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ABSTRACT
We propose an efficient mode management scheme in active nonlinear multimode fibers based on non-Hermitian potentials in the lon-
gitudinal direction with an antisymmetric transverse profile. The proposal takes advantage of the nonlinear saturation toward particular
mode configurations, which can be tuned by the non-Hermitian potential. We demonstrate flexible control of the beam profile within the
parameter space of the applied potential with various possibilities, such as improving the beam quality by condensing photons to the low-
est order Hermite mode, exciting higher order modes, or engineering a desired mode profile as a combination of modes. The effect is also
analytically predicted using a mode-expansion approach, showing good agreement with the full model calculations based on the complex
Ginzburg–Landau equation. This study was performed for 1D planar guiding structures, yet the results can be extended to 2D fibers and
could be very useful in applications of fiber amplifiers and lasers.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0231659

I. INTRODUCTION

The emergence of non-Hermitian systems has impacted the
field of photonics due to feasibility in the modulating of the refrac-
tion index and integrating gain and loss. This has enabled the design
of artificial materials1–4 with unprecedented features in extended
systems5–8 and also, in particular, in waveguide optics,9–12 in this last
case, generally relying only on transverse non-Hermitian modula-
tions. Yet, proposals including non-Hermitian modulations in both
transverse and longitudinal spatial directions have led to resonant
linear mode conversion,13,14 including a recent proposal in the con-
text of graded index multimode optical fibers to achieve an efficient
all optical linear mode-cleaning.15,16

Efficient schemes of transverse and longitudinal non-
Hermitian modulations would be much desired in nonlinear
multimode waveguides, or fiber amplifiers/lasers. Indeed, there is a
rising demand for laser beams exhibiting different spatial profiles,
driven by applications such as laser processing, lithography, medical
procedures, and laboratory research.17 Current beam-shaping
techniques rely on a combination of refractive, diffractive, and

reflective optical elements,18–20 which generally relay, however, on a
precise alignment of different optical elements. Therefore, a flexible
fiber-integrated modal management scheme remains a challenge.

In the present paper, we propose a modal management scheme
of active nonlinear systems such as multimode fiber (MMF) ampli-
fiers. The proposal takes advantage of the multimode solutions
in unmodulated parabolic nonlinear MMFs. The nonlinearity sat-
urates the growing of the amplitudes of the modes, leading to
particular mode configurations. Under the introduction of particu-
lar non-Hermitian modulations, it is possible to control the mode
distribution and, therefore, the beam shape. For this purpose, we
consider a harmonic non-Hermitian modulation, with a transverse
antisymmetric profile, involving a modulation of both the refrac-
tive index and the gain/loss along a parabolic-index MMF ampli-
fier. Figure 1(a) shows a possible implementation where index and
gain/loss are periodically modulated in the longitudinal direction,
while the snaking of the waveguide accounts for the antisymmetric
transverse profile. The scheme could be intended to increase bright-
ness to excite higher order modes or to flexibly manage the desired
beam profile.
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FIG. 1. (a) Schematic representation of a periodically modulated non-Hermitian 1D
waveguide amplifier with a parabolic index profile. The index modulation along the
propagation direction, z, is accounted by the fiber snaking, resulting in a transverse
antisymmetric index perturbation. The gain/loss modulation is also antisymmetric
in the transverse direction as indicated by the colors. (b) Lowest order Hermite
modes of the 1D (unmodulated) parabolic waveguide with equispaced longitudinal
wavenumbers kn = (n + 1

2
)Δkz .

Therefore, we first perform a stability analysis of MMFs with-
out modulation in order to determine the characteristic parameters
for the single- and multi-mode operation. Then, we numerically
explore the parameter space of the proposed non-Hermitian poten-
tial to find parameters allowing for different types of mode man-
agement. Finally, we also analytically explore the role of such
non-Hermitian potential in 1D waveguides with a transverse anti-
symmetric profile considering the first three transverse modes
system. Numerical simulations are in good agreement with the
analytical predictions.

