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c Institute of Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
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A B S T R A C T

Protein aggregation is responsible for several degenerative conditions in humans, and it is also a bottleneck in 
industrial protein production and storage of biotherapeutics. Bioinformatics tools have been developed to predict 
and redesign protein solubility more efficiently by understanding the underlying principles behind aggregation. 
As more experimental data become available, dedicated resources for storing, indexing, classifying and 
consolidating experimental results have emerged. These resources vary in focus, including aggregation-prone 
regions, 3D patches or protein stretches capable of forming amyloid fibrils. Some of these resources also 
consider the experimental conditions that cause protein aggregation and how they affect the process. This review 
article explores how protein aggregation databases have evolved and surveys state-of-the-art resources. We 
highlight their applications, complementarity and existing limitations. Moreover, we showcase the existing 
symbiosis between amyloid-related databases and predictive tools. To increase the usefulness of our review, we 
supplement it with a comprehensive list of present and past amyloid databases: https://biogenies.info/amy 
loid-database-list/.

1. Introduction

Protein aggregation is a second-order reaction in which soluble 
monomeric species transit towards multimeric architectures forming 
protein deposits, usually highly ordered fibrillar structures named am-
yloids. The amyloid conformation consists of an intermolecular in- 
register stacking of β-stranded proteins in parallel or antiparallel form, 
which runs perpendicular to the fiber axis [1]. Amyloid fibrils can be 
detected by the binding of specific dyes such as Thioflavin-T or Congo 
Red, detergent and proteolytic resistance, and the presence of cross-β 
signals on X-ray diffraction patterns, typically at 4.7 and 10.2 Å [2]. The 
ability to form amyloid structures appears to be a generic property of 
proteins and is not tied to specific sequences of amino acids [3].

This fibrillization of proteins is widely recognized as a key factor in 
the onset of a myriad of different debilitating human conditions known 

as protein amyloidoses. This category covers disorders such as Parkin-
son’s disease (PD), Alzheimer’s disease (AD), Creutzfeldt-Jakob’s, 
Amyotrophic Lateral Sclerosis (ALS) or Transthyretin (ATTR) amyloid-
osis [4]. Structural determinations of different amyloids from biopsies 
reveal the same core amyloid-forming protein can achieve multiple ar-
rangements in vivo [5]. Specific amyloid polymorphs are thought to be 
associated with distinct disease manifestations [6]. The International 
Society of Amyloidosis recommends notating proteins constituting am-
yloid fibrils which deposition causes these disorders with an initial A (or 
amyloid) [7].

Recently, amyloidoses has garnered attention in the context of dia-
betes and various cancers, as well as viral, parasitic and bacterial in-
fections [8–11]. Moreover, amyloids can also indirectly accelerate the 
onset of other diseases through cross-seeding, where one type of amyloid 
aggregate promotes the self-assembly of a different type of 
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amyloidogenic protein [12].
The aggregation of protein-based products is a significant concern in 

the biopharmaceutical industry. While not always amyloid-like, such 
aggregation can result in substantial economic losses, leading to pro-
duction bottlenecks, particularly in developing biotherapeutics and 
other protein-based products [13]. Consequently, considerable effort 
has been devoted to minimizing aberrant self-assembly during the 
development, production, and formulation of these proteins [14].

The same properties of amyloids that lead to their pathological ag-
gregation in cells, in turn, are beneficial for organisms to develop spe-
cific biological functions such as scaffolding bacterial biofilms, 
eukaryotic eggshells or serving as amino acid storage in plant seeds 
[15–17]. This phenomenon prompted efforts to generate amyloids of 
functionalized self-assembled nanostructures [18,19]. Moreover, dis-
turbing protein homeostasis by inducing protein aggregation has been 
shown as a viable antimicrobial strategy [20,21].

A protein’s aggregation propensity is primarily determined by its 
amino acid sequence and the spatial arrangement of such residues. 
Consecutive amino acids with high aggregation propensity constitute 
aggregation-prone regions (APRs). High hydrophobicity, low local or 
net charge and a favorable propensity to form a β-sheet structure are 
considered the primary factors contributing to amyloid aggregation of 
linear amyloid sequences [2,6,22]. Cryptic Amyloidogenic Regions 
(CARs) are sequential stretches found in disordered proteins with mild 
amyloidogenic character [23]. CARs are widespread in IDRs and other 
low-complexity regions such as PrLDs [24]. This is due to their lower 
risk of undergoing pathogenic aggregation while maintaining a high 
prevalence to establish functional protein-protein interactions.

