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Abstract. Dupin cyclides are surfaces conformally equivalent to a torus, a circular cone, or
a cylinder. Their patches admit rational bilinear quaternionic Bézier (QB) parametrizations
and are used in geometric design and architecture. Dupin cyclidic cubes are a natural
trivariate generalization of Dupin cyclide patches. In this article, we derive explicit formulas
for control points and weights of rational 3-linear QB parametrizations of Dupin cyclidic
cubes and relate them with classical Miquel point construction.
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Introduction

Dupin cyclides, i.e., surfaces conformally equivalent to a torus, circular cone, or cylin-
der, have versatile applications in geometric design and architecture. They have cir-
cular curvature lines. Their patches bounded by 4 circles, which are curvature lines,
allow rational bilinear quaternionic Bézier (QB) parametrizations and offer signifi-
cant advantages in modeling complex shapes. Building on the foundational concepts
of Dupin cyclide principal patches, Dupin cyclidic (DC) cubes represent a natural
trivariate extension. We can effectively model these higher-dimensional structures by
employing rational trilinear QB parametrizations.

This paper presents explicit formulas for the control points and weights necessary
for the rational trilinear QB parametrizations of DC cubes. Additionally, we establish
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a connection between these parametrizations and the classical Miquel point construc-
tion. The quaternionic representations of DC cubes were recently used in [1], and
the present paper supports these results. Using geometric constructive derivation, a
preliminary QB formula for DC cubes was given in [2].

1 Quaternions and inversions

The algebra of quaternions H is the real non-commutative algebra generated by
{i, j,k} satisfying the product rules i2 = j2 = k2 = ijk = −1. It is a 4-dimensional
real vector space with the standard basis {1, i, j,k}. For a quaternion q written in the
algebraic form q = r+xi+yj+zk, define the real part Re(q) = r, the imaginary part
Im(q) = q − Re(q), the conjugate q̄ = Re(q) − Im(q), and the norm |q| =

√
qq̄. The

algebra H is also a division ring, meaning that every non-zero element is invertible.
If q ̸= 0, its inverse is q−1 = q̄/|q|2. The properties of conjugation and norm are
the same as those of complex numbers, but care must be taken to account for non-
commutativity when permuting product elements; e.g., qp = p̄q̄. We refer to [2, 3]
for further details about quaternionic products and their relation to the standard dot
and cross products in R3. The Euclidean space R3 here is identified with the space
of imaginary quaternions ImH = {q ∈ H | Re(q) = 0}.

Since we are dealing with objects composed of circles and lines in R3, it is natural
to use inversion transformations that preserve the set of circles and lines and angles
between crossing curves, known as conformal transformations. In the quaternionic
framework, an inversion Invr

q with respect to a sphere of center q ∈ ImH and radius
r > 0 can be written explicitly as

Invr
q(p) = q − r2(p− q)−1 ∈ ImH

for all p ∈ ImH. On the compactified space R̂3 = R3 ∪ {∞}, which is identified with
ImĤ = ImH ∪ {∞}, Invr

q is an involution transformation mapping the center q to ∞
and vice versa. The group generated by inversions is called the group of Möbius trans-
formations. Euclidean similarities are particular cases of Möbius transformations; see
[3] for more details.

2 Rational quaternionic Bézier curves

For two quaternions U,W , define the quaternionic fraction U
W = UW−1 if W ̸= 0 and

U
W = ∞ if W = 0. A rational quaternionic Bézier (QB) curve C(t) of degree n is
defined by the following data:

• Control points pi ∈ H, i = 0, . . . , n;

• Weights wi ∈ H, i = 0, . . . , n;

such that

C(t) =

∑n
i=0 piwiB

n
i (t)∑n

i=0 wiBn
i (t)

,
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where Bn
i (t) =

(
n
i

)
(1− t)n−iti are Bernstein basis polynomials. The matrix(

ui

wi

)
i=0...n

=

(
piwi

wi

)
i=0...n

is called the homogeneous representation of the curve C(t). We will be interested in
the linear case (n = 1).

