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Abstract: In this paper, the limit points of the sequence of arithmetic means 1
n ∑n

m=1{Hm}σ for
n = 1, 2, 3, . . . are studied, where Hm is the mth harmonic number with fractional part {Hm} and
σ is a fixed positive constant. In particular, for σ = 1, it is shown that the largest limit point of the
above sequence is 1/(e − 1) = 0.581976 . . . , its smallest limit point is 1 − log(e − 1) = 0.458675 . . . ,
and all limit points form a closed interval between these two constants. A similar result holds for the
sequence 1

n ∑n
m=1 f ({Hm}), n = 1, 2, 3, . . . , where f (x) = xσ is replaced by an arbitrary absolutely

continuous function f in [0, 1].
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1. Introduction

Recall that the mth harmonic number is the sum of the reciprocals of the first m positive
integers:

Hm = 1 +
1
2
+

1
3
+ · · ·+ 1

m
.

Harmonic numbers appear frequently in many different areas, such as combinatorial
problems, expressions involving special functions in analytic number theory, probability
and statistics, analysis of algorithms, etc. Sometimes they appear unexpectedly [1], but
they mainly can be found in many beautiful identities. For instance, in 1775, Euler proved
the following identity:

∞

∑
m=1

Hm

m2 = 2ζ(3),

where ζ is the Riemann zeta function. See, e.g., [2,3], for a short proof of this and similar
identities involving zeta functions, logarithms and polylogarithms. In [4], there are many
identities of a different type, such as the following:

n

∑
m=1

(n − 2m)

(
n
m

)
Hm = 1 − 2n

for n ∈ N. Other more complicated identities have been proven with the help of computers.
See also [5–7].

It is well known that H1 = 1 is the only integer among all the harmonic numbers Hm
(see, e.g., Section 1.2.7 in [8]). Thus, the fractional parts of other harmonic numbers {Hm},
where m ≥ 2, all belong to the open interval (0, 1). Note that the mth harmonic number
can be written in the form Hm = um/Dm, where Dm is the least common multiple of the
integers 1, 2, . . . , m and um ∈ N. Here, um and Dm are not necessarily coprime. In [9], Wu
and Chen conjectured that gcd(um, Dm) = 1 for infinitely many m ∈ N. This conjecture
is still open despite some progress in [10], showing that gcd(um, Dm) cannot be too large
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for all m. In the opposite direction, the set of m ∈ N for which gcd(um, Dm) > 1 has been
recently studied by Yan and Wu [11].

In particular, from the representation Hm = um/Dm, even in the worst case, when there
is no cancellation by the factor gcd(um, Dm) > 1, it follows that {Hm} = Hm − ⌊Hm⌋ ≥
1/Dm for each m ≥ 2. By the prime number theorem, it is well known that log Dm → m
as m → ∞. This gives the exponential bound {Hm} > κm for each positive constant
κ < e−1 = 0.367879 . . . and each sufficiently large integer m. Calculations show that this
bound is far from optimal. However, the question of whether this bound can be replaced by
the bound {Hm} ≫ 1/m2 is completely open (see, e.g., Question 258097 at MathOverflow).
One should also mention recent progress on the question of Erdős and Graham [12], who
were interested in the question of how close the difference Hℓ − Hm can be to 1. In [13], it
was shown that for any ε > 0, there are infinitely many pairs of positive integers ℓ > m
such that |Hℓ − Hm − 1| < 1/m2(log m)5/4−ε.

Since Hm+1 − Hm = 1
m+1 → 0 as m → ∞, the sequence of the fractional parts

{Hm}, m = 1, 2, 3, . . . , is everywhere dense in [0, 1]. However, as Hm − log m tends to
a finite limit γ = 0.577215 . . . , which is called Euler’s constant, and the sequence log m,
m = 1, 2, 3, . . . , is not uniformly distributed modulo 1, the sequence of the fractional parts
{Hm}, m = 1, 2, 3, . . . , is not uniformly distributed in [0, 1]. For a sequence am ∈ [0, 1),
m = 1, 2, 3, . . . , which is uniformly distributed in [0, 1], one has the following:

1
n

n

∑
m=1

am → 1
2

as n → ∞.

