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Abstract: We continue the analysis of the influence of the random effect transformation on the regular-
ity of distribution functions. The paper considers three regularity classes: heavy-tailed distributions,
distributions with consistently varying tails, and exponential-like-tailed distributions. We apply the
random effect transformation to the primary distribution functions from these classes and investigate
whether the resulting distribution function remains in the same class. We find that the random effect
transformation has the greatest impact on exponential-like-tailed distributions. We establish that any
heavy-tailed distribution subjected to a random effect transformation remains heavy-tailed, and any
distribution with a consistently varying tail remains with a consistently varying tail after the random
effect transformation. Meanwhile, different cases are possible when an exponential-like-tailed class
of distributions is subjected to a random effect transformation. Sometimes, depending on the struc-
ture of a random effect, the resulting distribution remains exponential-like-tailed, and sometimes
that distribution regularly varies. All of the derived theoretical results are illustrated with several
examples.

Keywords: random effect; distribution function; distribution transformation; heavy tail; consistent
variation; exponential-like-tailed distribution
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1. Introduction

Random variables (r.v.s) are tools to describe and understand the random processes in
various applied fields, in particular, in insurance, banking, and finance. In other words,
they comprise a quantity that depends on randomness and acquires real values. It can be
described by a measurable function X : W → E, where X is a random variable, W is the
set of elementary events or the sample space, and E ⊂ R is the set of possible outcomes
of this random variable. W must be part of the probability space (W,F , P), where W is
the set of all elementary events or the sample space, F is the σ-algebra of possible events,
and P is the probability measure that is defined for all elements of the given σ-algebra F .
The distribution function (d.f.) is the main function for describing the behavior of a random
variable. Suppose we have an r.v. X. The d.f. of this r.v. is defined by the formula:

FX(x) := P(w ∈ W : X(w) ⩽ x), x ∈ R.

It is well known that any d.f. F has the following properties:

• 0 ⩽ F(x) ⩽ 1, x ∈ R;
• lim

x→−∞
F(x) = 0, lim

x→+∞
F(x) = 1;

• Function F is non-decreasing, i.e., F(x1) ⩽ F(x2) if x1 < x2;
• Function F(x) is right-continuous on R, i.e., lim

x→a+
F(x) = F(a) for any a ∈ R.
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The expressions of the distribution functions (d.f.s) for discrete and continuous random
variables are different. When the random variable X is discrete, its d.f. can be written
as follows:

FX(x) = ∑
xi⩽x

P(X = xi), x ∈ R,

where {xi, i ∈ I} is a finite or countable set of possible values of X.
The r.v. X is called absolutely continuous if its d.f. is absolutely continuous. In this

case, d.f. FX can be written in the following form:

FX(x) =
x∫

−∞

fX(t)dt, x ∈ R,

where fX is an integrable nonnegative density function.
Along with the d.f. F, we consider the tail of the d.f. F = 1 − F. Tail functions are

mainly used in the analysis of the insurance business. Particularly in life insurance, the tail
function is called the survival function. This function measures the probability that an
individual will survive for at least x years:

FT(x) = P(T > x),

where T is an absolutely continuous, nonnegative random variable representing the life
expectancy of an individual. We notice that in life insurance, the survival function is
usually supposed to be absolutely continuous because a person’s life span T can acquire
any positive value [1]. In this paper, we refer to the function FX as the tail of the d.f. FX or
the tail function (t.f.) of a random variable X.

Various studies of the tail functions (t.f.s) are fascinating and especially important in
the life insurance field because t.f.s help to describe human mortality and have a major im-
pact in evaluating insurance premiums, technical provisions, and other key characteristics
in the life insurance business. A detailed description of how survival functions are used to
derive other actuarial characteristics can be found in books [2–7].

In non-life insurance, t.f.s typically describe the probability that the impending loss
will exceed a certain value. In non-life insurance, it is essential to determine how the
cumulative loss tail behaves because the probability of survival or ruin of the risk process
that describes the business depends on it. A detailed description of such a connection can
be found in the books [8–13].

For the reasons above, various transformations of d.f.s and t.f.s are considered. This
paper considers new t.f.s derived using a special transformation through a random effect
Z. This r.v. with d.f. FZ can be defined on a probability space other than the primary r.v.
X with d.f. F = FX. Let us denote this new space by (Ω,A,P). The random effect trans-
formation was firstly proposed by Vaupel [14] and later studied by Manton et al. [15,16],
Yashin et al. [17], Moger and Aalen [18], Hougaard [19], and Pitacco [20,21], among others.

