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Abstract. A multi-succedent sequent calculus for intuitionistic epistemic logic (IEL) is
introduced in the paper. It is proved that the structural rules of weakening and contraction
and the rule of cut are admissible in the calculus. It is also proved that any sequent with at
most one formula in succedent is derivable in the calculus, iff it is derivable in the standard
non-multi-succedent sequent calculus of IEL.
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1 Introduction

Various intuitionistic modal [3, 7, 9] and temporal [1, 5] logics are consider in the
literature. Such logics are applied in various disciplines, ranging from economics to
computer science and mathematics. In [4], the intuitionistic epistemic logic (IEL)
is introduced. It is an intuitionistic modal logic where belief and knowledge are
considered from an intuitionistic point of view. An arbitrary proposition A is intu-
itionistically true if there is a direct proof of A. Hence ¬¬A does not imply A because
a proof of ¬¬A is not a proof of A, i.e., the formula ¬¬A → A is not intuitionistically
valid. The formula KA is understood in IEL as follows: given a proof P of A, an
agent knows, can verify, whether P is indeed a proof of A. The formula A → KA
(co-reflection) is valid. It states that if there is a proof of A, then an agent can always
verify that proof. On the other hand, the formula KA → A (reflection) is valid in
classical epistemic logics, but not in IEL. In the classical case it states that if an
agent knows A, then A is true. In the intuitionistic case it states that the fact that
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10 R. Alonderis

an agent can verify any proof of A implies that A is provable. The latter a statement
can not of course be held true.

A sequent calculus IEL−
G for IEL is introduced in [6]. Sequent calculi are handy

tools for validity check of formulas and sequents. In the present paper, we introduce a
multi-succedent sequent calculus IEL∗

G for IEL. Multi-succedent intuitionistic calculi
provide more flexible backward proof-search and are more convenient for implemen-
tation. IEL∗

G has more invertible rules rules than IEL−
G; consequently backward

proof-search using IEL∗
G requires less backtracking in comparison with IEL−

G.
The rest of the paper is organized as follows. Syntax and sequent calculi of the

intuitionistic epistemic logic are in Section 2. Admissibility of the structural rules of
weakening and contraction and invertibility of IEL∗

G rules are proved in Section 3.
In section 4, equivalence of IEL∗

G and IEL−
G for intuitionistic sequents as well as

admissibility of the rule of cut are proved. Some concluding remarks are in Section 5.

2 Syntax and sequent calculi

The language of IEL contains a set of propositional symbols, the constant ⊥, propo-
sitional connectives ∨,∧,→, and the unary modal operator K. The constant ⊥ or a
propositional symbol is called an atomic formula. We use the letter A to denote an
arbitrary atomic formula. Formulas are constructed traditionally from atomic formu-
las using the propositional connectives and modal operator. The letters F , G, and H
denote arbitrary formulas. We do not include the negation symbol ‘¬’ into syntax. A
formula ¬F is expressed by F → ⊥.

Sequents are objects of the shape Γ ⇒ ∆, where Γ and ∆ are finite multisets of
formulas. A sequent where ∆ ∈ {F, ∅} is called intuitionistic.

We recall the calculus IEL−
G introduced in [6]:

1. Axioms: Γ,A ⇒ A and Γ,⊥ ⇒ ∆.

2. Rules:

F,G, Γ ⇒ ∆

F ∧G,Γ ⇒ ∆
(∧ ⇒),

Γ ⇒ F Γ ⇒ G

Γ ⇒ F ∧G
(⇒ ∧),

F, Γ ⇒ ∆ G,Γ ⇒ ∆

F ∨G,Γ ⇒ ∆
(∨ ⇒),

Γ ⇒ Fi

Γ ⇒ F1 ∨ F2
(⇒ ∨), i ∈ {1, 2},

F → G,Γ ⇒ F G,Γ ⇒ ∆

F → G,Γ ⇒ ∆
(→⇒),

Γ, F ⇒ G

Γ ⇒ F → G
(⇒→),

Γ,Π,KΠ ⇒ θ′

Γ,KΠ ⇒ θ
(KI).

