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1. Introduction

The mathematical literature has extensively analyzed stochastic differential equations
(SDEs) driven by fractional Brownian motion. Most of these efforts have been motivated
by problems arising in the financial applications of SDEs, such as option pricing, stochastic
volatility, and interest rate modeling. However, there are few results concerning SDEs
with boundary conditions. Typically, only SDEs involving reflection at the boundary are
considered (see [1,2]). Here, we consider a new class of SDEs with stochastic forcing. This
class allows us to consider boundaries of a new type.

We consider stochastic differential equations of the following form:

X; = Xo + D(X;) — D(Xo) + /;f(s,xs)ds+/Otg(s,xs)dB§f, telo,T] (1)

where ® : R — R is a continuous function, f, g : [0, T] x R — R are measurable functions,
and BH = (BH);>0,1/2 < H < 1 s a fractional Brownian motion. The stochastic integral
in Equation (1) is a pathwise generalized Lebesgue—Stieltjes integral. Thus, we can use the
pathwise approach to consider these fractional stochastic differential equations (FSDEs).
We call Equation (1) the FSDE equation with stochastic forcing term ®. Examining such
a model can be interpreted as studying the environment’s influence on the behavior of
a process. Such equations can be used to consider FSDEs with a permeable wall. The
permeable wall model describes a process that can cross the wall, but where the force
does not allow the process to move far from the wall. In [3,4], the fractional Vasicek
process with soft wall was considered as a modeling example. This example explains what
a fractional SDE with a permeable wall is. These types of processes can be applied in
the natural sciences. In particular, such processes can be used in financial mathematics
as models for stochastic volatility. Indeed, it has recently been irrefutably proven that
financial markets have a memory that is best interpreted in the framework of stochastic
volatility. A stochastic differential equation involving fractional Brownian motion is a
natural model with a memory [5-7]. On the other hand, volatility should have certain
limits and reasonable sizes, and should not deviate infinitely far; otherwise, such a market
model would not allow equivalent Martingale measures and would poorly describe real
financial processes. Thus, the presence of a permeable wall allows us to construct a model
of stochastic volatility with reasonable behavior.
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In general, SDEs rarely possess closed analytic-form solutions; therefore, both in
general and in our case, it is important to consider certain numerical methods for their
solution. The existence and uniqueness of the solution of Equation (1) was obtained in [8].
A special case of Equation (1) with constant and strictly positive diffusion coefficients was
considered in [3]. In the article, we are interested in pathwise numerical approximations of
the solution to Equation (1).

Much of the literature is devoted to numerical methods for SDEs driven by f{Bm or a
combination of Brownian motion and fBm. Strong SDE approximation schemes are usually
considered in the literature. Euler, modified Euler, and other higher-order approximation
schemes should be mentioned here (see, e.g., [9-26] and references therein).

The rate of convergence for Euler approximations Y" of solutions of pathwise SDEs
driven by fBm with Hurst index H > 1/2 was obtained in [17]. It was proved that for any
natural number ¢ > 0 there exists a random variable C, such that it is almost certain that

sup |X; — /| < CeA2H1-¢,
0<t<T

Here, we apply the implicit Euler- and implicit Milstein-type approximations to the
solution of Equation (1) and find the pathwise convergence rate. These results were
obtained for the first time under fairly general coefficient restrictions. For simplicity, we
consider an implicit Milstein-type approximation for the time-homogeneous Equation (1).

The paper is organized in the following way. In Section 2, we present the paper’s
main results. Section 3 contains definitions of considered spaces of functions and a priori
estimates for the Lebesgue-Stieltjes integral. Section 4 defines a deterministic differen-
tial equation corresponding to FSDE (1) and considers its implicit Euler approximation
properties. Some results are taken from [8]. In Section 5, we obtain a convergence rate for
implicit Euler approximation for a deterministic differential equation corresponding to
FSDE (1). Section 6 presents the implicit Milstein-type approximation and auxiliary results.
In Section 7, the convergence rate of the Milstein-type approximation is obtained. Finally,
Section 8 considers the fractional Pearson diffusion process as an example.

2. Main Result

We assume that the coefficients f, g satisfy the following conditions with some non-
random constants:

(A1) g(t, x) is differentiable in x, and there exist some constants 0 < B, < 1; moreover,
for every N > 0 there exists My > 0 such that the following properties hold:

(i) Lipschitz continuity in x:

Ig(t,x) —g(t,y)| < Molx—yl,  Vx,yeR, tel0,T]
(ii) Local Holder continuity of the derivative in x:
84(Ex) = gk(ty)| < Mn|x -y, Vxy € [-N,NJ], Vi€ [0,T].
(iii) Holder continuity in ¢:
18(5,%) — 8(,0)| + 1gh(s,%) — (£, ¥)| < Molt —slf, VxR, Vs € [0,T].

(Ap) There exists a constant 0 < B < 1, and for every N > 0 there exists Ly > 0 such
that the following properties hold:
(i) Local Lipschitz continuity in x:

F(tx) = fty)| < Lulx—yl,  ¥xye[-N,NJ, vt € [0,T).
(ii) Linear growth condition:

f(tx)] < Lo(1+]x])  VxeR, Vtelo,T]
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(iiif) Holder continuity in ¢:
|f(s,x) — f(t,x)| < Lo|t —s|P, Vx € R, Vt,s €0, T].

(A3) The function ® : R — R is differentiable and there exist some constants 0 < ¢ < 1,
0 < p < 1" moreover, for every N > 0 there exists Ky > 0 such that the following
properties hold:

(i) @'(x) < cforallx € R.

(ii) Local Holder continuity of the following derivative:

|y (x) = @4 (y)| < Knlx—yl’,  Vx,y€[-N,N]

(A4) The function D : R — R, where D(x) := x — ®(x), has the following properties:
(i) It is strictly monotonic and surjective.
(ii) There is a constant d > 0 such that

[D(x) = D(y)| = d|x —yl. @

Remark 1 (see Remark 8 in [3]). Under Assumption (Az), the function D satisfies Assumption
(Ag) withd =1 —c.