We do not have this property for am = {Hm}, so it seems a natural problem to
investigate the limit points of the sequence of arithmetic means 1

n ∑n
m=1{Hm}, n = 1, 2, 3, . . . .

In this paper, we determine the upper and lower limits of this sequence and show that all
its possible limit points consist of the closed interval between them.

Theorem 1. We have

lim sup
n→∞

1
n

n

∑
m=1

{Hm} =
1

e − 1
= 0.581976 . . .

and

lim inf
n→∞

1
n

n

∑
m=1

{Hm} = 1 − log(e − 1) = 0.458675 . . . .

Theorem 1 follows from the following more general result:

Theorem 2. For each σ > 0, we have

1
n

n

∑
m=1

{Hm}σ ∼ Φ(σ, {Hn}) as n → ∞, (1)

where

Φ(σ, t) = e−t
(∫ 1

0 xσexdx
e − 1

+
∫ t

0
xσexdx

)
(2)

for each t ∈ [0, 1).

Indeed, since the sequence of the fractional parts {Hm}, m = 1, 2, 3, . . . , is everywhere
dense in the closed interval [0, 1], by (1) and (2), the set of limit points of the sequence of
arithmetic means, 1

n ∑n
m=1{Hm}σ, n = 1, 2, 3, . . . , is actually the set of all values attained by

the function Φ(σ, t) for t ∈ [0, 1]. Since Φ(σ, t) is continuous in t ∈ [0, 1], the latter set is
obviously the following closed interval:
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[ min
t∈[0,1]

Φ(σ, t), max
t∈[0,1]

Φ(σ, t)].

In particular, for σ = 1, the function Φ(σ, t) defined in (2) equals

Φ(1, t) = e−t
(∫ 1

0 xexdx
e − 1

+
∫ t

0
xexdx

)
= e−t

(
1

e − 1
+ (t − 1)et + 1

)
= t − 1 +

e1−t

e − 1
.

In the closed interval t ∈ [0, 1], the maximum of Φ(1, t) is attained at t = 0 and at
t = 1 and equals 1/(e − 1) = 0.581976 . . . . The minimum of Φ(1, t) is attained at the
point t1 = 1 − log(e − 1) = 0.458675 . . . and is equal to the same value t1 = 1 − log(e − 1).
Consequently, all limit points of the sequence 1

n ∑n
m=1{Hm}, n = 1, 2, 3, . . . , form the closed

interval [1 − log(e − 1), 1/(e − 1)], which implies Theorem 1.
Observe that, for any fixed σ > 0, the derivative of the function etΦ′(σ, t) in t ∈ (0, 1)

equals σtσ−1et, such that etΦ′(σ, t) is increasing in [0, 1] from a negative value at t = 0 to
a positive value at t = 1. (The inequality Φ′(σ, 0) < 0 is immediate, while the inequality
Φ′(σ, 1) > 0 follows from

∫ 1
0 xσexdx < e − 1.) By continuity, this implies that there is a

unique tσ in (0, 1) satisfying Φ′(σ, tσ) = 0 such that Φ′(σ, t) < 0 for t < tσ and Φ′(σ, t) > 0
for t > tσ. Therefore, the function Φ(σ, t) is decreasing in [0, tσ] and increasing in [tσ, 1].
Consequently, the maximum of Φ(σ, t) in [0, 1] is attained at t = 0 or at t = 1. Since
Φ(σ, 0) = Φ(σ, 1), the maximum of the function Φ(σ, t) in the interval t ∈ [0, 1] equals

Φ(σ, 0) = Φ(σ, 1) =
∫ 1

0 xσexdx
e−1 , while its minimum is Φ(σ, tσ). Hence,

lim sup
n→∞

1
n

n

∑
m=1

{Hm}σ =

∫ 1
0 xσexdx

e − 1
.

However, unlike in the case where σ = 1, the smallest limit point Φ(σ, tσ) cannot
be determined by an explicit expression as before. For example, for σ = 2, we have
the following:

Φ(2, t) = t2 − 2t + 2 − e1−t

e − 1
.