The following equality defines the t.f. with the random effect transformation:

F(Z)(x) := E
(
(F(x))Z), x ∈ R.

The d.f. of this t.f. is

F(Z)(x) = 1 − F(Z)(x) = 1 −E
(
(F(x))Z), x ∈ R.

As was shown in [1], the transformed d.f. is also a d.f. In addition, according to Theorem 1
of [22], transformed d.f. F(Z) is absolutely continuous if such is the primary d.f. F. These
results show that the transformed d.f. can be examined in terms of regularity.

The random effect transformation is the direct generalization of the transformation
defined by a randomly stopped minimum. Namely, if Z is a positive integer-valued r.v.
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and independent of the sequence of i.i.d. r.v.s {X1, X2, . . .} with d.f. F, then the t.f. of the
randomly stopped minimum has the following form:

P
(

min{X1, X2, . . . , XZ} > x
)
=

∞

∑
n=1

P
(

min{X1, X2, . . . , Xn} > x
)
P(Z = n)

=
∞

∑
n=1

(
F(x)

)nP(Z = n)

= E
(
(F(x))Z)

In papers [23–27], various results are derived for this particular case of the random ef-
fect transformation.

As we can see from the results of Section 4, the regularity of the function F(Z) often
depends on the support of the random variable Z. The support of an object generally
means the set of points where this object is nonzero. More formally, if Z : Ω → R is an r.v.
on the probability space (Ω,A,P), then the support supp{Z} of Z is the smallest closed set R such
that P(Z ∈ R) = 1.

The rest of the article is organized as follows. In Section 2, the regularity classes
are introduced. Afterward, some of the already known results are discussed in Section 3.
In Section 4, the main results of this paper are presented together with illustrations of
the results derived. The proofs of the main results are displayed in Sections 5–8. Finally,
Section 9 deals with the conclusions of the whole analysis.

2. Regularity Classes

Distribution functions, according to their tail behavior, are categorized into various
groups, commonly referred to as regularity classes. In this section, we describe a few such
classes. A fairly extensive description of regularity classes and the properties of these
classes can be found in the book [28]. In this article, we will deal with several classes
of regularity: H,Lγ with γ > 0, OL,S ,L,D, C and Rα with α ⩾ 0. Below, we present
definitions of these classes.

• A d.f. F is heavy-tailed, denoted F ∈ H, if for every fixed δ > 0,

∞∫
−∞

eδxdF(x) = ∞.

In the opposite case, we say that a d.f. F is light-tailed and denote F ∈ Hc.
• A d.f. F is exponential-like-tailed, with index γ > 0, denoted F ∈ Lγ, if

lim
x→∞

F(x − y)
F(x)

= eγy f or all y > 0.

• A d.f. F belongs to the class of generalized long-tailed distributions OL, if for any y > 0,

lim sup
x→∞

F(x − y)
F(x)

< ∞.

• A d.f. F is said to be subexponential, denoted F ∈ S if

lim
x→∞

F+ ∗ F+(x)
F+(x)

= 2,

where F+(x) = F(x) I[0,∞)(x).
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• A d.f. F is said to be long-tailed, denoted F ∈ L, if for every y > 0,

F(x − y) ∼
x→∞

F(x).

• A d.f. F is said to have dominatedly varying tail, denoted F ∈ D, if for any y ∈ (0, 1)

lim sup
x→∞

F(xy)
F(x)

< ∞.

• A d.f. F has a consistently varying tail, denoted F ∈ C, if

lim
y↑1

lim sup
x→∞

F(xy)
F(x)

= 1.

• A d.f. F is said to be regularly varying with index α ⩾ 0, denoted F ∈ Rα, if for any y > 0,

lim
x→∞

F(xy)
F(x)

= y−α.

It is known, see for example [9,28], that these classes admit the following relations:

R :=
⋃

α⩾0
Rα ⊂ C ⊂ L ∩D ⊂ S ⊂ L ⊂ H, D ⊂ H.

These inclusions are illustrated in Figure 1.

Figure 1. Relationships between the heavy-tailed distribution classes.

In addition, the above definitions imply that

L ⊂ OL,
⋃

γ>0
Lγ ⊂ OL.
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3. Some Known Results

In paper [1], the influence of the random effect transformations was studied for four
classes of d.f.s: regularly varying R, dominatedly varying D, long-tailed L, and generalized
long-tailed OL. The random effect transformation was applied to the primary d.f.s from
each class, and the resulting d.f.s were examined to determine if they retain their initial
classification. The transformation was found to have the most significant impact on
regularly varying d.f.s. The following assertion was proved in Theorem 1 of [1].

