € D?;H(Q) and U, € DZH(Q) or u, € DH(Q) and
U, € D?;H(Q).

Using this Remark we prove the following statement (see Theorem 3.2 in [54]

where the similar result for the Stokes problem is proved):

Theorem 1.1.4. (a) If § > 0, then the operator Aﬁﬂﬂ is a monomorphism, i.e.,
dim ker Agcﬁ = 0.

(b) If B <0, then Afw is an epimorphism, i.e.,
dim CokerA§€7 5 =0.

Proof. (a) Assume that u, = (Vek, Pek, Vsk, Psk) € ker Afhﬁ, i.e., satisfies the homoge-

neous system

—VAVey + Vper + kv, = 0, x €,
V- vy = 0, x €,
VAV + Vpg, —kvg = 0, x € €, (1.1.20)
—V-.vy = 0, x € Q,
V. =0, vy, = 0, x € 0f.

Multiplying equations (1.1.20;) and (1.1.203) by v and v, respectively, integrating
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by parts and summing the obtained expressions we derive:

v(Vve, Vver)a + V(VVee, Vvg)a — (Dek, V - Ver)a — (Psk, V - Vi )a

8VCk 8Vsk
o Ver)oa + (Mps — V——, Vi )oa = 0.

+ (npck — UV an

Taking into account equations (1.1.203), (1.1.204) and boundary conditions (1.1.205),

we get from the last identity, the relation
[ IVl + [v.ate)de =0
Q

Therefore v, = const, vy = const. Since the velocity fields are zero on the boundary,
we conclude that vy, = 0 and vy = 0. Moreover, form equations (1.1.20;) and
(1.1.203) we obtain

Voo = —VAVy —kvg, =0, Vpg = —vAvy + kv = 0.

The last identities yield p.. = const = ¢;, pg = const = ¢o. Recall that p. and pg
belong to the space H5™ (), i.e., the L2(Q2) norms of (ps)"?per, (ps)"*psk € L3(RQ)
are finite. Since 8 > 0, i.e., the weight function ps grows at infinity, the constants
c1, co must be zero. Hence, the kernel of the operator Afg’ 5 s empty.

(b) Green’s formula (1.1.19) shows that

cokerAL’B = {(Up,nP, — v0nVi|oa) : Uy € ker (Agc,—ﬂ)*}’

where (AL’_B)* : D' yH(Q) — RLZH(Q) is the operator corresponding to the for-
mally adjoint problem (1.1.16). By assumption of the part (b) the power 3 is negative.
Therefore the set (Aﬁﬁ_ B)* consists from the decaying solutions of the homogeneous
system (1.1.16). In the same way as in the Part (a) one can show that this problem
has only the trivial solution in the class of decaying functions. Therefore the dimen-
sion of the subspace ker (Aﬁcj_ﬁ)* and, consequently, of the subspace cokerAﬁcﬁ, is

equal to zero. O

The index of the Fredholm operator A is defined as (see, e.g., [5])
Ind A = dim ker A — dim coker A.

Theorems 4.3.3, 5.1.4 in [59] relates the indexes of the operators A} and Aj 5 with
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the total multiplicity  of the eigenvalues of the operator bundles AS) (A), ..., Aé‘]) (\)
lying between the lines R + ¢y and R + 79, namely, the following relation holds:

IndAj = IndA}; + k.

We recall that for every k = 0, 1, .. ., between the lines R—i3) and R+i3{ there is only
one real eigenvalue A = 0 of the operators A,il)(A), . ,A,(CJ)()\). Moreover, according
to the Theorem 1.1.1, for each j = 1,...,J the multiplicity of this eigenvalue is 4.
Therefore in the case of the operators A} ; and A} 4

IndAj,_; = IndA} 5+ 4J.
Taking into account the definition of the index and Theorem 1.1.4, we get that
IndALﬁ_B = dim ker AL’_B, IndALﬁ = —dim cokerAL’ﬂ.
Since the dimensions of cokerAj ; and ker A} _; coincides, we obtain the relations
IndA} _;=2J, IndAj ;= —2J

As a consequence of these relations and Theorem 1.1.4 we conclude that the Fredholm

operators A%,k and AL s Possess the following properties

dim kerAl@k = dim CokerAl_@k, =0, (1.1.21)
dim kerAl_BJC = dim cokerAfB,k =2J, h

i.e., in the class of exponentially decaying functions problem (1.1.2) is solvable if
and only if the right-hand side fulfils 2J compatibility conditions, and the solution is
unique. In the class of growing functions problem (1.1.2) is solvable for every data
f € RL;H(Q), but of course not uniquely.

Assume that the lines R + iy and R + ¢0 are free of eigenvalues of the operators
ADN), ..., AD)(N). Then, according to the general theory of elliptic equations (see
[35], Subsection 3.2.2 in [45]) for the solutions uy, € D) H(Q) and uys € DH(Q) of
problem (1.1.2) the following relation

Ny
_ [ [
Wiy = DD Coallpy + Ups
A =0
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holds. In this relation the sum is taken over all solutions to the homogeneous problem
corresponding to the eigenvalues A such that v < ImA < §. The constants cﬁﬁ ) are
defined using certain functionals on data of the problem (see [35], [45]).

Consider system (1.1.2). Formulas (1.1.11), (1.1.12) describe the solutions (corre-
sponding to the eigenvalue A = 0) to the homogeneous Stokes-type problem. There-
fore using Theorem 3.2.4 in [45] we may express the "growing" at infinity solution to
problem (1.1.2) in terms of the functions (1.1.11), (1.1.12) and a vector-field, which
decays at infinity exponentially. Namely, the following statement holds:

Theorem 1.1.5. If uy = (Ve Pk, Vsr, Dsk) € DLgH(Q), 0 < 5 < B8), is the solution
to problem (1.1.2) with the right-hand side £, € RlﬁH(Q), then

J
u, = Z X’ {afzkuig + Gikuig + bikuillc + b?skuillc} + . (1.1.22)
j=1

Here aik,aik,bik,b;k e R, u € D%H(Q) and X7 is a smooth cut-off function such
that supp(x;) C Q4 and X/ (x) =1 foral >1,5=1,...,J.

Remark 1.1.6. Recall that the vector-fields ux = (Ver, Dok, Vors Psk), k = 0,1,...
are composed from the Fourier coefficient of series (1.1.1). Taking into account the
structure of the functions u’y, u/). v’} and u/}, (see (1.1.11), (1.1.12)) we notice that

the coefficients in (1.1.1) admit the following representations:

J=1

J . . . .
Vw:GﬂZﬂ%%%+%%0+%m

] (1.1.23)
Vsk = (07 0, ZXj {bgkﬁbi - bf;kl%}) + Vi,
j=1
DPek = ZXJ {aik - bf;kxg} +ﬁ€k7 Psk = ZXJ {aik - b{?kx%} +ﬁ3k (1124)
Jj=1 J=1

Remark 1.1.7. In the same way as above we can show that any function U, €
DL 5H(£2), which has a velocity part Vi|so = 0 and solves the formally adjoint
problem (1.1.16) for some F;, € REH(S2), may be expressed as

J
Ui = X0 x7 {ALUR + ALUR + BYUG + BLULY + Uk (1.1.25)

Jj=1

Here Uy € DLH(Q), AL, AL, B),, B, € R, while the functions U7, U, U/}, U/,
are defined by (1.1.17) and (1.1.18).
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1.2 Estimates for the decaying term

In this section we show that it is possible to choose the same exponent  in the defini-
tion of the weight function pg for all Stokes-type problems (1.1.2), i.e., independently
of k. Let ug = (Vek, Pek, Vsks Dsk) € D};H(Q) be the solution of (1.1.2) with data from
RZBH (). Let us fix some positive § and define the step-weight function

, pa(x), xh<r, j=1,...,J
Py (x) = : |
pa(r), xy>r, j=1,...,J.

(r)

Notice that the function py’ is constant for xé >r,j=1,...,J. The product pg)vck

and p(ﬁr) v (of the weight function and the vectors with zero divergence) are no more
divergence-free. In order to construct the divergence-free vector-fields, we shall use

the following

Lemma 1.2.1. (see Lemma 1.13 in [80]) Let v € (H1(Q))3, V- v = 0 and

/_V~ndS:O, jg=1,...,J.

J

Then there exists a vector-field w() e (H'(2))? such that supp w) C U/, and

Moreover, there holds the estimate

| A @) VW @) e < e8? [ o (@)lv(w) P,
with the constant ¢ independent of r, # and v.

We also need the weighted Poincaré inequality (see Lemma 1.9 in [80]):

[ ov@let@)de < e [ @) Toe)Pds, (1.2.1)

which holds for every v and each function v equal to zero on 02 and such that
(py)Y?v € HY(Q). The constant c is independent of r, v and v. Moreover, in (1.2.1)
we can take p(f) instead of p,.

Since u; € DHé(Q) for some 0 < 8 < (Y, functions v, and v, belong to the
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space (H'(Q))? and
/'VCk'ndSZO’ /.Vsk'ndS:07 jzlavj (122)

According to Lemma 2.3, there exist compactly supported vector-functions wﬁ’,;),

w) e (H'(2))3 such that
V- WS];) =-V- (p(ﬁ)vck) —V,oﬁ Ve, X €€,
V- (T):—V'((T) ):_v (7“)_ c0
Wk Pg Vsk Pg " Vsk; T )

and the following estimates

(U2 W 20y < Bl (G2 Verll 20y < B (05 2V var | 1200 (1.2.3)
10T N 2w 20y < Bl (05 vkl 20y < B (0} >1/2vVSk||L2

holds.

Theorem 1.2.2. Let 9Q € C* and let £, £ € (L3(2))°. Suppose that the exponent
B in the weight-function pg satisfies the condition 3 < [(*, where the number B*
is sufficiently small (see details in the proof). Then the velocity fields v, and v
of the solution (Veg, Pek, Vsk, Dsk) to problem (1.1.2) belong to (H3(S2))?, the pressure
gradients Vpee and Vg, belong to (L3(Q))* and the estimate

IVerllmz () + [Vskllmz0) + IVPerll2(@) + [[VDskl 220 124)
< Cchk”Lg(Q) + ||fskHL§(Q)

holds. Moreover the pressure functions p., and pg tend in each outlet Qi to constants

pﬂk and pgk, respectively, and for 0 < 8 < B < B* the following estimates

|, A paa? wd) = e’ dat < e [ s (furl@) P + (o)) dv

T (1.2.5)
|, e e, ) = pluPdadnh < e [ ps (@) + (@) do

Qi Q

hold. Constants c in estimates (1.2.4), (1.2.5) are independent of k.

Proof. First multiply equation (1.1.21) by k:(p(;)vck +w)) and equation (1.1.23) by
k(pg)vsk + ng) and then multiply (1.1.2;) by k(p(ﬁ”vsk + WS,;)) and (1.1.23) by

—k(pﬁ Ver + W((:k ), add the obtained equalities, and integrate them over the domain
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Q. After the integration by parts we get the relation
vk /Q AVAT V(pg)vck + Wg;))daz + uk/ Vv - V(p(ﬁr)vsk + Wiz))dx
—H/k?/QVVCk . V(p(ﬂ’")vsk + wgc))dx — Vk;/ Vv, - V(pﬁ Ver + w( ))d
—l—k‘Q/chk (pg)vck + W )dx + kzz/ Vi - (p(ﬁr)vsk + Wi};))dx.
+k? /Q(vsk : WEZ) — Vi * wg;))dx = /Q(fck —fa) - /{:(p(ﬁ)vc;C + W((:k))d
(G £ k(o] v+ i
In the left-hand side of the last identity we leave only the sum
vk / P (IVverl” + [Vval?) do + k> / P ([Verl” + [var|?) dav

putting all other terms on the right-hand side. We estimate the obtained right-hand
side using Hoélder’s and Young’s inequalities, the weighted Poincaré inequality (1.2.1)
and estimates (1.2.3):

/Q(fck—f ) k(0 Ve + Wi da
<2 [ (1l Ifal2) e ensk® ([ o vl + [ 0 IwS) o)
/P |fck’2+‘fsk’ )d$+02€k2 (/ Pﬁ ‘Vck‘ dx—i—/ p ﬁ‘vwck| dx)

1
< Z fc2 f82d k2/ (T)C2d
< = [ s (1frl? + 1£f?) d + coch® | p v dar,

vk ’/Q VvV - (Vpg) Ve + ng};))dx

< cz/ﬁk/gpg)]chkchk\dx
2 () 2\
—l—uk:/ Vv [ VWD da < c4y6k/ PV 2 + vk </Qp5 Vvl dm)
\V4 d Y2 < (r) 2
,0 ﬁ| ch| T csv Bk Qpﬁ |VVe|“de,

1/2 1/2
<K ([ o tvalae) ([ plwly )

< CGBkQ/Qp(BT)|VCk|2dx.

k2

. (r) d
/chk w,,, )dx

32



The rest terms could be estimated analogously. As a result we obtain the inequality

(r) 2 2 2 (r) 2 2
I/k/Qpﬁ (\chk] + [ Vv )dx—l—k /Qpﬁ (|vck| + |Vl )da:

L 2 2 (r) 2 2
< g/ﬂl)ﬁ (’fck\ + |for| )da:—l—cwﬁk/ﬂpg <|chk| + | Vvl )d;c (1.2.6)

tes(e + Bk /Q o5 (Ivarl? + [vaul?) da.

Taking ¢ < 1/(4cg) and assuming that § < * = min{1/(2¢7),1/(4cg)}, from (1.2.6)
follows that

vk - k2 .
5 o8 (vl 9wl o [ (vl ) e

< for? + £ ) do,
<o [ o ([fal? + |fal?) do

where the constant cg is independent of k. Since in the last inequality the right-hand

side is independent of r, we may pass to the limit as r — oc:

vk k?
— [ pp (|VV¢;€|2 + |Vvsk|2) dr + —/ p3 (|VC;€|2 + ]vsk|2) dzx
2 Jo 2 Ja (1.2.7)

< fo|? + |fa|?) da.
<e [ po (1l + £af?) do

Consider now v and v in (1.1.2) as solutions to the following Stokes problems:

— VAV + Vpa. = fop— kv,
_v Ve = 07

Veeloa = 0

and
—VAVy + Vpsg = o + kv,

V. Vs = 07
Vekloa = 0.
From inequality (1.2.7) it follows that
1(p8)" (£ — kvl z2) + [1(ps)"2 (£ + kvl z2@)

< cll(pg)*Lerllz20y + I(pg) " *Furll 20,

and, therefore, (see Theorem 3.2 in [80]), the estimate (1.2.4) holds.
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Since the gradients of the pressures p. and pg, decay exponentially, we get that

hm pck<x) :pika hm psk(x) :péku .] = 177J

zEQJ , T} —00 zEQi_,z%—)oo

The considerations below are valid for both functions p.. and p, therefore we write
index k instead of indexes ck and sk for the pressure functions. Let 0 < ' < 5 < *.

Then from the equality

. O
o — Nd
pi(z) — py, /IS ayg(y ,27)dz

we get the estimate

/ |pk pkldy]</ / (B'-B)27 52]|Vpk(y Z])’dy]dzﬂ

< (/ ; / BB d@ﬂd#) </ ; / 2 V(i Zj)|2dyjdzj>
al Jwi Ty Jwl
< celP' =)z (HPBkaHL2(Q) + Hpﬂfsk||L2(Q)> :

Since f' — f < 0, we can integrate both parts of the above inequality with respect to

2} over (0,00). As a result we obtain

1/2 1/2 1/2
o3 (o = 2| 1 oy < < (llo Pfall2w + 1oy *Erll o)) - (1.2.8)
Denote G{ QN QJ Then the following interpolation inequality (see Chapter 2
in [43])
||pk‘ pk||L2 GJ <||Vpk‘||L2 GJ + ||pk‘ - pi||i1(g{)) ) (129)

holds. Here constant c is independent of I. Multiplying (1.2.9) by e2*! we get

281 02
[, o) — P

< ((5 [, |vpk<x>|2da:)2 # (e [ o —pildx>2) |
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Since 2! < 625/$§ < ee? for ) € [,l + 1|, we have
= = 3
28"z j 12
e“7 | pp(x) — pr|“dx

2
() — pildx> ) |

Summing the above inequalities by [ from 0 to oo yields

GJ

l

s+

!