For the time-homogeneous version of Equation (1), we assume that the coefficients
f, g satisfy the following conditions:
(B) There exist constants My, Ly > 0 such that the following properties hold:

(@) [f(x) = fW)| < Lolx —yl, |8'g(x) —¢'e()| < Molx —y|, Vxy€R,
(i) |f(x)| < Lo(1+ |x]), [g(x)| < Mo(1+ |x]), [¢'g(x)] < Mo(1+]x]), x€R,
(iii) |g'(x)] < My, [¢"(x)| <My, x€ER,

where we write ¢’¢(-) instead of ¢’(-)g(+) to shorten notation.

Remark 2. Linear growth conditions for the functions f, g, and g'g are unnecessary, but simplify
the future notation.

For simplicity of presentation, we consider uniform partitions of the interval [0, T].
Let t" = {t} = K +T,1 < k < n} be a sequence of uniform partitions of the interval [0, T]
and let A, =t —t]_;, 1< k < n, Ay < 1. We define the time-continuous interpolation of
the implicit Euler approximation for the Equation (1) as

Y () — D(Y) = Xo — B(Xp) +/fT Y'(z ds—i—/ @Y (e)) dBY (3)

and the time-continuous interpolation of the implicit Milstein-type approximation for the
time-homogeneous Equation (1) as

Y7 (t) — ®(Y7) XO—CI>X0+/fY” ds+/ (Y"(¢")) dBH
+ /0 [, gk () dBtiap, @)

where 7' =t} and Y*(7}') = Y"(t]_,)ifs € [t} |, t}), 1<k <n.

We introduce the symbol O, for simplicity of notation. Let () be a sequence of
r.vs, let ¢ be an a.s. nonnegative r.v.,, and let (a,) C (0,o0) be a vanishing sequence.
Then, &, = Oy (a,) means that |&,| < ¢ - a, for all n.

Set

1 )
Yo =1—ag, ng = mm{ ’61—1—(5 1—F|’—p} (5)
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and denote by Y5 and YM" the implicit Euler- and Milstein-type approximations. The
norm || . ||1_,c is defined in Section 3.1.

Theorem 1 (See Theorem 1 [8]). Suppose that the functions f(t, x) and g(t, x) satisfy Assump-
tions (A1) and (A) with 5 —1 < 8,p < 1,1—H < B < 1. If Assumption (A3) is satisfied
and v € (o, H), then there exists a unique stochastic process X € C7(0, T) satisfying FSDE (1),
where C7(0, T') is the space of y-Holder continuous functions.

Theorem 2. Under the hypotheses of Theorem 1 with 1 — H < B < 1 replaced by H < B < 1,
we have

= 0, (A 71). (6)
Set 1
Fo=1-&, & =min{s, 1_ﬁp} @)

Theorem 3. Suppose that the functions f(x) and g(x) satisfy Assumption (B) with £ —1 < p <1
If Assumption (As3) is satisfied and vy € (70, H), then there exists a unique stochastic process
X e C7(0,T) and

HX - YM'nHl—'y,oo = Ouw (AZ) )

The statements of Theorems 2 and 3 follow directly from the results for deterministic
differential equations, as we can apply the pathwise approach for FSDE (1).

3. Preliminaries
3.1. Spaces of Functions and Norms

Let us recall some functional spaces that are used in the future.
We use WS"“(O, T), where 0 < a < 1/2, to denote the space of real-valued measurable
functions f : [0, T] — R, meaning that we have

o EE O
1 fllaeo == 56[02"] (]f(s)| +/0 (s —u)lta du) <

The space W' (0, T) is a Banach space with respect to the norm || f||4c0; for A > 0, the
equivalent norm is defined by

w If6 = £
Iflloa = sup e (yf )|+ / W ds)

For any p € (0,1], we denote by C*(0, T') the space of u-Holder continuous functions
f:[0,T] = R equipped with anorm || f||,; := |f|e + | f|, where we have

|flu:= sup W, |fleo := sup |f(t)].

0<s<t<T te[0,T]

Clearly, we have C'~%(0, T) € Wy"*(0,T) for 0 < « < 1/2 and

Tl*le
)\<||f||1—zx(1+1_2a>- )

We denote by Wi “®(0,T), 0 < a < 1/2 the space of measurable functions g:
[0, T] — R, meaning that we have
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g(t) — 18(y) —g(s)|
[P — / dy | < oo,
Bltmeod = e <t—s>1 Rl A
such that W1~*%(0,T) C C'~%(0, T) (see [21]).

In addition, we denote by Wg/l (0,T),0 < a < 1/2 the space of measurable functions
f on [0, T], such that we have

£l :—/ If Las +/ |S_ |1g>|dyds<oo. (10)

Fixing p € (0,00) and letting ¢ = {{tg,..., th}: 0=ty < --- <t, =T, n > 1} denote
a set of all possible partitions of [0, T], for any f : [0, T] — R we define the following:

vp(f3[0,T]) = sup i Ft) — fe)’, Vu(£10,T]) =0,/ F (£:[0, T)).

7 k=1

Recall that v, is called the p-variation of f on [0,T]. We denote by W,(]a,b])
(resp. CW,([a,b])) the class of (resp., continuous) functions on [0, T] with bounded p-
variation, p € (0, ).

We define V), (f) := V(f; [0, T]), which is a seminorm on W) ([0, T]); in addition, V,(f)
is 0 if and only if f is constant. For each f, V,(f) is a non-increasing function of p > 1,
i if 1 < g < p, then V,(f) < V,(f). Thus, W,([0,T]) € W,([0,T]) if 1 < q < p < co. If
f € Wy([a,b]), then f is bounded.

Let p > 1and Vp,eo(f) := Vp,eo(f; [0, T]) = Vpp(f) + | floo- Then, V) oo(f) is @a norm, and
W, ([0, T]) equipped with the p-variation norm is a Banach space.