II. MODELLING THE NON-HERMITIAN WAVEGUIDE
The governing equation for light propagation along the active

multimode fibers in CW or quasi-CW (long pulses) regimes in the
presence of a complex potential is the complex Ginzburg–Landau
equation (CGLE),

∂A
∂z
= (1 + iα)(p0e−gx2

− ∣A∣2)A + id∇2A − icx2A + iV(x, z)A, (1)

where A(x, z) is the complex field amplitude envelope in the
paraxial approximation, p0e−gx2

stands for the overall gain profile
(be it a Raman gain, or a gain from doped ions) in transverse
direction x, α is the self-focusing coefficient, c is the coefficient
of parabolic background potential, and V(x, z) is the profile of
the perturbing complex-valued potential, as shown in Fig. 1(a).
Such a non-Hermitian potential, V(x, z), consists of two parts:
the real part corresponding to index modulation (introduced by
fiber snaking or thickness variation) and the imaginary part cor-
responding to the modulated gain/loss (introduced by absorp-
tion/scattering/transmission losses and gain by fiber doping).16

We consider the following antisymmetric perturbing potential:

V(x, z) = V(z)V(x) = [mre cos (qz) + imim cos (qz + ϕ)](
x
x0

e
−

x2

x2
0 ),

(2)
where mre and mim are the amplitude of the refractive index and
gain/loss modulations, respectively, ϕ is the spatial shift between
these two modulations, q is the modulation wavenumber, and x0 is
the half-width of the transverse spatial profile.

Without the complex potential V(x, z), gain profiles and non-
linearities, the solutions of Eq. (1) are Hermite–Gauss eigenmodes
of propagation in the background parabolic potential,

Hn =
1√√

π2nn!w0
Hn(x/w0)exp(−x2/(2w2

0)), (3)

where Hn(x) are the Hermite polynomials, with n being the non-
negative integer mode index and w0 is the spot size of the funda-
mental mode. The corresponding mode propagation wavenumbers
kn = (n + 1

2)Δkz are equispaced with Δkz = 2
√

cd. Thereby, due to
this equidistant mode propagation constant, beams propagating in
MMF exhibit a self-imaging with period ζ = 2π/Δkz .

III. RESULTS AND DISCUSSIONS
A. Stability analysis

We first perform the stability analysis of the system without the
non-Hermitian modulation, V(x, z) = 0 and for the fundamental
transverse mode. We consider a simple approximation of the sys-
tem dynamics near the lowest transverse mode, H0, and we assume
an oscillatory Gaussian ansatz of the form21

A(x, z) =
√

ρ(z)e−β(z)x2

, (4)

with real-valued beam amplitude ρ(z) and complex-valued beam
waist parameter β(z) = βre(z) + iβim(z). The evolution of these vari-
ables, as derived from Eq. (1), is governed by the system of ordinary
differential equations,

dβre

dz
= −2ρβre + 8dβimβre + gp0, (5a)

dβim

dz
= −2αρβre + c − 4d(β2

re − β2
im) + p0gα, (5b)

dρ
dz
= −2ρ2 + 4dβimρ + 2p0ρ. (5c)

The stationary solution (βre0, βim0, ρ0) can be found analytically
by equating dβre,im/dz, dρ/dz = 0, in the absence of modulation,
mre = mim = 0. We perform linear stability analysis of the station-
ary solution by calculating the eigenvalues of the corresponding
Jacobian matrix. Figure 2(a) shows the stability map calculated
from the set of Eq. (5) in the parameters space of the system
(α, g)—self-focusing coefficient and the gain profile. A Hopf bifurca-
tion separates a stable region, where the real parts of all eigenvalues
are negative, and an unstable region with two complex-conjugated
eigenvalues with positive real parts. Propagation in these two regions
respectively leads to a stable point or to periodic trajectory in the
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FIG. 2. (a) Stability map calculated form the set of Eq. (5) in the parameter space of (α, g). The insets of panel (a) correspond to phase space evolutions at points (i) (white
dot) and (ii) (black dot). (b) and (d) Beam evolution and (c) and (e) corresponding evolution of the normalized mode projection, for the case (i) and (ii), respectively. The
spatial coordinate z is normalized to the self-imaging period ζ. Other parameters used are c = d = 1.

phase space of (βre, βim, ρ); see the insets of Fig. 2(a). In the first
case, the system evolves to a stable point through damped oscilla-
tions; see inset (i), whereas inset (ii) depicts the evolution toward
a periodic orbit. We also observe analogous behavior by numerical
integration of Eq. (1), in the absence of the non-Hermitian poten-
tial. An incident multimodal beam experiences a different evolution
upon propagation within the (α, g) parameter space. Within the sta-
ble range, any initial multimodal beam ends up in a mono-mode
propagation of the lowest order mode H0; see Fig. 2(b). It should
be noted that the normalized mode projection to H0 reaches 1, as
shown in Fig. 2(c). Meanwhile, the unstable region in the Gaussian
ansatz model corresponds to multimodal solutions of the full CGLE
model. Indeed, Figs. 2(d) and 2(e) show the evolution of a beam
within the multimodal range and its normalized mode projection,
as calculated by the overlap integral (OI) of the total field on every
Hn mode,