On the other hand, folded proteins may display spatially clustered 
APRs (STAPs), including non-consecutive amino acids [5]. However, 
clustered hydrophobic amino acids protected from the solvent in the 
hydrophobic core or transmembrane segments have negligible effect on 
protein aggregation. Thus, knowledge of their 3D conformation is 
required to correctly assess folded proteins’ aggregation potential in 
their native state. These sequential and structural elements, among 
others, dictate the amyloid-forming capabilities of proteins.

The protein aggregation propensity of a given polypeptide can be 
heavily modulated by environmental factors impacting the reaction’s 
kinetics, thermodynamics or structural properties. Protein concentra-
tion, incubation temperature, pH, identity and osmolarity of salts, 
reducing/oxidizing compounds, post-translational modifications 
(PTMs), presence of lipids, presence or absence of pre-formed fibrils or 
other additives, as well as stirring the samples have a particular effect on 
the deposition process [25,26].

One of the specific examples of amyloids is prion proteins. Prusiner 
first coined the term “prion” to refer to the proteinaceous particle 
capable of inducing neurodegenerative conditions in mammals [27]. 
This protein could post-translationally convert the soluble native state 
into an infectious, self-templating and self-propagating cytotoxic 
conformation between cells, individuals and even species [28]. Expan-
sion of the prion phenomenon beyond mammalian diseases allowed the 
identification of novel prions and also of prion-like proteins and their 
prion-like domains (PrLDs): proteins capable of prion conversion but 
unable of transmission between individuals or species [29].

Due to the multifaceted complexity of amyloid aggregation, 
involving genetic, biochemical, and physicochemical factors, re-
searchers attempted to gather knowledge on that topic in dedicated 
databases [30]. This review aims to list the currently available databases 
on that topic, present their scope and discuss their co-evolution with 
dedicated predictive algorithms. Moreover, we showcase how the field 
of amyloid self-assembly impacts the prediction and annotation of 
non-amyloid aggregation.

2. Amyloid aggregation databases

In our analysis of amyloid databases, we categorize the available 

resources based on two primary criteria. Firstly, we differentiate be-
tween databases containing only information on amyloid sequences and 
those focusing on detailed structural data. Secondly, we classify these 
databases by the nature of their data, distinguishing between experi-
mentally confirmed data and emerging datasets of predicted amyloid- 
related properties (see Fig. 1 and Table 1).

2.1. AmyLoad

AmyLoad (http://comprec-lin.iiar.pwr.edu.pl/amyload/)[31] col-
lects peptides and proteins with experimentally verified amyloid pro-
pensity. The database stores 1400 entries with annotations on 
self-assembly potential and the experimental method and conditions 
employed to measure the aggregation.

2.2. AmyloBase

AmyloBase (http://bioserver2.sbsc.unifi.it/AmyloBase.html)[32]
collects experimental data on the self-assembly kinetics of point mutants 
of three unique proteins and peptides. The database contains the studied 
fragment position in protein, its length and mass, protein origin, mu-
tation type, number of hotspots, experimental conditions (pH, protein 
concentration, ionic strength, temperature), study method, the kinetics 
of aggregation (e.g., lag phase) and if the end product is amyloid fibrils.

2.3. AmyloGraph

AmyloGraph (http://amylograph.com/)[33] explores the concept of 
how different amyloid precursor proteins impact aggregation and am-
yloid formation of one another. The database stores manually curated 
data from 562 manuscripts, resulting in 896 records of experimentally 
derived data on amyloid-amyloid interactions for 46 amyloidogenic 
proteins. Each entry represents one interaction and can be studied as a 
graph or table. In the table format, users can find both interacting pro-
teins’ sequences, their length, impact on aggregation speed and fibril 
morphology (homo- or heterogeneous).

2.4. Amyloid atlas

Amyloid Atlas (https://people.mbi.ucla.edu/sawaya/amyloidatlas/)
[1] provides a manually curated list of structures of human pathological 
amyloids based on cryogenic electron microscopy (cryo-EM), solid-state 
nuclear magnetic resonance (ssNMR) and microcrystal electron 
diffraction amyloid structures derived from PDB [42]. Storing 506 fibril 
entries at the moment of writing, Amyloid Atlas is the most compre-
hensive resource dedicated to the 3D structures of amyloids. Each entry 
contains the protein’s name, origin, and the 3D structure colored ac-
cording to the residue polarity and estimated solvation energy. Ener-
getic stabilization is also itemized per chain, layer, and residue.