Let F belong to the class of regularly varying d.f.s Rα with α ⩾ 0, and let Z be a positive r.v.
with the greatest lower bound b > 0, i.e.,

P(Z ⩾ b) = 1, P(Z ⩾ b + δ) < 1

for each δ > 0. Then, the transformed d.f. belongs to class Rbα.

Further in [1], it is derived that for d.f.s from the classes D, L, and OL, the transfor-
mation preserves the class of the d.f. as long as the r.v. on which the random effect acts is
strictly positive.

In this paper, we consider the other three classes regularity of d.f.s, H, C and Lγ with
γ > 0. The random effect is chosen for all classes as some positive r.v. because only, in this
case, the transformed d.f. remains d.f. The results of Section 4 show that the distributions
from classes H and C were affected by a random effect remain in the same classes as they
were. Meanwhile, when a random effect affects a distribution from the exponential-like-
tailed class, that distribution can stay in a similar class. Still, it can also become so heavy that
it ends up in the class of regularly varying distributions. In this case, the transformation’s
impact depends on the random effect’s structure. The classes of primary d.f.s considered
both in this paper and in paper [1] differ significantly in their structure. Therefore, when
studying the impact of the random effect on each class, it is necessary to find a specific
method. This can be seen from the proofs of this article, and article [1].

4. Main Results

As was mentioned earlier in this work, we focus on three classes of regularity: H;
C; and Lγ, with γ > 0. According to the results of paper [1], sometimes d.f. with the
random effect preserves the properties of the initial d.f. However, sometimes, the random
effect changes, more or less, the regularity of the initial d.f. The changes depend on the
regularity class under consideration and the properties of the random effect. In this section,
we present the main results of the paper together with several conclusions and illustrations.

4.1. Transformation of the Heavy-Tailed Distribution Function

In this subsection, we establish how the random effect affects the tail of the d.f. from
the class of heavy-tailed distributions H. The assertion below states that a heavy tail
preserves its heaviness under the random effect transformation.

Theorem 1. Let a d.f. F belong to the class of heavy-tailed distributions H, and let Z be a positive
random effect. Then, the transformed d.f. F(Z) belongs to class H as well.

We remark that the analogous assertion fails for class Hc of light-tailed distributions,
i.e., there are d.f.s belonging to class Hc and positive random effects Z for which F(Z) /∈ Hc.
This can be seen from Theorem 3 below and examples in Section 4.3.

4.2. Transformation of the Consistently Varying Distribution Function

The central assertion of this subsection states that the random effect transformation
preserves the regularity property of class C.

Theorem 2. Let a d.f. F belong to the class of consistently varying functions C, and let Z be a
positive random effect. Then, transformed by this random effect d.f. F(Z) also belongs to class C.
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We present the proof of this theorem in Section 6. Here, we present two examples
illustrating how the random effect changes the initial d.f. from class C.

Example 1. Let us take the Cai-Tang r.v. (see [29]) with parameter p ∈ (0, 1):

X = (1 + Y)2N ,

where Y and N are independent r.v.s, Y is uniformly distributed on [0, 1], and N is the geometric
r.v. for which

P(N = k) = (1 − p)pk, k = 0, 1, . . .

Let F be the d.f. of r.v. X. For x ⩾ 1, the d.f. of r.v. X is

F(x) = (1 − p)
∞

∑
k=0

P
(

Y ⩽
x
2k − 1

)
pk

= (1 − p)
∞

∑
k=0

pk
(( x

2k − 1
)
I[0,1)

( x
2k − 1

)
+ I[1,∞)

( x
2k − 1

))
= (1 − p)

(
x

2⌊log2 x⌋ − 1
)

p⌊log2 x⌋ + 1 − p⌊log2 x⌋,

see also Equation (6) in [30], and the t.f. for x ⩾ 1 is

F(x) = p⌊log2 x⌋
(

2 − p − (1 − p)
x

2⌊log2 x⌋

)
.

Due to the considerations on page 124 of [29], the d.f. F belongs to class C. Namely, for 2n < x ⩽
2n+1 and y ∈ (1/2, 1), we have that ⌊log2 x⌋ = ⌊log2(xy)⌋ = n and, therefore,

F(xy)
F(x)

=
2 − p − (1 − p) xy

2n

2 − p − (1 − p) x
2n

= 1 +
(1 − y)(1 − p) x

2n

2 − p − (1 − p) x
2n

⩽ 1 +
2(1 − y)(1 − p)

p
.