3.2. Riemann—Stieltjes Integral
Assume that f € W' (0,T) and h € Wi *%(0,T), where 0 < & < 1/2. The gen-
eralized Lebesgue-Stieltjes integral (see [21]) fot f dh exists for all t € [0, T] and for any

0<s<t<T
f |f(r)
s fdh‘ <A,X(h)</s Tl +// I““ dydr), (11)
where
Aull) = = sup [(DEh ) ()] € e [l
r(1—a) 0<s<t<T [(1—a)l(a)

D}!~%h;_(-) is the Weyl derivative, and T'(-) is a Gamma function. Furthermore, the integral
[y fdh exists if f € Wy®(0,T).

If f € CY(a,b) and h € CH(a,b) withv + u > 1, then the generalized Lebesgue—Stieltjes
integral exists and coincides with the Riemann-Stieltjes integral (see [22]).

From Young's Stieltjes integrability theorem [23] (p. 264), the Riemann-Stieltjes inte-
gral fo f dh can be defined for functions having bounded p-variation on [0, T] (see [24]).

Let f € Wy([a,b]) and h € Wy([a,b]) withp > 0,9 > 0,1/p+1/q > 1. Iff and
h have no common discontinuities, then the extended Riemann-Stieltjes integral f fdh
exists and the Love-Young inequality

[ £ [408) = (0] | < oV (5o, ) Vi 406 1)

holds forany y € [a,b], where Cp g = {(p~' +471), {(s) denotes the Riemann zeta function,
ie,l(s) =Yy>1n°
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Proposition 1 (Chain rule [22] (comment on Theorem 4.3.1)). Let f € C*([a,b]) and
F € CY(R x [a,b]) be real-valued functions such that F'(f(-),-) € C*([a,b]) with A +u > 1.
Then, for any y € (a,b),

F(f)y) ~F(f@),0) = [ F(F@,x) df () + [ B(F(x),x)d,

where F{ and F} are the partial derivatives of F with respect to the first and second variables, respectively.

3.3. Estimation of the Generalized Lebesgue—Stieltjes Integrals
From now on, we fix 0 < &« < 1/2. For any function u € Wg'w(O, T), we define

f) u) = /Otf(s,us)ds, (13)

where f satisfies Assumptions (Aj)(i), (if).

Proposition 2 (See Proposition 4.4 [21]). Ifu € W;™(0, T), then F)(u) € C'=#(0, T).
Ifu,v € Wy'™(0, T) are such that |u|e < N and |v]|ec < N, then

CN
IEYD) (1) = FF) (0)[Ja 1 < w11 =llea
forall A =1, where cy = Co TLNT(1 — &), Cor = T* + a1, Ly from (A3).

Given two functions h € Wy “*(0,T) and u € W{'®(0, T), we denote

t t
Gi(u) = /0 ugdhs, G (u) = /O g(s, us) dh, (14)

where g satisfies Assumption (A;) with constant § > a.

Proposition 3 (See Proposition 4.1 [21]). Let u € Wg’l (0, T); then, the following estimates hold

fors < t:
t
Gt~ Gl < At [ (0L o [T BO KO o)
and
Lot ~Gtw)
’Gt / 1+1x §

gAa(h)L/;(U_r) M)lu |dr+//|u W [<t—v)‘“+“]d”d4’

where c,(xl) = B(2a,1 —w), B(-,-) is the Beta function.

Proposition 4 (See Proposition 4.2 [21]). Ifu € Wy™(0,T), then G8)(u) € C'=%(0, T).
Ifu,v € Wy'™(0,T) are such that |u|e < N and |v]e < N, then

(1)
165 w) — GO (@) ap < N (14 Afw) + A©)) 1t~ ol

forall A > 1, where

|”r_”5|
Au) = / 15
()= sup Jy fr—sprea (15)
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Th-
) —lee (25 o+ ), L= maten 1)1,
[ee] z 1
Cy = e Yy 2dy + su / e Y(z—vy) %y, e < + 4.
2 /O y Ty tsup | e tzoy) Ty, ST
Remark 3. Ifu € C'=%(0, T) and 1+o > w, then
| To—a(140)
A = " . 16
( ) |u‘1 Dérzlépr]/ |1’—S|1+"‘ S 5_a(1+5) |u|1 41 ( )

4. The Implicit Euler Approximation and Auxiliary Results

Let 1 — H < a < 1/2. Recall that almost all trajectories of fBm B belong to
W%_“"’o (0, T). Instead of considering Equation (1), we consider the deterministic differential
equation on R:

xe = x0 + D(x;) — D(x0) + /;f(s, Xs) ds + /(;tg(s, xs) dhs, te0,T] (17)

wherexg € R, h € W%_""m, hg = 0.

Theorem 4. Suppose that the functions f(t, x) and g(t, x) satisfy Assumptions (Ay) and (Az)
with 5 —1 < 8,p < 1,1— H < B < 1. If Assumption (A3) is satisfied, then Equation (17) has a
unique solution x € C1=%(0,T), where « € (1 — H, ap), ag is defined in (5).

Proof. The theorem statement follows directly from Theorem 1. Set o« = 1 — . Itis
sufficient to note that « € (1 — H,ag) if v € (70, H). O

We define the implicit Euler approximations for Equation (17) as

Y () = @Y () =y () — B (1) + F(Hy5" (1) A
+( P () (M) —h(t)),  y'(0)=x  (18)

and their continuous interpolations as
t
YE ()~ DE) = 30— Do) + [ FL ) ds+ [ gy ) dhs, (19
where 7' = !, and y&" () = yE”(tz 1) ifs € [tf_1,t), 1 <k < nand where t] € 7"

For abbreviatlon let y" stand for y&"
We can rewrite the implicit Euler approximations (18) and (19) in a more compact way:

D(y"(t51)) =D" (1)) + f (5, y" (5)) A + g (87, y" (£)) (h(ti, 1) — h(EF))  (20)
with y"(0) = xp and
D(y¥) = D(xo) + K/ (") + G (y"),  y"(0)=xo, (21)
where
") " n f n o n(n
S /f 7y G )(y)=/0g(rs,y (7)) dhs.

The implicit Euler approximation scheme (20) is correctly defined. From the recursive
expression (20), we calculate D(y" (t;)). The properties of the function D(x) provide a
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single value of y" (#{, ; ). Because D(y}') is a continuous function, y" is a continuous function.