2.5. AmyPro

The AmyPro database (http://amypro.net)[34] covers 125 records 
categorized using four labels: functional amyloid, functional prion, 
pathogenic, biologically not relevant or not known. Each entry provides 
protein sequence with highlighted APRs. In the case of proteins with 
solved 3D structures, amyloid-forming stretches are marked on top. 
Moreover, AmyPro provides links to relevant publications describing 
amyloidogenicity of proteins.

2.6. Cryptic amyloidogenic regions database (CARs DB)

CARs-DB (http://carsdb.ppmclab.com/)[35] collects CARs within 
intrinsically disordered regions (IDRs), which are more polar and have 
milder aggregation potential than amyloidogenic stretches found in 
globular proteins. CARs-DB offers more than 8900 unique CARs across 
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1711 IDRs derived from the DisProt database [43]. Each CAR is 
described by its sequence, protein of origin, CAR position in the IDR and 
the Waltz score.

2.7. Curated protein aggregation database (CPAD) 2.0

CPAD 2.0 (https://web.iitm.ac.in/bioinfo2/cpad2/index.html)[36, 
44] stores manually curated entries related to protein aggregation and is 
enriched with kinetic and structural information. The collection is 
divided into four databases: amyloidogenic peptides, APRs, aggregation 
kinetics, and structures of amyloid fibrils and amyloid-precursor pro-
teins. The first one, peptide-centric, contains peptide sequence, its 
length, position in a sequence, origin, class (amyloid or non-amyloid), 
net and absolute charge, and results from NuAPRpred, TANGO [45], 
AGGRESCAN [46] and PASTA 2.0 [47]. The APR collection describes 
experimentally validated APRs, including peptide origin, category, 
mutation type, prion properties (if observed), APRs’ protein position, 
length and sequence. The database of self-assembly kinetics gathers 
protein aggregation kinetic data, sequence type (wild or mutated), 
experimental conditions and measurement method. The database also 
features protein and peptide 3D structures, including the monomer 
length, origin, mutation type, class (amyloid or non-amyloid precursor), 
structure determination method, and resolution, if applicable.

2.8. Cross-beta DB

Cross-Beta DB (https://crossbetadb.crbm.cnrs.fr/)[37] gathers 

amyloid-forming regions of the naturally occurring cross-β structures 
within amyloid fibrils. The database is the result of careful manual 
curation on experimentally tested cross-β amyloid forming stretches. It 
contains 115 individual entries from 44 different amyloid-precursor 
proteins. In each entry, protein’s origin, sequence, length, Arch-
candy2.0 [48] prediction results, experimental conditions (protein 
concentration, pH, temperature, buffer), measurement method and fibril 
state can be found. Moreover, the APR sequence, position, molecular 
weight and mutations, among others, are displayed. The experimentally 
obtained 3D structure can also be viewed alongside the amino acid 
composition graph.

2.9. Fibrillizer

Fibrillizer (https://amyloid.cs.mcgill.ca/database/index.html) col-
lects results from CreateFibril [38], a tool that builds fibril atomic res-
olution models. The database focuses on energetically favorable amyloid 
fibril polymorphism, storing potential multiple combinations of ener-
getically possible supra-fibrillar assemblies in the form of single, stack, 
ring and polygon structures for three proteins: Aβ42, Aamylin and 
HET-s.

2.10. Prionscan

PrionScan (http://webapps.bifi.es/prionscan/)[39] stores predicted 
prion-like proteins from complete proteomes. It stores approximately 
28000 PrLDs for over 3200 organisms covering major taxonomic 

Fig. 1. Summary of active amyloid databases. A distinction is made on the source of their information (experimental or predicted) and the level of structural 
complexity considered (sequences or structures).
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divisions. Each entry displays the protein’s sequence and origin, and the 
predicted prion domain can be highlighted.

2.11. Structural analysis of Amyloid polymorphs (StAmP)

The StAmP (https://stamp.switchlab.org/)[40] database focuses on 
the structural diversity of amyloid fibril polymorphisms. The database, 
which results from manual curation and is enriched by automatic bio-
informatic analyses, gathers 133 experimentally solved fibril structures 
using ssNMR, solution NMR and cryo-EM from amyloidogenic proteins. 
STAmP combines all available polymorph structures for a given protein 
with their APRs. Each entry has a short description indicating mutation 
type, studied fragment position and method, 3D model and thermody-
namic profile. If applicable, it includes annotations about the specific 
amyloidosis it is found in, the tissue it was derived from and whether it 
was of human origin. Mutants can be compared using a correlation 
matrix.