The last estimate shows that

lim sup
x→∞

F(xy)
F(x)

⩽ 1 +
2(1 − y)(1 − p)

p

for any y ∈ (1/2, 1), and, consequently d.f. F consistently varies according to the definition of
class C.
Now, let the random effect Z be a r.v. that takes values from the set {1, 2, 3} with probabilities

P(Z = 1) = P(Z = 2) = P(Z = 3) =
1
3

.

Then, the transformed t.f. takes the form:

F(Z)(x) = E
(
(F(x))Z

)
=

1
3

(
(F(x))1 + (F(x))2 + (F(x))3

)
=

p⌊log2 x⌋

3

(
2 − p − (1 − p)

x
2⌊log2 x⌋

)
×
(

1 + p⌊log2 x⌋
(

2 − p − (1 − p)
x

2⌊log2 x⌋

)
+ p2⌊log2 x⌋

(
2 − p − (1 − p)

x
2⌊log2 x⌋

)2
)

.
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According to Theorem 2, d.f. F(Z) = 1 − F(Z) belongs to class C together with the
initial d.f. F. The difference between F and F(Z) in case p = 1

3 is shown in Figure 2.

Figure 2. Comparison of tails F and F(Z) from Example 1.

We can observe that, in this case, the tail of d.f. F is heavier than the tail F(Z). However,
both functions F and F(Z) belong to class C.

Example 2. Let us consider the Cauchy distribution with parameters x0 = 2, γ = 3. The t.f. of
such a distribution is the following:

F(x) =
1
2
− 1

π
arctan

(
x − 2

3

)
, x ∈ R.

The d.f.

F(x) = 1 − F(x) =
1
π

arctan
(

x − 2
3

)
+

1
2

belongs to class C because the t.f. satisfies condition of the class C definition:

lim
y↑1

lim sup
x→∞

F(xy)
F(x)

= lim
y↑1

lim sup
x→∞

(
1
2 − 1

π arctan
(

xy−2
3

))′

(
1
2 − 1

π arctan
( x−2

3
))′

= lim
y↑1

lim sup
x→∞

13y + x2y − 4xy
13 + x2y2 − 4xy

= lim
y↑1

1
y
= 1.
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Let us take a random effect Z uniformly distributed in the interval [0, 1]. Then, the transformed t.f.
is the following:

F(Z)(x) =
1∫

0

(
1
2
− 1

π
arctan

(
x − 2

3

))u
du

=

(
1
2 − 1

π arctan
( x−2

3
))u

log
(

1
2 − 1

π arctan
( x−2

3
))
∣∣∣∣∣
1

0

=
−
(

1
2 + 1

π arctan
( x−2

3
))

log
(

1
2 − 1

π arctan
( x−2

3
)) .

According to Theorem 2, we have that d.f. F(Z) = 1 − F(Z) belongs to class C together
with the initial d.f. F. The difference between F and F(Z) is shown in Figure 3.

Figure 3. Comparison of tails F and F(Z) from Example 2.

We note that in this case the tail of d.f. F(Z) is significantly heavier than the tail F.
However, both functions F and F(Z) belong to class C, according to Theorem 2.

4.3. Transformation of the Exponential-like-Tailed Distribution Function

The main statements below show that the class of d.f.s Lγ, γ > 0 is significantly more
sensitive to the random effect transformation. In Theorem 3, we describe a reasonably
general case where the random effect transformation of exponential-like-tailed d.f. remains
in the same class by changing only the value of the parameter. Meanwhile, in Theorem 4,
we show that a random effect of a specific form transfers the exponential-like-tailed d.f.
to the class of regularly varying functions. In Sections 7 and 8, we present, respectively,
the proofs of the main Theorems 3 and 4 of this subsection.

Theorem 3. Let F be a d.f. from class Lγ with γ > 0, and let Z be a positive r.v. having the support
of the special form

supp{Z} = {a} ∪ B

with inf{B} = b > a > 0. Then, the transformed d.f. F(Z) belongs to class Lγa.
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Corollary 1. If F ∈ Lγ, γ > 0, and Z is an arithmetic positive r.v. with a = min{supp(Z)},
then transformed d.f. F(Z) ∈ Lγa.

Proof. According to conditions of the corollary,

supp{Z} = {a, 2a, 3a, ...}

with some positive a. Therefore,

supp{Z} = {a} ∪ A,

where A = {2a, 3a, . . .} with inf{A} = 2a > a. Now, the assertion of the corollary follows
from Theorem 3 immediately.

Corollary 2. If F ∈ L+ :=
⋃

γ>0
Lγ and Z is a positive r.v. such that

supp{Z} = {a} ∪ B, inf{B} = b > a,

then the transformed d.f. F(Z) belongs to class L+ as well.