Indeed, because D~!(x) and D(y!") are continuous functions, 4" is a continuous function.
The following properties hold for the implicit Euler approximation:

Proposition 5 (See Propositions 4 and 5 [8]). Under the assumptions of Theorem 4, we obtain

sup||y" |l e <o and sup|ly"[1-a < oo.
n n

5. Rate of Convergence of the Implicit Euler Approximation

Lemma 1 (See Lemma 7.1 in [21]; see also Lemma 3 [8]). Let ® be function satisfying Assump-
tion (Az). Then, for all N > 0 and |x,|, |xo|, |X;|, |Xo] < N:

|D(xr) — P(x0)) — (P(Xr) — (X))
<c|(xr — %) — (x0 — Xo)| + Kn|xo — Xo| - [|xr — %0 | + |Xr — X0 |F].

Theorem 5. Under the hypotheses of Theorem 1 with 1 — H < B < 1 replaced by H < B < 1,
we have ot
flx — ]/E'nHl—'y,oo = O(Any_ )/ (22)

where vy € (7yo, H) and where x is the solution of Equation (17).

Proof. We denote &« = 1 — 7. Because x is an element of the space C'~*(0, T) and because
sup,, |ly"[[1—« < oo, there exists N such that ||x|i_, < N and ||y"[1-, < N for all n.
Furthermore, x,y" € Wy*®(0,T) and F) (x), Ff) (y"), G®) (x), G®) (y") € Wy™(0, T) (see
Propositions 2 and 4), and ®(x), ®(y") € Wy (0,T). From Lemma 1 in [8] we have
FE™) (y"), G (y") € W (0, T) for any fixed n > 1. O

Recall that elements of the space W™ (0, T) have the finite norm || - ||, with A > 0. Thus,

12 =y llap <[|®(x) = D],
+|FD(x) = FD M|, + IEPD ™) = FS )],

690~ GO, + S9N - G, @

Now, we can evaluate the terms on the right-hand side of (23). If p > 72, then the estimate

[@(x) = @Y™, 1 < cllx = 5" lap +2NKNAPEIT(o(1 —a) —a)[lx —y"[lap (24)

follows from Lemma 1 and the arguments used to prove the uniqueness of the solution
in [8]. The estimates of the second and fourth terms follow from Propositions 2 and 4
if 6 > a(1+9). Because v € (79, H), we have § > a(1+6) and p(1 —a) > a and our
restrictions for ¢ and p are satisfied. Thus,

2 =y lan <cllx — 1" [lap + 2NKNA*PIDT (p(1 — ) — )| — y"[|a
(1)

CN A (h)c 2 n

+ /\1—0( ||x_y71 a,A aAl—Z[xN (1+CI(\]))HX—]/ oA

+ Hp(f) (y") — p(f,T”)(yn)Ha,A + HG(g) (y") — G(g,r")(yn)Ha,N
where 5—a(1+6) S—a(1+6)

(2)'_ Tfa+ " P Tfuc+

N =5 a1 <51ip”y 1oy + lh—s) < N v

For any ¢ < b < 1, we can choose a sufficiently large A; such that
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CN Aa(mcl(\})
= 1-2
Al ® Al &

¢+ 2NKyAY P (o(1 — ) — ) + (1+Cc?)<b.  (25)

Thus,

e =y len, < (1 =0) (PO ") = FE @) |0, + 16 ") = Gy, )
To complete the estimate of || x — y" ||, it remains to estimate the right-hand side of
the above inequality. From (9) it follows that instead of the norm || - ||, 5, it is sufficient to
estimate the norm || - ||1_g.
We first estimate the norm ||[F\f)(y") — FU/7™) (y")||;_,. Combining Assumptions
(A1)-(Az), we obtain

\g(T v ()] <|g(7, y" (7)) — g(0,0)| +1g(0,0)|
<lg(#, y"(7") — g(0,y"(7"))] +[g(0,y" (%)) — 8(0,0)| +[g(0,0)]
SMOTP + Moly" |eo,r + 18(0,0)] (26)
and
i —y"(t)| <1 =)' D(y}) — D(y" ("))

(
(=) " () (r =71 + (T, y" (1) (h(r) = h(z!) |
<A(0c)(1+|y Joo) (r = 7)1, (27)

where
Ma) = (1—¢) " max { (LoT* + (Mo TP +[8(0,0)|)|t}1 ), (LoT* 4+ Mo|hl1-a) }-
Thus,
ES™ ) = (B vy - ST ()|
/|fuyu— oy (@) du < Lo [[u— P dut Ly [y -y ) du

< LoAL (t — ) + LyA(a) (14 [y oo) AL (t —5).

|(F(f) yn)

Because 8 > H and ||y"||1_, < N, itis the case that § >y =1—a and

[FO G = FUm Gy, = 0(a™).
Moreover, from (9) and the inequality || - ||g,c0 < €| - |41, Which is valid for all A > 0,
we obtain

IFF (") = EST) (") e = O(857°)- (28)

Now, we can go back to the estimate of the norm ||G(8) (y") — G(&™") (y")||1_,. Because
y" € W5*(0,T), we have g(-,y") € W5 (0, T) (see Proposition 4.2 in [21]). From Lemma
2in [8], it follows that g(, y" (")) € W& (0, T) for any fixed n > 1if y" € WE'(0, T) for
any fixed n > 1. Note that W3>* (0, T) € W§'(0, T).