,x CE‘J > /__
€273 (py —pk)HLQ(QJ <c (Heﬁ SvpkHiQ(Qi_) Zez(ﬁ B)l

00 2
+2 (/ 55| py () — pi;ldx> ) <0<Ileﬁx3Vka| QJ)ZGW o
=

(1.2.10)
00 = oy X ., ) = sl
<c<Heﬂ%VpkH 20y + 67 (b = D3 o )
Estimate (1.2.5) follows from estimates (1.2.4), (1.2.8) and (1.2.10). O

Remark 1.2.3. According to Theorem 1.2.2 the exponents 8 and 5’ do not depend
on k. Therefore in the rest of the Thesis we fix the same exponents 0 < 5/ < § < 3*

for all £ =0,1,... (unless otherwise stated).

1.3 Generalized Green’s formula for Stokes-type

problems

In the following we consider solutions from the class D' ;jH(Q) (non-decaying at
infinity) to problem (1.1.2) with exponentially vanishing data, i.e., with f, € REH(Q).
Since RGH (Q2) C RL3H(Q) the solution from this class exists for every f;, € RLH(Q),
however it is not unique (see (1.1.21)). Let D\ ,H () C D' ;H(Q) denotes the pre-

vii

image of the set RlﬂH (©2). Then the corresponding operator

Ay 4 DL H(Q) — REH(Q)

ViiThis operator maps an element of DiﬁH (©), a function that may grow, to an element form
RlﬁH (), an exponentially decaying function. This fact is emphasized by using subscript —3 —
in the notation of the operator.
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inherits the Fredholm property from A’ s and the following equalities
dimkerA’ ; 5, =2J, dimcokerA’ 5 5, =0 (1.3.1)

hold. Moreover, according to Theorem 1.1.5 elements of D, 5H () admit representa-
tions (1.1.22).

Analogously we denote by D ;H(€)* the subset of D' ;H(S2) consisting from
solutions to the formally adjoint problem (1.1.16) with the exponentially decaying
data. This set consists from the vector-fields having form (1.1.25). The corresponding
operator

(Al ps) DL H(Q) — RLH(Q)

possesses the same properties as AL BBk
dim ker (Al_ﬁ_}@k)* =2J, dim coker (Al_ﬂ_w’kyk = 0. (1.3.2)

In order to get a unique growing solution u, € D ;H(2) to problem (1.1.2), one
should fix constants {a’,, a’, b7, . b7} J/_, in the main part of the asymptotic expression
(1.1.22). However the first equation in (1.3.1) indicates that only the half of them
may be selected independently. Furthermore, examples in [54], where the analogous
problems for the steady Stokes system were considered, show that not every collection
of 2J constants from the set {a/,, a’,, b/, bgk}le is admissible. Proper selection of
these constants may be carried out with the help of the generalized Green formula.

Recall that in Section 1.1 we derived the classical Green formula (1.1.15) which is
valid in the case of smooth or sufficiently fast decaying functions (see Remark 1.1.3).
Below we derive the Green formula which holds for functions u, € D% zH(2) and
U, € D zH(Q)* (notice that in this case (1.1.15) is not valid since the elements of
D',z H () and D% g H(Q)*, in general, do not vanish at infinity).

Let us apply the operator S; to the function u, having asymptotic representation
(1.1.22). We get the expression

J
jJ 7 30 J 4,30 j o..g1 j gl ~
Sk (Z X {ackzuck + Qg gy + by Uy + bgug, o + Uy
J=1

with terms which either have compact supports, e.g., Sk(xjaikuz,?;), or decay at

infinity exponentially, e.g., Sg(u). Therefore we can multiply this expression by
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U, € D,z H ()" and integrate over the truncated domain
Qp={reQ:ifrecQ thenaj<Lj=1..J}

The boundary 9, besides the part which belongs to 02, contains the sets w?,

j=1,...,J. Consequently, integration by parts results in Green’s formula'
(Sruk, Ur)a, — (ur, S U)o, = qr(uk, Uy), (1.3.3)
with
r(ug, Ug) = Z; /w] Ve - (NP, — v03V i) + v, - (n Py, — yﬁngk)) J’—Ldyj
J= ri=
- /wj ((npck —v03Ver) - Ve — (Mpg, — vO03V) -Vsk) j—Ldyj‘
=

In the last formula we denoted by 05 the partial derivative 9/9z% and by n = (0,0, 1)
the outward normal vector to w’. We can evaluate boundary integrals qr(ug, Uyg)

using expressions (1.1.22) and (1.1.25). Indeed the terms

ar (U, Ur),  qu(ug, Up),  qp(ig, Up)

vanish as L — oo due to the fact that functions @, Uy € DLH(Q) exponentially
decay at infinity. Since the cut-off functions y’/ and y! have disjoint supports for

j # 1, we also obtain

g (7w, XU =0, qr(xul}, XU =0,

(X usk? U ) 07 qL(X]uslw U ) - 0

(1.3.4)

for h,m € {0, 1} Let us compute the rest terms of ¢y, (u, Uy). Consider, for example,
the term g, (x/u’y, xU7). Since the function y/ is supported in the outlet . and
X/ (24) = 1 if 24 > 1, we get from formulas (1.1.11), (1.1.17) the following relation

qr (X uckﬂ ]U ) (Vil(s)? nPc]kl - V83V )wJ + (Vig? nngl - Va?»vgllg)wj

—(nply — vdsvi, Vi) i — (nply — vdsviy, Vi) = — /j eldy’, L>1.

ViliNotice that the integrals over the lateral surface 9, \ U‘jjzle vanish.
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In the same way we derive the equalities
ar (Ol XYUL) = ar (7wl XU = ar (W uly, YUY = - /j i dy,

a7 uly, UL = qr (P uly, UL = (7wl XKU%L) = —qr (K uly, 7 U7)

= / L dy.
wd
Analogous computations yield
o o
(7l X Ul) =0, qr(x’uly, x’Uly) =0,
(Xuk7 jUJ) 0 (Xuk7 jU]) 0

forh=0,1landall j=1,...,J.
Now we pass to the limit as L — oo in relation (1.3.3) and obtain the following

Green formula

(Srug, U)o — (Wk, SpUk)a = goo(ug, Uy). (1.3.5)

Here

J
Qoo (U, Up) = Y { (aik; By, — agy, By, — by, Az, — by Aik) (kD)
j=1 (1.3.6)

+ (aik Bl +al, B, + bl AL, — b, Ack) (1, 1), }

In the same way as in [54] we define the projectors of u, € D} 5 H(€2) onto R:

Wguk = (ailw a?k: s aagk:)a Wguk = (aikz’ aglm s :a:s]k)> (1 5 7)
7T (bckvbckv"'7bgk)> 7T (bskvbskv"'7b;]k)>

where the constants {a/,,a/, b, , gk}‘],l are taken form the asymptotic representa-
tion (1.1.22) of the function ug. The projectors from DYy ;H (2)* to R’ are defined

analogously. Let us define J x J diagonal matrices
Cr = diag (c}, ... cl), Dy =diag(d},d},... dJ) (1.3.8)

with the entries

d= [ day, d=-[ viay. (1.3.9)
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Then relation (1.3.6) may be rewritten™ as follows

oo (U, Uy) = (moug, Cemrp Uy, — Dy Uy) s + (moug, =Dy Uy — Gy Uy ) (1.3.10)
—(Cymiwy — Dymluy, 70Uy — (Dymiw + Crluy, 70U .

Here (, )y denotes the inner product in RY. Setting

1 0 1
o o [me (7
T = (71> , T o= (7?0) , T= (7?0) (1.3.11)

D )] 0O G
Fy = Ci 1, Gy = Ci A IO i (1.3.12)
Dk Ck —Dk —Ck; —Fk O

we rewrite the right-hand side of (1.3.10) in the compact form

and

(0 )7, (Gp 0)7U), —((Fx ©)ru, (0 I)7Us)
={((0 G)mu, (1 0)7Uy) —((Fx O)mw, (0 I)7U;)
= (Tpmu, 7U)
where I and O denote 2.J x 2J identity and zero matrices,

Assume that 2J x 4J real matrices By, Ty, S, and Qi are such that the 4. x 4.J

By,

T
matrices X, = ( ) and Y, = ( 0 k) satisfy the relation
k

k
(Vi)' Xp, = Jg. (1.3.13)
Then we get the equalities

<Jk7Tllk, 7TUk>2J = <Xk7Tllk, YkT(Uk>2J
= (Skﬂuk, QkWUk>2J - <Bk7"1ka TkT"Uk>2J-

This relation and formulas (1.3.5), (1.3.6), (1.3.10) lead to the following statement.

Theorem 1.3.1. Assume that matrices By, Ty, Sg, Q satisfy condition (1.3.13).

XWe treat the projections (1.3.7) as the column-vectors.
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Then functions uy € ]D)liﬁH(Q) and Uy, € ]D)liﬂH(Q)* satisfy the following relation
(Skug, Up)o + (Brmug, Ty U)oy = (ar, S;Uk)a + (Spmug, QurUy)ay. (1.3.14)

Formula (1.3.14) is called the generalized Green formula. Assume that h; € R?/

is a given vector. The relation

is called the asymptotic conditions at infinity (see Sections 4, 6 in [54]). We empha-
size that (1.3.15) determines 2.J relations between coefficients from the asymptotic
representation (1.1.22) of the function u; € ]DliﬂH(Q) According to formula (1.6.6),
2. restrictions to the constants {a’,,a’,, b/, bjsk, _, shall be imposed in order to

ensure the uniqueness of the solution from the class D', H(S2) for problem (1.1.2).

Remark 1.3.2. Straightforward computations show that

<
/~
~~
G
SN—
[N}
-
~~
=S
S~—
[\o}
N—

detIF, = det (Ck + Dk) =

J
det Gy, = det (—C7 = D}) = — [T ((ch)* + (d1)?).
Then, according to formula (1.3.13),
J 2
det Jk = det Fka H ( 2) .

Taking into account Part (2) in Lemma A.0.1 (see Appendix A), we conclude that
(c)?+ (d))> >0forall j =1,...,J and k = 0,1,.... Therefore the rank of Jj, is
equal to 4.J. Applying Silvester’s inequality (see, e.g., [29])

rankAB < min{rankA, rankB}

to the product (Y)TX}, = Ji, we conclude

By —T
rank =4J, rank =4J.
Sk Qk
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1.4 Basis for the homogeneous Stokes-type

problem

Let us define the set
Dp = {uy € D yH(Q) : 7'ay = 0. (1.4.1)

According to definitions (1.3.7), (1.3.11) we see that ®j consists of the elements
having bﬁk =0, bﬁk =0, 7 =1,...,J, in the asymptotic representation (1.1.22).
Taking into account the fact that the rest of the terms in (1.1.22) have exponentially
decaying velocity-fields, we conclude that functions in (1.4.1) possess finite energy

dissipation, i.e., have bounded Dirichlet’s integrals
/ Vv (@) + [Vva(2)2de < 0.
Q

It is obvious that the codimension® of the subspace D, C D)y zH(f) is 2J. Con-

sider the restriction of the operator AL 5spk ON the subspace Dy:
A@,ﬁk : Qk — RlﬁH(Q)

Let us recall that indA'; 5, = dimkerA’ ; ;, — dimcokerAl ; ,, = 2J (see
(1.3.1)). Therefore the operator Ag, j (the restriction of A’ 5,5, on the subspace of
the codimension 2.J) has the index equal to zero. Below we formulate the statement
concerning existence and uniqueness of the solution from ®j to the problem (1.1.2)

(see Section 5 in [54] for analogous results for the steady Stokes problem).

Theorem 1.4.1. (a) The solutions ux, = (Vek, Pek, Vsks Psk) € Dy to the homoge-
neous Stokes-type problem (1.1.2) have zero velocity coefficients Vo, Vg and constant

pressure coefficients per, psk. The basis in ker Ag, i, consists of two vector-fields
u; = (0,0,0, 1, 0,0,0, 0), u; = (0,0,0,0,0,0,0, 1). (1.4.2)

(b)  Problem (1.1.2) is solvable in the class ®y for every right-hand side f,, =
(Fur, 0, Fux, 0) € RLH(Q).

*We recall that the codimension of the subspace S in the vector space V is the dimension of the
quotient space V/S.
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Proof. (a)  Assume that up = (Vek, Pek, Vs, Psk) € ker Ag i, i€,

—VAVy + Vper + kvg, = 0, x €,
-V vy = 0, x €,
—VAVg + Vpsk — kv = 0, x €, (1.4.3)
—V-vyg = 0, x €,
V. =0, vy, = 0, x € 0N.

Multiplying equations (1.4.3;) and (1.4.33) by v and vy, respectively, applying

integration by parts and summing the obtained expressions, we derive

V<chk7 vvck)ﬂ + V<Vvsk7 vvsk)Q - (pakn Y Vck)Q - (psk7 V- Vsk)Q
ov k avsk

+(npck - VT;’ Vck)aQ + (npsk - VaTa Vsk)aﬂ =0.

From this identity we get, taking into account equations (1.4.35), (1.4.34) and bound-

ary conditions (1.4.35), the relation
/ V()2 + Vv () 2dz = 0.
Q

Therefore v, = const and v, = const. Since these two vector-fields vanish on the
boundary 0f2, we get that v, = 0 and v, = 0. Substituting zero velocity coefficients
into (1.4.3;) and (1.4.33) we conclude that p., = const and pg, = const.

(b)  Denote by @j the subspace of DY ;H(Q)* consisting of functions U, with
ng =0, ng =0, j =1,...,J, in the asymptotic representation (1.1.25). Then
the velocity fields of u, € ©; and U, € D} decay exponentially. Therefore for
elements from the subspaces ©; and ©j the classical Green formula (1.1.15) holds.
Consequently, the problem (1.1.2) is solvable if and only if the right-hand side f},

satisfies the following compatibility condition
[ g thdz =0
Q

for every solution U, of the homogeneous formally adjoint problem (1.1.16). In the
same way as in the Part (a) we show, for every k = 0,1,..., that the homogeneous
formally adjoint problem (1.1.16) in the class ©; has only two linearly independent
solutions:

U; = (0,0,0, 1, 0,0,0, 0), U; = (0,0,0, 0, 0,0,0, 1).
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Hence, the function fj, shall satisfy conditions
fi, - Urdr = 0, / f;, - Uidx = 0. 1.4.4

Recall that the index of the operator of Ay, j is zero. This means that the dimen-
sions of it’s kernel and co-kernel are equal. In other words, the number of compati-
bility conditions for the data fj, of the non-homogeneous problem (1.1.2) is the same
as the number of linearly independent solutions of the corresponding homogeneous
problem. Since the number of conditions (1.4.4) coincides with the dimension of
the set ker Ag, , conditions (1.4.4) become sufficient ones. Obviously, conditions
(1.4.4) automatically hold for any function f, € RjH(2) admitting the representa-
tion f;, = (fx, 0, £, 0)*. n

Below we present a basis in ker AL 55, 1-€., in the set of solutions to the homoge-
neous Stokes-type problem (1.1.2). According to formula (1.3.1), the set kerAl ;_;

is spanned by 2.J linearly independent elements. Let us denote these elements by
u, ... u)’ (1.4.5)

Notice that for the solutions of the homogeneous problem Theorem 1.1.5 may be
applied. As a consequence we get that every element in basis (1.4.5) has the following

asymptotic representation
J 0 0 ;
=2 Hagluly + aghuly + bghudi + bl )+ (1.4.6)

Construction of the element u}, is divided into three steps. Let us briefly describe the
procedure. First we define the flux carrier uk’i = 23'7:1 X’ uﬁ’i’j , which is represented
as a sum of the Poiseuille flows u?’ Al ,uZ’i"]. Notice that due to multiplication of
the exact solutions "’ to the homogeneous problem (1.1.2) by the cut-off functions
x’, the vector-field uk’i has non-zero divergence. In order to obtain a solenoidal flux
carrier, we construct a special vector field ui’i with the divergence equal to —V - u,ﬁz
The sum uk’i + uZ’i has zero divergence, however it does not satisfy the homogeneous
equations (1.1.21) and (1.1.23). Therefore in the last step we solve in the class Dy the
Stokes-type problem Syai = fi with the right-hand side ff = —S(u? 4+ u¢). Then

the element in the basis of ker AL 5,5 is defined as the sum wuj, = uZ’i + ui’i + .

*iLet us notice, that this structure of the right-hand f; in (1.1.2) implies that the divergence
equations (1.1.29) and (1.1.24) are necessary homogeneous.
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Step (1): Consider the linear combinations of the vector-fields u/;, u/; (see
(1.1.11), (1.1.12)):

DJ _ 38,J 401 0,J 1401
wy ™ = by, + by ugy.