Proof. We derive directly from Theorem 3 that

F ∈ L+ ⇒ F ∈ Lγ for some γ > 0 ⇒ F(Z) ∈ Lγa ⇒ F(Z) ∈ L+.

These implications prove the assertion of the corollary.

Theorem 4. Let d.f. F belong to class Lγ with γ > 0, and let the random effect Z be distributed
according to the gamma distribution with positive parameters α and β, i.e.,

FZ(u) = P(Z ⩽ u) =
βα

Γ(α)

∫ u

0
yα−1e−βydy, u ⩾ 0.

Then, the transformed d.f. F(Z) belongs to the regularity class Rα.

From the above theorem, we obtain the following statement when the random effect is
exponentially distributed.

Corollary 3. If d.f. F belongs to class Lγ with γ > 0, and the random effect Z is distributed
according to the exponential law

FZ(u) = P(Z ⩽ u) =
(

1 − e−βu
)

1[0, ∞)(u)

with parameter β > 0, then the transformed d.f. F(Z) belongs to the regularity class R1.

As already mentioned, we present the proofs of the main Theorems 3 and 4 in
Sections 7 and 8. At the end of this subsection, we present three examples showing how
the selected d.f. from class L1 can be transformed by different random effects.

Example 3. Let us consider the exponential distribution with parameter 1, i.e.,

F(x) =
(
1 − e−x)I[0,∞)(x), F(x) = I(−∞,0)(x) + e−xI[0,∞)(x).

The d.f. F belongs to class L1 because

lim
x→∞

F(x − y)
F(x)

= ey
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for any positive y. Let us take a positive random effect distributed according to the shifted Poisson
law, i.e.,

P(Z = k) =
e−1

(k − 1)!
, k ∈ {1, 2, . . .}.

Then, the tail of the transformed d.f. has the following expression:

F(Z)(x) = E(F(x))Z

=
∞

∑
k=1

(
F(x)

)kP(Z = k)

= e−1
∞

∑
k=1

(
F(x)

)k

(k − 1)!

=
F(x)

e

∞

∑
k=0

(
F(x)

)k

k!

= F(x) exp
{

F(x)− 1
}

.

We observe that d.f. F(Z) belongs to class L1, which is consistent with the statement of
Theorem 3. The difference between F and F(Z) is shown in Figure 4.

Figure 4. Comparison of tails F and F(Z) from Example 3.

We observe that, in this case, the tails of d.f.s F(Z) and F are of similar heaviness.

Example 4. Let us again consider exponential distribution with parameter 1 as in the example
before. But in this case, let us take r.v. Z having exponential distribution with parameter 2. Then,
the transformed t.f. has the following form:
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F(Z)(x) = 2
∞∫

0

(
e−x)ue−2udu

= 2
∞∫

0

e−(x+2)udu

=
2

2 + x
, x ⩾ 0.

According to Theorem 4 and Corollary 3, we have that d.f. F(Z) = 1 − F(Z) belongs to
class R1. The difference between F and F(Z) is shown in Figure 5.

Figure 5. Comparison of tails F and F(Z) from Example 4.

We observe that, in this case, the tail of d.f. F(Z) is noticeably heavier than the tail of F
because in this case F is light-tailed and F(Z) is heavy-tailed.

Example 5. Let us consider again the exponential distribution with parameter 1 as in Examples 3 and 4.
As previously established, we have that d.f.

F(x) = 1 − e−x, x ⩾ 0.

belongs to class L1. Now, let us take Z with the d.f.

FZ(u) =
1
2
I[2,3)(u) +

(
1
2

u − 1
)

1[3,4)(u) + I[4,∞)(u).

Then, the transformed d.f., for x ⩾ 0, has the following form:

F(Z)(x) = E(F(x))Z = e−2x P(Z = 2) +
4∫

3

e−xud
(

1
2

u − 1
)

=
1
2

e−2x +
1
2

e−4x(ex − 1
)

x
.
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According to Theorem 3, we have that d.f. F(Z) belongs to class L2 because the support
of the random effect is {2} ∪ [3, 4]. This can also be observed from the obtained expressions
of the tails of the d.f.s. The difference between F and F(Z) is shown in Figure 6.

Figure 6. Comparison of tails F and F(Z) from Example 5.

We observe that, in this case, the tails of d.f.s F(Z) and F are of similar heaviness.
In fact, function F belongs to class L1 and F(Z) belongs to class L2, which is consistent with
Theorem 3. We remind the reader here that both of the above-mentioned classes belong to
class L+.

5. Proof of Theorem 1

For the proof of the theorem, we need one auxiliary lemma.