From the above and Propos1t10n 3, it follows that
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62" - 6™ ] - 169 — 68| = | [ Taryd) — s(ely (@) b

18(r,yr) — &(w y" (7))
<o [ %) v
+¢x// () —8(zy <Tr|z)]_;|%’+(f"y3)_g<T3'yn(Tg))]|dudr>. (29)
Applying (27), we have
1g(ry7) — (T y" (7)) < Mo(f*f )'B+M0‘yr y' ()]
< Mo(1+ @) (1 + [y |e)) (r — 7)1 (30)
and

/t |g(1’,y,’.1) (_g(T:Z'yn(Tf>)| dr < 2M0(1 —|—)\(a)(1+ |yn|oo))(t_s)lﬂxA11171x'

r—s)¥
To estimate the second term in (29), we note that

n

|[8(r, ) = 8(" y" ()] = [8(w yi) — (i, y" ()]
< Mo[(r = )P + (u = 7)P] + MoA(a) (1 + |y |eo) [(r = )"~ + (u — 7)) *]

and (see Proposition 5 in [8])

/t(r— T dr < (1—a) 1208 =)V % 4 (£ —5)A Y] <224 (TV1)*(t—s)! % (31)

Consequently,
// 8(ryy) = 8(w', y"(%))] — [g(u,y) — g (i, y" (@), 4.
|r—u\"‘+1
(r—t"P 4+ (u—1")P
MO// r—u|”‘+1 — )
(r—t)'" =%+ (u— 1)«
+ MoA(@)(1+ [1]oo) // e dudr

< 4Mon 24+ (TV 1Y [14 Aw) (14 [y |o) ] AL 24(t — )12,

It is easy to check that

[ Nt = o ) ) = (5" g

|1’— u|a+1

/ /V 8(ryr) =g yi)l 4 o

r— u|uc+1

as T/ =1, for T/ <u <rand
18(r,y7) = 8,y < Mo(1+ A(a)(1+ [y ]eo)) (r — 1)1~

Thus,

t pr ny _ n t pr
/ |8(7,]/r) g(u/]/u)| dudr < Mo(l—l—/\(ﬂé)(l + |yn|oo))/ / |;,_u|72a dudr
s J |r — u|otl s Jon

< Mo(1+ A@)(1+ [y"]e)) AL 2t —5). (32)
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Therefore,
IG) (y") = G (y") 1 = O(A}2)

and

7

”x_y ”1 'yoo—o(
as2y—1=1-2a.

6. The Implicit Milstein Type Approximation and Auxiliary Results

For a given partition s", we define the implicit Milstein-type approximations for the
time-homogenous equation

xp = x9 + D(x) — P(xg) + /Otf(xs) ds + /Otg(xs) dhs, te0,T] (33)
as

y(tga) =y () + fy(0) A + gy (80)) (h(Ery1) — h(E))

+8'3()) [ (h(s) ~ h(t)) dh, 4

g
where xg € R, € Wy ™, hg=0,1—H < a < 1/2.

Theorem 6. Let 1 — H < a < ®g and let the functions f(x) and g(x) satisfy Assumptions (B)
and (A3), where Ry is defined in (7). Then, Equation (33) has a unique solution x € C'=%(0, T),
where x € (1 — H, ).

Proof. From Assumption (B), we have 6 = 1. Because & € (1 — H,@)), it follows that

1ﬁ 5 > 1= H. Consequently, p > % — 1. Therefore, the conditions of Theorem 4 are satisfied

and the theorem’s statement holds. [

Applying the chain rule, we can rewrite (34) as
y" () =y () + F (" () An + 8 (v" (1) (h(t11) — h(H))
1 2
+ 588" (H)) [M(tsr) — h(E]™
The continuous-time interpolation of the Milstein scheme is defined by
v =xo+ BT () + 6 () + GEST ), (35)

where

G8's™ //gg )) dhudhs.

Because h € W1 “®(0,T) € C'~%(0,T), we have 1 € CW, ([0, T]) and

Vp(s[s,#]) < [llalt =)', (36)

where p = (1 — «)~!. From now on, we assume that p = (1 —a) L.
The method of proving the convergence of the implicit Milstein approximation to the
solution of Equation (1) repeats the idea of the proof for the implicit Euler approximation.

Lemma 2. Let Assumptlon (A3) be satisfied. For any fixed n > 1, the functions y", E(fr )(y ),
G (y"), and G8'8™") (y") belong to C1=%(0, T).
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Proof. From Lemma 1 in [8], we have FU/™") (y"), G&™) (y") € C1=%(0, T). Indeed, the
proof does not change when the Euler approximation is replaced with the Milstein one.
Now, we can consider G(8'8™") ().

We first note that the function ¢’¢(y"(7")) has a bounded variation on [0, T] for any
fixed n; thus, it is bounded and has p-bounded variation. Because k, h(7") € W, ([0, T)), it
is the case that

§'8(y"(T")[h(-) — h(z")] € Wp([0, T]). (37)
To simplify the notation, we write ¢"(s) instead of ¢'¢(y" (")) [h(s) — h(T)].
Now, it remains to prove that G(&'8™") (y) € C1=%(0, T) for fixed n > 1. Assume that

€ [t} t},,) forsome 0 <k <n—1landt <t ; <T. Then,
/en ) dh| = |g'g(y" () |’/ o] dh,
<188y (7)) leo BT (= 5)' ", (38)

as the chain rule implies an inequality

[ ) = ) | = 271 0200) = 12() ~ ) 0(2) )|

=27 k() = h(s)|[((t) = h()) + (h(s) — h(2))] < [hIF_ 28" (8 =)'

Ift > tZH,

then from (38), the Love-Young inequality, and (36) it follows that
/o 1 /o 1 t
G (yr) — G ()| [, e,

tn
< / S ) dh | +
s k+1

< (18" (T") oo Bl —a + Cpp Voo (€73 [0, T]) [ I} (£ — )%

The boundedness of the last term in the above inequality follows from (37). Consequently,
GE=™)(y") € C'=%(0,T).
From Assumption (As3), it follows that

" () =y (s)] < — ) (IEF T ) = ST )| + 16T () - 6T ()]
+[GEE Iy = GEE (). (39)
Thus, y"* € C1=%(0, T) for any fixedn > 1. O

The next lemma allows us to apply the estimate (11) to the integral GE8™) (y).

