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Abstract. In this paper, the authors research the problem of loops in linear temporal logic
PLTL. The task involves defining the standard rule application process for the derivation
procedure (as used in [4] and [5]), determining and proving properties for the absence of
a loop beneath some sequent, and creating a new calculus G*TL, which uses the proposed
sequent grouping method, along with the method of marks (similar marking concepts were
proposed in [5] and [6]). A new type of structural rule (GROUP), along with a modification
of the rule (◦) to (◦∗) is introduced. Finally, it is shown that the loop checking mechanism
used in calculus G*TL is efficient, comparing it with other known calculi for logic PLTL.
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Introduction

Sequent calculi for temporal logic can describe the reasoning about how the truth
values of assertions change over time. There are quite a few calculi created for such
logic (see the works of [4] and [5]), however, none of them have any efficient loop
elimination methods proposed. For this reason, loops and loop checking are still a
problem in temporal logic.

In this paper, a new sequent grouping procedure is presented, from which an
optimized calculus for loop checking will be created.
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1 Logic PLTL – calculus GLPLTL

1.1 Syntax and semantics

Propositional linear temporal logic (PLTL) uses standard propositional logic operators
and modal operators for the time – □ (“always”) and ◦ (“next”). The modal operator
♢ is not used, since it can be expressed as ♢p = ¬□¬p.

• ◦p is understood as “p is true in the next time moment”.
• □p is understood as “p is true now and in all other time moments”.

In the paper [5] a sequent calculus GLPLTL for logic PLTL is described, in which
both positive (loop-axioms) and negative (non-derivable) loops can be constructed.

Definition 1. S → S′ is a loop in a sequent derivation tree if S and S′ are sequents
presented in same branch of the tree (S′ is above S), and S′ and S contains the same
formulas on their antecedents and succedents.

Definition 2. S′ is a loop axiom in a sequent calculus for PLTL if there is a loop
S → S′, there exists such a rule (⊢ □) application between S and S′, that S′ is on the
right branch of this application, and there is no such a rule (⊢ □) application between
S and S′, that S′ is on the left branch of this application.

Definition 3. Sequent calculus GLPLTL for logic PLTL is a calculus with 2 axioms –
traditional A,Γ ⊢ A,∆ and a loop-axiom, classical rules for propositional logic (see
calculus LK0 [1]) and specific temporal rules:

Γ1 ⊢ Γ2

Σ1, ◦Γ1 ⊢ Σ2, ◦Γ2

(◦) A, ◦□A,Γ ⊢ ∆

□A,Γ ⊢ ∆
(□ ⊢) Γ ⊢ ∆,A Γ ⊢ ∆, ◦□A

Γ ⊢ ∆,□A
(⊢ □)

here, A is any formula. Γ, Γ1, Γ2, ∆,Σ1, Σ2 are the multisets of formulas.

Definition 4. Sequent S is called primary if it is of the shape Σ1, ◦Γ1 ⊢ Σ2, ◦Γ2,
where multisets Σ1, ◦Γ1, Σ2, ◦Γ2 may be empty. Σ1, Σ2 consist of only atomic formu-
las, Σ1 ∩Σ2 = ∅. ◦Γ1, ◦Γ2 consist of only formulas of shape ◦F, ◦Γ1 ∩ ◦Γ2 = ∅.

2 Optimization method for loop checking

2.1 Rule application process

From [4] and [5] follows, that rules may be applied in a specific order without losing
sequent derivability in GLPLTL. This order is as follows:

• Logical rules for propositional logic and modal rules (□ ⊢), (⊢ □) are applied
while possible.

• Finally each sequent will contain only atomic formulas, or formulas of the shape
◦F . Therefore, a primary sequent will be constructed (see Definition 4), for
which the rule (◦) will have to be applied.
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2.2 Qualities for loop absence beneath some sequent

Definition 5. If formula F is H → G, G → H, H ∧ G, G ∧H, H ∨ G, G ∨H, ¬G,
◦G or □G, then G is a subformula of F . All subformulas of G are subformulas of F .

Definition 6. If formula F = □G, then ◦□G is the extended subformula of F if it
has the same entry as F . Positive and negative entry of the formula is defined in [2].

