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Unit testing is a fundamental aspect of software testing, which ensures 
the correctness and robustness of code implementations, but their 
creation requires considerable time and resources from developers. It 
has already been proven that special software can generate test cases 
using conventional methods such as SBST or random testing (Tang et 
al., 2024). However, the generated test’s code reached high code cover-
age metrics but was highly unreadable by developers. Large Language 
Models (LLMs) can solve readability issues by learning from training data 
containing real human-written test code examples. However, another 
challenge arises, such as unit tests reaching better coverage, but they 
are independent of functional context (Ryan et al., 2024). Researchers 
suggest solving this issue by additionally introducing the context of the 
code fragment into LLM’s training set, improving overall results and its 
quality metrics. Recent research with LLM-generated unit tests focuses 
on code coverage as a unit test quality measure (Pan et al., 2024; Lops 
et al., 2024; Bhatia et al., 2024). However, this is not enough, and we 
suggest involving additional ways in which unit tests will be reliable 
and understandable. These additional two ways: comparison measures 
based on abstract syntax trees such as CodeBLEU, RUBY, and measure-
ments based on machine-translation metrics such as ROUGE, METEOR, 
chrF. According to this, this paper proposed to research and analyze how 
to measure the quality of the LLM-generated unit tests. In this research, 
three LLM models were applied, which were used for unit test genera-
tion according to the provided source codes. The generated unit tests 
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were evaluated by test quality metrics such as coverage and machine 
translation-based metrics. Our research results allow us to highlight sev-
eral results of generated unit tests with several LLM models. The first 
observation was that LLM models generated unit test coverage that 
achieved an average of 76%. The second research result was that se-
mantic and syntactic similarity based on AST was achieved up to 0,99 
between LLM-generated unit tests.
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