Lemma 1. Let F be a d.f. of a real-valued r.v. Then, the following statements are equivalent:

(i) F is heavy-tailed,

(ii) lim sup
x→∞

eλx F(x) = ∞ for any λ > 0.

Proof of the Lemma. (i) ⇒ (ii). Let on the contrary

lim sup
x→∞

eλ∗x F(x) < ∞

for some λ∗ > 0. Then, c and xc > 0 exist such that

F(x) ⩽ c e−λ∗x for x ⩾ xc.

According to the alternative expectation formula (see [31], for instance), for any ∆ ∈ (0, λ∗),
we obtain the contradiction to F ∈ H because
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∫
[0,∞)

e ∆xdF(x) = 1 + ∆
∫ ∞

0
e ∆x F(x)dx

= 1 + ∆
∫ xc

0
e ∆x F(x)dx + ∆

∫ ∞

xc
e ∆x F(x)dx

⩽ ∆ xc e ∆xc + c ∆
∫ ∞

xc
e−(λ∗−∆)xdx.

(ii) ⇒ (i). If λ > 0 and x > 0, then∫ ∞

−∞
eλydF(y) ⩾

∫
(x,∞)

eλydF(y)

⩾ eλx F(x),

implying that ∫ ∞

−∞
eλydF(y) ⩾ lim sup

x→∞
eλx F(x) = ∞.

Therefore, F ∈ H, and Lemma 1 is proved.

Proof of Theorem 1. Due to Lemma 1, it is sufficient to prove that

lim sup
x→∞

eλx F(Z)(x) = ∞

for any positive λ.
Let b > 0 be such that P(Z ∈ [0, b]) > 0. For this, b we have

F(Z)(x) =
∫
[0,∞)

(
F(x)

)udFZ(u)

⩾
∫
[0,b]

(
F(x)

)udFZ(u)

⩾
(

F(x)
)bP
(
Z ∈ [0, b]

)
.

Therefore, for any λ > 0

lim sup
x→∞

eλxF(Z)(x) ⩾ lim sup
x→∞

(
eλx/b F(x)

)b
P
(
Z ∈ [0, b]

)
= ∞

because condition F ∈ H implies

lim sup
x→∞

eλx/b F(x) = ∞

according to Lemma 1. Theorem 1 is proved.

6. Proof of Theorem 2

Proof. From the definition of class C, we have that

lim
y↑1

lim sup
x→∞

F(xy)
F(x)

= 1. (1)

Let us choose ε ∈ (0, 1/2) and δ = δ(ε) ∈ (0, 1/2) so that P(Z ∈ [0, 1/ε)) > 0 and

lim sup
x→∞

F(xy)
F(x)

⩽ 1 + ϵ2,
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for all y ∈ (1 − δ, 1). For such ε and for positive x, y, we have

F(Z)(xy)

F(Z)(x)
=

∫
[0,∞)

(
F(xy)

)udFZ(u)∫
[0,∞)

(
F(x)

)udFZ(u)

=

∫
[0, 1/ε)

(
F(xy)

)udFZ(u)∫
[0,∞)

(
F(x)

)udFZ(u)
+

∫
[1/ε, ∞)

(
F(xy)

)udFZ(u)∫
[0,∞)

(
F(x)

)udFZ(u)

=: J1ε + J2ε, (2)

where FZ denotes the d.f. of the random effect Z.
If y ∈ (1 − δ, 1), then

lim sup
x→∞

J1ε ⩽ lim sup
x→∞

∫
[0, 1/ε)

(
F(xy)

)u (F(x))
u

(F(x))
u dFZ(u)∫

[0, 1/ε)

(
F(x)

)udFZ(u)

⩽ lim sup
x→∞

max
0⩽u⩽1/ε

(
F(xy)
F(x)

)u

⩽ lim sup
x→∞

(
F(xy)
F(x)

)1/ε

⩽
(

1 + ε2
)1/ε

.

Also, for the selected ε and for y ∈ (1 − δ, 1) we obtain

lim sup
x→∞

J2ϵ ⩽

∫
[1/ε, ∞)

(
F(xy)

)udFZ(u)∫
[0, 1/ε]

(
F(x)

)udFZ(u)

⩽ lim sup
x→∞

(
F(xy)

)1/εP
(
Z ⩾ 1

ε

)(
F(x)

)1/εP
(
Z ∈ [0, 1

ε ]
)

⩽
(

1 + ε2
)1/ε P

(
Z ⩾ 1

ε

)
P
(
Z ∈ [0, 1

ε ]
) .