Lemma 3. Let Assumptions (B) and (As) be satisfied. If y"* € Wy (0, T) for any fixed n > 1
then g(y" (")), " € WO""1 (0,T) for any fixed n > 1

Proof. It follows from Lemma 2 that y" € Wg’l (0,T) for any fixed n > 1 and that there
exists a constant C;, depending on 7 such that

1—
" () =y (T < Cul ' =i

First, we note that g(y" (")) € Wy’ 1(0,T) for any fixed n > 1 (see Lemma 2 in [8]).
Now, we prove that " € Wy’ g (0,T) for any fixed n > 1. It is clear that

12" (s)] < |lh—|8'8(y" (%) ] < Molhl1—a (1 + [y" (%)) (40)

and
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|07 (s) — " (u |< '8y () — &'s(v" ()] - Ih() h(T)]
+|[1(s) = k()] = [h(u) = ()| - |¢'8(v" ()] (41)
M0|h|1 a(s =)0y (W) — v ()]
+ |hf—afls —u' "+ 1 = Y] |8 (v (1)) |

Thus,
E1en(s 11
LD b < sty ()] 1 - ) e
and
|07 (s) = £"(u)] <y () — ()]
// S_uw duds < M0|h|1,x// oyt duds
/ n(n |Ts _TL7|170(
halg s [ (ot i ) duds
togs 1
< \hhf,x[MoCn+2|g'g(y"(f"))|oo]/0 /0 (5 =y s
h|i_o [MoC ’””Al“"trsnldd
+ |h|1—a [MoCn + |88y (T))|oo] A m“s
< 1o [MoCu +2[8"8 (y" (")) | o] (1 — 20) 1272
+ 1o [MoCa + g8 (y" ()| ] 201,
as
et =—u)+ (-1~ (s =) < (s—u)+ (u—1)) (42)
and

t
/0 (s— ) %ds < (1— &) UAS,

The above inequality was proved in Lemma 2 in [8].
Consequently, it follows that £ € W' (0, T) for any fixed n > 1. O

Boundedness of the Norm ||y" || a0

Proposition 6. Let 1 — H < a < Qg and the functions f(x) and g(x) satisfy Assumptions (B)
and (Agz). Then, there exists a constant C such that we have the following:

sup [|[y" flac0 < C
n
Proof. Set

oot = P lllas s Nutllas = [u(s)] + |ulas,

|u
o= [ s i= sup lu(o).

s€(0,t]

It is easy to check (see Proposition 4 in [8]) that

1y"llae < 1%l + (1 =) (IEST (") e + 1GE™) (") [t + IGEE™) (v [lar),  (43)

where the constant ¢ is taken from Assumption (A3z). From Lemma 2, we know that the
norms mentioned above are finite for any fixed n > 1.
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To obtain the statement of the proposition, we repeat the proof of Proposition 4 in [8].
First, we note that from Assumption (B) it follows that

9°(5) — y" ()| <L () s — ) + 8" () (hls) — h(xl)|
+ 3 88" (T (hls) — (<))
SLo(1+ [y (=)} (s — ) + Mol o (1 + [y () ) (s — )"~
+ Mol (1 + [y ()5 — 20
Q@A+ " @)~ ) @)

where A(a) = Lo+ Mo(1 + |h|1—4) |h]1—4-
Based on the above and the proof of Proposition 4 in [8], we can use the results
obtained in Proposition 4. Thus, we obtain

. 1y e,

||F(fr )(y )”a,t gCQ‘FC]/O (t_is)v;sds, (45)
n t —20 —0 n

1GE™) (4™ [las <c2+c3/0 (=) "2 ) [y oo dr (46)

with certain constants C;, 0 < i < 3.
/ n .
Now, we estimate ||G(8'8™")(y")||,. From Lemma 3, it follows that we can apply
Proposition 3. Thus, we obtain the inequality

/ n t C,gtl) 1
16557 ) s <) ([ (725 + 3 )N

// wnr—v{;“ |[(t_z;)“-|-zx]dvdr>. (47)

From inequalities (40) and (41) and the inequality

T =0-0)+0-1)-r-7)<(r-0)+(@v-1), (48)
we have
(&'s™) ¢ n &'s™) (. n
&8 [ n G (y") -G (v")|
‘GggT (y )’+/O t (t—S)lj“ ds

< Aa()MA|1 4 [/Ot () (F— 1)~ 1) (14 [y (x)]) dr

ed r— Ultx v n|l—ua
w7 TR (e oy ] (L by ) o

o @) vy v e =y @D e
T /o/o (r —v)l+a [(t =)~ +r~*]dodr|.

Thus,
||G<g’gfr">< ") |,

T o — n|l—a
h)M|h|; - a[// o= ‘1+a [(t—0) ™ +a] 1+ |y"(T))|) dodr
Ty r—o 1—«a
+c§(,%/0t () ](<1+|y )+ [ s

[y () =y 4 v —yal =+ |ys =y ()]
v e dv)dr], 49)
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where ciz% = max{c&l) V1,T*V2}.
Now, let us move on to estimating the norm of ||G(&'8™") (y")]|.+. We divide the first
integral into two parts and estimate each separately.

Let t}, <t <t} ;. Applying change the order of integration, noting that v < 7' <=

)+ Ay < 1 (asin [18] (p. 349)), we obtain

_ 1zx
o[l 7O b el doar

:a/O L+ " (@)D —w)' "‘(/T;Mn(r—iwdr)d”

f B B
1+ y"(tr 1)|)/t (0— )18 — 0) " do

k-1

Ms

>:-
I
—

1
(14 [y () B - DL /0 A (1 — x) " dx

I
™=

>:-
Il
—

t
<B(2-a,1- a)/o (T+ [y lleo,r) dr

By changing the order of integration in the first part of the integral (as in [18], p. 3497),
we obtain

T” _ 1 w
J A e e
1

~ [Fasw@pe-o - ([ )

Sa /O L+ 1y" (@)D= o) (v =) (T + Ay —0) " do

m—1 t
L (L)) [, (=)Mo= ) =)
k=1 k-1

tVl

T E ) [ =0 = ) M - o) e

m—1
m—1 t};;[
e Y (N E- ) [T =g ) - o) do
k=1 1
t
Ty )AL ”‘/n (t—0) " (ty, —0) “do
m—1
m—1
SaTBR-wT—a) Y (1 Iy () ) (- ) A
k=1
o (1= 20) T (1 [y () ]) (B — ) A
m
<o (B2 1= VTV L (14 1y g, (= )

< oc_l(B(Z—oc,l —a)V2)(TV1)* /Ot (1 n H]/nHoo,s)(t—S)_za ds.