Here, Φ(2, 0) = Φ(2, 1) = (e − 2)/(e − 1), and hence, we obtain

lim sup
n→∞

1
n

n

∑
m=1

{Hm}2 =
e − 2
e − 1

= 0.418023 . . . .

The minimum of the function Φ(2, t) in [0, 1] is attained at point t2 = 0.538241 . . .
satisfying the following:

Φ′(2, t2) = 2t2 − 2 +
e1−t2

e − 1
= 0,

where Φ(2, t2) = t2
2 = 0.289704 . . . . Therefore,

lim inf
n→∞

1
n

n

∑
m=1

{Hm}2 = t2
2 = 0.289704 . . . .

In fact, we will prove a result more precise than that stated in Theorem 2, which not
only gives the asymptotical Formula (1) but also an estimate for the error term:

Theorem 3. For each n ≥ 2, with the notation of Theorem 2, we have∣∣∣ 1
n

n

∑
m=1

{Hm}σ − Φ(σ, {Hn})
∣∣∣ < c

( log n
n

)1/3

for some constant c > 0 independent of n.
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In the next section, we prove several auxiliary results. The proof of Theorem 3 is
given in Section 3. Finally, in Section 4, we will show that {Hn}σ in (1) can be replaced
by a more general function f ({Hm}) with an appropriate change in the definition of Φ in
(2); see (29). Some examples of f giving explicit upper and lower limits for the sequence
1
n ∑n

m=1 f ({Hm}), n = 1, 2, 3, . . . , will be presented there as well.

2. Auxiliary Results

Throughout this paper, we will use the following notation. For any real numbers
A and B satisfying 1 < A < B, by S(A, B), we will denote the set of m ∈ N such that
A < Hm ≤ B. The cardinality of this set will be denoted by #S(A, B). By γ, we will denote
Euler’s constant:

γ = lim
n→∞

(Hn − log n) = 0.577215 . . . .

We begin with the following lemma.

Lemma 1. Let y ≥ 1 be a real number and let m ∈ N be the largest integer for which Hm ≤ y.
Then,

−2 < m − ey−γ < −1
2

. (3)

Proof. By the definition of m, it is clear that

Hm ≤ y < Hm+1.

A well-known approximation formula from [14] asserts that for each n ∈ N, we have

1
24(n + 1)2 < Hn − log

(
n +

1
2

)
− γ <

1
24n2 .

Hence,

y − γ ≥ Hm − γ > log
(

m +
1
2

)
+

1
24(m + 1)2 > log

(
m +

1
2

)
,

which implies the upper bound in (3) by taking the exponents of both sides.
Similarly, from

y − γ < Hm+1 − γ < log
(

m +
3
2

)
+

1
24(m + 1)2 < log(m + 2),

we deduce the lower bound in (3). Here, the last inequality follows from

e
1

24(m+1)2 < 1 +
1

12(m + 1)2 < 1 +
1

2m + 3
==

2m + 4
2m + 3

=
m + 2

m + 3/2
,

which is true due to ex < 1 + 2x for 0 < x < 1.

An exact evaluation of m defined in Lemma 1 in terms of the integral part ⌊ey−γ⌋ is a
problem studied by Hardy in 1924; see [15,16].

Now, we will estimate the number of indices m for which K + u < Hm ≤ K + v:

Lemma 2. Let u, v be real numbers satisfying 0 < u < v ≤ 1 and K ∈ N. Then,

−3
2
< #S(K + u, K + v)− (ev − eu)eK−γ <

3
2

. (4)

Proof. Let U and V be the largest positive integers for which HU ≤ K + u and HV ≤ K + v.
Then,

#S(K + u, K + v) = V − U.
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By Lemma 1, we have

−2 < V − eK+v−γ < −1
2

and
−2 < U − eK+u−γ < −1

2
.

It follows that the difference

V − U − eK+v−γ + eK+u−γ = #S(K + u, K + v)− (ev − eu)eK−γ

is in the interval (−3/2, 3/2), which implies (4).