Definition 7. Subformula FP of formula F will be called fundamental subformula,
if FP has the same entry as F .

Definition 8. Subformula FP of formula F will be called □-subformula, if FP is in
the scope of □ operator (while being inside F ).

Definition 9. Formula G, which is not a fundamental □-subformula in the current
sequent, will be called ground formula. This is a modified description taken from [4].

Definition 10. Ground formula, which is in the shape □F and is in the current
sequent’s antecedent, will be called super-ground formula. We will mark it ■G.

Lemma 1. The construction of a loop S1 → Sn+1 = S1, S2, . . . , Sn, Sn+1 is impossible
if an atomic ground formula f is presented in the primary sequent Sn.

Proof.

1. If a formula g is in the sequent S1, then it will also be in sequent Sn+1, since
S1 → Sn+1 is a loop. For this reason, formula ◦g will be in sequent Sn, since
all formulas without the ◦ operator are removed during rule (◦) application.

2. If a formula f is a fundamental □-subformula of some other formula g, which is
in sequent S1, then formula g will be in sequent Sn+1 and formula ◦g will be in
sequent Sn (from item 1). In this case, formula f would be a fundamental □-
subformula of some formula in sequent Sn. Hence, in our case, ground formula
f is not a fundamental □-subformula of any other formula in sequent S1.

3. If a formula f is a subformula of some other formula g (which is in sequent S1)
and f is not a fundamental □-subformula of any other formula in sequent S1,
then f is either i) an extended subformula of g (that is f = ◦g), or ii) f = g
(then formula g is one of the forms: □G, ◦□G), or iii) g is none of the forms
□G, ◦□G, since then formula f would be a fundamental □-subformula.

4. If a formula f is in sequent Sn, then f is a subformula of some other formula,
which is in sequent S1. Suppose g is the longest formula in sequent S1, and f
is a subformula of g. Sequent length is defined in a standard way (see [3]).

5. From item 1, formula ◦g is in sequent Sn, hence in sequent S1 there is such a
formula h, that h = ◦g, or ◦g is either an extended subformula, or a fundamental
□-subformula of formula h.

If ◦g is not an extended subformula of h, then formula h will be longer than g. If
f is a subformula of g, and ◦g is a subformula of h, then f is also a subformula of
h. We have a contradiction since g should be the longest formula in S1, that f is a
subformula of g.

If ◦g is an extended subformula of h, then h = □G = g. We know that f is a
subformula of g (from item 4), hence either f = g, or f is a fundamental □-subformula
of g.
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• In the case f = g, we can infer that f = □G. We get a contradiction of the
original assumption that f is an atomic formula.

• In the case f is a fundamental □-subformula of g, formula f would also be
a fundamental □-subformula of ◦g. We get a contradiction of the original
assumption that f is a ground formula. □

Lemma 2. If a ground formula, which is not in the shape □H and not an extended
subformula, is present in sequent S′ – a loop S → S′ cannot be constructed.

Proof. The proof goes straightforward from Lemma 1. ⊓⊔

2.3 Sequent grouping

Each primary sequent can be grouped into distinct sets by using the operation
GROUP (S) = Ξ1, Ξ2, ◦Λ1, ◦Λ2, ◦□Π, ◦■Ω ⊢ ◦□Ψ, ◦□∆, ◦□Θ,Φ1, Φ2, ◦X1, ◦X2

in which:

• ◦■Ω – super-ground formulas of the shape ◦□H.
• ◦□Π – formulas of the shape ◦□H, which are not ground formulas in S.
• ◦□Ψ – formulas of the shape ◦□H, which are fundamental □-subformulas of
◦■Ω or ◦□Π formulas.

• ◦□∆ – ground formulas of the shape ◦□H.
• ◦□Θ – formulas of the shape ◦□H, which are fundamental □-subformulas of

formulas in ◦□∆.
• Ξ1, Φ1, ◦Λ1, ◦X1 – ground formulas of the shape H or ◦H accordingly.
• Ξ2, Φ2, ◦Λ2, ◦X2 – non-ground formulas of the shape H or ◦H accordingly.