For every i« = 1,...,2J and j = 1,...,J the vector-field uZ’i’j has the velocity

coefficients
v;cyl,czd — ( 7 Z]ggbj + b27]¢]) ,vlh ) ( 7 i,ggbj o bf;’]g k) (147)
and the linear pressure terms

N B K%Y DybJ i,]
kT bkxi’n Psp™ = bka

Moreover uk’i’j satisfy the homogeneous Stokes-type system set in the cylinder ¥ =

w! x R (see (1.1.7), (1.1.11), (1.1.12)):

VAV VPP 4 kot = 0, ze
—V P =, x e W,
—vAV VPt — koY = 0, x eV, (1.4.8)
—V.-o = 0, r e,
P =0, VMY = 0, 1€
Let us define the flux carrier J
ul’ =" ul, (1.4.9)

The velocity components v”; = > Xl 7 and vf = > XIv2i of the vector-

field u?"’ generate in every outlet the ﬂow—rates

/ bl (y7) + bl (o) dy? = bl — biddi
(1.4.10)
o = / )+ Vo) dy = Vildi + el
For every i = 1,. 2J we select the constants {b%/, b;,g}‘] L in (1.4.10) in such a way

that the element u?’ has the following distribution of flow-rates:
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. 1 1
(Qut, . oul, bt ) = () — J.”ﬁj—j,auwm
fori=1,...,J,

) ) (1.4.11)
(Qut, o ohl, bt ol = mpnn,@”hi?”wﬁJ—j)

fori=J+1,...,2J,

here ¢ denotes Kroneker’s delta. To realize (1.4.11) we solve the following systems

of linear equations:

bulch — bild, =6 —1/J,
L e T N
beedy, + Uit =0,

bulcl —bild, =0,
R TeRTR i=J4+1,...,2]

b+ g = 1),

According to Lemma A.0.1 the quantity (c})? + (d2,)®> > 0 for every j =1,...,.J and
all k =0,1,.... Therefore we get that

ig:M b — M i=1,...,J
A2+ (d)? ’ (ct)? + (d})? (1.4.12)
id_d%W”—JﬁD i

J+j
%@ —1/J) i=J+1,...,2J.

T T () (d)?

We notice that in u?’ = (v%, p2f, %, p%) the flux is carried by the components v”;’
fori=1,...,J, and by the components vé’k fori=J+1,...,2J. In both cases one
of the cylinders is a source with the flux equal to 1 — 1/.J, while the other cylinders
are drains with outflows equal to —1/.J.

Step (2): It is obvious form the definitions (1.4.7) that V - v?* = 0 and
V- ol = 0 for every i = ,2J and j = 1,...,J. However due to mul-
tiplication by the cut-off functlons XJ the velomty—ﬁelds v = Z ! xPvP and
v = Z AP of the flux carrier (1.4.9) are no longer divergence-free. In order
to restore the incompressibility of the flow generated by ui’i, we use the following
result of [11]:

Lemma 1.4.2. Let G C R" be a bounded domain with the Lipschitz boundary 0G
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and let the function g € ]fll(G) satisfies the condition [, gdx = 0. Then the problem

VoW =g (1.4.13)
W|8G - 07

admits a solution w € HY(G) N HX(G) satisfying the estimates

IVWllLo@) < cllglliae,  1Wllaze) < cllgllave

with a constant ¢ independent of g.

Taking into account the definition of the cut-off function y’/ (we recall that
Xj(:c’é) = 0 for 23 < 0 and \/(2}) = 1 for 2§ > 1) we see that the functions
Vo Zj 1 ij v and V - o5 Z] 1 ij v have compact supports and
belong to the space H 1(Q)¥. Moreover, integrating by parts we get

J . .
V vl dm——Z/jvf,f-ndyj.
=17

Here we have used the fact that the velocity field v vanish on the lateral boundary
0 \ U/ jwi. The integral [,; v% - ndy’ is equal to the flow-rate ¢'J generated by
v"! over the section w’. Therefore, taking into account the flow-rate distributions

(1.4.11) we conclude, that the sum in the last identity is equal to zero:

J

S [ gy —zcbck:z(az—w) -

=17 i=1 i=1
Consequently,

V- v%lde = 0.
Q1
In the same way we derive the equalities
. J .
RAYTES Z/ " ndy’ = Zgzﬁsk— S (6] -1/7) =
j=1

’L

Therefore Lemma 1.4.2 may be applied in the case When g = and g =

AVAR 75
V0", and we conclude that there exist vector-fields v%’, v%’ (Hl(Ql) N H2(Ql)) :

XiWe recall that Q; = {x €eQ:al<1,j= 1,...,J}, see (0.1.3).
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satisfying the following problems set in the domain €2,

—V-vﬁ,’f = V-vi’,f, —V-v‘j,f = V-’uls’;f,
d,i L dyi _
vck|391 - 07 Vgl = 07
Moreover the following estimates

d?' 7' d7' 7'
vl < eV viillzy,  lvellaz@) < cllV - villa @), (1414

di i di i o
[V oy < eV - v5illze@), V62 < cllV - villm )

hold. We extend functions v%’ and v% by zero to the whole domain Q and define
the vector-field ul’ = (v% 0,v% 0). Then the sum u?’ + u{" is a divergence-free
flux carrier.

Step (3): We look for the elements in (1.4.5) in the form i = u?’ + ul' + @,
where @}, € D}, Substituting u}, into the homogeneous system (1.1.2) we get for the
function @}, the Stokes-type problem S,ai = fi with fi = —Sj(ul’ + ul"), i.e., the

function @} shall satisfy in the domain € the following problem

o~

—VAD, + VP, + kv, = f,

~V-vy = 0,
—VAD, + Vi, — kvl = f, (1.4.15)

-V.9, = 0,

Vyloa =0, Vylon = 0,

with

i _ e di D, p,i D, di dyi
ck — fck + fck: - yAvck - vpck - kvsk’ + yA,vck - kvsk’

oo T (1.4.16)
= B = AT — Vi bl v A b

Let us notice that the right-hand in (1.4.15) has a compact support. Indeed, the sup-
ports of the vector-fields £% and £%" are finite due to the fact that outside the domain
Q, the functions v%’ and v%’ vanish. The functions f%' and %' are obtained when
the Stokes operator S;, is applied to the flux carrier 'vk’i. Since the vector-field v k’i is
a combination of the Poiseuille flows (exact solutions the to the homogeneous prob-
lem) multiplied by the corresponding cut-off functions x?, the functions ff,;i and ff,;i
are equal to zero whenever ', ..., x”’ are constant, i.e., outside the domain szlGé,

where G = w/ x (0,1). Moreover, the regularity of uk’i ui’i is enough for the vector-
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field £} = (£, 0,7, 0) to be an element of the space RZH(Q). Hence we may apply
Theorem 1.4.1 to problem (1.4.15) and conclude that it has a solution in the class
®p. Theorem 1.1.5 shows that this solution admits the asymptotic representation
(1.1.22) which, due to the boundedness of the Dirichlet integral of elements in Dy,

turns into
Z aul + ) +
In the same way as in Theorem 1.2.2 we obtain the estimate
||@;k||Hg(Q) + ||77§k||Hg(Q) + HvﬁikHL%(Q) + ||V]3ik||Lg(Q)

(1.4.17)
< (IEll 2@ + 1l 2 -

Remark 1.4.3. For any constants al, and a, the vector-field @}, + a’,u§ + a’,u3,
where
uj, = (0,0,0, 1, 0,0,0,0), u;=(0,0,0,0,0,0,0, 1),

is also the solution of problem (1.4.15).

According to Remark 1.4.3, we can add arbitrary constants to the pressure terms
Per and pg of the solution to the homogeneous problem (1.1.2). This means that in
the asymptotic representation of the function (see (1.4.6)) we can substitute the
constants {a’} J_, and {a%})_, by the constants {a’] + aly.}_, and {a% + ask}] s
with an arbltrary al, and ask. Therefore taking suitable constants a’, and a’, we
xiii

may attribute to the sums a’; +a?, and a’ +al,, any valuesi. If not said otherwise,

in the following we fix

ay =1, ay/ =0 for i=1,...,J
o (1.4.18)

ackzo, as’k:]. fOI‘ Z:J+1,’2J

The rest of the constants in (1.4.6) is defined by the problem itself. In the next
subsection we will derive formulas to compute {a’/, C’,ﬂ 771 (they will be expressed
in terms of the data of the problem and the geometry of the domain 2).

We recall that the projectors 7%, 7' : DL gH(Q) — R*/ defined by (1.3.7) and
(1.3.11) generate 2.J-dimensional column-vectors composed from the constants in the

asymptotic representation (1.1.22) of a function u, € DYyzH(Q). Thus for every

*iiiNotice that ack +a’, and as p +as & stands for the pressure conbtantb in the outlet Q7. Obviously,
we may chose any other outlet. That is, one constant in the set {a j , and one constant in the

set {aZ J ’_ may be chosen arbitrarily.
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1=1,...,2J we have

0 i _ il i il iJ
7Tuk—(ack,...,ack,ask,...,ask),

i J
mlal = (bh, .. 0 bl b)),

with the constants b, b/ and a’}, a’ defined by (1.4.12) and (1.4.18). It is not dif-
ficult to verify that the flow-rate coefﬁ(nents (1.4.11) generated by the vector-field u},
can be expressed as the product Fpm'ul, where 2.J x 2J matrix F}, is given by (1.3.12)
(see also (1.3.8)). According to Remark 1.3.2, the matrix [F, is non-singular for every
k. Moreover, one can straightforwardly verify that in the set Fyrlu), ... Frrlu] any
J — 1 vectors are linearly independent, while the sum Fprlui + - - + Fprlug = 05V,

Since Fy is non-singular, any J — 1 vectors among 7wlu;, ... ,Wlui

dependent, whereas the vector wlui + --- + 7luj is equal to zero one. Taking into

are linearly in-

account the definition (1.4.1) we conclude that the sum u} + - - - + u{, denote it by
u}i, belong to the subspace ®j. Using Theorem 1.4.1 and formulas (1.4.18) we see
that ui (as the solution to the homogeneous problem) must be proportional to the

vector u§, defined in (1.4.2). For the vector u§ we have

Hence u§ and the vectors uj},...,u; ' form the system of .J linearly independent

vector-fields in ker A 5—p- In the same way we can show linear independence of the

system composed from ui“, . ui‘] ! and the vector uf, having projections

muf = (0,...,0), 7ui=(0,...,0,1,...,1).
As a consequence we have 2J linearly independent solutions
up, .. ul hugul o ud T g (1.4.19)

to the homogeneous problem (1.1.2). Since the dimension of the subspace ker AL Ea:

is equal to 2J, the vector-fields (1.4.19) form the basis in the set of solutions to the

XIVFor example, in the case .J = 3 we have

Fprtuy, = (2/3,-1/3,-1/3,0,0,0), Frrtuy = (0,0,0,2/3,-1/3,—1/3),
Frrlul = (-1/3,2/3,-1/3,0,0,0), Frrlu) = (0,0,0,—-1/3,2/3,—1/3),
Frrlul = (—-1/3,-1/3,2/3,0,0,0), Frrlul = (0,0,0,-1/3,-1/3,2/3).
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homogeneous Stokes-type problem.

Remark 1.4.4. The sums u} + ... +uf and u]™ + ... + u?’ are proportional to
the vectors u¢ and uf, respectively. Therefore the system of vector-fields ui, . .., u2’

. . l
also forms the basis in the set ker A’ 5 ;.

Let us describe certain quantities characterising the basis presented in this Re-

mark. Consider the following 2J x 2J matrices
A = (Woui ﬂoui‘]) . Bp= (wlui ﬂlui‘]) . (1.4.20)

Taking into account formulas (1.4.10), the flow-rate distributions (1.4.11) and the
definition of the matrices By and Fy, (see (1.3.12)) we deduce that

C. —D F O
FuBB = | ° "1 B, = : (1.4.21)

Dr Ck o F
here F is the J x .J matrix with the entries equal to 87 —1/.J. The matrix on the right-
hand side of (1.4.21) describes the flow-rates of the basis u},...,u2’ and is called

the flux distribution matriz. According to formulas (1.1.24) the pressure coefficients

pei and pgi, in the outlet €7 admit the representation
pek(T) = @y, — blpws + Pl (), par(®) = aly — bl + Pl (),

where 77, = o(e~B7) and Pl = o(e=#7) as ] — co. The matrix A, is called the
pressure distribution matriz. The flux and the pressure distribution matrices for the
steady-state Stokes problem were presented in Section 5 of [54].

1.4.1 Estimates for the elements u},..., uj’

The estimates (1.4.14), (1.4.17) allow us to evaluate the L?*norm of the velocity

coefficients v’y v, of the element uj, = u}"’ + u;" + @, in terms of the flux carriers

pvi pai 1 o ivj i:j
v, v and, consequently, in terms of the coefficients {b.7, b3 }.

Let us first denote
o= [ (AP+1dP)dy. = [ (IAdP+1aviP)ay.  (1422)

Taking into account estimates (1.4.14), the definition of the flux carrier u?* and the
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fact that (x7) = (x?(«3))’ is supported on the interval (0, 1), we get

J
7 1, 2
v 0y < eV - 07 H%m)s(zg\\( (bl ok + V) oy,

—cz ) 1007 (b4 bgd) P (1429
J .
< X (037 + 02°) [, oAl + 1ty —czak( 5+ 0)7)

Analogously we derive the inequality

(8

J
o0 < ek (0" + 00)). (1.4.24)
Reasoning in the same way as in Theorem 1.2.2 we derive the estimate for the velocity
fields @', and @’ of the function @}, satisfying equations (1.4.15):

vk
Y s (1Bl (98 e+ [ o (1220 047) e

<c [ o (B4 + ) do.

Since the functions £, and i, (see (1.4.16)) on the right-hand of the last estimate

are supported on €2; and the weight function ps is bounded on €, we get

||@;k||%2(9) + ||@sk||%2(ﬂ) < ||"A)ck||%g(g) + ||6sk||2L%(Q) ( |
1.4.25
c
S (” el 220 + [ (2 ) :

Recall that in (1.4.25) the right-hand side is expressed as £/, = f%' + % and fi, =
£ + £47 with

Dyl __ di

7 = v AUl Vppk — kot £ = VAUC kvsk,
vAvY Vpp +ko?l £ = pAvE 4 kod!
sk T sk k ck sk T sk ck

Consider the terms 5 and 5. According to formulas (1.1.11), (1.1.12) and (1.4.6),

the first two coordinates of the vector-fields f%' and f%" are equal to zero, while the
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third ones are equal to

J
2 {0 Gl + o) + () et}
J

Z{ bk — bid) + OF) bl )
respectively. It is easy to see that

J ..
€2 172 ) + 5 120y < Z 1+ af) (65> + (65)?) - (1.4.26)

To estimate the L?-norm of the term f%' we use estimates (1.4.14) and the inter-
polation inequality ||Vu| i) < ¢ <||u||L2(G) + ||AuHL2(G))7 which is valid when the
boundary OG is of class C? and u vanishes at OG (see Section 3.8 in [43]). Since
for every j = 1,...,.J, the boundary dw’ € C? and functions ¢, 1 belong to
H'(w) N H2(w?), we have

J 5P < [ (1A R ) de < V- o2 o

+ek? |V 172 ) —CHZXQ vie” i) +ck2HZx§ v )
7j=1

J
< e (105 12wy + 1AVE (32 + K205 7o)
j=1

ek + VLU + L AGE + b AV + K

ser — bl vl )
Combining this estimate with the analogous estimate for the function ff,;i we get that

J ..
VA IE 2 ) < ¢ Z of + kol +40) ((03)7 + (0)?) . (1.4.27)

Collecting estimates (1.4.23)—(1.4.27) we obtain the inequality

7
[ e A P (Oék kQ(l + o + %)) (( o4 ( s,ﬁ)2> . (1.4.28)

J=1

Remark 1.4.5. The coefficients b/, b"/ grow unboundedly as k — oo. Indeed, from
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formulas (1.4.12) and Lemma A.0.1 we see that the sequence {c]/d.}?>, is bounded:

d _ |v)

0< <2
& = kdl

1, k— oc.

Then from the definition of b/ (see (1.4.12)) we have

. (57 — J
’m _M_i(él—l/‘]),wi k — oo.

@) d () 1 A

Since di, = O(1/k) as k — oo, the quantity |b%/| is O(k) as k — oo.