2.12. Waltz-DB 2.0

The original Waltz-DB gathered experimentally verified hexapep-
tides [49]. The newest database iteration, Waltz-DB 2.0 (http://waltzdb. 
switchlab.org/), expands the original concept with structural informa-
tion [41]. Currently, it stores 1416 peptide records, 512 of them have 
amyloid-forming properties and 904 self-assemble into amorphous ag-
gregates. Each entry contains peptide sequence, information on its 

ability to form amyloid fibrils, source protein identifier and the position 
of a peptide in its sequence. Moreover, it reports experimental (TEM, 
ThT assay, FTIR, Proteostat assay) and predicted results (WALTZ, 
TANGO, PASTA). It also provides computed hydrophobicity and pro-
pensity to form amyloid structures, energy calculations and 3D structure 
predicted by CORDAX [50]. If applicable, Waltz-DB includes a micro-
scopic image of fibril and aggregation kinetics.

2.13. Merits and shortcomings of amyloid and aggregation databases

Despite described efforts to provide the community with curated 
resources on the amyloid formation phenomenon, they all present ca-
veats and limitations given their scope or chosen architecture (Table 2). 
One of the most prevalent problems is having a limited search engine 
that hinders finding the desired entries. Another widespread and closely 
related technical limitation is the limited exporting capabilities of the 
data into established formats (like CSV or JSON). In addition, some 
databases limit the amount and type of downloadable information. For 
instance, AmyLoad allows obtaining entry names, polypeptide se-
quences, and amyloid propensities in bulk. However, users must access 
each entry individually if they are interested in the information on 
experimental procedures or the associated references. Some databases 
do not provide full dataset download but restrict the data obtention to a 
single entry, as for CPAD 2.0. The last technical aspect is the difficulty of 
the database usage, mostly related to the user interface or a way of 
presenting the data.

The database usability is secondary to the data quality provided by 
each source. Some databases offer limited information on their entries, 
either because the individual records are described using very few de-
tails or contain missing items. Another important consideration involves 
databases that provide predicted results. While these resources enable 
immediate access to the results of predictive algorithms, it is essential to 
remain mindful of the limitations tied to each predictive algorithm. 
Finally, several databases gather a low number of entries, often 
reflecting a focus on a particular topic, like naturally occurring cross-β 
forming amyloid databases (Cross-Beta DB).

The diversity of data stored in these databases allows for exploring 
mechanisms of protein aggregation and amyloidosis from different an-
gles. However, this diversity hinders the compilation of available re-
sources into a single knowledge base and the subsequent development of 
the unified benchmark dataset for predictors of amyloidogenicity. 
Instead, the tools solve a problem best described by a single available 
dataset.

One major limitation affecting efforts at predicting amyloidogenicity 
of proteins and peptides is the unanimous focus on sequences as its sole 
determinant. Although this process is directly tied to the properties of 
protein sequences, it is heavily influenced by environmental conditions. 
Therefore, while it is intractable to perform all experiments in vivo, more 
emphasis should be put on reporting the exact conditions where amy-
loidogenicity is observed. Recently, the MIRRAGGE initiative (Minimum 
Information Required for Reproducible AGGregation Experiments) 
established a standardized framework for reporting protein aggregation 
experiments [51], aiming to increase the consistency and reproduc-
ibility of experimental data and subsequently harmonize descriptions of 
reported experimental conditions. It is paramount to develop tools to 
assess whether aggregation occurs in physiologically compatible con-
ditions and predict the influence of environmental factors.

3. Other amyloid- and aggregation-related databases

The importance of amyloid self-assembly has led to the creation of 
several databases that compile extensive information on this complex 
process. While the databases discussed in Section 2 focus on the bio-
physical aspects of amyloid aggregation, other resources address 
different aspects of this issue. Databases such as ALZGENE [52], 
PDGENE [53], or ALSGENE [54] explore the genetic patterns 

Table 1 
Amyloid databases described in this manuscript. The interactive table with 
extended database descriptions is available online at: https://biogenies. 
info/amyloid-database-list/. Abbreviations used in the table: ENA: European 
Nucleotide Archive; CPAD: Curated Protein Aggregation Database; KEGG: Kyoto 
Encyclopedia of Genes and Genomes.