Note that for the second term in (49) we have

[ =2y <l (1 [ 107241y s dr),

where

2(TV1) 1}.

() _
Cup = max { 1—2a
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For the third term, it is evident that

t
[ S s dor < (1= 20) v 02 (1 [

The estimation of the fourth term was proved in [8], and we repeat it below:

dodr

; dr) + /Ot [(t—7)"2 +779]

2(TV1)
1—2a 'l}

/f/Tr” ly" (") — v | + |yt — vl + |vs — v (7))
0 JoO

(r—ov)lte

4) g —2u — n
<2 1+ t— +
Cy ( /O [( 7) r ]H]/ |

where
cof% = A(a)a~! max {

with A(a) as defined in (44).
Consequently, for certain constants C;, 4 < i < 8, we obtain

/ n t t
1GEST™) (") e <Ca + Cs /O 1" ooy dr + Ce /O 1y lloor (£ — )2 dr
t
£C7 [ =12 Ty o dr
t
<Cy+Cy /O [(E =) "2 + 1] [y oo, dr-

Obviously, from (43), (45), (46), and (50), we have

t n
i<+ -0 (€ + g [ 1y

(t—r)n
F(C+Co) [ [=1) 2 4]y s dr).

Note that for r < t, we have

tZDé(t _ r)zx t3tx t20¢
- o
(t - 1’) < rZa(t _ 1’)2“ ~ 1’20‘(t _ 7)2"‘ <T 1’2“(t _ 1’)2“
oct21x 20 tZa
R ’ < (T*+1)

TZ"‘(t _ 1’)2"‘ TZ"‘(t _ r)2zx Tz"‘(t _ r)Za :
Thus,

+ <|xo| + (1 —¢) 1 (Co+Ca+ Cy)

t n
+(1—C)71(C1+C3+C8)(T“+1)f2a/ Hy | dr,

0 r2a(t—r)2e
and from Lemma 7.6 in [21] it follows that
Y™ oot < adqexp {katb!/ 17201

where k, and d, are positive constants depending only on a:

)

(50)

a=|x|+(1—c) (Co+Co+Cy), b=(1-c) Y (C+Cs+Cs)(T*+1).

O

Now, we can strengthen the result of Lemma 2.



Mathematics 2024, 12, 3875

17 of 22

Proposition 7. Under the assumptions of Proposition 6, we obtain sup,, [|y"|l1— < 0.

Proof. Recall that from Lemma 2 we have y", F\/: T")(y ), GET(yn), GET(y1) e
C'=%(0, T) for any fixed n > 1. Thus, for any fixed n > 1, we have the following:

Iyl < Frol + (=) IES () +IHGE () ]y + G () -

The proof repeats the arguments of the proof of Proposition 5 in [8]. The terms

[FST) (ym) ]|, 1IG& ) (y") |, are bounded for all n. This follows from Proposition 6

and the proof of Proposition 5 in [8].
The boundedness of the norm ||G

(8’7" (y”)

Hl—a can be proved in much the same

way as was done for the norm ||G&™) (y") ||, . From (11), it follows that

-

|Gt(g gt )(yn) . G(g 8T )(yn)|

<nan( [ [ [ ).

Applying (40), we obtain

A '5_“5))” dr < Molhl1—o(1+ [yl (1 — &)1 (t — s) 2.

From (41), (48), and (31), it is obvious that

topr |0(yt — ("
[ ] e,

t T (Y _ yf(h
<M0|h|1a(// - e D]

|1 o el |T _ n|1 o
+// o (G dvdr—i—// g (1 (@ )|)dvdr)

< Mplhl1-22(1 + |y |eo) (// r—o)"1° “dvdr—i—// 2”‘dvdr)

< 2Mo|hl1-a (1 + [y" |o) ( / (r—1/)"%dr+(1-2a)” /t(r — )l dr)
<2Mdmvﬂ04-WHw(mflp+<Tv1>Mr—ﬂkﬂ+41_z@*%t—gzﬂﬂ.

Thus, the norm ||G&'8™") () ||;_, is bounded for all  and the proof is complete. [J

7. Rate of Convergence of the Implicit Milstein-Type Approximation
Theorem 7. Under conditions of Theorem 6,

lx = y™" 19,00 = O(AF),
where 7y € (49, H) and x is the solution of Equation (33).

The proof is similar in spirit to the proof of the rate of convergence of the implicit
Euler approximation. For abbreviation, let y" stand for yM"

Because x and y" are elements of the space C!~*(0,T), there exists N such that
Ix][1—¢ < N and ||y"|1—« < N for all n. It is obvious that
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e =yl <[|@(x) = D", 0
+HF(f)(x)—F HaA+HF yn) P(an yn Hoc)x
+ 69 (x) = W), , + 168 (") = G (y") = G (1) 0.

We divide the proof of the convergence rate of the norm ||x — y"||, A into two steps.
We estimate the first, second, and fourth terms in the first step. The estimation of the
first term is provided in (24). Estimates for the second and fourth terms follow from
Propositions 2 and 4.

Similarly, as in Section 4, for sufficiently large A and b satisfying inequality (25), we
obtain

1 = 5" lar, <1 =) ([FO ") = FS ()],

+ |68 (") — g™ () — g&eT (y )||M1)'

In the second step, we estimate the right-hand side of the above inequality. Estimation
of the first term follows immediately from (28). It follows from (9) that to estimate the
norm of the second term it is sufficient to estimate the norm of ||G(&) (y") — G(&™") (y") —
GEE™) (1) 1.

From Proposition 6, Proposition 4.2 in [21], and Lemma 3, we obtain g(y") — g(y"* (")) —
e Wy (0, T) for any fixed 1 > 1. Proposition 3 shows that

Hd)ﬂGWWﬂGW”WWKMW—$MW%§“WW

= | [ letu) — st (@) - ), e
< Am( /S 8 (y7) g((f"_ff)) —00l
C i) =8y (1) — ()] — [8(i) — g () — ¢" ()]
—i—zx/s /s v —a|etl dudr).