In spite of this fact, the norms |[vl, |12, and ||vi, |12, (estimated by (1.4.28))
remain bounded as k — oo. The functions gpf; and ¢i decay sufficiently fast and ensure
that the right hand-side of inequality (1.4.28) is bounded (uniformly with respect to
k). Indeed, from (1.4.12) we get, for every i = 1,...,2J and every j =1,...,J, that

6l —1/J

(bl)™ + (bgh)" = m

Then definitions (1.4.22) and Lemma A.0.1 yield the estimates

] o y . . d 14 |w 1

J —(1 J J ) bZ,] 2 bl,] 2 < “k 'k A '
<ak+k2( +ak+7k> (( clc) +( sk) ) — L +k3+ k2 (612)2_‘_(6&)2

<<d{;+d{; 1+|wf|> L1 1+ |w| 1 14 |

BRI R R I R R 7 L A

as k —oo, forall j7=1,...,J

1.4.2 Basis for the homogeneous formally adjoint Stokes-

type problem

Applying the three step procedure, presented in the beginning of this Section, we can
construct the basis U, ..., U7 in the set of solutions to the homogeneous adjoint
Stokes-type problem (1.1.16). Namely, for every i = 1,...,2J we define the flux
carrier UP' = (V5! PH VP! PP with the specific flow-rates (see below). Then
we construct the vector-field ug”' = (V?;j, 0, V!, 0) which annuls the divergence of

P! and VP, Finally, in the class of functions with the finite Dirichlet integral we
solve the adjoint Stokes-type problem S*Z:l; = f‘}c with the right-hand side f‘z =

—S* Uy + Uy,
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For every i = 1,...,2J the vector-fields ¢}, admit the asymptotic representation
(see (1.1.25))

J ‘
Uy = 3"\ {AUR + AJUL 4 BYUL + BIUL) 1,
j=1
In order to prescribe the flow-rates and the pressure constants of the elements in the

basis, we substitute in the last formula

Al =10 Al —1/T)

TG () T ()2 ()

AW =1, A% =0, for i=1,...,J
(1.4.29)

g GO 1) gy G 1)
‘ (cR)?+ (@2 " (ch)? + (d})?

A =0, AW =1, for i=J+1,...,2J.

With the coefficients defined by (1.4.29), the basis Uy, ..., U3 in ker (Alfﬁﬁﬁ)* has
the same flow-rate distributions as the basis uy, ..., u3’ in ker A’ 5 ; (see (1.4.11))

while the pressure distribution matrix
A = (wou,ﬁ e WOU%J>

in general may be different from the matrix Aj.

In the same way as in Subsection 1.4.1 we derive the estimate

IVillZe @) T IV kHL2 (1)

J o N N (1.4.30)
s;;@w (ol +9D) (B + (B,

Comparing formulas (1.4.12) and (1.4.29) we see that (b%/)%4(b%)? = (B%/)?+(B%))>.

Therefore, repeating the same arguments as in the end of the previous Subsection,

we show that the norms ||Vi|z2(,), | Visllr2@,) remain bounded for all k, i.e., the

estimate
Virllzz@ + IVall2@y < ¢ (1.4.31)

holds with a constant ¢ independent of k.
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1.5 Representation and estimates of the pressure
0] 0,J
constants a_, and a
In order to derive certain relations between the coefficients of the basis (1.4.5), we
need special solutions of the homogeneous adjoint Stokes-type problem. Let us take

the basis Uy, ..., U7 of ker (ACB%B)* constructed in Subsection 1.4.2 and for [ =
1,....J—=1,J+1,...,2J — 1 define the functions

U, =u. —u+.

We recall that the flow-rate coefficients generated by the element Llff are

1 1

(5}—3,...,55—7, 0,...,0), if i=1,...,J,
(0,...,0, 5;’“—(1],...,53"—;), if i=J+1,...,2J.

Therefore the elements ﬁ;, HZH have unit inflows through the cylinder 0, and unit

outflow through the cylinder Qlfl, while the flow-rates in the rest of the cylinders are

equal to zero. Note that for the element Zj; = (Vﬁk,ﬁlc;ﬁ Vik,fik) the flow is carried

bythetermvi,,C when!/=1,...,J—1and bythetermVik when ! = J+1,...,2J—1.
Namely, for l =1,...,J — 1 the relations

/lvik.ndyl: L, /l+1vlck'ndyl+1 = —1,
/.Vik-ndijO, J#FLJ#FI+] (1.5.1)
/_Vik.ndyj:(), j=1,...,J

hold, while for the elements LlﬁC with [ = J +1,...,2J — 1 we have the following

flow-rate distributions
/ijik-ndyj:o, j=1....J
/lVik ‘ndy' =1, /m Vi ndy™t = -1, (1.5.2)

[ Viemdy =0, jALjAI+1
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Let us take some [ € {1,2,...,J —1}. Multiplying the equations in the system
(1.4.15) by the vector-field (Vck, lck, Vik, ﬁik), integrating over the truncated domain
Qp = {x e x3 <Lgjg=1,..., J} and then applying integration by parts to the

left-hand side of the obtained expression we derive the relation
. ol =l . . . =l 5l
/Q (B - (~VAVY + VP — VL) + 8 (—vAV 4 VP + kV,y)) da
L
J
P 33! Py 3! X A
+/ Z (ijckn ’ vck + XjiPsp11 - vsk) ds = / ( ck’ vck + fsk : vsk) dx.
091 i QL
Since Zj; is a solution of the homogeneous problem, the first integral on the left-hand
side vanishes. The velocity-fields Vik and Vik are equal to zero on the boundary
0L, therefore the integrals over the boundary 9€); turns into the integrals over the
cross—sections w’. Moreover, the terms pl. and p';. in the pressure functions pi, =

71 Xjag + Dy, and P psk = Y7 xjai + Pl belong to the space L(Q), i.c., they
decay exponentially as 2}, — 0o. Consequently, we rewrite the last identity as follows

J
> <azc’lg / , vf:k -ndy' + ay / . Vik : ndyl> + 0(€B/L) = /Q ( ok 'vlck + £ vik) dz.
j=1 wl wd L

Functions f%, and £/, have supports in €. Thus after passing to the limit as L — oo,

we obtain, taking into account (1.5.1), the relation
1,0 2 J+1 A T
Qe — Qg */ fck vck + fsk Vsk) dz. (153)
Application of Hoélder’s inequality to the last formula yields the estimate
i — a7 < (R Bade) ([ PR+ Phan). 54)
1

Both terms on the right-hand side of this inequality were estimated in the Section
2.5. Combining estimate (1.4.26) for the functions 7', £ with estimate (1.4.27)
for the functions £%', £4% we get the estimate for the elements fék = 2" + £%" and
— + f.

sk = sk sk *

J
B 1122 0 + [E 220y < € Z (1+ 204, + k2of, +47) ((B5)* + (b))
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Since Vék =V, — V! and Vlsk =V, — VI we get from (1.4.31) that
! !
Verllzz@ + IVarll2 @) < ¢

with the constant ¢ independent of k. Substituting the two last estimates into (1.5.4)
yields

otk —ag P < e Zl+2ak + k2o + ) (00 + (03)?) -

Using Lemma A.0.1 and taking into account definitions (1.4.22), we get that

; &
0 <1420 + ko] 4Jm<1+2;+kW+pﬂ2

d, o :
Since limk_>oo(1+2?k+k:d§c+ |w?|?) = 1+ |w?|+|w’|?, the sequence {1+ 2a7, + k*al, +

71322, is bounded. This gives the estimate
‘ai}i zl+1|2 < CZ( m m)2>_

Multiplying equations (1.4.15) by Hif with [ € {J+1,...,2J}, using relations

(1.5.2) and arguing in the same way as above, we get the expression for the differences

of constants a’;, a’t' and their estimates in terms of coefficients b}/, b':

o ”“—/ +ﬁhﬂgw, (1.5.5)

|a® —”ﬂ%:Z(W (b4)?) , (1.5.6)

where the constant c is independent of k.

Remark 1.5.1. Formulas (1.5.3), (1.5.5) again emphasize the fact that for the ele-

ments in the basis u}, ..., u}’ we may choose in (1.4. 6) one arbitrary constant in the
set {ay] 7 J , and one arbitrary constant in the set {a . The rest of the constants

in these sets are defined by the given flow-rate coefﬁc1ents and the geometry of the

domain €.
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1.6 Stokes-type problems with asymptotic condi-

tions at infinity

Consider the Stokes-type problem (1.1.2) supplemented with the asymptotic condi-
tions at infinity (1.3.15):

Spuy, = fk, x e Q, vi=0, z € 89, Bimu;, = hy. (161)
Let us denote by Al the operator corresponding to problem (1.6.1), i.e.,
A} 1 DL H(Q) 3 g = (Spuy, Byru) € REH(Q) x R*.

Since the operator By is finite dimensional, the operator Al inherits Fredholm pro-
perty from the operator A’ ; ;. The generalized Green formula (1.3.14) determines
for (1.6.1) the formally adjoint problem with the asymptotic conditions at infinity.
Namely, instead of problem (1.1.16), which is formally adjoint to (1.1.2), we consider
the problem

SZUI{ = Fk, x € Q, V. = 0, z € 89, Qkﬂ'Uk = Hk, (162)

with H;, € R* and F}, € R%H (Q) given. As usual, the formally adjoint problem
plays crucial role in for investigation of solvability properties of the "direct" problem
(1.6.1).

Theorem 1.6.1. Assume that matrices By, Sk, Tk, Qx satisfy the relation (1.3.13).
Then

(1) kerAi, = {uk . Skuk = O, Vk’@Q = 0, Bk’/ﬂlk = 0};
(2) COkeI'Aé€ = {(Uk,TkTFUk) : SZIJ]C = 0, Vk|6Q = 0, @kﬂ'Uk = 0}

Remark 1.6.2. Part (2) in Theorem 1.6.1 states that problem (1.6.1) has a solution
if and only if the data f;, h, satisfy the following compatibility condition

Q

for every function Uy, which solves the homogeneous problem (1.6.2).

Theorem 1.6.1 can be proved similarly as Theorem 6.2 in [54]. We present the

complete proof for the reader convenience.
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Proof. (1) Validity of the first statement follows from the inclusion ker A}, C ker A" 5 ;.
(2). Assume that UP', ..., U2 is a basis in ker(Al 5 5,)", ie., S:UP" = 0,
VkB’Z|aQ = 0. Suppose that this basis is such that

QU =0, j=1,....K, 0<K <2/

where K = dim {U e ker(Al g 5,)" : QurU = 0}, i.e., vectors UP', ... UPK sa-

tisfy the homogeneous conditions at infinity. Since rankQ; = 2.J (see Remark 1.3.2),

the vectors @kﬂ'UkB ’KH, e ,@me 27 are linearly independent. For each function

uy € ]Dliﬁ we get from the generalized Green’s formula the equalities

(Spug, UP g + (Brmug, T U ey = (ug, SEUY a4 (Skmug, QU )55,
i=1,....2J.

If function uy is a solution of problem (1.6.1), then the following necessary compati-

bility condition has to be satisfied:
(£, U g + (hy, e UpP o, =0, for i=1,... K. (1.6.4)

Let us show that the above conditions are also sufficient. Since dim cokerA! ; 5, =0
(see (1.3.1)), there always exists a solution uf, € D% 5 to the non-homogeneous Stokes-
type problem (1.1.2) (to the problem without asymptotic conditions at infinity).
Using the substitution u;, = wy, + u)) we reduce problem (1.6.1) to the homogeneous

Stokes-type problem with non-homogeneous conditions at infinity:
Siw, =0,2€Q, w,=0,2¢€09Q Byrw, =h) =h; — B,ru},

here w), denotes the velocity components of wi. The compatibility conditions (1.6.4)

now turns into
M, Tr Uy =0, i=1,..., K.

We look for the solution wy, in the form
2J '
Wy = Z a;u’,
i=1

where w', ..., u*/ is basis in ker A’ ;_ ;. The vector-field w;, automatically satisfies

the homogeneous Stokes-type equations and zero boundary conditions. Substituting
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w), into asymptotic conditions Byrwy = hY we get for the 4J dimensional vector
b, = a;mul + -+ + agymu?’ the system of 2J linear equations. Let us supply this
system with another 2J linear equations Syby = hj}, where hj. is at the moment

unknown vector, and consider the system of 4. equations

hY
Xiby, = (hf) :
k

B
where X denotes the 4J x 4J matrix *1. Since this matrix is non-singular (see
k

Remark 1.3.2), for every right-hand side hY, h}. there exists a unique solution by of
the system above. In order to find constants ai, ..., as; we shall select h}. in such a
way, that the vector by, belongs to the linear hull £ {71"11,2, . ,ﬂuz‘]}.

Theorem 1.3.1 states that the generalized Greens formula
(Skug, Up)a — (g, Sy U)o = (Jrmug, 7Up) 4y,

holds for all u, € DLzH(Q), Uy, € DLyH(Q)*. Taking u, = wy, Uy, = U in the

last formula, we get that

<bk‘,J*7TUkB7i>4J =0, i=1,...,2J.

Therefore the condition by € L {WukB’l, e ,WukB’QJ} is equivalent to the condition

b, L L(xUZY, ..., 7UP?7). Let us rewrite the last equality using the relation

0= <e]]kbk77TUkai>4J = <Y2Xkbk,7rUkB:i>4J _ <Xkbk7Yk7TUkB’i)4J
= <h27 Tkﬂ-Uf’z>2J - <h]1€, @kﬂ'UEﬂ'>2J7 Z — ]_7 L 72J

If i« =1,..., K, then both terms on the right-hand side of the last equality vanish
(due to compatibility conditions and the homogeneous conditions at infinity). Taking
1=K +1,...,2J in the last equality we get the system of 2J — K linear equations

with respect to the unknown hj:

(h}, Qe Ul oy = (W) T Uy, i=K+1,...,2J. (1.6.5)

B,K+1
Ut

Since Qpm ,...,QkﬂUkB’z‘] are linearly independent vectors, the rank of the

system’s matrix in (1.6.5) is equal to 2J — K. Therefore, this system has a solution
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h; for every right-hand side. If K = 0, the number of unknowns coincide with the

rank of the system, and the solution h}, is unique. O

Remark 1.6.3. Recall that the 4J x 2J matrix (7ru1 - -7Tu2‘]> is composed from
the 2J x 2J matrices By and Ay (see (1.4.20)). Using Theorem 1.6.1 and the same

arguments as in Corollary 6.6, [54] we can show that

dim ker Al = 2J — rank { By, B : (1.6.6)
Ay,

1.7 Examples of matrices B, modelling certain class

of pressure-related asymptotic conditions

Particular physical phenomena can be modelled by choosing corresponding matrices
By in the asymptotic conditions (1.3.15). For example, a sequence of matrices By =
(]Fk (O)), k=0,1,..., with F) defined by (1.3.12) corresponds to the situation when
flow-rates are prescribed in every outlet*. Indeed, the product B,muy is equal to
the vector (¢, ..., oL, oL, ... ¢7) consisting the Fourier coefficients (1.4.10) of the
time-periodic flow-rates ¢/ = ¢/(t), j = 1,...,J. Let us describe a class of matrices
Bg, Sk, Ty and Qy, that satisfy condition (1.3.13) and allows to impose the asymptotic
conditions at infinity which are different from prescribing only the flow-rates.
Assume that Z C {1,...,J} denotes the set of indexes of the outlets where we
are going to change the flow-rate conditions by conditions of other type. Construct
the 2J x 2J matrix Fy, by taking the lines with numbers ¢ and J + 4, ¢ € Z the same
as in the matrix Fy, while setting the rest lines in Fy, equal to the zero ones. The
asymptotic conditions (1.3.15) with the matrix By = (]F . — Fy (O)) still determine
the flow rates in the outlets ) with numbers j € {1,...,J} \ Z, while the rest
outlets are "free" of conditions at infinity. Let L, = diag {L}C, i } and T be,
respectively, a real 2J x 2J diagonal and identity matrices. We construct the matrices
IEk and T in the similar way as ]IA?;C, i.e., the lines with indexes ¢ and J + 1, ¢ € Z, are
the same as in the matrices L, and I, while the rest are zero lines. Define the
matrix B, = (Fk —F, -1, ﬁ) and consider conditions at infinity (1.3.15). One
may straightforward verify that for i € Z the i*" and the J + i*® components in the

*For B, = (Fk (O)) the condition (1.3.13) is satisfied with matrices Tj = (@ H) , S, = ((O) ]I),
Qr = (Gk (O)), where Gy, is defined by (1.3.12).
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product Bymu, are equal to

These two quantities determine the main part of the Fourier coefficients p’, and
pl,. Indeed, the pressure coefficients in the outlet Qi admit the representation (see
(1.1.24))

per(z) = aik - bikff% + Per(),  psi(x) = agk - bikxg; + D (),

where P, Pk decay exponentially as 23 — oo, i.e., for large L they differ from (1.7.1)

by the terms of order o(e~"%) only.