Database Link to database Reference Data sources and links 
to other databases 
and software

AmyLoad http://comprec-lin. 
iiar.pwr.edu.pl/ 
amyload/

Wozniak and 
Kotulska [31]

TANGO; WALTZ; 
AmylFrag; 
AGGRESCAN; 
AmylHex; PubMed

AmyloBase http://bioserver2. 
sbsc.unifi.it/ 
AmyloBase.html

Belli, Ramazzotti, 
and Chiti [32]

PubMed; UniProt

AmyloGraph http:// 
amylograph.com/

Burdukiewicz 
et al. [33]

PubMed; UniProt

Amyloid 
Atlas

https://people. 
mbi.ucla.edu/ 
sawaya/ 
amyloidatlas/

Sawaya et al. [1] PDB; PubMed

AmyPro http://amypro.net Varadi et al. [34] PDB; UniProt; 
PubMed

CARs DB http://carsdb. 
ppmclab.com/

Pintado-Grima, 
et al. [35]

DisProt; UniProt

CPAD 2.0 https://web.iitm. 
ac.in/bioinfo2/ 
cpad2/index.html

Rawat et al. [36] CPAD; Waltz-DB 2.0; 
AmyLoad; AmyPro; 
UniProt; PDB; 
PubMed

Cross-Beta 
DB

https:// 
crossbetadb.crbm. 
cnrs.fr/

Gonay et al. [37] PDB; AmyPro; 
UniProt; PubMed

Fibrilizer https://amyloid.cs. 
mcgill.ca/ 
database/index. 
html

Smaoui et al. [38] PDB

PrionScan http://webapps. 
bifi.es/prionscan/

Espinosa Angarica 
et al. [39]

UniProt; ENA; 
Protein; KEGG; Pfam; 
QuickGO

StAmP https://stamp. 
switchlab.org/

Louros et al. [40] WALTZ-DB; AmyPro; 
CPAD; PDB; UniProt

Waltz DB 2.0 http://waltzdb. 
switchlab.org/

Louros, 
Konstantoulea, 
et al. [41]

PubMed; UniProt; 
PDB

V. Iglesias et al.                                                                                                                                                                                                                                 Computational and Structural Biotechnology Journal 23 (2024) 4011–4018 

4014 

https://stamp.switchlab.org/
http://waltzdb.switchlab.org/
http://waltzdb.switchlab.org/
https://biogenies.info/amyloid-database-list/
https://biogenies.info/amyloid-database-list/


influencing the pathological amyloid accumulation in AD, PD, and ALS, 
respectively, reporting genetic association of gene variants or 
non-synonymous single nucleotide polymorphisms (SNPs) to these dis-
orders. By covering meta-analyses from multiple Genome-Wide Associ-
ation Studies (GWAS) or association studies, novel genes with roles in 
these amyloidosis (other than the aggregating amyloid protein) can be 
established. For instance, an increase of the cleavage of amyloid-beta 
precursor protein (APP) into the Aβ peptide can be observed due to a 
SNP in Calcium homeostasis 1 (CALHM1) that causes dysregulation of 
Ca2+ homeostasis [55] and by a combination of low expression levels of 
Oxysterol-binding protein-1 (OSBP1) and high intracellular cholesterol 
levels [56].

AL-Base [57] takes a more protein-centric approach while main-
taining a clear focus on disease. It is a database of antibody light chain 
sequences associated with plasma cell dyscrasias, especially immuno-
globulin light chain amyloidosis. The database contains almost 5000 
nucleotide and protein sequences, categorized by germline (κ, λ) and 
clinical status.

The αSynPEP-DB [58] was based on the discovery of naturally 
occurring LL-37 human peptide that was observed to inhibit the ag-
gregation of alpha-synuclein protein (αSyn) [59,60]. The database 
gathers 123 biogenic peptides found in PD-relevant tissues predicted to 
have similar inhibitory potential. These peptides with unique structural 
information are predicted to bind only to the toxic species of αSyn and 
hold promising therapeutic potential for PD. Each record has peptide 
name, inhibitory sequence and length, type (neuropeptide, antimicro-
bial, food-derived, gut-microbiome), helical score, hydrophobic score, 
dipole moment, and net charge per residue. Expanded information on 
the peptide such as predicted cytotoxicity, blood-brain barrier perme-
ability or expression levels can be found in each entry.