The derived estimates and equality (2) imply that

lim
y↑1

lim sup
x→∞

F(Z)(xy)

F(Z)(x)
⩽
(

1 + ε2
)1/ε

(
P
(
Z ⩾ 1

ε

)
P
(
Z ∈ [0, 1

ε

) + 1

)

for all ε satisfying the condition P
(
Z ∈ [0, 1

ε )
)
> 0.

Therefore, by passing ε to zero we obtain

lim
y↑1

lim sup
x→∞

F(Z)(xy)

F(Z)(x)
⩽ lim

ε↓0

(
1 + ε2

)1/ε
(

1 +
P
(
Z ⩾ 1

ε

)
P
(
Z ∈ [0, 1

ε )
)).

Since
lim
ε↓0

(
1 + ε2

)1/ε
= 1,
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we have

lim
y↑1

lim sup
x→∞

F(Z)(xy)

F(Z)(x)
⩽ 1. (3)

In addition, if y ∈ (0, 1) and x > 0 we have

lim sup
x→∞

F(Z)(xy)

F(Z)(x)
⩾ lim inf

x→∞

F(Z)(xy)

F(Z)(x)
⩾ 1,

for all y ∈ (0, 1). Consequently,

lim
y↑1

lim sup
x→∞

F(Z)(xy)

F(Z)(x)
⩾ 1

which, together with the estimate (3), implies that

lim
y↑1

lim sup
x→∞

F(Z)(xy)

F(Z)(x)
= 1.

This means that the transformed d.f. F(Z) ∈ C. Theorem 2 is proved.

7. Proof of Theorem 3

Proof. From the definition of class Lγ we have

F ∈ Lγ ⇔ lim
x→∞

F(x − y)
F(x)

= eγy for all y > 0. (4)

If x is positive, then

F(Z)(x) = E
(
( F(x))Z

)
= E

((
F(x)

)Z1{Z=a} +
(

F(x)
)Z1{Z∈B}

)
=
(

F(x)
)aP(Z = a) +E

((
F(x)

)Z1{Z⩾b}

)
.

Hence, for any fixed y > 0, we obtain

lim sup
x→∞

F(Z)(x − y)

F(Z)(x)

= lim sup
x→∞

(
F(x − y)

)aP(Z = a) +E
((

F(x − y)
)Z1{Z⩾b}

)
(

F(x)
)aP(Z = a) +E

((
F(x)

)Z1{Z⩾b}

)
⩽ lim sup

x→∞

(
F(x − y)

)aP(Z = a) +
(

F(x − y)
)bP(Z ⩾ b)(

F(x)
)aP(Z = a)

⩽ lim sup
x→∞

(
F(x − y)

F(x)

)a

+ lim sup
x→∞

(
F(x − y)

F(x)

)b(
F(x)

)b−a P(Z ⩾ b)
P(Z = a)

= eγay. (5)
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Similarly, we obtain

lim inf
x→∞

F(Z)(x − y)

F(Z)(x)
⩾

(
F(x − y)

)aP(Z = a)(
F(x)

)aP(Z = a) +
(

F(x)
)bP(Z ⩾ b)

= lim inf
x→∞

(
F(x−y)

F(x)

)a
P(Z = a)

P(Z = a) +
(

F(x)
)b−aP(Z ⩾ b)

= lim inf
x→∞

(
F(x − y)

F(x)

)a

= eγay. (6)

The estimates (5) and (6) imply that F(Z) ∈ Lγa. This finishes the proof of Theorem 3.

8. Proof of Theorem 4

For the proof of Theorem 4, we need an auxiliary statement related to the representa-
tion theorem for the exponential-like-tailed d.f.s.

Lemma 2. Let d.f. F belong to class Lγ with γ > 0. Then, for any ε ∈ (0, γ/2) sufficiently large
x∗ = x∗(ε) exists such that

e−(γ+ε)x ⩽ F(x) ⩽ e−(γ−ε)x

for all x ⩾ x∗.

Proof of the Lemma. D.f. F belongs to class Lγ with γ > 0. Therefore, for fixed y > 0,
we have

(yx)γF(log yx)
xγF(log x)

= yγ F(log y + log x)
F(log x)

→
x→∞

yγe−γ log y = 1.

This implies that the function xγF(log x) slowly varies. According to the well-known
Karamata’s representation theorem, see [32], Theorem 1.2 in [33], or Theorem 1.3.1 together
with Corollary 1.3.5 in [34],

xγF(log x) = h(x) exp
{
−
∫ x

1

g(u)
u

du
}

, (7)

where h and g ⩾ 0 are measurable functions such that

h(x) →
x→∞

h > 0, and g(x) →
x→∞

0.