Lemma 1.7.1. Let @k and IVJI;C be the matrices obtained from the matrix Gy =

C. —-D
( 7’; Ck) , (see (1.3.8)), and from 2J x 2J diagonal real matriz M, by using the
—Dy —Cyg

same procedure and the same set L as for projectors IEATk, ]I:k, I defined above. Assume
that
M, F, — G,L; = O. (1.7.2)

Then the matrices

=)

Bk:(Fk—I@k—ﬂk ), Sk:(—f@k ]I—ﬁ),
@k:<Gk_@k_Mk @, Tk:(—@k ]I—ﬁ)

T
—T B
satisfy the condition (Y),)" X, = ( k) ( k) = ( 0 %k) (see (1.3.13) ).

(1.7.3)

Qk Sk —IFy

Remark 1.7.2. Consider the matrices

L. O M. O
]L’k = § 5 Mk = g ’
0 L2 0 M2
where Li, L?, M} and M3 are the J x J diagonal matrices. Straightforward compu-
tations show that condition (1.7.2) holds if and only if

Ly =L; =M, = —M}. (1.7.4)

It turns out that condition (1.7.4) (and (1.7.2)) is a natural requirement. In

the following section we will see that the sequence {Qy}32, defines the asymptotic
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conditions for the adjoint time-periodic problem which is "backward in time". The
change of a time direction is already reflected in matrices Fy and Gy — their lower
parts, related to Fourier coefficients vy, and V4, has opposite signs, while the upper
parts, related to coefficients v, and V4, coincide see (1.3.12). The similar situation
is reflected in condition (1.7.4) for matrices Ly and My, which are responsible for the
pressure coefficients of "direct" and "backward" solutions, respectively.

Proof of Lemma 3.1. The matrices Gy, M, are symmetric, therefore we get that

T ~ ~ T ~ ~ ~
(o) Sk Gy — G, — M, I —F I-1
_ @k Gk—@k—l\/A\Ik Fk—fb;k—f[:k ﬁk
I-1 I —F -1

_ (Gi(Fx = Fy = Ly) = (G — Gy = Mp)Fy Gilly + (G, — Gy — My)(I - 1)
(I —1)(F — F, — L;) — IF, (T - DI+ 11 1) '
Since the matrices [Fj, — IAFk, Gy — @k, I —T and the matrices IAFk, @k, ]Ijk, I/\\/\[[k, ﬁproject

R2’ onto orthogonal subspaces, the last identity is reduced to

(Y1) X, = M F), — GiLy, Gy .
—IFy (@)

Under assumption (1.7.2) the matrix on the right-hand side is equal to the matrix
J. O
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Chapter 2
Time-periodic Stokes problem

This chapter is devoted to the investigation of the time-periodic problem

ov—vAv+Vp = f, (x,t) € Q x (0,2n),
-V-v = 0, (x,t) € Q x (0,2m), (2.0.1)
v = 0, x,t) € 09 x (0,27), o

v(z,0) = v(z,27), x €.

We will derive the asymptotic conditions at infinity that ensure existence of the

unique time-periodic solution having unbounded Dirichlet’s integral.

2.1 Structure of a time-periodic solution

Assume that the time-periodic function f = f(x,¢) in (2.0.1) satisfies the condition
f e L?(0,2m; L3(Q), B>0, (2.1.1)

i.e., f decays exponentially as xé — oo for all j = 1,...,J. Then the Fourier
coefficients f.x, fsr, K = 0,1, ..., belong to the space R%H(Q) If (5 is sufficiently small,
we may use results presented in Chapter 1, and conclude that for every k£ = 0,1,...
there exists 2./ linearly independent solutions w, = (Vek, Pek, Vsks Dsk) € ID)QMH ()
to the Stokes-type problem (1.1.2). According to Theorem 1.1.1, the function uy is
defined by formulas (1.1.11), (1.1.12) and (1.1.22), namely, it has the velocity-fields
Ve, Vg described by (1.1.23) and the pressure functions pe, psx having the form

(1.1.24). Multiplying the corresponding coefficients of the function u; by cos kt and
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sin kt, and summing by k£ we get the series

[e.e]

v(z,t) =Y {ve(z) coskt + v (z) sin kt}

k=0

¢ (2.1.2)
t) = Z {pck(x) cos kt + psk(x) sin kt} )

which formally satisfy system (2.0.1)". Due to the special structure of functions uy,
k=0,1,..., (see (1.1.22)) we can split series (2.1.2) as follows:

V=vp,+V, p=pp,+po+p (2.1.3)

with the summands listed below.

1. The Poiseuille part
J .
(V1) = 3 X (23) (Vi(@, 1), p) (1))
7=1

which is generated in each outlet €, by the terms b/ kuck +b, 0y k=0,1,.... Note
that due to the structure of the vector-fields u/, and u/; (see (1.1.11), (1.1.12)) every

pair (vJ,pl) may be represented in local coordinates as

Vi 1) = (0,00, 1)), pjlad,t) = = (t)a, (2.1.4)
where
vy, t) = kfé {(b]k%g( 7Y+ ULy )) cos kt + (b]k#’k( 7Y = by )) sin kt}
) (2.1.5)
= Z{bﬁk cos kt + b/, sin kt}. (2.1.6)

2. The pressure part
polx,t) = > (@h)ph(t), (2.1.7)
j=1
where the functions p) = pj(t) are generated by the vector-fields a/,u’y + o/, u’?,
k=0,1,.... Taking into account the definitions of u/} and u’} (see (1.1.11), (1.1.12))

"We say that series (2.1.2) formally satisfy the time-periodic problem (2.0.1) if they are defined by
the coefficients (Vek, Pek, Vsks Dsk), kK = 0,1, ..., which are solutions to the corresponding Stokes-type
problems (1.1.2).
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we express every p) as the series

p(t) = > _{al, coskt + al, sin kt}. (2.1.8)
k=0

3. The decaying (at infinity) part
O(z,t) = _{Ver() cos kt + V() sin kt },
=0 (2.1.9)
p(x,t) = {Pek(z) cos kt + po(z) sin kt},
k=0

generated by the terms Uy = (Ver, Dok, Vsr, Dsk) € DZH(Q), k= 0,1, ..., which expo-
nentially decay in every outlet Qi as :1:% — Q.

For the reader’s convenience we provide below the known facts, concerning prop-
erties of the time-periodic solution (2.1.2) to problem (2.0.1), which are the most

important for our research.

2.2 Time-periodic problem in domains with cylin-

drical outlets

2.2.1 Stokes problem in a single pipe. Poiseuille flow

We recall that the Fourier coefficients b, u/; +-b/,u/;, k= 0,1,.. ., satisfy the homoge-
neous Stokes-type problem (1.4.8) set in the infinite cylinder Q7 = w’ x R. Therefore,
the pair (vJ, pJ), defined by (2.1.4)-(2.1.6), formally satisfies the time-periodic homo-

geneous Stokes problem:

vl —vAVI +Vpl = 0, (z,t) € Q7 x (0,27),
-V.-v] = 0, (z,t) € Q7 x (0,27),
vl = 0, (z,t) € 00 x (0,2m),

vi(z,0) = vi(z,2m), z€ .

(2.2.1)

Usually looking for the Poiseuille flow (2.1.4) one may prescribe the pressure drop

¢ = ¢’(t) or, alternatively, the flow-rate

/w. v (y, t)dy = ¢ (t). (2.2.2)

J
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In the first case system (2.2.1) is reduced to the time-periodic heat equation set in
the cross-section w’:
o’

= (7 1) =D () = (1), (¥ t) €W x (0,2m),

ot (2.2.3)

Uj(yja t)|3wj = 07 te <07 271—)

with the given ¢/. The flow-rate ¢’ = ¢/ (¢) can be immediately computed by formula
(2.2.2).

In the second case the Poiseuille flow is determined by the solution v/ = v7(y?,t)
of problem (2.2.3), (2.2.2) with a given time-periodic function ¢/ = ¢/(¢). Now the
function ¢’ in the heat equation is not known a priori. Therefore one shall solve an
inverse problem — to select in (2.2.3) the right-hand side ¢’ in such a way that the
solution v’ satisfies condition (2.2.2). Existence of a solution to this inverse problem
was proved in [7]. In [27] the relation between the flow-rate ¢’ and the pressure drop
¢’ was derived. More precisely, it was shown in [27] (see Proposition 2.1 in [27]) that

the Fourier coefficients of the series

¢ (t) = > {l, coskt + ¢l sinkt} and ¢’ (t) = {ql, coskt + g, sin kt},
k=0 k=0

satisfy the equalities
¢ik = C;gqgk - diQik» ¢ik = diqzk + C’liqgka k=01,..., (2.2.4)

where constants ¢, and d), are defined by (1.3.9). Since (c)?> + (di)?> > 0 for all
k=0,1,..., (see Lemma 2.1 in [27]) the inverse relations
j :C;;(?Zk"‘di o adh — 4ol

T @) T T )2 (225)

are valid. Relations (2.2.4), (2.2.5) and decay properties of constants {c], d}}2, (see

Lemma A.0.1) allow to formulate the following conclusion.

Corollary 2.2.1. (see Proposition 2.2 in [27]) If ¢/ € L*(0,27), then ¢ € H'(0, 27).
Conversely, the assumption that ¢/ € H'(0,27) yield the inclusion ¢/ € L*(0, 27).

This conclusion was essential to prove the following statement.

Theorem 2.2.2. (see Theorem 2.2 in [27]) Let w’ C R? be a bounded domain with
the boundary dw’ € C? and let ¢/ € H'(0,27) be a time-periodic function. Then
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problem (2.2.2), (2.2.3) has a unique time-periodic solution v/ = v/(z,t), ¢’ = ¢’(x,t)
such that

v € C(0,2m; H' (w?)) N L*(0,2m; H*(w)),

4 4 , (2.2.6)
ot € L*(0,2m; L*(w?)), ¢ € L*(0,2n).
Moreover, the following estimate
2 )
o : o o
tg[{%};}||U](t)||H1(wj)+/<HatUj o 1P Dl + 167(0) >dt
0 (2.2.7)

12
dt

2m
< J(+)]2 -
_c/(|¢<>| v|%
0
holds with a constant ¢ = c¢(w’) > 0.

2.2.2 Stokes problem in a system of pipes

Consider the time-periodic Stokes problem (2.0.1) set in the domain 2 with J outlets
to infinity. Assume that the flow-rates ¢/ = ¢/(t), j =1,...,J — 1, are given'::

/ij(xjt).njdyj:gbj(t), j=1,...,J—1 (2.2.8)

Let 09 € C? and
o', ..., 0" e HY(0,27). (2.2.9)

The following result concerns the solvability of problem (2.0.1) with conditions (2.2.8)
(see Theorem 5.1 in [33]).

Theorem 2.2.3. Assume that in (2.0.1) the time-periodic function f belongs to
L2(0,2m; L3(Q2)) with the sufficiently small 3. Moreover, assume that the time-
periodic flow-rates ¢/ = ¢(t), j = 1,...,J — 1, satisfy conditions (2.2.9). If the
number B in (2.1.1) is sufficiently small, then problem (2.0.1), (2.2.8) has a time-
periodic solution v = v(z,t), p = p(x,t). The solution admits the asymptotic repre-

sentation

J J

V(Ivt) = ;Xj(x%')Vg)(ijt) + ‘Nf(x7t)7 p(l’,t) = ;X](xé)p%(xé, t) +]/?\(Z‘, t)‘

idue to incompressibility of the fluid, the flow rate ¢’ in the last outlet is also known, it is equal
to —(¢" + -+ 6" 7).
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Here the Poiseuille parts {(V%,p%)}}-]:h corresponding to the given flow-rates, are
defined by (2.1.4) and satisfy inclusions (2.2.6), while the term (v,p) is such that

Ve L*0,2m H3(Q)), 0¥ e L*0,2m L3(RQ)), VP e L*(0,2m; L3(Q)).

2.3 Structure and estimates of the pressure func-
tion

Since the gradient Vp decays at infinity, the pressure function p = p(x,t) in every
outlet Qi, j=1,...,J, tends to the time-dependent function p} = pj(t), as x} — oc.

Namely, p may be represented as

J
pla,t) =Y X (@h)po(t) + p(z, 1), (2.3.1)
j=1
where the term p and it’s first order derivatives decay exponentially in every outlet,
i.e., assume that 4’ is any number satisfying the condition 0 < 8 < [, then the

following inclusions
Vp € L*(0,2m; L3(R)), p € L*(0,2m; L3(9))

hold. The first inclusion is a consequence of Theorem 2.2.3, while the second one,
or, equivalently, the estimate of p in L%,(Q) norm, can be proved using the same
arguments as in the proof of estimates (1.2.5) for the Fourier coefficients p. and pg
in Section 1.2.

In order to determine the function p completely, it is enough to prescribe only one
of functions p}, ..., pJ, while the rest of the functions are determined by data of the
problem. Indeed, comparing the asymptotic representation of p with the structure of
the time-periodic formal solution (2.1.3), we see that the function (2.3.1) corresponds
to the part 37, X’ ph+p of the time-periodic solution (2.1.3) (see also (2.1.7)). Recall
that these two functions are generated by series (2.1.8) and (2.1.9). Assume that

py € L*(0,27) (2.3.2)

is a given time-periodic function with the Fourier series
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Py (1) = > {al, coskt + aZ, sin kt}.
k=0

Then we look for p) = pi(t), i = 1,...,J — 1, in the form of series (2.1.8). The

Fourier coefficients of these functions are defined by the following relations
agy, — ajy = /Q (£ Vo + £,V ) da — /Q (Spal) Ui d, (2.3.3)

dy—aly = [ (Vi Vi — [ (Sid)Uiide (234)

To derive these relations we use the procedure similar to one used for derivation of
relations (1.5.3) and (1.5.5) in the case of the homogeneous Stokes-type problem.
Namely, for every k = 0,1,..., we split the Fourier coefficient u, = ug(z) of the

function u = u(x,t) into two parts:

J
P _ (P P P P J(h 4431 | 1J 4,01
= (Vo Do Vi Do) = D 7 (Wpudy + bluly)
=0
and
J J
Uy, = (Ver, Peks Veks Dsk)s Dok = ija’ck + Deks  Dsk = ijask + Dsk-

Jj=1 J=1

Recall that the prescribtion of flow-rates (2.2.8) determines the Poiseuille part of

the solution, i.e., the Fourier coefficients uf, k = 0,1,.... Therefore, for every k =
0,1,..., we may consider the term 1, as the solution to the following Stokes-type
problem
VAV + Vi + kvg, = £ +vAVE — Vb, — kvh, x € WV,
—V Ve = V-vh, e,
—vAVy + Vﬁsk — kv, = fg + VAVik — Vv’;k + kV}Zk, T € Qj, (235)
-V vy = Vv, e,
{’ck = 07 ‘Nfsk = 07 x € 893

The functions {Uy, U}/ € D2 H(Q) in (2.3.3), (2.3.4) are solutions to the ho-
mogeneous adjoint Stokes-type problem (1.1.16). We suppose that:

(a) the vector-fields U/, U} generate the flow-rate equal to +1 in Q7 , the flow-rate

equal to —1 in Qi and zero flow-rates in the rest of the outlets;
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(b) the flux is carried by the component V¢ of the function U = (V& P4,
@ P4) and by the component V* of the function U5 = (V2 P Vo P);

(c) there exists a constant C' (independent of k), such that weighted estimates
[o-aValP+1VaPde < ¢, [ ps((Vil + ViPdr < (23.6)

hold forall e =1,...,J — 1.

Construction of solutions to the homogeneous problem (1.1.16) possessing properties

(a) and (b) was described in Subsection 1.4.2. In fact, we may take
P=U, - Uy, Ui -uy, (2.3.7)

where {U}}?7, is a basis presented in Subsection 1.4.2. It was shown there, be-
sides other propertles that for every i = 1,...,2.J the velocity coefficients of U}, =

(Viy, P, Vi, Pl satisfy the estimates
[ (Val? + Valde < ©

in the finite domain §2;, with a constant C' independent of k. In order to extend
the last estimate to the whole domain €2, we consider the structure of VZ o and %

Recall that the velocity field V¥, was constructed as the sum V% + V% + Vck Here
the term Vd,’f has the compact support, while the term \A)zk decays exponentially in
every outlet (. as x} — oo, i.e., \A)ch € D;H(Q). Therefore for both of these terms
the estimate of type (2.3.6) holds"™. Let us consider the term V7 = Y7 I V5.