Amyloid aggregation could also be considered one of the subfields of 
general protein aggregation. The Aggrescan3D Model Organism Data-
base (A3D-MODB) [61], built upon predictions of Aggrescan3D 2.0 [62], 
focuses on protein aggregation. A3D-MODB provides proteome-wide 
predictions for protein solubility and aggregation properties from the 
native state for 12 model organisms. Each entry includes a detailed 
description of the protein’s structure and aggregation propensity.

The self-assembly of amyloid fibrils has a low thermodynamic cost, 
making them useful for nanomaterial development. As a result, some 
databases focus on collecting data related to amyloid aggregation from a 
nanotechnology perspective. For example, SAPdb [63] contains 1049 
entries of experimentally validated nanostructures formed by tripep-
tides, dipeptides, and single amino acids. It also provides detailed in-
formation about their chemical modifications and experimental 
conditions. While the data primarily comes from amyloid-related re-
sources like AmyLoad and Waltz-DB, this database presents the infor-
mation uniquely by filtering based on the size of the self-assembled 
nanostructure.

4. Co-evolution of amyloid databases and prediction of amyloid 
propensity

Amyloid self-assembly datasets and databases have been pivotal for 
pushing forward the understanding of protein aggregation. In part, these 
resources have paved the way for the development of predictive tools 
(Fig. 2). Initially, the collection of sequences capable of amyloid self- 
assembly was motivated by an attempt to disentangle the underlying 
mechanisms behind this process. In an early study, Chiti et al. conducted 
multiple mutations on the acylphosphatase protein, measuring the 
changes in aggregation rate in vitro, and gathered bibliographical data 
for seven other polypeptides [64]. The expansion of this initial dataset 
[65,66], led to the development of the Zyggregator prediction method 
[67].

Similarly, López de la Paz and Serrano performed saturation muta-
genesis on all positions of an amyloid-forming peptide [68]. The findings 
of this study and the community-generated AmylHex database [69]
spurred the development of the Waltz algorithm, which utilizes 
position-specific scoring matrices to predict amyloid propensity [70]. 
The data used to develop Waltz was expanded by an order of magnitude 
with 1089 experimentally and bibliographically obtained hexapeptides, 
leading to the development of Waltz-DB. Anew, this expanded dataset 
facilitated the development of new tools for predicting amyloid aggre-
gation, including CORDAX [50]. The idea of predicting APRs was further 
refined by the IMPAcT [71], which leverages data from ZipperDB [72] to 
define the effect of point mutations on the amyloid propensity of 
proteins.

Correspondingly, the dataset of point mutations of Aβ obtained in 
cellulo [73], later included in AmyloBase, led to the development of 
AGGRESCAN [46]. Despite this starting point, the newest iteration of 
this algorithm, Aggrescan4D, predicts the general aggregation pro-
pensity of globular proteins considering their 3D structure and the pH of 
the solution [74,75].

Even very narrowly specialized datasets enable the development of 
predictive models. For example, AmyloGraph, a database of amyloid 
interactions, was used to develop AmyloComp, an algorithm to estimate 
the structural potential of two sequences to form heterogeneous amyloid 
fibrils [76] and PACT, dedicated to predicting cross-interactions be-
tween amyloid proteins [77].

5. Conclusions

The complexity of amyloid aggregation has led to a large information 
influx, which soon matured into databases. Experimental data and 
predictions, organized into structured resources, have triggered the 
development of bioinformatic algorithms for predicting amyloidoge-
nicity and amorphous protein aggregation. These tools have, in turn, 
accelerated new experimental studies, which have provided data for 
expanding existing databases and enabling the development of new 
ones. This cyclic process has significantly improved the understanding of 
the physicochemical determinants that drive soluble proteins into 

Table 2 
Main limitations of described databases.

Database Limited filtering Limited exports Hard to navigate or use Limited entry information Prediction database Low number of entries

AmyLoad X X  X  
AmyloBase X X    X
AmyloGraph   X   
Amyloid Atlas X X    
AmyPro X     X
CARs DB X    X 
CPAD 2.0   X   
Cross-Beta DB      X
Fibrilizer X X  X X X
PrionScan     X 
StAmP X     
Waltz DB 2.0      X
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aggregates, ultimately leading to increased success in developing and 
formulating protein-based products and therapeutics, anti-aggregation 
therapies for amyloidosis, and the creation of novel technological ap-
plications. Acknowledging the challenges of identifying variables 
involved in each experiment, we believe that integrating the data stored 
in these resources will allow the development of highly accurate ma-
chine learning-assisted predictive methods, expanding our understand-
ing of the physicochemical determinants that drive proteins into 
amyloid aggregates.
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