Here: all sequents are intuitionistic. θ = KF (θ ̸= KF ) and θ′ = F (θ′ = ∅,
respectively). KΠ denotes a multiset of formulas of the form KH. It is required
that formulas of the shape KG do not occur in Γ in the rule (KI). We have slightly
modified the calculus IEL−

G in [6] by replacing the rules (KI1) and (U) by the rule
(KI). If θ = KF (θ ̸= KF ), then (KI) is used instead of (KI1) (instead of (U),
respectively) in backward proof-search of sequents.

The calculus IEL∗
G is defined as follows:
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Multi-succedent sequent calculus for intuitionistic epistemic logic 11

1. Axioms: Γ,A ⇒ A,∆ and Γ,⊥ ⇒ ∆.

2. Rules:

F,G, Γ ⇒ ∆

F ∧G,Γ ⇒ ∆
(∧ ⇒),

Γ ⇒ F,∆ Γ ⇒ G,∆

Γ ⇒ F ∧G,∆
(⇒ ∧),

F, Γ ⇒ ∆ G,Γ ⇒ ∆

F ∨G,Γ ⇒ ∆
(∨ ⇒),

Γ ⇒ F,G,∆

Γ ⇒ F ∨G,∆
(⇒ ∨),

F → G,Γ ⇒ F,∆ G, Γ ⇒ ∆

F → G,Γ ⇒ ∆
(→⇒),

Γ, F ⇒ G

Γ ⇒ F → G,∆
(⇒→),

Γ,Π,KΠ ⇒ θ′

Γ,KΠ ⇒ θ
(KI).

Here: ∆ denotes an arbitrary multiset of formulas. θ = (KF,∆) (θ ̸= (KF,∆)) and
θ′ = F (θ′ = ∅, respectively). It is required that Γ ̸= (KG,Γ ′) in the rule (KI).

A proof-search of a sequent S in a sequent calculus (SC) is performed by subse-
quently applying backwards derivation rules of SC to S and the generated sequents,
obtaining a proof-search tree with S in the root, V (S) in notation. V (S) all branches
of which end up in axioms is called a derivation tree, and S is called derivable in
SC (SC ⊢V S in notation). The height of V (S) (hV (S) in notation) is the length of
its longest branch, where the length of a branch is measured by the number of rule
applications on it.

3 Some proof-theoretical properties of IEL∗
G

Let
S1 . . . Sn

S
(r)

be a n > 0 premise derivation rule. The rule is called height-preserving admissible in a
sequent calculus SC, if SC ⊢V i

Si implies SC ⊢V S, where hV i(Si) ⩽ hV (S), for all
1 ⩽ i ⩽ n. If it is not required that hV (S) ⩽ hV i(Si), then (r) is called admissible in
SC. Let (r) be in SC. The rule (r) is called height-preserving invertible, if SC ⊢V S

implies SC ⊢V i

(Si), where hV i(Si) ⩽ hV (S), for all 1 ⩽ i ⩽ n.
It is proved in [6] that the rule

Γ ⇒ F F,Π ⇒ θ

Γ,Π ⇒ θ
(cut)

is admissible in IEL−
G, where F is an arbitrary formula and θ ∈ {∅, G}.

Lemma 1. The rule of weakening

Γ ⇒ ∆

Π,Γ ⇒ ∆,Λ
(W )

is height-preserving admissible in IEL∗
G; here Π and Λ are arbitrary multisets of

formulas.
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12 R. Alonderis

Proof. Let IEL∗
G ⊢V (Γ ⇒ ∆). The lemma is proved by induction on hV . If

hV = 0, then the premise of (W ) is an axiom and the proof is obtained. Let hV > 0
and V be as follows:

V ′

F,G, Γ ′ ⇒ ∆
(∧ ⇒).

F ∧G,Γ ′ ⇒ ∆

The derivation height of F,G, Γ ′ ⇒ ∆′ is by one less than hV . We apply the inductive
hypothesis to that sequent and obtain IEL∗

G ⊢ Π,F,G, Γ ′ ⇒ ∆,Λ. Hence

Π,F,G, Γ ′ ⇒ ∆,Λ

Π,F ∧G,Γ ′ ⇒ ∆,Λ
(∧ ⇒).

The remaining cases of V are considered similarly, see e.g., [1, 8]. ⊓⊔

It is proved in [6] that the rule of weakening

Γ ⇒ θ

Π, Γ ⇒ θ′
(W )′

is admissible in IEL−
G. Here Π is an arbitrary multiset of formulas, and θ = θ′ = F

or θ = ∅ and θ′ ∈ {∅, F}.