In every outlet Qj the velocity-field V¥ 7 admits the representation

(0,0, Bil i (y') + Bylwl(v))

Taking into account the definitions of B%Y, BY% (see (1.4.29)) and using Lemma A.0.1,

we show that

| 1BRAW) + B Py’ < e (B + (BL?) [ 16 + iy’

|59 1/J)7? d, 1 1
_— B s k= o0
(67) )2k = kd  |wp
iliThe weight function p_g coincide in every outlet Q7, j =1,...,.J, with the exponent e~ 2873,
¥ Analogous considerations are valid for the two last terms of the function V; =V +Vé k +vsk.

VWe recall that the function cut-off function 7 = x? (x3) is smooth and equal to 1 for 7 > 1.
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Consequently, the integrals [ i g |2dy’ may be bounded by the same constant for

wi |
all k = 0,1,..., every 1 = 1,... ,2J and j = 1,...,J. Multiplying these integrals
(notice that they do not depend on 2%) by p_s = p_g(x}) and integrating the obtained

expression by 93% from 0 to oo we get for every ¢+ = 1,...,2J, 7 = 1,...,J and

k=0,1,... the estimate
/ |vp7 7.7 g
@, B

+

Analogous estimate, hold for the velocity coefficient V?,’f’j , i.e., we have that

,, ooV < 5

Since [ and C are fixed, the estimate (2.3.6) follows from the last two inequalities.
Multiplying the equations in (2.3.5) first by U$’ and then by U3, and integrating

by parts in the left-hand side, we obtain, respectively, relations (2.3.3) and (2.3.4).

Taking into account the definition of uf, (see also (1.1.11), (1.1.12)) and the fact that

the derivatives of the cut-off functions x/ = x7(z3), 7 = 1,...,J, are supported on

the interval (0,1), we may express the integral [, (Spu}) U dz in (2.3.3) as follows:
le i\ (e i i (dyc j j j
Zbck/o /UJ].V(X) (S% ok — Uk sk)+(X)($3 o + 0 Pa + Ui )dydws

// (Ve + elva) + () (Ve + b PG — vl P dyda)

<

Z T’ + Z bl

Here V9 and V< denote the third components of the vectors V¢, and V% respec-

tively. In the same way we obtain the equality

| Stz - S bl Z bl

7=1

Now (2.3.3), (2.3.4) may be rewritten as follows

g, — ay, = /Q( £V + £ Vo) do — Z b alhd — Z b oS, (2.3.8)
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aikz sk = / ckviz + fskvﬁ: )dx — Z bckaik” Z bska;j]- (2.3.9)

7=1

Relations (2.3.8), (2.3.9) and Hoélder’s inequality provide the estimates
. 2 . .
(ah — a)” < (WallZacoy + WEaliBaiey) (VI3 ) + VLIRS o))

E:(wﬁﬁ zx;wxw?

(2.3.10)

. 2 . .
(a — ah) s@mw%mwwmmg@)owwﬁzQﬁwv%ﬁ%@)
J
S0, S,i, 2
+ Z (bikack ]> + Z ( kask ]) :
j=1

At the end of the Section we will prove the following

(2.3.11)

Lemma 2.3.1. The sequences {|ac”|}k 0 {|0zc”|}k 0> {|a5”]}k 05 {|Oz8”\}k, o are

bounded for every 7 =1,....,J andi=1,...,J — 1.
As a consequence of this Lemma we have

Remark 2.3.2. Suppose that sequences {b.}72, and {bs}72, belong to the space
2. Thenforalli=1,...,J —1and j=1,...,J the sequences

{O‘c”bck}z’;o? {O‘C”bsk}zozm {O‘;f’jbck}zo:m {O‘z}j’jbck}zio (2.3.12)
also belong to [2.

Consider problem (2.0.1) with prescribed flow-rates (2.2.8) in J — 1 outlet and the
function pg = pJ(t) given in the outlet Q7. Suppose that conditions (2.1.1), (2.2.9)
and (2.3.2) hold. Inclusions f € L?(0,27; L3(€2)) and pj € L*(0,27) are equivalent

to the conditions

Z/ pa(@) (I (2)]” + (@) ) da < o0, (2.3.13)
S (@) + (al)? < . (2.3.14)
k=0

respectively. The assumption that the flow-rates ¢',..., ¢’ belong to H(0,27) en-
sures that the corresponding pressure drops ¢', ..., ¢’ belong to L?*(0,27) (see Corol-

lary 2.2.1). These inclusions yield convergence of the series (2.1.6) or, equivalently,
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the conditions
oo

S+ (W) < oo, j=1,....J (2.3.15)

k=0
Now, taking into account (2.3.6), (2.3.13) and conditions (2.3.15) together with Re-
mark 2.3.2, we get from estimates (2.3.10) and (2.3.11) that the series

Z(aik - ach)27 Z(agk - a;]k>2

k k

converge for every j = 1,...,J — 1. By assumptions (2.3.2) and (2.3.14), we imme-

diately obtain the convergence of the series

Z(agk)2+(agk)2<ooa jzla"'a‘]_la
k=0
or, equivalently, the inclusions pj, . . ., pite L?(0,27).

The results presented in the current Section and Sections 2.1-2.3 can be summa-

rized as follows.

Corollary 2.3.3. Consider the time-periodic Stokes problem (2.0.1) with the pre-
scribed time-periodic flow-rates ¢',...,¢7 € H'Y(0,27) (see (2.2.8)) and the given
time-periodic pressure term pj € L*(0,2m). Assume that the external force £ = f(x,t)
in (2.0.1) belongs to L*(0,2m; L3(Q)). Then problem (2.0.1) has a unique solution

v =v(z,t), p=p(z,t). The solution admits the following representation

(2.3.16)

Here functions (vg,p{)), j=1,...,J, defined by (2.1.4), correspond to the given flow
rates @', ..., ¢7 and satisfy inclusions (2.2.6). Functions p}, ... pa Y, defined by
(2.1.8), (2.3.8) and (2.3.9), belong to the space L*(0,2m). The exponentially decaying
part (v, p) satisfies the inclusions (with any B’ such that 0 < ' < §):

v e L*0,2m H3(Q)), 9w e L*(0,2m; L3(Q2)),

(2.3.17)
Vp € L*(0,2m; L3(Q)) p e L*(0,2m; L3 (Q)).
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Finally, the following estimate

27
/(ZHV ||H2 + ||at‘7(t)||i;(9)+
0
PO + IV 1730 + ||25(t)||i;,(9)) dt (2.3.18)

<cf (Hf(t)H%g z{w - %) }+|1/1J(t)|2)dt

We finish the Section by proving Lemma 2.3.1 formulated above.

holds.

Proof. Let us prove the boundedness of {|a%?|}32,. Consider the quantity

Cw_/ /WJ ‘ CCIZC_#}% ;:]i)_’_( ) (CL’3 ck+g0k ck‘f‘@z)k )dyjde

Since the function y/ = y’ (93?))) is smooth, one easily gets the following estimate

05891 < e (lelllzzen IVl ey + Iz IV gy + TV ey
| | | | (2.3.19)
el el o, + W2 2 1P sy

here G = w’ x (0,1). Boundedness (uniform with respect to k) of the terms
12| 2@n Vel 2@y + 1l 2@n Vel 2@y + Va2, d=1---,J

immediately follows from formula (2.3.7), estimate (2.3.6) and properties of the func-
tions 7, ¥ presented in Lemma A.0.1.
Let us consider the pressure functions P% and PS. Structure of the elements

in the basis Uy, ... ,UZ‘] of the subspace ker (Al 5 -8, k)* allows to represent these

functions as PG = PSP + P% and PG = PSP 4 PC. Here
C’L P = —_— Z X]B]kl‘3, CZ,p Z XJB]]{:.:CB) (2320)
7=1
and
J . J
Z X] Ack + P0k<x t) Z X] Ask + PSk(x t)
J=1 7=1
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Using the same scheme as was used for the elements wy, ..., u;” € ker Al ; ,, in

Section 1.5, we derive the relations (analogous to (1.5.3))
A= [ SHU + U - uda,
Aly = A= [ S{UTT U - da

Therefore taking A7, = 0, A7, = 0 we may describe the constants {A7,, A k}] L in

terms of B, B/, and derive the following estimates
(AL)” + (AL)? < e (B + (BR)?), d=1,....J—1 (2.3.21)
j=1

Finally, in the same way as in Theorem 1.2.2, we derive the estimate (analogous to
(1.2.5))

/Qj ezﬁ/xélﬁg,i(yj,fng) Al Pdydad, < c/ ps|Sy (U, LY d)] dz.
+
The two last estimates and the following expression

| 1Palde = [ 1Pg ad) — x4l £ Al

1 1

el \Dei G 0
< [, NP ) - APy ded + AL [ 110 )P
+

leads to the conclusion that the function 75“ and, consequently, the function P%
can be estimated in terms of the coefficients {B7,, gk}‘]le Namely there holds the

inequality
J . .
/Gj [Pk < ¢ 3 ((B4)? + (BL)?) (2.3.22)
1 j=1

with some constant ¢ independent of k. In the same way we may derive the estimate
J . .
/GJ_ Pultde < X" ((BL)? +(BL)?). (2.3.23)
1 j=1

It was assumed that the vector-fields U and US' generate the flow-rate equal to
+1 in %, the flow-rate equal to —1 in Q7 and zero flow-rates in the rest of the

outlets (see the assumptions below formula (2.3.5)). In order to achieve such flow-
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rate distribution, we shall use in the construction of U, and U¢ the constants

. ct . dt
B2 (d])? g (ck)? + (d})?
Biz—l _ CZH A i—ll-l _ di“ A
’ (G2 + () ()2 + (d)?

B, =0, Bl,=0 for j#i,i+]l.

Let us notice that the coefficients B’ and B!, may grow as k becomes large, for
1 ) ~ _k

example, B!, = O(d—i [wi]> @ k — oo. However, the terms

el P oy + 162 2 1P 2o

in (2.3.19) are bounded by the same constant for all £ = 0,1,..., due to the "good"
behaviour of the functions ¢}, and ¢]. Using Lemma A.0.1, estimates (2.3.22), (2.3.23)

and definitions of the coefficients B, | B?, we obtain the following estimate:
102 2 1Pl 2 ) + II%HLZW)II izille(Gj < (Il zaew) + 102w

é(B 2)_ Z T _|WJ|Z

Since dik — |w’| as k — oo, the sequence Ny, tends to |w/| 27 and, consequently,

Jj=1 |w|7
is bounded by a constant independent of k. Using this fact we conclude from (2.3.19)
that the sequence {|a57[}52, is bounded for each j =1,...,Jandi=1,...,J — 1.

In the same way one can prove boundedness of the sequences {|ac’” 0 {|a‘“’j 1152,
and {|ali”[}2,. O
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2.4 Time-periodic problem with general asymp-

totic conditions at infinity

2.4.1 Function spaces for the time-periodic problem

Let D3 5 H(Q x (0,2m)) denotes the set of time-periodic functions u = (v,p) having

the form and regularity described below. Namely, we assume that

v(z, 1) :Z_:Xj Iy 1) + v, t),
p(e,t) = 3 (@a)py (wh, 1) + 32X (w3)m(t) + Bl 1) (24.1)

where

i {( Lok (y) + Vi (y )) cos kt + (b]kSOk( 7) - bikwi(yj)) sin kt} ;

k=0

= > {b, coskt + b, sin kt},
k=0

and that the following inclusions (with any ' satisfying the condition 0 < ' < ():

v e C(0,2m H' (W) N L0, 2m; H2(w)),
o’ € L*(0,2m; L*(w?)), ¢ € L*(0,2n),
e L2(0,2n), forall j=1,...,J (2.4.2)
v e L*0,2m; H3(Q), 0, e L*(0,2m; L3(1)),
Vp € L*(0,2m; L3(Q)) p e L*(0,2m; L3 (2))

hold.

Analogously, consider time-periodic functions

V(z,t)=> ¥ ijct)—l—V(xt)

Jj=1

P(z,t) = X (a4) Py (x,t) + Zj X' (23) By () + P(x,1),

Jj=1

(2.4.3)
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such that the terms V%(a:,t) = (0,0, V;)j(x,t)) ,Pg(x,t) = Q%(t)xé, j=1,...,J, are

generated by the Fourier coefficients

C

Assume that for j=1,...,J

VJe C(0,2m H' (w')) N L*(0,2m; H?(w)),

. . . (2.4.4)
V)] € L*(0,2m; L*(w)), Q) € L*(0,27),
P},...,PJ € L*0,2n). (2.4.5)
and
Ve L*(0,2m H3(Q), 9,V € L*(0,2m; L3(Q)), 210

VP e L2(0,2m L3(Q), P e L*(0,2m; L3 ().

Note that {(VZ/, P57 VP phi) J_, and Py,..., P/ form the main part in the
asymptotic representation (1.1.25) of functions Uy, = (V, Pk, Vi, Psk) € ]thﬁH(Q)*.
Therefore we denote the set of functions (2.4.3) with the regularity (2.4.4)—(2.4.6) by
D2, H (2 x (0,2m))*.

2.4.2 Conditions at infinity

Below we study the solvability of problem (2.0.1) in the class D7 zH(Q x (0,27))
when general conditions at infinity are imposed. Assume that the right-hand side
f in (2.0.1) belongs to L?(0,2m; L%(Q)) Suppose that the time-periodic functions
hi =h(t),j=1,...,J, are given, and

Rt ..., h7 € L*(0,27). (2.4.7)
Let us represent these functions as the Fourier series

hi(t) =Y {hl,coskt + hlysinkty, j=1,...,J, (2.4.8)

k=0
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and construct, for every k = 0,1, ..., the 2J-dimensional vector

Now we may consider the sequence of Stokes-type problems (1.1.2) supplied with

the asymptotic conditions at infinity:
Skuk = fk, x € 97 Vi — 0, xr € 09, Bk’f(uk = hk, k= O, 1, Ce (2410)

Results presented in Chapter 1 guarantee that problem (1.1.2) has at least one solu-
tion u;, € DI,H(Q). If the matrix By, in (2.4.10) is selected "properly”, the solution

u; becomes unique (see Theorem 1.6.1). Then the sequence

{U.k - (Vck7p6k7 Vsk7p8k)}ZO:0'

generates series (2.1.2), which may be treated as a unique formal solution to problem

(2.0.1) supplied with the following conditions at infinity
BlTu = h. (2.4.11)

Here h = (hg,h;,...) is a sequence composed from the vectors (2.4.9), while the
projector II and the operator (an infinite matrix) B : R>® — R> are defined as
follows

[Tu = (mug, muy,...), B =diag(By, By,...).

If functions k', ..., h' are "sufficiently" regular, series (2.1.2) converge to the solution
u = (v,p) € DI;H(Q x (0,27)). We notice that the regularity required for these

functions depends on the choice of the operator B.

Example 1. Consider the time-periodic problem (2.0.1) with the flow-rates ¢ =
@’ (t) prescribed in J — 1 outlets and with the given time-periodic pressure function
pd = pi(t). In the case J = 3 these conditions are described by the sequence of

systems of linear algebraic equations
Bkﬂ'uk:hk, k‘IO,l,

with the matrices
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¢l 0 0d 00 000000
0 2 00 d0 000000
B_| 0 0 0000 001000} (2.4.12)
—d. 0 0 c 00 000000
0 —d> 00 20 000000
0 0 00 00 000O0GO1

here ¢, and d), are defined by (1.3.9), while the column-vectors hy, are given by
by, = (Peg» Dos Dosg> Digr Dores Dosg)-
One can verify, using relations (1.4.10), (1.4.11) and (1.4.18) that in this case

2/3 —1/3 —1/3 0 0 0

~1/3  2/3 -1/3 0 0 0

B, (Bk) _ 1 1 1 0 0 0
Ay 0 0 0 2/3 —-1/3 -1/3

0 0 0 —1/3 2/3 —1/3

0 0 0 1 1 1

The determinant of the matrix above is equal to 1. Therefore, for every k£ = 0,1, .. .,

B
the rank of the product By .Ak> is equal to 6. This fact, together with formula
k

(1.6.6), confirm the uniqueness of the coefficients uy, k = 0,1, ..., determining the

formal solution -
u(z,t) = ug(x) coskt + ug(z) sin kt (2.4.13)
k=0

to problem (2.0.1), (2.2.8), (2.3.2).
Let us assume that the components of the vectors hy, £k = 0,1,..., generate the

convergent series

S {() + (@)}, S {(on) + (1)} 5=12

> {(wa)"+ ()}

Convergence of these series yields the inclusions ¢', ¢* € H'(0,27) and p} € L*(0, 27).