OIn =
∣∫A ×Hndx∣2

∫ ∣A∣2dx ∫ ∣Hn∣2dx
. (6)

It is worth mentioning that H0 is the only stable mono-mode
solution for the unmodulated system observed upon integration of
the full CGLE model with a similar boundary in the parameter space
determined by the Hopf bifurcation for the simple Gaussian model.
The second Hermite mode H1 also shows partial stability in a range
of the parameter space but only in the subspace of the odd Hermite
modes.

In the following, we focus the study on the periodic (mul-
timode) region (e.g.; c = d = 1, g = α = 0.1) and explore how the
antisymmetric non-Hermitian potential shapes the beam profile.

B. Direct integration
Next, we analyze the multimode non-Hermitian waveguide by

direct integration of Eq. (1). We introduce the potential of Eq. (2)
with an antisymmetric shape in x, the transverse direction, and
integrate the field amplitude A(x, z) using the split-step Fourier
method.

In order to characterize the mode management, we calculate
the relative intensity or mode projection as the overlap integral,
Eq. (6), of the eigenmodes of the unmodulated system.

To assess the mode management and beam shaping, we first
numerically explore the parameter space (ϕ, Q) for a fixed value
of modulation amplitudes, mre, mim, where Q = q/Δkz is the spatial
frequency of the non-Hermitian modulation normalized to the res-
onant frequency qres = Δkz . We propagate along the fiber an initially
random beam and map the mode projections of the first six lower
order modes, Hn, n = 0, 1, . . . , 5, after a sufficiently long propagation
distance, as shown in Fig. 3. Figure 3(a) shows the general map of all
the calculated mode projections in the parameter space (ϕ, Q) and
fixed values of the amplitudes, mre and mim, while the detailed rel-
ative intensities of the first six modes are shown in Fig. 3(b)–3(g).
The insets of Fig. 3(a) show different beam shapes corresponding
to particular positions within the map. Therefore, the fiber para-
meter determines the final transverse profile of the output beam and
could be designed intended to beam-shape the input light. Interest-
ingly, there are regions (in red) corresponding to π/2 < ϕ < 3π/2, for
modulation frequency below resonance, Q < 1 and −π/2 < ϕ < π/2,
for modulation frequency, Q > 1, where the projection of the low-
est order mode, H0, is maximal, reaching a mono-mode regime. It
should be noted that there are regions in the parameter space where
the overlap integral is 1, as shown in Fig. 3(b). This indicates that
the non-Hermitian potential is shifting the mono-mode/multimode
boundary shown in Fig. 2(a), as found in the stability analysis.
Ranges where the relative intensity of H0 are maximized could be
used for all-optical mode-cleaning. Irrespective of the initial condi-
tions, a beam propagating along the fiber would acquire a perfect
Gaussian spatial profile, increasing the beam quality and brightness.
In turn, Fig. 3(c) shows that mode H1 is maximized in some ranges,
coexisting with other modes. In the same way, mode H2 is also max-
imized up to an almost 100% within the map (blue region) for a
range of parameters corresponding to π/2 < ϕ < 3π/2, above reso-
nance and −π/2 < ϕ < π/2, below resonance, as shown in Fig. 3(d).
It should be noted from Figs. 3(e)–3(g) that modes H3, H4 and H5
are also dominant in some regions, yet with lower relative integrals,
hence in a multimode configuration.
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FIG. 3. (a) Overlapped map of the normalized mode projections, OI, of all the modes as calculated by Eq. (6), in the total field in the parameter space (ϕ, Q) for a fixed value
of the modulation amplitudes, mre and mim, where relative intensity of every mode corresponds to one color: red to H0, green to H1, blue to H2, violet to H3, cyan to H4, brown
to H5, and black to the rest of modes. The insets show different beam profiles corresponding to the white dots. Panels (b)–(g) depict the particular map of the first six modes,
H0–H5, plotted as the intensity map, where the maximum corresponds to a mono-mode beam. The parameters used are mre = mim = 0.6; in addition, throughout this paper,
we fix g = α = 0.1, c = d = 1.