Lemma 2. All IEL∗
G, rules except (⇒→) and (KI), are height-preserving invertible.

Proof. This lemma is proved by induction on conclusion derivation height. Let us
consider, e.g., the rule (⇒→). If the conclusion is an axiom, then the premise is an
axiom as well. Let the conclusion be derived as follows:

V
Γ ⇒ F → G,F1, F2, ∆

(⇒ ∨).
Γ ⇒ F → G,F1 ∨ F2, ∆

We apply the inductive hypothesis to the premise of (⇒ ∨) and obtain IEL∗
G ⊢

Γ, F ⇒ G. The required sequent is obtained as follows:

Γ, F ⇒ G

Γ,F ⇒ G,F1 ∨ F2, ∆
(W ).

Hence the proof follows from Lemma 1.
Let the conclusion be derived as follows:

V
F1, F2, Γ ⇒ F → G,∆

(∧ ⇒)
F1 ∧ F2, Γ ⇒ F → G,∆

IEL∗
G ⊢ F1, F2, Γ, F ⇒ G. Using this fact, the required sequent is obtained as follows:

F1, F2, Γ, F ⇒ G
(W )

F1, F2, Γ, F ⇒ G,∆
(∧ ⇒).

F1 ∧ F2, Γ, F ⇒ G,∆
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The proof follows from the fact that the rule of weakening is height-preserving admis-
sible in IEL∗

G, according to Lemma 1.
The remaining cases and rules of IEL∗

G are considered similarly. We skip the
details and refer to the analogous lemmas in [1, 2, 8]. ⊓⊔

Theorem 1. The rule of contraction

Γ ′ ⇒ ∆′

Γ ⇒ ∆
(C)

is admissible in IEL∗
G. Here:

1) Γ ′ = Γ or Γ ′ = F, F, Γ1 and Γ = F, Γ1 and

2) ∆′ = ∆ or ∆′ = G,G,∆1 and ∆ = G,∆1.

Proof. The theorem is proved by induction on the height h of derivation of the
premise. If h = 0, then the conclusion is an axiom and the proof is obtained. Let
Γ ′ = (F ∧G,F ∧G,Γ1), ∆′ = (H,H,∆1), IEL∗

G ⊢V Γ ′ ⇒ ∆′ and V be as follows:

V ′

F,G, F ∧G,Γ1 ⇒ H,H,∆1
(∧ ⇒).

F ∧G,F ∧G,Γ1 ⇒ H,H,∆1

According to Lemma 2, the rule (∧ ⇒) is height-preserving invertible. Hence IEL∗
G ⊢V1

F,G, F,G, Γ1 ⇒ H,H,∆1 and hV1 ⩽ hV . We apply the inductive hypothesis to this
sequent twice, obtaining IEL∗

G ⊢ F,G, Γ1 ⇒ H,∆1. The required sequent is inferred
as follows:

F,G, Γ1 ⇒ H,∆1

F ∧G,Γ1 ⇒ H,∆1
(∧ ⇒).

Let V be as follows:

V ′

F, F, Γ1, G ⇒ H
(⇒→).

F, F, Γ1 ⇒ G → H,G → H,∆1

According to the inductive hypothesis, IEL∗
G ⊢ F, Γ1, G ⇒ H. The required sequent

is inferred as follows:
F, Γ1, G ⇒ H

F,Γ1 ⇒ G → H,∆1
(⇒→).

The remaining cases of V are considered similarly. ⊓⊔

4 Equivalence of IEL∗
G and IEL−

G for intuitionistic sequents

Lemma 3. If IEL−
G ⊢V S, then IEL∗

G ⊢ S.

Proof. The lemma is proved by induction on hV . If hV = 0, then S is an axiom.
Let hV > 0. We consider cases of the first from bottom rule applications (r) in V (S).
Let (r) = (⇒ ∨):
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14 R. Alonderis
. . .

Γ ⇒ Fi (⇒ ∨)
S : Γ ⇒ F1 ∨ F2

where i ∈ {1, 2}. According to the inductive hypothesis, IEL∗
G ⊢ (Γ ⇒ Fi). We have

IEL∗
G ⊢ (Γ ⇒ F1, F2), based on Lemma 1. Hence we infer S in IEL∗

G:

Γ ⇒ F1, F2
(⇒ ∨).