Remark 1. QB formulas are preserved by inversions in the following sense: an inversion
Invr

q maps a QB formula with homogeneous control points (ui, wi) to a QB formula
with homogeneous control points (u′

i, w
′
i) such that

u′
i = qui − (r2 + q2)wi, w′

i = ui − qwi. (1)

To model curves in R̂3, let us standardize the condition for an arbitrary pair (U,W )

of quaternions to define a point UW−1 ∈ R̂3. By identifying H2 with R8, define the
quadratic form S in R8 by

S(u,w) =
uw̄ + wū

2
, (u,w) ∈ H2. (2)

The quadric in RP 7 (real projectivization H2) defined by S(u,w) = 0 is called the
Study quadric, which we denote by S as well. Let π : H2 → H ∪ ∞ such that
π(u,w) = uw−1. The following is straightforward:

Lemma 1. π(u,w) = uw−1 ∈ R̂3 if and only if (u,w) ∈ S.

To design a QB curve in R̂3, we follow the following routines:

• The control points pi are contained in R̂3;
• The homogeneous control points (piwi, wi) are contained in the Stdudy quadric;
• Consider the pair (U(t),W (t)) as a standard Bézier curve with real weights in

the Study quadric. Then, apply the projection π to get a curve in R̂3; see the
diagram below.

[0, 1] S ⊂ RP7 t (U(t),W (t))

R3 ∪ {∞} U(t)W (t)−1

ι

π◦ι π

ι

π◦ι
π

Example 1. A circular arc with endpoints p0, p1 and a tangent vector v1 at p0 can be
parametrized using the QB formula:(

u0 u1

w0 w1

)
=

(
p0 p1(p1 − p0)

−1v1
1 (p1 − p0)

−1v1

)
. (3)

Such formulas can be found in [1, 2, 3]. Note that if p0 = ∞, then we have a semi-line
starting from p1 in the direction of v1. This semi-line can be parametrized using the
QB formula: (

u0 u1

w0 w1

)
=

(
1 −p1v1
0 −v1

)
. (4)
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A reparametrization of the arc is obtained if we multiply w1 by a constant λ > 0.
If λ < 0, then a parametrization of the complementary arc is obtained. If the arc is
defined by the endpoints p0, p1 and a point q on the complementary arc, then the
weights can be assigned as

w0 = (q − p0)
−1, w1 = (p1 − q)−1.

3 QB formulas for Dupin cyclide principal patches

A bivariate generalization of the QB formula of circular arcs yields a so-called Dupin
cyclide principal patch. They are quad patches bounded by 4 circular arcs intersecting
orthogonally at the corner points. Note that the 4 corner points are always cocircular.
This circularity condition can be interpreted in terms of cross-ratio. The cross-ratio
between points p0, p1, p2, p3 ∈ ImH is defined as

cr(p0, p1, p2, p3) = (p0 − p1)(p1 − p2)
−1(p2 − p3)(p3 − p0)

−1,

whenever the product is well-defined.

Remark 2. Four points p0, p1, p2, p3 ∈ ImH are cocircular if and only if their cross-ratio
is real; see [3, Lemma 2.3].

A Dupin cyclide principal patch is uniquely determined by its four cocircular
corner points and tangent vectors v1, v2 at one corner point. The tangent vectors
at other points are obtained by reflection along the respective edges. The following
results about QB representation of principal patches follow from [1, Theorem 2.2]. Let
a Dupin cyclide principal patch be defined by cocircular corner points p0, p1, p2, p3
and orthogonal tangent vectors v1 and v2 at p0 and let v3 = v1v2. Then, this patch
can parametrized using the bilinear QB formula with the following homogeneous
representation:

(i) p0 = ∞ and p1, p2, p3 are collinear, p1 ̸= p2, then the first control point is
(u0, w0) = (1, 0), and the others are (piwi, wi) such that

w1 = −v1, w2 = −v2, w3 = (p1 − p2)v3. (5)

(ii) all control points are finite, only p1 and p2 may coincide with p3, then

w0 = 1, w1 = q01v1, w2 = q02v2, w3 = q03(q01 − q02)v3, (6)

where q0i = (pi − p0)
−1 for i = 1, 2, 3.

4 QB formulas for Dupin cyclidic cubes

A DC cube is a 3-linear rational quaternionic map

F : [0, 1]3 → R̂3, F = UW−1, U,W ∈ H[s, t, u],

such that all three partial derivatives ∂sF , ∂tF , ∂uF are mutually orthogonal, and
the Jacobian Jac(F ) is not identically zero. As we will investigate, DC cubes can
be expressed using QB formulas with their 8 corner points as control points and
quaternionic weights. We refer to [1] for more details about a DC cube construction.
We will highlight the following essential properties:
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(a) Initial data for the DC cube construction. (b) Three compatible faces of a DC cube.

(c) The Miquel point p7. (d) The resulting DC cube.