Therefore we conclude, taking into account Corollary 2.3.3, that series (2.4.13) con-
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verge to the solution u € D33 H(Q x (0,27)) of problem (2.0.1), (2.2.8), (2.3.2). O

2.4.3 Generalized Green’s formula. Solvability of the time-

periodic problem

Let us derive for the time-periodic Stokes problem (2.0.1) the generalized Green
formula which holds for the functions u € DI zH(Q x (0,27)) and U € DI 3H(Q X
(0,27))*. Denote by Su the left-hand side of the equations in (2.0.1). Substitute in
Su the function u = (v,p) € D3 ;H (2 x (0,27)) and multiply the obtained expression
by the function U € D2 ;H(2 x (0,2m))*. Taking into account the periodicity in time
of u and U and the orthogonality in Ls(0,27) of functions {cos kt, sin kt}3° ,, we get

the relation

2

//S( £) - Uz, t)dadt = Z/Skuk Up(x)dz.

0 0 k=0q

Here uy, € D3 3H(Q) and U, € Di zH(Q)* are the Fourier coefficients of functions u
and U, respectively. Using formula (1.3.14) we rewrite the right-hand side of the last

identity as follows:

2m
//S (z,t) - Uz, t)dedt = Z/uk -S; U (z)dx
0 Q F=0q (2.4.14)
+ > {{Skmug, Qe Up) s — (Brmug, TemUg)as ) -
k=0

The sequence {S;U; = Fy}32, of formally adjoint Stokes-type problems (1.1.16)

generates the following time-periodic problem

-0V —-vAV+VP = F, (z,t)€Qx(0,27),
-V-V =0, (z,t)€Qx(0,2n), (2.4.15)
V = 0, (z,t)€0Qx(0,2m),
V(z,0) = V(z,2m), x € .

Namely, looking for the solution of this problem in the form
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V(z,t) =Y Ve(z)coskt + Vg (x) sin kt
k=0

P(z,t) =Y Puy(z)coskt + Py, (x) sin kt,
k=0

and substituting these series into (2.4.15), we get for the Fourier coefficients {(V o, Pog,
Vi, Pa) 172 the sequence of the formally adjoint Stokes-type problems {S;U; =

Fr}ito-

Remark 2.4.1. We would like to emphasize that problem (2.4.15) is a "backward
time" problem — it has a negative sign in front of the time derivative. In general, back-
ward time problems may be ill-posed. However assumption about the time-periodicity
allows to avoid any peculiarities related to the "change of the time direction" and we

may consider problem (2.4.15) in the same way as problem (2.0.1).

Let S*U denotes the left-hand side of equations (2.4.15;)-(2.4.152). Assume that
the operators (infinite matrices) B, S, T,Q : R>® — R*> are defined as follows:

B:diag(Bg,Bl,...), S:diag(SO,Sl,...),

(2.4.16)
T:diag(T07T1a"‘)ﬂ Q:diag(@07(@17"')7

where By, Sy, Tx, Qx, £ =0, 1,..., are 2J x 4J matrices satisfying condition (1.3.13).
Then (2.4.14) yields the Green formula

21
/ / Su(z,t) - U(z, t)dzdt + (Bllu, TIIU)
o (2.4.17)
- / / u(z,t) - S*U(z, t)dadt + (STTu, QIIU)...

0 Q

Here (, ). denotes the scalar product of two sequences. For the time-periodic Stokes
problem (2.0.1) supplied with the asymptotic conditions at infinity BIlu = h, Green’s
formula (2.4.17) determines the formally adjoint problem (2.4.15) with the following
conditions at infinity

QITU = H. (2.4.18)

Here H is a given real number sequence.
We recall that the projector II maps elements u € }D)QMH(Q x (0,27)) and U €
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D2 ;H( x (0,2m))* to the sequences

(mug, muy, ..., ), (7Ug,7Uy,...,),

where

_ (1 J 1 J 1 J 1 J
ﬂ—uk — (bck7 e 7bck> bsk7 ce ey bsk’ ack, e ,(lck, ask, e ,a/sk),

_ 1 J 1 J 1 J 1 J
7TU]€ — (Bck7 “e e 7BCk‘7 BSk’ ey BSk’ ACk’ PR 7Ack7 ASk‘? e 7Ask>’

These sequences belong to the space [2. If we assume, for example, that the elements
of the matrices By and Qy in (2.4.16) are bounded" with respect to k, then condi-
tions (2.4.11) and (2.4.18) define the operators BII : D3 zH(Q x (0,27)) — [? and
QIT : ]D)QMH (2 x (0,27))* — I2, respectively. These operators play the essential role
when the questions of solvability of the time-periodic Stokes problem (2.0.1) and the

question of uniqueness of the solution are considered.

Theorem 2.4.2. Assume that the time-periodic functions f = f(x,t) and W =
hi(t),7 = 1,...,J, are sufficiently smooth (see details in the proof). Assume also
that Green’s formula (2.4.17) is valid.

(i) If the homogeneous formally adjoint problem (2.4.15) with the homogeneous

asymptotic conditions at infinity
QIIU =0 (2.4.19)

has the trivial solution only, then there exists a unique solution v = v(z,t),
p = p(x,t) from DI H(Q x (0,27)) of problem (2.0.1), (2.4.11).

(ii) Assume that the homogeneous problem (2.4.15), (2.4.19) has non-trivial solu-
tions U(x,t) = (V(z,t), P(x,t)). Then the problem (2.0.1), (2.4.11) has a
solution v = v(x,t), p = p(x,t) in the space D% zH(Q x (0,2m)) if and only if

the compatibility condition
21
/ / £(z,t) - V(z, t)dwdt + (h, TIIU) = 0 (2.4.20)
0 Q

is satisfied for all solutions U = U(x,t) of the homogeneous problem (2.4.15),
(2.4.19).

ViThis is the case when the flow-rate or various pressure-type conditions are imposed, for example.
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The couple (v,p) in this case is not unique’.

Proof. Part (i). Let us consider first the time-periodic Stokes problem Su = f with
zero flow-rates ¢!, ..., ¢’ and zero pressure part pJ, i.e., the problem (2.0.1) with
the homogeneous conditions (2.2.8). According to Corollary 2.3.3, this problem has a
unique solution u = u(z,t) defined by formula (2.3.16). Notice that due to conditions
¢ =...=¢' =0 and pJ =0, we have

b,=0, b,=0 al=0, al=0, (2.4.21)

C

for all Kk = 0,1,... and for all j = 1,...,J, while the coefficients {agk,agk}ggo of
the pressure functions pf, = pj(t), j = 1,...,J — 1, are defined by formulas (2.3.8),
(2.3.9):

al, = /Q (E4V + £V Ve, al, = /Q £V + £,V )do. (2.4.22)

Let us return now to problem (2.0.1), (2.4.11), i.e., to the Stokes system Su = f
with the conditions at infinity BIIu = h. Using the substitution u = u+u we reduce

this problem to the homogeneous one:
Su=0, in Qx(0,27), v=0, on 09 x(0,2m),
with the following conditions at infinity
BIla = h = h — BIl4.

The last time-periodic problem is formally equivalent to the sequence of the Stokes-

ViiWWe can illustrate this situation with the standard example. Assume that the flow-rates ¢’ (t), j =
1,...,J, of the solution u = u(z, t) to problem (2.0.1) are given. The corresponding adjoint problem
consists of the system (2.4.15) and the conditions at infinity QIIU = H, which are determined by the
sequence of matrices Q; = (Gx  0), k=0,1,.... Here Gy, is defined by (1.3.12) (see footnote xv on
the page 61). Taking into account the definition of Gy, we notice that conditions QIIU = H prescribe
in every outlet the flow-rate generated by U = (V, P). In this case the homogeneous adjoint problem
has a family of non-trivial solutions admitting representation (V,Py) = ((0,0,0), Py(t)), where
Py € L?(0,27) is any time-periodic function. Taking into account the structure of the operator T
(see (2.4.16) and footnote xv) we conclude the well-known compatibility condition

o'+ + ¢ =0.

Note that in this case the solution (v(z,t),p(z,t)) to problem (2.0.1) is defined up to an addi-
tive time-dependent function in the pressure term, i.e., for an arbitrary py € L?(0,27) the couple
(v(z,t),p(x,t) + po(t)) is also a solution.
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type problems
Siiy, =0, in Q Vv,=0, on 09, Byra,=h,, k=0,1,.... (24.23)

We have assumed that the homogeneous adjoint Stokes problem (2.4.15) with con-
ditions (2.4.19) has the solution U(z,t) = 0 only. Therefore each of the following

homogeneous adjoint problems
ZUk:O, in Q, Vk:O, on 8(2, @kﬂ'Uk:O, ]{?:071,...,

also has only the trivial solution. Then, according to the Part (2) in Theorem 1.6.1,
problem (2.4.23); has a unique solution uy for every right-hand side and all k£ =

0,1,.... The vector-field uy, is a linear combination

w, = Gug + -+ g’
of the elements (1.4.5) forming the basis in the set of solutions to the homogeneous
Stokes like problem (1.1.2). This linear combination satisfies the homogeneous equa-
tions and boundary conditions in (2.4.23). Substituting the above representation of

4, into B7rii, = hy, and taking into account the matrices Ay and By (see (1.4.20)),

generated by the basis elements ui, ..., u2’, we get the following system of 2.J linear
equations for the column-vector &, = (&1, ...,&2):

By —
B = hy.
k(Ak)ﬁk k

Since the solution uy is unique, this system also has a unique solution &, which is

& = (Bk (i];) ) _ (hy — Bymuy,). (2.4.24)

expressed as

The vector-fields u, = Uy + ug, kK = 0,1,. .., define series (2.1.2), which formally
satisfy the system of equations (2.0.1) and conditions (2.4.11). As it was shown
in the beginning of this Section, the convergence of series (2.1.2) to the solution
v = v(z,t), p = p(z,t) from DI,H(Q x (0,27)) depends on the behaviour of the
coefficients v/, , 07, ,al, ,al, in the asymptotic representation (1.1.22) of ug. Namely,
if the sequences

Jgo 3,0 JopJ opd i
alo, o, aly aly oo bl blo bl b (2.4.25)
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for every 7 = 1,...,J, belong to the space [?, then the functions defined by (2.1.6),
(2.1.8) satisfy the inclusions

Doy 00y ¢4, ..., g7 € L*(0,2m). (2.4.26)

This condition guarantees that the corresponding flow-rate functions ¢',..., ¢’ be-
long to the space H'(0,27) (see Corollary 2.2.1) and, according to Corollary 2.3.3,
ensure existence of the solution u € D3, H(Q x (0, 27)).

Let us show that the sequences (2.4.25) belong to the space [?. Since uy = Uy, +uy,
the Fourier coefficients (2.4.25) of functions in (2.4.26) are equal to

jo__ 77 1J jo_ 77 7.7 J _ I ~J J _ =] ~J
bck - bck + bckz’ bsk’ - bsk’ + bsk’ e, = Qe + ks I + A (2427)

The constants on the right-hand sides in (2.4.27) depend on the data of problem
(2.0.1), (2.4.11). Indeed, the coefficients &/, ., @, @, are either equal to zero (see
(2.4.21)) or are expressed in terms of the Fourier coefficients f.;, fyx and the spe-
cial solutions U, U}) € D2 H(Q)* for the homogeneous formally adjoint Stokes-
type problem (see (2.4.22)). As it was shown in Section 3.3, the assumption f €
L?(0,2m; L3(Q)) yields the inclusions {a? v, {al )2, elPforall j=1,...,J—1.

Let us recall that uy, = §Lug+- - -+&7uz” and that constants {bl,, al, aly, al }7_,

are defined by the relation

According to formulas (2.4.22) and (2.4.24), the vector & depends on the matrices
By, Ai, B, and on the Fourier coefficients hy, and f., f,;. The matrices By, A, B

~1
depend on k, therefore elements of the inverse matrix (Bk Ak>) may grow'il ag
k

k — oo. However, assuming that the sequence h decays fast enough and, if necessary,

assuming the higher regularity of the function f, we may achieve the inclusions

{Bik}liim {Bik}iio, {&ik}iio, {&ik}i‘;o el’, j=1,....J

We notice that the regularity of f and h, necessary for the last inclusions, depend on

ViiiWe restrict ourself to the polynomial growth of the elements in this inverse matrix. Various
physically sensible conditions at infinity possess this property. For example, in the case of prescribed
-1
L . B
flow-rates and pressures, the elements of the corresponding inverse matrices (Bk ( .Ak>> , k=
k

0,1,..., are either bounded or are quantities of order O(k), as k — oo.
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the structure of the operator B.

Part (ii). Assume that problem (2.0.1), (2.4.11) has a time-periodic solution u €
DZ;H(2 x (0,27)). Then the Fourier coefficients ug, uy, ... satisfy the Stokes-type
problems (2.4.10). Consequently (see the Part (2) in Theorem 3.2), the compatibility

conditions

/fk Upda + (hy, TyrUpey =0, k=0,1,... (2.4.28)
Q
are satisfied for all solutions Uy = (V, Peg, Vg, Psi;) of the homogeneous adjoint
problem
S]:Uk =0, z€Q, V=0 2€09, QrU,=0, k=01,.... (2429)

Any time-periodic function V. = V(z,t), P = P(z,t) satisfies the homogeneous
problem (2.4.15), (2.4.19) if and only if it’s Fourier’s coefficients are solutions to
problems (2.4.29). Therefore conditions (2.4.28) imply condition (2.4.20).

Let us show that (2.4.20) is a sufficient condition. Consider a time-periodic solu-
tion U(z,t) = (V(x,t), P(x,t)) of the homogeneous adjoint problem (2.4.15), (2.4.19)
with the Fourier coefficients {V o, Pek, Vi, Psk }72o. For every k = 0,1, ..., the pair

of functions
Vi(z,t) = Ve (x) coskt + Vg (x) sinkt, Py(x,t) = Pug(x) cos kt + Py.(x) sin kt,

is also a solution to the homogeneous problem (2.4.15), (2.4.19). It is obvious that the
pair (Vi(z,t), Py(x,t)) solves the homogeneous problem (2.4.15), (2.4.19) if and only
if the Fourier coefficients (Vo (), Pax(2), Vsi(x), Psg(2)) solve the adjoint Stokes-type
problem (2.4.29). Consequently the condition (2.4.20) implies conditions (2.4.28).
Applying Part (2) in Theorem 1.6.1, we conclude that, for every k = 0, 1,. .., there
exist at least one solution uy, € D7 zH(2) to the Stokes-type problem (2.4.10). Then
the sequence ug, uy, . .. defines at least one "formal" solution (2.1.2) of problem (2.0.1),
(2.4.11). If the data of this problem is sufficiently smooth, we may repeat arguments
of the Part (i) and show that the series (2.1.2) converge in the space D% ;3 H (2% (0, 27))
to the solution described in Corollary 2.3.3. ]
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2.5 Other versions of Green’s formula and corre-
sponding conditions at infinity.

Relation (2.4.11) combines conditions corresponding to different cylinders into a single
equation BIIu = h. However in some cases it is more convenient to use conditions
separately. For this purpose, we define the projectors n/ : D H(2) — R* and
IV :DI,H(Q x (0,2m)) = 17, j =1,....J, as follows:

Jyv, — (K. B 49 40 iy = (77 J
g = (b, bl al,,al,), Pu=(m'uy, muy,...).

Assume that, for all j =1,...,Jand £ =0,1,..., the 2 X 4 matrices IB%{;, T{;, S{; and
QJ, satisfy the condition (analogous to (1.3.13))

1\ (B\ (0 G
Q) \st) \-F 0)°

. - , A
w4
k k Y TR

Let B, TV, S, Q/, j = 1,...,J, denote the operators

where

B’ = diag (B}, BI,...), S =diag(S}),S],...),

T]:dlag('ﬂ%,'ﬂ‘{,), Qj:dlag( {)7 jlv)

Then the Green formula (2.4.17) may be rewritten as follows:

21 J
//Su(x,t) Uz, t)dadt + 3 (BT, TVIVU).,
0 Q

J=1

(2.5.1)

J=1

27 J
- / / u(z,t) - S*U(x, t)dedt + 3 (ST, QIFUY ..
0 Q

This generalized Green’s formula supplies the time-periodic Stokes problem (2.0.1)

with the set of conditions imposed for every outlet separately:

B'IPu=h?, j=1,...,J (2.5.2)
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The corresponding changes should be made in Theorem 2.4.2: formula (2.4.19) shall
be substituted by the equations

QI’Uu=0, j=1,...,J

while the compatibility condition (2.4.20) takes the form

f/f(x, £) - V(z, t)dodt + ZJ:(hJ,TjHjU>OO —0. (2.5.3)

J=1

Remark 2.5.1. Conditions (2.5.2) are formulated in every outlet separately. How-
ever, formula (2.5.3) provides the global compatibility condition including the given

data that correspond to all outlets at infinity.