S : Γ ⇒ F1 ∨ F2

Let (r) = (⇒→):

. . .
Γ, F ⇒ G

(⇒→).
S : Γ ⇒ F → G

We have IEL∗
G ⊢ (Γ, F ⇒ G) by the inductive hypothesis. Hence we infer S in IEL∗

G:

Γ, F ⇒ G
(⇒→).

S : Γ ⇒ F → G

The remaining cases of (r) are considered in the same way, using the inductive
hypothesis on hV . ⊓⊔

Let ∆ = (F1, . . . , Fn), where n ⩾ 0 (we assume that ∆ is empty if n = 0). If
n ∈ {0, 1}, then ∨∆ = ∆; otherwise, ∨∆ = F1 ∨ . . . ∨ Fn.

Lemma 4. If IEL∗
G ⊢V (Γ ⇒ ∆), then IEL−

G ⊢ (Γ ⇒ ∨∆).

Proof. The lemma is proved by induction on hV . If hV = 0, then
1) Γ has a member ⊥ or
2) both Γ and ∆ have some member A,

i.e., Γ = (A,Γ ′) and ∆ = (A,∆′), where Γ ′ and ∆′ are some multisets of formulas.
The sequent Γ ⇒ ∨∆ is an axiom in case 1. In case 2, Γ ⇒ ∨∆ is an axiom if ∆′ = ∅;
otherwise Γ ⇒ ∨∆ is derived in IEL−

G by using rule (⇒ ∨):

A,Γ ′ ⇒ A

A,Γ ′ ⇒ ∨(A,∆′)
(⇒ ∨).

Let hV > 0. We consider cases of the first from bottom rule applications (r) in V .
Let (r) = (⇒ ∨):

. . .
Γ ⇒ F,G,∆

(⇒ ∨).
S : Γ ⇒ F ∨G,∆

We have IEL−
G ⊢ Γ ⇒ ∨(F,G,∆), according to the inductive hypothesis. The proof

follows from the fact that ∨(F,G,∆) = ∨(F ∨G,∆).
Let (r) = (⇒ ∧):

. . .
Γ ⇒ F,∆

. . .
Γ ⇒ G,∆

(⇒ ∧).
Γ ⇒ F ∧G,∆
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According to the inductive hypothesis, IEL−
G ⊢ Γ ⇒ ∨(F,∆) and IEL−

G ⊢ Γ ⇒
∨(G,∆). We have

Γ ⇒ ∨(F,∆) Γ ⇒ ∨(G,∆)
(⇒ ∧).

Γ ⇒ ∨(F,∆) ∧ ∨(G,∆)

It is easy to check that IEL−
G ⊢

(
∨ (F,∆) ∧ ∨(G,∆) ⇒ ∨(F ∧G,∆)

)
. Hence

Γ ⇒ ∨(F,∆) ∧ ∨(G,∆) ∨(F,∆) ∧ ∨(G,∆) ⇒ ∨(F ∧G,∆)
(cut).

Γ ⇒ ∨(F ∧G,∆)

The proof follows from the fact that the rule (cut) is admissible in IEL−
G.

Let (r) = (KI):

. . .
Γ,Π,KΠ ⇒ F

(KI).
Γ,Π,KΠ ⇒ KF,∆

We have

Γ,Π,KΠ ⇒ F
(KI)

Γ,Π,KΠ ⇒ KF KF ⇒ ∨(KF,∆)
(cut).

Γ,Π,KΠ ⇒ ∨(KF,∆)

The proof follows from the facts that the rule (cut) is admissible and the sequent
KF ⇒ ∨(KF,∆) is derivable in IEL−

G.
The remaining cases of (r) are proved similarly. ⊓⊔

Theorem 2. IEL−
G ⊢ Γ ⇒ θ, iff IEL∗

G ⊢ Γ ⇒ θ, where θ ∈ {∅, F}.

Proof. The proof follows from Lemmas 3 and 4. ⊓⊔

Corollary 1. IEL∗
G is sound and complete for intuitionistic sequents.

Proof. The proof follows from the fact that IEL−
G is sound and complete for intu-

itionistic sequents. ⊓⊔

According to Theorem 2, the calculi IEL∗
G and IEL−

G are equivalent for intu-
itionistic sequents. Making use of this theorem and the fact that the rule of cut is
admissible in IEL−

G, we also prove in this section that the rule of cut is admissible in
IEL∗

G.