As an example of the proposed mode management by modu-
lated non-Hermitian fibers, the mode cleaning regime is available
in all the red region shown in Fig. 3(a). The evolution of the trans-
verse spatial profile of the beam is shown in Fig. 4. We observe
that the participation decreases in high modes in propagation along
the fiber, while OI of the lowest order mode, H0, increases asymp-
totically approaching to unity and reaching a mono-mode output.
This effect is also evident from the inspection of intensity profile;
see Fig. 4(b). The highly multimodal input distribution of the beam
gradually evolves toward a bell-shaped transverse profile.

To quantitatively characterize the mode-cleaning, we calculate
the evolution of the beam quality factor M2. The inset of Fig. 4(a)
clearly shows a significant reduction of the beam quality factor,

FIG. 4. (a) Relative mode intensity, OI, for an incident noisy beam, as a function
of the propagation distance. The inset shows the evolution in the space of the
beam quality factor. (b) Evolution in the propagation of the corresponding profiles
depicted at particular distances, namely, z = 1ζ, 30ζ, 70ζ, 190ζ, and 300ζ. The
parameters used are mre = mim = 0.6, Q = 0.925, ϕ = 4.42.

as M2 gradually approaches unity, acquiring an almost Gaussian
profile.

IV. MODAL EXPANSION
In order to acquire a physical insight into the effect of the

nonlinear multimode modulated fiber and analytically asses the
interaction among modes for the modulated 1D case, we derive
a coupled mode model, containing n transverse modes, using the
standard mode expansion technique for the optical field A(x, z),22,23

A(x, z) =
n

∑
i=1

ai(z)Hi(x). (7)

Here, ai(z) stand for the z-dependent mode coefficients, and
Hi(x) is the set of orthonormal transverse Hermite modes, Eq. (3).
The ansatz (7) is inserted into Eq. (1) to obtain the system of equa-
tions for the amplitudes of transverse modes, ai(z). The intensity
term ∣A∣2 becomes

∣A∣2 =
n

∑
i,j=1

aia∗j HiH∗j . (8)

Inserting expansions (7) and (8) into Eq. (1), multiplying
Eq. (1) by H∗i (x) and integrating over the transverse coordinate
x, the following system of equations for the mode coefficients is
obtained:

∂ai

∂z
= (1 + iα)

⎛
⎝

n

∑
j=1

Pjiaj −
n

∑
klj=1

Gkljiaka∗l aj
⎞
⎠
+ ikiai + iV(z)

n

∑
j=1

Cjiaj ,

(9)
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FIG. 5. RGB map of the normalized mode projections of the first three transverse
modes, H0(red), H1(green), and H2(blue) in the total field, after a propagation
distance z = 1500ζ, in the parameter space of (ϕ, Q) for a fixed mre and mim.
The insets display the different beam profiles corresponding to the white dots,
labeled A, B, and C. The insets displayed on the right-hand side are analogous to
Figs. 3(b)–3(d). The amplitude of the complex potential is the same as in Fig. 4:
mre = mim = 0.6.

where P ji = ∫p0e−gx2
H jH∗i dx, Gklji = ∫HkH∗l H jH∗i dx and

C ji = ∫x/x0e−x2
/x2

0 H jH∗i dx are the matrix elements of the cou-
pling between the transverse modes, arising from the different
terms of Eq. (1), the gain profile, the nonlinear term, and the non-
Hermitian potential, respectively, and ki being the above-defined ith
mode propagation wavenumber. Due to the different parities of the
modes, some of the integrals are zero. Here, we numerically solve
the system of Eq. (9) considering the three lowest transverse modes.
The values of the non-zero coupling coefficients, for the case of
three modes are included in Appendix A. We explore the parameter
space of (ϕ, Q) for a fixed non-Hermitian potential, i.e., for constant
amplitude values mre, mim, and map OI of each of the three modes

after a sufficiently long propagation distance. The result is shown
in Fig. 5, plotted as an RGB image, corresponding to the first three
Hermite modes. Each color represents a different mode relative
intensity: red corresponds to H0, green corresponds to H1, and blue
corresponds to H2. In accordance to the direct integration results,
OI of the first mode, H0, is maximum in a phase range (in red)
corresponding to π/2 < ϕ < 3π/2, for modulation frequency below
resonance, Q < 1 and −π/2 < ϕ < π/2, for modulation frequency
above resonance, Q > 1, where OI reaches 1. Such phase range
depends on the detuning. Exactly at resonance, Q ≃ 1, the mode-
cleaning range squeezes and we retrieve the PT-symmetry condition
for a phase delay of 3π/2. Yet, off-resonance, mode cleaning occurs
in a wider phase range, which increases with the detuning. In
turn, such phase range broadens asymmetrically depending on the
sign of the detuning, becoming more robust. Above resonance, the
optimum phase ranges from 3π/2 toward 0, while below resonance,
it broadens toward π.