Fig. 1. Steps of a DC cube construction.

• The 8 control points of a DC cube are always cospherical or coplanar.
• A DC cube is uniquely defined by its 3 adjacent faces at one corner point, see

Fig. 1(b).
• The condition to make a compatible 3 adjacent faces at a corner point, say p0,

can be defined by the data: an orthonormal frame v1, v2, v3 at p0, corner points
p1, p2, p4; a point pi+j on the circle (p0pipj), i, j ∈ {1, 2, 4}.

• The last control point p7 can be derived using Miquel theorem about the inter-
section of 3 circles; see Fig. 2 or the explanation in [1] for more details.

This paper’s derivation first constructs a DC cube using one corner point on
infinity and then applies inversions to derive the QB formula for general DC cubes.

Theorem 1. Let a DC cube be defined by 8 corner points p0 = ∞, p1, p2, p4 ∈ ImH,
p3, p5, p6 on the lines (p1p2), (p1p4), (p2p4) respectively, with the associated Miquel
point p7 and an orthonormal frame {v1, v2, v3 = v1v2} ⊂ ImH at p0. Then, we can
parametrize it using a trivariate QB parametrization with the following homogeneous
control points:(
1 −p1v1 −p2v2 p3(p1 − p2)v3 −p4v3 p5(p4 − p1)v2 p6(p2 − p4)v1 p7w7

0 −v1 −v2 (p1 − p2)v3 −v3 (p4 − p1)v2 (p2 − p4)v1 w7

)
,

where w7 has the following equivalent expressions
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(a) Initial data for a DC cube with one corner point on infinity.

(b) Three compatible faces of a DC cube with
a common intersection point on infinity.

(c) The resulting 6 faces of the DC
cube from 3 compatible faces.

Fig. 2. DC cube construction steps with one control point on infinity.

w7 = (p7 − p1)
−1(p4 − p1)(p3 − p5)(p1 − p2) (7)

= (p7 − p2)
−1(p1 − p2)(p6 − p3)(p2 − p4) (8)

= (p7 − p4)
−1(p2 − p4)(p5 − p6)(p4 − p1). (9)

Proof. Let f0123, f0415 and f0246 be the initial three faces of the DC cube meeting
at p0 = ∞; see Fig. 2(b). Using formula (5), we obtain the presented formula for wi,
i = 0, . . . , 6. Note that the frames at p1, p2, and p4 for the DC cube are the same.
On the face f4567, we compute the weights using formula (6). This gives

w′
4 = 1, w′

5 = (p5 − p4)
−1v1, w′

6 = (p6 − p4)
−1v2,

w′
7 = (p7 − p4)

−1(p6 − p4)
−1(p6 − p5)(p5 − p4)

−1v3.

To get the compatibility at p4, we need to multiply such weights with −v3. This gives

w′′
4 = −v3, w′′

5 = (p5 − p4)
−1v2, w′′

6 = −(p6 − p4)
−1v1,

w′′
7 = (p7 − p4)

−1(p6 − p4)
−1(p6 − p5)(p5 − p4)

−1.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR


Formula for Dupin cyclidic cube and Miquel point 7

To get the compatibility at p5 and p6, we multiply w′′
5 by λ1 = (p4 − p1)(p5 − p4)

and w′′
6 by λ2 = −(p2 − p4)(p6 − p4). Note that λ1 and λ2 are real because the

points p1, p4, p5 and similarly p2, p4, p6 are collinear. Hence, a reparametrization of
the face f4567 using w′′

4 = w4, λ1w
′′
5 = w5, λ2w

′′
6 = w6 and λ1λ2w

′′
7 = w7, which is

the compatible weight at p7. In the product λ1λ2w
′′
7 , the factors p5 − p4 and p6 − p4

of λ1 and λ2 will be eliminated, giving the formula (9) for w7. By studying the
compatibility similarly on the faces f1357 and f2637, we obtain alternative formulas
for w7 in (7) and (8). It follows from the compatibility lemma [1, Lemma 3.3] that
the 3 found weights have to coincide, giving a compatible parametrization of the DC
cube. ⊓⊔

Corollary 1. The Miquel point p7 can be expressed as

p7 = p1 +A(A−B)−1(p2 − p1) (10)

= p2 +B(B − C)−1(p4 − p2) (11)

= p4 + C(C −A)−1(p1 − p4), (12)

where A, B, C are the right-quaternionic factors of w7, namely

A = (p4 − p1)(p3 − p5)(p1 − p2),

B = (p1 − p2)(p6 − p3)(p2 − p4),

C = (p2 − p4)(p5 − p6)(p4 − p1).