Now, we are ready to state our main auxiliary lemma:

Lemma 3. Let σ > 0 be a real number. Then, for each sufficiently large K ∈ N and each real t
satisfying 18e−K ≤ t ≤ 1, the set S(K, K + t) is nonempty and∣∣∣∣ ∑

m∈S(K,K+t)
{Hm}σ − #S(K, K + t) ·

∫ t
0 xσexdx
et − 1

∣∣∣∣ < 3
(
#S(K, K + t)

)2/3. (5)

Proof. Take an integer L satisfying

6 ≤ L ≤ teK

3
. (6)

Note that S(K, K + t) is the union of L disjoint sets S(K + jt/L, K + (j + 1)t/L), where
j = 0, 1, . . . , L − 1. By Lemma 2, we have

#S(K + jt/L, K + (j + 1)t/L) = (et/L − 1)eK+jt/L−γ + δ(K, j, L, t), (7)

with δ(K, j, L, t) ∈ (−3/2, 3/2). From

(et/L − 1)eK+jt/L−γ >
t
L

eK−γ ≥ 3Le−K

L
eK−γ = 3e−γ >

3
2

,

we see that the set S(K + jt/L, K + (j + 1)t/L) is nonempty for each L ∈ N satisfying the
upper bound in (6) and for each sufficiently large K. In particular, this implies that the set
S(K, K + t) is nonempty.

For each m ∈ S(K + jt/L, K + (j + 1)t/L), we have( jt
L

)σ
< {Hm}σ ≤

( (j + 1)t
L

)σ
.

Thus, the sum

∑
m∈S(K,K+t)

{Hm}σ =
L−1

∑
j=0

∑
m∈S(K+jt/L,K+(j+1)t/L)

{Hm}σ (8)

is greater than

B1 :=
L−1

∑
j=0

#S(K + jt/L, K + (j + 1)t/L)
( jt

L

)σ

and smaller than or equal to

B2 :=
L−1

∑
j=0

#S(K + jt/L, K + (j + 1)t/L)
( (j + 1)t

L

)σ
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Note that, by Lemma 2, we also have

#S(K, K + t) = (et − 1)eK−γ + δ(K, t), (9)

with δ(K, t) ∈ (−3/2, 3/2). Combining (7) with (9), we deduce

#S(K + jt/L, K + (j + 1)t/L)− δ(K, j, L, t) =
(

#S(K, K + t)− δ(K, t)
) (et/L − 1)ejt/L

et − 1
.

This implies

#S(K + jt/L, K + (j + 1)t/L) =
(et/L − 1)ejt/L

et − 1
#S(K, K + t) + µ(K, j, L, t), (10)

where

µ(K, j, L, t) = δ(K, j, L, t)− δ(K, t)
(et/L − 1)ejt/L

et − 1
.

Here, δ(K, j, L, t) and δ(K, t) are both at most 3/2 in absolute value. By 0 < t ≤ 1 and
L ≥ 6 (see the lower bound in (6)), we have 0 < et/L − 1 < 1.1t/L. Hence, as j ≤ L − 1 and
1.1tet/(et − 1) < 1.75, we deduce

0 <
(et/L − 1)ejt/L

et − 1
<

1.1tet

L(et − 1)
<

1.75
L

≤ 1.75
6

<
1
3

.

Thus,
|µ(K, j, L, t)| < 2.

Now, by (9), (10) and et/L − 1 > t/L, we deduce

B1 >
L−1

∑
j=0

(
#S(K, K + t)

(et/L − 1)ejt/L

et − 1
− 2

)( jt
L

)σ

>
L−1

∑
j=0

(
#S(K, K + t)

(et/L − 1)
(

jt
L

)σ
ejt/L

et − 1
− 2

)
= #S(K, K + t)

(
et/L − 1
et − 1

) L−1

∑
j=0

( jt
L

)σ
ejt/L − L(L − 1)