Inspecting OI of the third mode, H2, the tendency is almost
complementary to H0; see the blue range on Fig. 5. Interestingly,
the values of OI of mode H1 correspond to the geometrical mean of
OI of the modes H0 and H2, consistent with the eigenvectors
obtained by simple linear analysis of the system; see Appendix B.
The insets in Fig. 5(a) show the profiles of the beam amplitude for
particular points on the map. The insets on the right-hand side of
Fig. 5(a) are analogous to Figs. 3(b)–3(d), which demonstrate the
agreement between the numerical and analytical calculations.

Finally, we show that irrespective of the initial conditions of
the input beam, the system evolves toward the same final state,
which only depends on the system parameters. No bistability has
been found. We present an example of the evolution of the partic-
ipations of the first three modes for three different non-Hermitian
waveguides, corresponding to the three white dots shown in Fig. 5.
Figures 6(a) and 6(c) show two examples, far from resonance, where
the first and third modes, H0 and H2, become dominant after prop-
agation along the fiber. In turn, Fig. 6(b) shows the evolution for
a near-resonant modulation, where the second mode H1 becomes

FIG. 6. Evolution of OI for the first three modes, along the propagation distance, toward the final states, for three different modulations: (a) (ϕ, Q) = (4.42, 0.925), (b)
(ϕ, Q) = (2.85, 0.975), and (c) (ϕ, Q) = (1.85, 1.13), mapped in Fig. 5. (d) Phase space evolution of OI, for two different initial conditions with mode relative intensity
distributions, OIz0, being OI1 = OI2 = OI3 = 33.33% and OI′z0 being OI1 = 6%, OI2 = OI3 = 47% for the above-mentioned modulations. The final states are labeled A, B,
and C and marked with a triangle, and correspond to the points shown in Fig. 5. Other parameters used are same as those shown in Fig. 5.
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dominant, but with a strong participation of modes H0 and H2. In
all three cases, the final states (labeled A, B, and C) hold a final con-
stant participation of the three modes, H0, H1, and H2. It should be
noted that the above-mentioned three cases have the same initial
mode configuration, OIz0 shown in Fig. 6(d). The system leads to
the same final stable stationary state starting from any initial condi-
tion. As an example, we show phase space evolutions from a second
initial condition, OI′z0 shown in Fig. 6(d). Both the initial conditions
are indicated by the two black dots in Fig. 6(d). It should be noted
that the curves depicted with the same color in Fig. 6(d) correspond
to the same non-Hermitian modulation, but are starting from dif-
ferent initial configurations and reaching the same final points A, B,
and C marked with triangles.

We also perform additional calculations in order to see the
effect of nonlinearity by varying the modulation amplitudes. We
even compare the differences of the potential effects on simple linear
and nonlinear systems; see Appendix B.

Finally, Appendix C provides an example of mode-shaping
from an arbitrary noisy beam to a particular beam profile other
than the Gaussian, the robustness of this mechanism for deformed
parabolic potentials, and the effectiveness for a flat gain profile
(g = 0) yet requiring higher modulation amplitudes.

V. CONCLUSIONS
We demonstrate significant mode control in active nonlinear

parabolic index MMFs, broadly used in multimode fiber ampli-
fiers and lasers, by applying harmonic non-Hermitian potentials in
the longitudinal direction, with an antisymmetric transverse pro-
file. We investigate the output mode profile in the parameter space
of the applied non-Hermitian potential, showing flexible mode
management. The nonlinearity helps the beam to be saturated in
different shapes and does not allow the modes to grow exponen-
tially. Depending on the phase shift between the gain/loss and index
modulations and the detuning from resonance of the harmonic
modulations, it is possible to manage the mode composition. Such
selection of a desired profile could be very useful in the applica-
tions of fiber lasers. It is also possible to improve the beam quality,
as the beam profile evolves toward the lowest order mode H0,
demonstrating efficient all-optical mode-cleaning. Alternatively, the
participations of higher order modes may be increased reaching
almost mono-mode propagation for H2. Our calculation shed some
light on the optimum phase shift between the quadrature of mod-
ulation. For mode cleaning, we note that exactly at resonance, such
phase retrieves the conditions for PT-symmetry, being 3π/2. How-
ever, detuning induces a broadening of the optimum phase range.
Such broadening depends on the sign of the detuning. It broadens
asymmetrically from 3π/2, toward 0 above resonance and toward
π below resonance.