From the previous lemmas, it is evident that a loop cannot be constructed (in the
ancestor sequents) if at least one of the sets from Ξ1, Φ1, ◦Λ1, ◦X1 is not empty.

It is important to note that this grouping method can be applied in other loop
checking optimization methods since it does not change the derivation tree itself.

2.4 Calculus G*TL
For calculus G*TL we use marked sequents and marked modal operator □. The same
approach is used in [6] and [5]. To determine the absence of loops below some sequent,
a new calculus G*TL with the incorporated (GROUP ) rule was created:

Definition 11. Sequent calculus G*TL for logic PLTL is a calculus with 2 axioms –
traditional A,Γ ⊢ A,∆, and a loop-axiom, classical rules for propositional logic (the
mark ‘−’ of the sequents should be deleted if such exists) and specific temporal rules:

A, ◦□A,Γ ⊢ ∆

□A,Γ ⊢α ∆
(□ ⊢) Γ ⊢ ∆,A Γ ⊢ ∆, ◦□A

Γ ⊢α ∆,□A
(⊢ □)

Γ ⊢−∆,A Γ ⊢ ∆, ◦□A

Γ ⊢α ∆,□∗A
(⊢ □∗)

Ξ1, Ξ2, ◦Λ1, ◦Λ2, ◦□Π, ◦■Ω ⊢α ◦□Ψ, ◦□∆, ◦□Θ,Φ1, Φ2, ◦X1, ◦X2
(GROUP )

Σ1, ◦Γ1 ⊢α Σ2, ◦Γ2

Λ1, Λ2,□Π,■Ω ⊢δ □Ψ,□∗∆,□Θ,X1, X2
(◦∗)

Ξ1, Ξ2, ◦Λ1, ◦Λ2, ◦□Π, ◦■Ω ⊢α ◦□Ψ, ◦□∆, ◦□Θ,Φ1, Φ2, ◦X1, ◦X2

here, δ is ‘−’, if Ξ1 ∪ Φ1 ∪ ◦Λ1 ∪ ◦X1 ̸= ∅, δ is ∅ otherwise, α ∈ {∅,−}.
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It is important to mention some aspects of calculus G*TL:

1. The (GROUP ) rule can only be applied to primary sequents.
2. The rule application process is the same as defined in Section 2.1. However,

after the construction of a primary sequent, it is obligatory to apply the rule
(GROUP ), after which the rule (◦∗) will follow.

3. After the application of the rule (GROUP ) it is obligatory to check whether at
least one of the sets Ξ1, Φ1, ◦Λ1, ◦X1 from the current (grouped) sequent is not
empty. In that case, the δ mark will be set to ‘−’. Otherwise, the mark will be
left empty.

Lemma 3. Sequent S is proveable in the calculus GLPLTL if and only if it is proveable
in calculus G*TL.

Proof. The proof goes straightforward from the Lemma 2 and grouping operation.
Rule (◦) application in calculus GLPLTL is replaced by the application of rules

(GROUP ) + (◦∗) in calculus G*TL. The rule (GROUP ) does not make any changes
to the current sequent. In addition, the rule (◦∗) serves the same purpose as the rule
(◦), only with an addition of certain marks for the current sequent or the □ operator.

Rule (⊢ □) application in calculus GLPLTL is replaced by the application of rules
(⊢ □) or (⊢ □∗) in calculus G*TL, since they both serve the same purpose as the rule
(⊢ □) in calculus GLPLTL, only with an addition of certain marks for the current
sequent or the □ operator.

Therefore, the derivation tree is the same, but the loop check is restricted by
comparing the current sequent with sequents presented above the uppermost sequent
marked by ‘−’. ⊓⊔

3 Complexity

3.1 Complexity of the rule (GROUP)

From the initial sequent of the derivation tree, all possible formulas and subformulas G
(including extended subformulas) with their entries can be indexed and placed inside
a hash table as keys, which will have their values as lists of only the extended parent
subformulas ◦■F or ◦□F (for which G will be their fundamental □-subformulas).
The creation of such a table will be done only once per derivation and it will take a
polynomial amount of steps.