Proof. From (7) and (8), we have w7 = (p7 − p1)
−1A = (p7 − p2)

−1B. This implies

BA−1 = (p7 − p2)(p7 − p1)
−1

= (p7 − p1 + p1 − p2)(p7 − p1)
−1

= 1 + (p1 − p2)(p7 − p1)
−1.

Hence (p7 − p1)
−1 = (p1 − p2)

−1(BA−1 − 1) = (p1 − p2)
−1(B −A)A−1, i.e, p7 − p1 =

A(B −A)−1(p1 − p2) = A(A−B)−1(p2 − p1). We obtain (10) by adding p1 on both
sides. The expressions (11) and (12) can be obtained similarly by considering other
pairs of expressions for w7. ⊓⊔

We apply inversions to relate the formula in Theorem 1 to a general formula for
DC cubes with finite control points.

Theorem 2. Let a DC cube be defined by 8 cospherical corner points p0, p1, p2, p4 ∈
ImH, p3 on the circle (p0p1p2), p5 on the circle (p0p1p4), p6 on the circle (p0p2p4),
the associated Miquel point p7, and an orthonormal frame {v1, v2, v3 = v1v2} ⊂ ImH
at p0; see Fig. 1. Let q0i = (pi − p0)

−1 for i = 1, . . . , 7. Then, this cube can be
parametrized using the homogeneous control points (piwi, wi), i = 0, . . . , 7, where

w0 = 1, w1 = q01v1, w2 = q02v2, w4 = q04v3,

w3 = q03(q01 − q02)v3, w5 = q05(q04 − q01)v2, w6 = q06(q02 − q04)v1,

w7 = −q07(q07 − q01)
−1(q04 − q01)(q03 − q05)(q01 − q02).

Liet.matem. rink. Proc. LMS, Ser. A, 65:1–8, 2024
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Proof. This is equivalent to the formula in Theorem 1 using inversions as addressed
in Remark 1. For instance, let us consider the derivation of w7. We apply first Inv1

p0

and all the control points are transformed to p′0 = ∞ and p′i = p0 − q0i, i = 1, . . . , 7.
By Theorem 1, we have w′

7 = (q07 − q01)
−1(q04 − q01)(q03 − q05)(q01 − q02). Hence, by

applying the same inversion, we obtain w7 = (p′7 − p0)w
′
7 = −q07w

′
7. This coincides

with the displayed formula for w7. ⊓⊔

The following result follows from Corollary 1 by applying inversions.

Corollary 2. With the notations in Theorem 2, the 8th control point p7 of the DC
cube, analogue of the Miquel point on the plane, can be expressed as

p7 = p0 +
[
q01 +A′(A′ −B′)−1(q02 − q01)

]−1
, (13)

where

A′ = (q04 − q01)(q03 − q05)(q01 − q02),

B′ = (q01 − q02)(q06 − q03)(q02 − q04).

References

[1] J.M. Menjanahary, E. Hoxhaj, R. Krasauskas. Classification of dupin cyclidic cubes by
their singularities. Comput. Aided Geom. Des., 112:102362, 2024.

[2] S. Zube. Quaternionic Bézier curves, surfaces and volume. Liet. matem. rink. Proc.
LMS, Ser. A, 54:79–84, 2013.

[3] S. Zube, R. Krasauskas. Representation of Dupin cyclides using quaternions. Graph.
Models, 82:110–122, 2015.

REZIUMĖ

Dupino ciklidinio kubo formulė ir Miquelio taškas

J.M. Menjanahary, R. Krasauskas
Dupino ciklidės yra paviršiai, konformiškai ekvivalentūs torui, apskritiminiam kūgiui arba cilindrui.
Jų skiautės parametrizuojamos bitiesinėmis kvaternioninėmis Bézier (KB) formulėmis ir yra naudo-
jamos geometriniame modeliavime ir architektūroje. Dupino ciklidiniai kubai yra natūralus trima-
tis Dupino ciklidžių skiaučių apibendrinimas. Šiame straipsnyje mes pateikiame Dupino ciklidinių
kubų racionalių 3-tiesinių KB reprezentacijų kontrolinių taškų ir svorių formules, ir susiejame jas su
klasikine Miquelio taško konstrukcija.
Raktiniai žodžiai : Dupino ciklidė; Dupino ciklidinis kubas; kvarternioninė-Bézier formulė
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