Assumethat /' <u <r< Tr+1

2" (1) — 8" () — & (v (w)g(y" (7)) ((r) — h(u))
= [s(v' @) + (") —y"(w))
— (") + F" () — ) + 8" (% ()
+ [2(v" () + £ () 0 — ) + 2" (F) (h(r) - (um 3" (w))
)

First, observe that

— (" () (F(" (7)) r = ) + g (" (22)) (n

+ &0 ) (F" (@) (r =) + (" (7))

—gWWMMWWﬁ»mv»mw»y:huwﬁxw+ku»
From Assumption (B) and (44), we obtain

(1) <Mo|(y" (r) = y" () = f(y" (7)) (r = u) = g(y" (T")) (h(r) — h(w))|
<Molg'g(y" ()| (h(r) = h(1))* < ME|RF_ (1 + [y (g ) (r = w)* = (53)

Further,
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3] = |8" (" () F (™ (5) (r = w)| < MoLo(1 + |y" (7)) (r — u) (54)
and
I (r |</ \g () + 0LF(y" (1)) (r — ) + g™ (x)) (h(r) — h(w))]) — &' (v (u)) | do
x| f(y" >r—u>+g( () (h(r) — h(w))]
<|g”|oo!f ) (r—u) + g (" (7)) (h(r) — h(w))[* (55)

<2M0{L%(r—u) —i—|h|1 aMO(r u)z(l ”‘} (14 [y (")])?

<M (L3 + [ MB] (14 [y"|eo)(r — )20 %),

From (53)—(55) and the fact that sup,, ||y"|| < N, we can conclude that there exists a

constant C independent of n such that

18" (1) = g(y" () — &' (¥" () g (y" (7')) (h(r) — h(w))| < C(r —u). (56)
Set u = 7/'. For the first term in (52), we obtain
s
/ |g ]/r r_s) )) (r)|drgCAn(l—D()il(t—S)lia.
We can rewrite the second integral (52) as the sum of two integrals:
[ [ s =ty o)) = 0]~ Ity = 4" 00 = 0 g,
s Js |r — u|etl
t r 17} _ n rn _ gn _ ﬁ _ n Lrlz _ gn
+/S /T,n g (y¥) — 8" (")) (|:)]_ u|[f+(ly ) =8 @) =W e v

and evaluate each of them separately.
Applying (56) and (31), we obtain

(r—t f _
C// r—u\"‘“ )d dr <2Ca™? n/s(r—rr”) “dr
<ACa 124+ (TVv DAL (1 — )17

Note that

oe [ [ 802 — 8y (@) () —hw)]|

|1’— u‘terl

and thatfor /! <u <r < T+1 we have

|8(y"(r)) — 8(y"(u)) — &'s(y" (1)) [1(r) — h(w)]|
< lg"(r) — 8" u)) §'(y" (w)g(y" (1)) (h(r) — h(u))|
+[ (&' " ()g(y" (7)) = &'g(y" (7)) [1(r) — h(w)]| = Va(r,u) + Va(r,u).

We can divide the integral I, into two parts and estimate each separately. From (56), it is

evident that

V1 T, u 't pr B - " )

<2CAL (=),
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From Assumption (B) and (44), we obtain

Va(r, 1) <M3Jy" (u) — " (5| (1 + [y () ) 1 r — )~
MA@l 1a (14 [y o) (0 — T)1 % — )

Thus,

[ [ 2 it <mto@) 1+ b [ [ O
SMOA @)1+ [y o) 10830 = 2007 [ = )2
KMoA (@) (1 + [y o) []1-a (1 — 20) TTALT(t = 5).
Consequently,
169" = G (y") = G - = O(A) )

and
=0(A™).

lx —y

The statement of the theorem follows from y =1 —«
8. Example: Fractional Pearson Diffusion with a Stochastic Force
Consider the Pearson diffusion process with a stochastic force

t t
D(X;) :D(xo)+/0 oc(Xt)dt—i—/O o(X;)dBl, t>0, (57)

where
D(x) :=x — ®(x), a(x) =b—ax, o(x) =\ oy + o1x + x>

and the function ® satisfies Assumption (A3). Assume that the coefficients 0;, i = 0,1,2
are such that o5 > 0 and 0? — 4009 < 0. Then, o'(x) > 0.

For the existence of a unique solution to problem (57), it is necessary to check the
conditions of Theorem 1. Note that

+ 205 x 4oy0y — 0% 400 — 0
o (x)] < |al, U'xzali, 0<o’(x)= L < L
W <lal,  o(x) = T ()= i - < gy
where xp = 20 is a critical point of the function o (x).

Straightforward computation shows that

2 1
O'Z(x) (x+ 270_2) = E(ZU’zX'FU’])Z

and
405 (Ul + 20’2)()2

(¢ (x)? < EALERIT o0 o (x)| < V.

4(209x + 07)?

Thus, the Pearson diffusion process with a stochastic force has a unique solution under the
above conditions.

Note that 5 ,
o(x)d’ (x) = o(x) % = E(Ul + 207x).
Thus, Assumption (B) is satisfied, and for an implicit Milstein-type approximation we
have the following;:
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y" (t
3@ o ) (e y) — h()]?

=y" (1) = Py"(t7)) + (b — ay" () An + o (y" (£)) (h(tg,) — h(E))
+ 1 (o + 20" () [0t ) — (e

where the rate of convergence is O(A). The convergence rate for Euler approximation is
1—
oAn™™).

9. Conclusions

The mathematical literature has extensively analyzed stochastic differential equations
driven by a fractional Brownian motion. Most of these efforts have been motivated by
problems arising in the financial applications of SDEs, such as option pricing, stochastic
volatility, and interest rate modeling. Our attention is focused on approximating solutions
of stochastic differential equations where their behavior can be interpreted as environmental
influences on the behavior of a process. These types of processes can be applied in the
natural sciences. We have presented and investigated two pathwise process approximation
schemes, namely, the implicit Euler and Milstein schemes. The Milstein scheme has a
better convergence rate than the Euler scheme. Our results represent a new and original
addition to the field of fractional SDEs, and may have broad application perspectives in
various fields.
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