Suppose c is the maximum amount of formulas inside some value list from the
constructed hash table. If the formula count in the current sequent is equal to m,
then the rule (GROUP ) will require at most m · c · (m− 1) ⩽ c ·m2 steps.

Suppose j is □ operator count in the initial sequent of the derivation tree. It is
evident, that c ⩽ j, so the operation (GROUP ) will require ⩽ j ·m2 steps and it will
be of polynomial complexity O(j ·m2).

3.2 Complexity of the loop checking method in calculus G*TL

Suppose we have a branch of some derivation tree S1, S2, . . . , Sn = Sx+y (S1 is an
initial and Sn is a current sequent), in which the rule (◦∗) with a non-empty δ mark
(rule (◦) in the case of GLPLTL) was applied at least once. Suppose:

http://www.journals.vu.lt/LMR
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• x – sequent count from the initial sequent S1 till sequent Sx – the premise of
the uppermost rule (◦∗) application, with a non-empty δ mark, in the branch.

• y – sequent count from the sequent Sx till the current sequent Sn = Sx+y.
• s – sequent count from the sequent, which is the premise of the uppermost rule
(⊢ □∗) application till to the current sequent Sn.

• m – formula count in the current sequent Sn.
• k – max{m1,m2, . . . ,mx+y}, where mi is the formula count in the sequent Si.

In the case of calculus GLPLTL, after each application of the rule (◦) it will be
necessary to check all the previous sequents in the derivation branch, which would
require x ·m · k steps (comparison operations).

In the case of calculus G*TL, after each application of the rule (◦∗) with an empty δ
mark, it will be necessary to check only those sequents, which were constructed above
the uppermost rule (◦∗) application with a non-empty δ mark. This would require
y ·m ·k steps. Hence, the loop check procedure is improved by x·m·k

y·m·k = x
y times. If we

have s < y, then we can reach an even better improvement of x·m·k
s·m·k = x

s > x
y times.

However, we should also consider the cost of the rule‘s (GROUP ) application,
which takes j · m2 steps. The optimized loop check, including the cost of the rule
(GROUP ), in comparison with the loop check in calculus GLPLTL is improved by

x·m·k
y·m·k+j·m2 = x·k

y·k+j·m times. Knowing the fact that in most cases formula count in the
derivation tree is getting smaller (that is m ⩽ k), we can modify the final improvement
to x

j+y (or x
j+s ).

From this, we can conclude that when x is a sufficiently big value (which occurs
quite often, since derivation trees are usually long and rules (◦) are being applied
multiple times), we can get a significant improvement.

Conclusions

1. The created proof, regarding the absence of a loop beneath some sequent, al-
lowed to construct an effective sequent grouping procedure in the propositional
linear temporal logic PLTL.

2. It was determined that the presented loop checking procedure is more efficient
than the standard one.

3. It was determined that the presented sequent grouping method (for the lower
loop limit detection) can be applied in other loop checking mechanisms as well.
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REZIUMĖ

Grupavimu paremtas tiesinės teiginių laiko logikos skaičiavimas

K. Ragauskas, A. Birštunas
Šiame darbe autoriai tiria ciklų susidarymo problemą tiesinėje laiko logikoje PLTL. Užduotis apima
taisyklių taikymo tvarkos apibrėžimą (naudotą [4] bei [5]), savybių ciklų negalimumui nustatymą
bei naujo sekvencinio skaičiavimo G*TL sukūrimą, kuris naudoja aprašytus sekvencijų grupavimo
bei žymių metodus (panašios žymės buvo naudojamos ir [5] bei [6] darbuose). Pristatoma naujo
pobūdžio struktūrinė taisyklė (GROUP), kartu su taisyklės (◦) modifikacija į (◦∗). Galiausiai
yra parodoma, jog sukurta ciklų aptikimo procedūra skaičiavime G*TL yra efektyvesnė už įprastą
procedūrą, taikomą kituose skaičiavimuose PLTL logikai.
Raktiniai žodžiai : ciklų aptikimas; sekvenciniai skaičiavimai; žymėtos sekvencijos
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