Proposition 1. If IEL−
G ⊢V Γ ⇒ ∨∆, then IEL−

G ⊢ Γ ⇒ ∨(∨∆,Λ), where Λ is any
multiset of formulas.

Proof. We apply (⇒ ∨) backwards to Γ ⇒ ∨(∨∆,Λ) and get

V
Γ ⇒ ∨∆ (⇒ ∨). ⊓⊔

Γ ⇒ ∨(∨∆,Λ)

Liet.matem. rink. Proc. LMS, Ser. A, 65:9–17, 2024
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Lemma 5. The rule
Γ ⇒ ∨(F,∆) F,Π ⇒ θ

Γ,Π ⇒ ∨(θ,∆)
(cut)′

is admissible in IEL−
G. Here F is an arbitrary formula, ∆ is an arbitrary multiset of

formulas and θ ∈ {∅, G}.

Proof. If ∆ = ∅, then the proof follows from the fact that (cut) is admissible in
IEL−

G. Assume that some formulas occur in ∆. Let IEL−
G ⊢V Γ ⇒ ∨(F,∆). The

lemma is proved by induction on hV . If hV = 0, then the conclusion of (cut)′ is an
axiom. Let hV > 0. We consider cases of the first from bottom rule applications (r)
in V . Let (r) = (⇒ ∨):

Γ ⇒ F

Γ ⇒ ∨(F,∆)
(⇒ ∨) or

Γ ⇒ ∨∆
Γ ⇒ ∨(F,∆)

(⇒ ∨).

The first case: IEL−
G ⊢ Γ,Π ⇒ θ, according to the inductive hypothesis. Hence

IEL−
G ⊢ Γ,Π ⇒ ∨(θ,∆) by Proposition 1. The second case: IEL−

G ⊢ Γ,Π ⇒ ∨(θ,∆)
based on the fact that the rule of weakening is admissible in IEL−

G and Proposition 1.
The remaining cases of (r) are considered by the inductive hypothesis. ⊓⊔

Theorem 3. The rule of cut

Γ ⇒ F,∆ F,Π ⇒ Λ

Γ,Π ⇒ ∆,Λ
(cut)∗

is admissible in IEL∗
G, where F is an arbitrary formula.

Proof. Assume that the premises of (cut)∗ are derivable in IEL∗
G. We get IEL−

G ⊢
Γ ⇒ ∨(F,∆) and IEL−

G ⊢ Γ ⇒ ∨(Λ), according to Lemma 4. Hence IEL−
G ⊢

Γ,Π ⇒ ∨(∨Λ,∆) by Lemma 5. This yields IEL∗
G ⊢ Γ,Π ⇒ ∨(∨Λ,∆), according to

Theorem 2. We obtain IEL∗
G ⊢ Γ,Π ⇒ Λ,∆, based on the fact that the rule (⇒ ∨)

is invertible, according to Lemma 2. ⊓⊔

5 Conclusion

The multi-succedent sequent calculus IEL∗
G for intuitionistic epistemic logic has been

presented in the paper. The following proof-theoretical properties of IEL∗
G have been

proved: the structural rules of weakening and contraction and the rule of cut are
admissible in IEL∗

G; all rules of IEL∗
G, except (⇒→) and (KI), are invertible. It has

also been proved that IEL∗
G and IEL−

G are equivalent for the class of intuitionistic
sequents, i.e., sequents with at most one formula in the succedent. This fact shows that
the requirement that premises and conclusions of all rules in a sequent calculus have
at most one formula in the succedent is not essential for the intuitionistic epistemic
logic.
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REZIUMĖ

Multisukcedentinis sekvencinis skaičiavimas intuicionistinei epsiteminei logikai

R. Alonderis
Straipsnyje yra pateiktas daugiasukcedentinis sekvencinis skaičiavimas intuicionistinei episteminei
logikai. Įrodytas struktūrinių ir pjūvio taisyklių leistinumas šiame skaičivime. Taip pat įrodytas
šio skaičiavimo bei tradicinio intuicionistinio skaičiavimo ekvivalentumas intuicionistinių sekvencijų
atžvilgiu.
Raktiniai žodžiai : intuicionistinė episteminė logika; sekvencinis skaičiavimas
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