Changing log x to x, we obtain from (7) that

F(x) = h
(
ex) e−γx exp

{
−
∫ ex

1

g(u)
u

du
}

= h
(
ex) e−γx exp

{
−
∫ x

0
g
(
eu)du

}
.

Let ε ∈ (0, γ/2) be fixed. From the last expression, we obtain that

F(x) ⩽ max{1, 2h} e−γx ⩽ e−(γ−ε)x (8)
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if x ⩾
1
ε

log max{1, 2h}.

Similarly, the condition g(x) →
x→∞

0 implies that

F(x) = h
(
ex) e−γx exp

{
−
∫ x1

0
g
(
eu)du −

∫ x

x1

g
(
eu)du

}
⩾ h

(
ex) e−γx exp

{
−
∫ x1

0
g
(
eu)du − ε

2
(x − x1)

}
⩾ h

(
ex) e−(γ+ε/2)x exp

{
−
∫ x1

0
g
(
eu)du

}
, x ⩾ x1,

where x1 is such that g
(
eu) ⩽ ε/2 for u ⩾ x1.

If x is sufficiently large (x ⩾ x2 > x1), then

h
(
ex) ⩾ h

2
⩾ e−εx/4

by condition h(x) →
x→∞

h > 0 and

exp
{
−
∫ x1

0
g
(
eu)du

}
⩾ e−εx/4,

due to the integrability of function g.
The derived above estimates imply that

F(x) ⩾ e−(γ+ε)x (9)

for all x ⩾ x2.
It follows from the estimates (8) and (9) that the assertion of the lemma holds with

x∗ = max
{

1
ε

log max{1, 2h}, x2

}
. Lemma 2 is proved.

Proof of Theorem 4. Let y > 0 be fixed. For an arbitrary x > 0

F(Z)(xy)

F(Z)(x)
=

∫
[0, ∞)

(
F(xy)

)udFZ(u)∫
[0, ∞)

(
F(x)

)udFZ(u)

=

∫ ∞
0

(
F(xy)

)uuα−1e−βudu∫ ∞
0

(
F(x)

)uuα−1e−βudu
.

Since F ∈ Lγ with γ > 0, we have from Lemma 2 that

e−(γ+ε)xy ⩽ F(xy) ⩽ e−(γ−ε)xy,

e−(γ+ε)x ⩽ F(x) ⩽ e−(γ−ε)x

for ε ∈ (0, γ/2) and sufficiently large x.
Therefore,

lim sup
x→∞

F(Z)(xy)

F(Z)(x)
⩽ lim sup

x→∞

∫ ∞
0 uα−1 e−

(
(γ−ε)xy+β

)
udu∫ ∞

0 uα−1 e−
(
(γ+ε)x+β

)
udu

= lim sup
x→∞

(
(γ + ε)x + β

(γ − ε)xy + β

)α

=

(
γ + ε

γ − ε

)α

y−α, (10)



Mathematics 2024, 12, 3932 18 of 20

and, similarly,

lim inf
x→∞

F(Z)(xy)

F(Z)(x)
⩾ lim inf

x→∞

∫ ∞
0 uα−1 e−

(
(γ+ε)xy+β

)
udu∫ ∞

0 uα−1 e−
(
(γ−ε)x+β

)
udu

= lim inf
x→∞

(
(γ − ε)x + β

(γ + ε)xy + β

)α

=

(
γ − ε

γ + ε

)α

y−α. (11)

Because of the arbitrariness of ε ∈ (0, γ/2), estimates (10) and (11) imply that

lim
x→∞

F(Z)(xy)

F(Z)(x)
= y−α.

This finishes the proof of Theorem 4.

9. Conclusions

In this paper, we examine how the random effect transformation changes the regularity
properties of the distribution function. We consider three classes of distributions: heavy-
tailed distributions, distributions with consistently varying tails, and exponential-like-
tailed distributions. We found that the class of exponential-like-tailed distributions is most
sensitive to the random effect transformation. In some cases, a random effect transforms
distributions from this subclass of light-tailed distributions into heavy-tailed ones. Also, the
random effect transformation is one way to construct distributions with specific properties.
This method perfectly complements other methods of such construction discussed in many
articles, see, for example, refs. [35–43] and references there in. In this paper and in paper [1],
it is established how a random effect affects distributions from seven regularity classes:
R,L,L+,OL,D, C, and H. According to the book [28], there are more regularity classes.
In the future, it would be interesting to find out how a random effect changes distributions
from other classes, especially those defined by the convolution.
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