Let us express the conditions at infinity (2.5.2) in another form. In (2.5.2) the

sequence IVu = (bly, by, aly, aly, b2, 071, aly,aly,...) € 12, which is composed from
the coefficients of a function u € DI;H(Q x (0,27)), is mapped to the sequence
hi = (hly, hlo, b2y, h2y,...). This sequence may be treated as the sequence of the
Fourier coefficients of some time-periodic function h’/ = h7(t). In general, relations

(2.5.2) define the operators
B DY H(Q % (0,2m) = H™(0,27), j=1,...,J

(the value of the integer m depends on the choice of the operator B’). Therefore,
instead of conditions at infinity (2.5.2), formulated in terms of Fourier coefficients,
we may impose for the solution of problem (2.0.1) conditions similar to boundary

conditions for non-stationary problems, i.e., the set of relations
[Biu|(t) = W (t), j=1,...,J (2.5.4)

We emphasize that these conditions are formulated for the function u = u(z, t) itself,
while (2.5.2) are formulated for the Fourier coefficients of u. Recall that formulas
(2.2.8), (2.3.2) impose the flow-rates and pressure conditions of type (2.5.4), while
the same conditions in terms of Fourier’s coefficients were formulated in Example 1

(see the page 81).
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Assume that operators

ST DLH(Q % (0,2m) = H™(0,27), j=1,...,J,
TV : DL H(Q x (0,2m)" — H™0,27), j=1,...,J,
Q :DLyH(Q x (0,2m) — H™0,27), j=1,....J

are defined in the same way as B, i.e., instead of using the relations S’I'u = h,
TIVU = H, /IIU = H between the Fourier coefficients, we define the correspond-
ing operators "mapping the functions u and U to the time-periodic functions from
H™(0,27) with some integer m'. Then we may consider the time-periodic Stokes
problem (2.0.1) supplied with conditions (2.5.4) instead of (2.5.2). In this case con-
dition (2.5.3) shall be substituted by the following compatibility condition

f / £(z,t) - V(z, t)dzdt + j]j /0 W () TU(4)dt = 0. (2.5.5)

2.6 Examples

According to material of this Chapter, a time-periodic solution u € D% 3 H (2% (0, 27))
of problem (2.0.1) may be determined uniquely if one imposes correct asymptotic
conditions at infinity. In Section 2.4 these conditions were formulated for the sequence
of Fourier coefficients {u;}32, (see (2.4.11)). In this case one shall solve for each
k =0,1,... a system of linear equations Bymu, = hy (see Example 1 on the page
80). However, in some cases the systems of equations may be different for each k
and, for example, showing that every system is solvable or proving that the series
> i (e cos kt + ug, sin kt) converges may be difficult. Therefore sometimes it is more
convenient to impose conditions of type (2.5.4).

Let us recall that the time-periodic solution (v,p) € D3 zH(Q x (0,2n)) is fully
determined if we know the functions ¢/ = ¢/(¢) and p} = pi(t), j = 1,...,J, in the
representation (2.4.1). Unfortunately, one cannot select in (2.4.1) arbitrary functions
q',...,q7 and p}, ..., pg. For example, due to incompressibility of the fluid, the sum
o' + -+ + ¢’ shall vanish. We know that the Fourier coefficients of the flow-rate
¢’ = ¢/(t) and the pressure drop ¢/ = ¢’(t) are related by equations (2.2.4), i.e., for
every pressure drop ¢/ € L*(0,27) there exists the flow rate ¢/ € H'(0,27) and vice
versa (see Corollary 2.2.1). In other words there exists a bounded linear operator
Fi 1 L*(0,27) — H'(0,27) with a bounded inverse (F7)~! : H(0,27) — L*(0,2m)
such that ¢/ = F/¢/ and ¢/ = (F’)~1¢/. Having this in mind, the zero total flow-rate
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condition may be rewritten in terms of functions ¢/, j =1,...,.J:
Flatt)+---F¢’(t) =0, vte(0,2n), (2.6.1)

Another type restrictions arise for the functions pg,...,pJ. The differences of
the Fourier coefficients of these functions are determined by formulas (2.3.8), (2.3.9).

These relations yield the following pressure jump conditions
po(t) —pi(t) =n'(t) + G ¢' () +...G"q'(t), i=1,....,J—1 (2.6.2)

Here the functions n° = ni(t), i = 1,...,J — 1, depend on the external force f
and the domain Q only. In the case f € L?(0,2m; L3(Q)), they satisfy inclusions
nt,...,n?7t € L?(0,2n). The operators G/ : L2(0,27) — L*(0,27w),i=1,...,J — 1,
j=1,...,J, are defined by (2.3.12) and are bounded according to Remark 2.3.2.
Below we investigate a couple of situations when mixed — flow-rate and pressure

type — conditions at infinity are imposed.

Example 2

Let us consider the domain 2 with three outlets to infinity. Suppose that we can
measure a time-periodic flow-rate h' € H'(0,27) through the cross-section of the
cylinder Q} and values h?, h* € L*(0,27) of the pressure p = p(z,t) at the distances
z3 = Ry and z3 = R in cylinders QF and Q3. This situation is described by the

conditions
Flq'(t) = n' (1),
¢ (t) Ry + p3(t) = h*(t), (2.6.3)

¢*(t) s + p(t) = R3(t

~—~

We notice from (2.4.1) that for large R; the pressure p(z,t) in the outlet €, differs
from the function ¢/(t)R; + p}(t) by the quantity of order o(e=?%).

Straightforward computations show that system (2.6.3) supplemented with com-
patibility conditions (2.6.1) and (2.6.2) (for J = 3) has a unique solution {¢’, p)}3_, €
L?(0,27) if the distances Ry and Rj are sufficiently large. Indeed, from the equa-
tions (2.6.3) and the compatibility condition (2.6.1) we immediately obtain ¢' =
(FH)~' bt € L2(0,27) and the relations
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P =— (]_—2)_1 Bl _ (]_—2>_1 Rali
Py=1+ Ry (F2) W+ By (F2) P, (2:6:4)
pg = h? — Rsq®.

Substituting these relations to (2.6.2) (with i = 2), we get the equation for the

function ¢*:
(R2 (]_—2>*1 F3 R3> @+ (gQ,2 (]_—2)*1]_-3 _ 92’3) 7

265
=i+ (07 (F) -0 () - R (F) )W - 207

Let us denote
4 =R, (]_—2)*1 FP4+ Ry, M= G2 (}—2)*1 FP_ g3
43 — g2! (];1>*1 _ g2 (];2)*1 _ R, (]_—2)*1‘

Taking into account boundedness of F7, (F’ )71 and G*, we see that the operators
Hy, Ho o L?(0,27) — L?*(0,27) and Hz : H*(0,27) — L*(0,27) are bounded.

We recall that for every j = 1,...,J, the operator F/ and its inverse (]:j)_1 are
defined as infinite matrices acting on the sequence of Fourier coefficients of functions

from L%(0,27), i.e.,

FI = diag(F, Fi....), (7)) = diag ((]—“3)_1 (F) ) ,

(4 - N1 1 a d
g “(d;‘ d) ) = @y (—d?; cﬂ)

Straightforward computations show that the matrices Ry (}",f)_l F? + Rl are non-

where

singular for all £ = 0,1,... and all positive Ry, R3. Moreover, it is easy to verify
that the inverse of the operator H; is bounded. Therefore, taking sufficiently large
Ry and R3 we get the linear operator H; + Hy with a bounded inverse (for "large" Ry
and Rs the operator H; + H, is a "small" perturbation of H;). As a consequence, we
obtain from equation (2.6.5) the function ¢* € L?(0,2). Substituting this function
into formulas (2.6.4) and (2.6.2) (for ¢ = 1) we restore the functions p}, p2, p3, ¢* €
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L2(0,27). As it was explained in the beginning of the Section, the set {p}, ¢/ Fo_ €
L?(0,27) determines the unique time-periodic solution (v, p) € D3 zH (2 x (0,2m)).

Example 3

Let us consider a time-periodic flow in the domain €2 with four cylindrical outlets.
Assume that we know the time periodic flow-rate h' € H'(0,2) in the cylinder Q%
and the total pressure h? € L*(0,2m) at the distance x5 = R, in the cylinder Q2.

These conditions are expressed by the equations
Flg'(t) = h'(t), GF)Ry +pi(t) = h*(t), Vt € (0,2m). (2.6.6)

Moreover, assume that the outlets Q3 and Qf have the same length R, are parallel
and connected at their end (see Figure 3.1). In this case the sum of the flow-rates in
these pipes should vanish, and pressures at their end should coincide. We can express

this by the equations

F @)+ F*(t) =0, P)R+pi(t) =q* (t)R+py(t), Vte (0,2m). (2.6.7)

Q_1+_ QB

0w O —

Figure 2.1: Domain €2 with two connected outlets.

Using the similar procedure as in Example 2, we get from relations (2.6.1), (2.6.2),
(2.6.6) and (2.6.7) the equation for the function ¢*:

(R (1 i (]_—4>*1 ]_~3> +2G32 (]_—2)*1 F3 _ gea (]_—4)*1 F3_ g3,3> &

(2.6.8)
=t (00 (F) g () )
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Let us denote
Hi=1+ (F) P,

My =20% (F) P - g (F) - 0

Hy =G (F1) T —g* (FY) .

It is obvious that the mappings H1, Hs : L?(0,27) — L?(0,27) and Hz : H'(0,27) —
L?(0,27) are bounded.

One can straightforwardly verify that the matrices 14 (F2)~" F2 are non-singular
for all k = 0,1,..., and that the inverse of the operator H; is bounded. Therefore, for
sufficiently large R we get that the linear operator RH; + Ho has a bounded inverse,
i.e., from the equation (2.6.8) we obtain the function ¢* € L?*(0,27). Substituting
this function to the first equation in (2.6.7), we find ¢* € L?*(0,2n). Then the second
relation in (2.6.7) gives the difference p3 — p5 € L?(0,27), which, together with
(2.6.61) and (2.6.2) allow to find ¢* € L*(0,27) and, from (2.6.62) we find the function
p: € L*(0,27). Now we determine, from relations (2.6.2), the functions p}, p3, pg €
L*(0,27). As it was explained in the beginning of the Section, the set {p}, ¢/}1_, €
L?(0,27) determines the unique time-periodic solution (v, p) € D3 4H (2 x (0,2m)).
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Conclusions

The object of our investigations was the time-periodic Stokes system set in domains
with cylindrical outlets to infinity. The aim of our research was to find a way how
to select a unique solution having the infinite Dirichlet’s integral, i.e., to find the
methods of imposing the asymptotic conditions at infinity which ensure the existence
and uniqueness of the solution. In order to achieve this goal we have reduced the time-
periodic Stokes problem into a sequence of elliptic Stokes-type problems. Following
the ideas proposed in [54] and [59], we studied these problems in the weighted Sobolev
spaces DliﬁH (€2), consisting the vector-fields with unbounded Dirichlet integrals. We
have demonstrated that uniqueness of solutions from this class can be guaranteed
by imposing the asymptotic conditions at infinity. We have shown that the correct
asymptotic conditions may be formulated with the help of the generalized Green
formula. In particular, we described a class of matrices which may be used to impose
the flow-rate and the total pressure conditions.

Combining results obtained for the elliptic Stokes-type problems and the known
results for the non-steady problems set in cylindrical domains, we have defined a set
D', s H (€2 x (0,27)) consisting of time-periodic functions. These functions admit the
special asymptotic representations and may have infinite Dirichlet integrals. For the
time-periodic Stokes problem we have derived the generalized Green formula which
is valid for functions from the class D3 ;H(Q x (0,27)). It was shown that:

« the uniqueness of the time-periodic solution (v,p) € D3 zH (€ x (0,27)) can be

achieved by imposing asymptotic conditions at infinity;

« general conditions at infinity may be obtained from the generalized Green for-

mula.

Finally, we have presented several examples, when combination of the flow-rate con-
dition with the prescribtion of the total pressure in one or several outlets yield the

existence and uniqueness of the time-periodic solution in D ;H (€2 x (0, 27)).
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Appendix A

Consider the problem

kv + vApr = -1,  yew,
kor — vAY, =0, Y € w, (A.0.1)
er =0, U, =0, y € Ow.

Multiplying the homogeneous equation (A.0.1;) by ¢ and equation (A.0.13) by ¥,

subtracting the obtained relations and integrating by parts, we get

[ 1vail? + IVeldy = o.

This identity and the boundary conditions yield the uniqueness of the solution to

problem (A.0.1). The uniqueness property and the Fredholm alternative for linear

elliptic equations ensure the existence of the solution (¢, ) € (H ! (w))2 (see [19]).

Moreover, if the boundary is of class C2, the solution (g, 1) belongs to (H2(w))?.
Let us recall the definitions of the constants ¢, and d}, (see (1.3.9)):

C?;Z/,widyj, di}:—/_widyj.
The following properties of the constants ¢, dJ, and the solution of (A.0.1) were

proved in Lemma 2.1 in [27].

Lemma A.0.1. Let (¢}, 1)) € (H(w?))? be the solution of problem (A.0.1). Then
the following estimates
dj

lerZawr) + 102l 2oy < 75 1A o) + AV Ly < |

hold. Here |w’| denotes the area of w’. Moreover,
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|| ||

(2) 0<c*£§7, 0<d, <, forallk=1,2,..;

k
(3) limy_o(kdl) = |w7].
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Appendix B

Consider the system of partial differential equations set in the domain 2 C R"
L(x,V,)u(x)=f(z). (B.0.1)
where u and f are m-dimensional vector-fields, namely,

u(z) = (w(@),... un(2), fx) = (fil@),. . fm(2)),

and L (z,V,) is an m X m matrix with elements l;; (z,V,), 7,7 = 1,...,m, being
the differential operators. System (B.0.1) is called elliptic in the sense of Agmon,
Douglis, Nirenberg (see [2], [3]) if there exist integers s;,t;, ¢ = 1,...,m, such that:

(a) The degree of the operator [;; (z,V,) does not exceed s; +t;, and [;; = 0 if
S; + tj < 0.

(b) Let & = (&1, .. -,&) and I;(x, &) be the polynomial in &, . . ., &,, composed from
those terms of the polynomial /;;(z, &) which has the degree equal to s; + t;.
Moreover, assume that £°(x, &) is the matrix composed from the elements [7).
Then

det £O(z,€) #0 forall £ #0.
ADN ellipticity of the steady-state Stokes system

—vAv+Vp = f| x € (),
—-V-v = 0, x €,
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was proved in [88]. Let us show that the Stokes-type problem (1.1.2) is also elliptic
in this sense. Consider the case  C R?. System (1.1.2) admits the following form

—vA(ve)1 + gﬂ Fh(a)r = (fa)r, z€9Q,
T1

—uA(vck>2+§C’“ k)2 = (fa)s, 1 EQ
o)

8(Uck)1 a(vck)2 o
oy 015 = 0, x € (),

—uA<v5k>1+g$’“ — k(a1 = (fa)1, zE€Q,

x1

VA2 + 5 —k(va): = (fa)  TEQ,
o)

O(va)1  O(vsk)2 B
O, Oy = 0, x €,

where A — £+£ Voo = (01, (0ar)s)s Vor = (o)1, (0s2)2)s Fox = ((Fo)ts (Fur)2)

and fg, = ((fsk)1, (fsk)2). In this case m = 6 and € = (§1,&2). One may verify that
condition (a) is satisfied by the numbers s; = 55 =0, s3 = —1, s4 =55 =0, s6 = —1
and t) =ty =2, t3 = —1, ty = t; = 2, tg = —1. Using these numbers and taking into

account the structure of the equations, we compose the matrix:

—v(§ +&3) 0 —&1 0 0
0 (& +8&) —& 0 0
—& —& 0 0 0
L0z, &) =
@) 0 e+ 0 -4
0 0 —v(&+E&) &
0 —&1 —& 0

Notice that degrees of the terms k(ve); and k(vg); are equal to 0, while the corre-
sponding quantities s; + t; = 2, therefore the corresponding entries of the matrix £°

are zero. Straightforward computations yield
det Lo(x,€) = (& + &))"

Obviously, the matrix £°(z,€) is non-singular for € # 0. In the same way it can
be proved that the Stokes-type problem (1.1.2) is ADN elliptic in 3D (in this case

det Lo(x,€) = V(61 + & + &3)°).
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