>
#S(K, K + t)

et − 1
· t

L

L−1

∑
j=0

( jt
L

)σ
ejt/L − L2

and, similarly,

B2 <
#S(K, K + t)

et − 1

L−1

∑
j=0

(et/L − 1)
( (j + 1)t

L

)σ
ejt/L + L(L − 1)

= #S(K, K + t)
(

1 − e−t/L

et − 1

) L−1

∑
j=0

( (j + 1)t
L

)σ
e(j+1)t/L + L(L − 1)

= #S(K, K + t)
(

1 − e−t/L

et − 1

) L

∑
j=1

( jt
L

)σ
ejt/L + L(L − 1)

<
#S(K, K + t)

et − 1
· t

L

L

∑
j=1

( jt
L

)σ
ejt/L + L2.
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Therefore, by (8) and the definitions of B1, B2, we see that the quantity

∑m∈S(K,K+t){Hm}σ

#S(K, K + t)

is greater than
t

(et − 1)L

L−1

∑
j=0

( jt
L

)σ
ejt/L − L2

#S(K, K + t)
(11)

and smaller than
t

(et − 1)L

L

∑
j=1

( jt
L

)σ
ejt/L +

L2

#S(K, K + t)
. (12)

Furthermore, since the function xσex is increasing in x for x ∈ [0, t], we have

t
L

L−1

∑
j=0

( jt
L
)σejt/L <

∫ t

0
xσexdx <

t
L

L

∑
j=1

( jt
L
)σejt/L =

t
L

L−1

∑
j=0

( jt
L
)σejt/L +

t
L

tσet.

Thus, (11) is greater than∫ t
0 xσexdx
et − 1

− t1+σet

L(et − 1)
− L2

#S(K, K + t)

and (12) is smaller than ∫ t
0 xσexdx
et − 1

+
t1+σet

L(et − 1)
+

L2

#S(K, K + t)
.

Therefore,∣∣∣∣∑m∈S(K,K+t){Hm}σ

#S(K, K + t)
−

∫ t
0 xσexdx
et − 1

∣∣∣∣ < t1+σet

L(et − 1)
+

L2

#S(K, K + t)
<

1.6
L

+
L2

#S(K, K + t)
.

Now, selecting, for instance, L = ⌊
(
#S(K, K + t) · 4

5
)1/3⌋, and multiplying both sides

of the last inequality by #S(K, K + t), we derive the desired inequality (5). By (9), it is clear
that this choice of L satisfies (6) for a sufficiently large K.

In particular, from Lemma 3, we will derive the following:

Lemma 4. Let σ > 0 be a real number. Then, there is K0 ∈ N such that for each integer M > K0,
we have ∣∣∣∣ ∑

m∈S(K0,M)

{Hm}σ − #S(K0, M) ·
∫ 1

0 xσexdx
e − 1

∣∣∣∣ < 3M1/3(#S(K0, M)
)2/3. (13)

Proof. Fix σ > 0. Assume that K0 is the integer as claimed in Lemma 3. Applying Lemma 3
to t = 1 and to K ∈ {K0, K0 + 1, . . . , M − 1}, we deduce∣∣∣∣ ∑

m∈S(K,K+1)
{Hm}σ − #S(K, K + 1) ·

∫ 1
0 xσexdx

e − 1

∣∣∣∣ < 3
(
#S(K, K + 1)

)2/3.

Adding those inequalities for K = K0, K0 + 1, . . . , M − 1, we obtain∣∣∣∣ ∑
m∈S(K0,M)

{Hm}σ − #S(K0, M) ·
∫ 1

0 xσexdx
e − 1

∣∣∣∣ < 3
M−1

∑
K=K0

(
#S(K, K + 1)

)2/3. (14)
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By Hölder’s inequality, for any ℓ ∈ N and any non-negative real number xj, we have

ℓ

∑
j=1

x2/3
j ≤ ℓ1/3( ℓ

∑
j=1

xj
)2/3.

Thus, because of
M−1

∑
K=K0

#S(K, K + 1) = #S(K0, M),

the right-hand side of inequality (14) does not exceed 3(M − K0)
1/3(#S(K0, M)

)2/3. This
completes the proof of (13).

3. Proof of Theorem 3

Proof. Let n ≥ 2 be an integer. Set M = ⌊Hn⌋ and t = {Hn}. Here, 0 < t < 1 because for
n ≥ 2, the number Hn is not an integer. Assume that the inequality (5) of Lemma 3 holds
for K ≥ K0, where K0 depends on σ and t. There is nothing to prove if M ≤ K0, since then
Hn = M + t < K0 + 1 and n is bounded by an absolute constant; so, assume that M > K0.
Observe that

n = 1 + #S(1, K0) + #S(K0, M) + #S(M, M + t).

Applying Lemma 1 to y = M + t, we find that

n = eM+t−γ − η0, (15)

where 1/2 < η0 < 2. Similarly, applying the same lemma to y = M, we deduce

1 + #S(1, K0) + #S(K0, M) = eM−γ − η1,

where 1/2 < η1 < 2, and hence,

#S(K0, M) = eM−γ − η2 (16)

for some positive constant η2. Also, by Lemma 2, we obtain

#S(M, M + t) = (et − 1)eM−γ + η3, (17)

where |η3| < 3/2.
By (15), we have eM−γ = (n + η0)e−t. Inserting this into (16) and (17), we derive

#S(K0, M) = ne−t + η4 (18)

and
#S(M, M + t) = n(1 − e−t) + η5, (19)

respectively. Here, η4, η5 are bounded constants.
Consider the sum

n

∑
m=1

{Hm}σ =
n

∑
m=2

{Hm}σ = ∑
m∈S(1,K0)

{Hm}σ + ∑
m∈S(K0,M)

{Hm}σ + ∑
m∈S(M,M+t)

{Hm}σ. (20)

Here, the first sum, ∑m∈S(1,K0)
{Hm}σ, is a non-negative constant that depends on K0 and σ

say, θ0 = θ0(K0, σ), namely,
∑

m∈S(1,K0)

{Hm}σ = θ0. (21)
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By Lemma 4, the second sum is

∑
m∈S(K0,M)

{Hm}σ = #S(K0, M) ·
∫ 1

0 xσexdx
e − 1

+ θ1M1/3(#S(K0, M)
)2/3, (22)

where |θ1| < 3. Note that for sufficiently large n, we have M ≤ 2 log n by (15). So, inserting
into (22) the value of #S(K0, M) from (18), we obtain

∑
m∈S(K0,M)

{Hm}σ = ne−t ·
∫ 1

0 xσexdx
e − 1

+ θ2n2/3(log n)1/3, (23)

where θ2 depends on n and σ but is bounded.
To evaluate the third sum, we will consider two cases: firstly, 18e−M ≤ t < 1, and,

secondly, 0 < t < 18e−M. In the first case, 18e−M ≤ t < 1, applying Lemma 3, we deduce

∑
m∈S(M,M+t)

{Hm}σ = #S(M, M + t) ·
∫ t

0 xσexdx
et − 1

+ θ3
(
#S(M, M + t)

)2/3, (24)

where |θ3| < 3. Now, inserting into (24) the value of #S(K0, M) from (19), we obtain

∑
m∈S(M,M+t)

{Hm}σ = ne−t ·
∫ t

0
xσexdx +

η5
∫ t

0 xσexdx
et − 1

+ θ4n2/3,

and hence,

∑
m∈S(M,M+t)

{Hm}σ = ne−t ·
∫ t

0
xσexdx + θ5n2/3, (25)

where θ4 and θ5 depend on n and σ but are bounded. From (20), (21), (23) and (25), we
deduce

n

∑
m=1

{Hm}σ = ne−t
(∫ 1

0 xσexdx
e − 1

+
∫ t

0
xσexdx

)
+ θ6n2/3(log n)1/3, (26)

with θ6 bounded. Dividing (26) by n, we obtain∣∣∣ 1
n

n

∑
m=1

{Hm}σ − Φ(σ, {Hn})
∣∣∣ < c

( log n
n

)1/3
(27)

for some c > 0 independent of n, which is the required estimate.
We now turn to the case when 0 < t < 18e−M. Then, by (17), #S(M, M + t) is bounded

from above by an absolute constant. So, instead of (25), we have

∑
m∈S(M,M+t)

{Hm}σ = θ7,

where θ7 is bounded. Combining this with (20), (21), and (23), we obtain

n

∑
m=1

{Hm}σ = ne−t ·
∫ 1

0 xσexdx
e − 1

+ θ8n2/3(log n)1/3,

with θ8 bounded. Now, to derive Formula (26) from this, we need only show that the
integral ne−t ∫ t

0 xσexdx is small for small t. We will show that, under our assumption on t,
this integral is bounded. Indeed, as 0 < t < 18e−M, using (15), we obtain

0 < ne−t
∫ t

0
xσexdx < 2ne−t tσ+1

σ + 1
< 2nt < 36ne−M = 36(eM+t−γ − η0)e−M < 36et−γ < 36.
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Hence, (26) holds with an appropriate θ6 (depending on n and σ but bounded).
As stated above, we see that (26) implies (27), which completes the proof of the theorem.

4. Concluding Remarks

In the proof of Theorem 3 and Lemma 3, we mainly used the fact that the function
xσ is continuous, non-negative and non-decreasing in [0, 1], implying that the function
xσex is as well. By exactly the same argument, one can show that, for every continuous,
non-negative and non-decreasing function f in [0, 1], we have

1
n

n

∑
m=1

f ({Hm}) ∼ Φ f ({Hn}) as n → ∞, (28)

where

Φ f (t) = e−t
(∫ 1

0 f (x)exdx
e − 1

+
∫ t

0
f (x)exdx

)
(29)

for each t ∈ [0, 1). (The specific form of f , namely f (x) = xσ, has been used only in the
estimate of the error term as in Theorem 3, which we will not do for a general f .)

Thus, Theorem 2 can be generalized as follows:

Theorem 4. Let f (x) be an absolutely continuous function on [0, 1]. Then,

1
n

n

∑
m=1

f ({Hm}) ∼ Φ f ({Hn})

as n → ∞, where Φ f (t) is defined in (29).

Indeed, since f is absolutely continuous, it is a function of bounded variation. (The
definition and basic properties of functions of bounded variation can be found in the
following monographs [17,18]). Next, every function of bounded variation is the difference
between two monotonically non-decreasing functions. Adding an appropriate positive
constant to both of them, we conclude that f is expressible in the form

f = f1 − f2,

where the functions f1 and f2 are both continuous, positive, and non-decreasing in [0, 1]. In
view of (29), we clearly have

Φ f (t) = Φ f1− f2(t) = Φ f1(t)− Φ f2(t).

Thus, applying the asymptotic Formula (28) to f1 and f2 and then subtracting one formula
from another, we derive Theorem 4.

Selecting in (29), for instance, f (x) = ex, we find that

Φ f (t) =
e1−t + et

2
.

The maximum of this function for t ∈ [0, 1] is attained at t = 0 and t = 1 and equals
(e + 1)/2, while its minimum is attained at t = 1/2 and equals e1/2. Hence, by Theorem 4,
it follows that

lim sup
n→∞

1
n

n

∑
m=1

e{Hm} =
e + 1

2
= 1.859140 . . .

and

lim inf
n→∞

1
n

n

∑
m=1

e{Hm} = e1/2 = 1.648721 . . . .
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Likewise, selecting in (29), for instance, f (x) = e−x, we obtain

Φ f (t) = e−t
( 1

e − 1
+ t

)
.

This time, unlike in all previous examples, not the maximum but the minimum of the
function Φ f (t) is attained at t = 0 and t = 1, and it equals 1/(e − 1). Its maximum is

attained at t = (e − 2)/(e − 1) and equals e−
e−2
e−1 . Therefore, by Theorem 4,

lim inf
n→∞

1
n

n

∑
m=1

e−{Hm} =
1

e − 1
= 0.581976 . . .

and

lim sup
n→∞

1
n

n

∑
m=1

e−{Hm} = e−
e−2
e−1 = 0.658346 . . . .
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