The effect is also demonstrated analytically using the stan-
dard mode-expansion technique considering the first three Hermite
modes. We see that the non-Hermitian potential shifts the mono-
mode/multimode boundary of the solutions of the system. The ana-
lytical findings are in good agreement with the numerical integration
of the full model (CGLE) calculations. This study was performed for
1D planar guiding structures, however, the effect can be generalized
to 2D fibers.

The actual fabrication of the proposed non-Hermitian
1D waveguides could be achieved in both 1D and 2D configurations.

Periodic index modulation is feasible through various nanofabrica-
tion techniques, yet gain/loss could be achieved introducing peri-
odic distributed losses in a homogeneous active waveguide/fiber. In
1D waveguides, current lithographic techniques could be employed
for fabrication.12,24–26 Meanwhile, in 2D waveguides, achieving the
necessary index and gain/loss modulation might involve tech-
niques such as doping the fiber core27,28 and introducing distributed
absorption, scattering, or transmission losses.29–31 These methods
could potentially enable the realization of the desired properties in
the waveguides.

This study is based on GRIN waveguides, with a parabolic index
profile that supports the equidistant modes. However, deviations
from perfect parabolic profile (and hence no strictly equidistant set
of modes) are possible, as the effect is robust for any input beam and
also works away from resonance.

An estimate of the required actual length of the waveguide to
achieve a stable output is on the order of 20 cm, assuming realis-
tic values for the non-Hermitian parabolic waveguide such as core
radius, rc = 26 μm, core refractive index, nco = 1.47, and cladding
refractive index, ncl = 1.457.
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APPENDIX A: COUPLING COEFFICIENTS
FOR THREE-MODES MODEL

For reference, we list here the values of the non-zero integrals
of Eq. (9): P11 = 0.0949, P22 = 0.0849, P31 = −0.0071, P33 = 0.0748,
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G1111 = 0.2502, G1113 = −0.1407, G1122 = 0.1989, G1133 = 0.1492,
G1223 = 0.0703, G1333 = 0.0175, G2222 = 0.2984, G2233 = 0.1741,
G3333 = 0.2549, C12 = 0.2532, and C23 = 0.2502.

APPENDIX B: LINEAR VERSUS NONLINEAR SYSTEMS

Here, we demonstrate the difference between the effects of the
non-Hermitian potential on the linear and nonlinear CGLE model.
We derive an approximate simple coupling matrix for the three-
mode case by considering coupled mode theory in the linear system
as in Ref. 16. Basically, we remove the gain and the nonlinear terms
from Eq. (1). The coupling matrix in this simple linear system is
given by

⎛
⎜⎜
⎝

−iΔq im+CC 0
im−CC 0 im+CC

0 im−CC iΔq

⎞
⎟⎟
⎠

, (B1)

where Δq is the difference between the applied non-Hermitian
frequency and the resonance frequency, m+ = mre + imimeiϕ,

FIG. 7. Effect of the nonlinearity in the system. Comparison of the RGB image
of the participations the first three transverse modes, H0, H1, and H2 in the total
field, in the parameter space of (ϕ, Δq) in the linear/nonlinear case, for (a) and (b)
((mre, mim) = 0.6, (c) and (d) ((mre, mim) = 0.3, and (e) and (f) ((mre, mim) = 0.1.
Other parameters used are g = α = 0.1, c = d = 1.

m− = mre + imime−iϕ, and CC is the coupling coefficient between
neighboring modes. As a simplification, we assume equal values
for all the coupling coefficients. In this case also, we explore the
parameter space of (ϕ, Δq) for different amplitudes of the non-
Hermitian potential (mre, mim) in order to observe the differences
between the linear and nonlinear system, in the presence of the
non-Hermitian perturbation potential. We explore the effect of
the nonlinearity and amplitude on the non-Hermitian potential by
mapping the participation of each of the three modes (H0 in red, H1
in green, and H2 in blue) for both the linear and nonlinear systems.
Such comparison is shown in Fig. 7. Figures 7(a), 7(c), and 7(d)
show the calculation for the linear system by solving the matrix in
Eq. (B1), for three different sets of amplitudes: ((mre, mim) = 0.6,
((mre, mim) = 0.3, and ((mre, mim) = 0.1. For comparison, we repeat
the calculations for the nonlinear case, Eq. (9), for the same set
of parameters, as shown in Figs. 7(b), 7(d), and 7(f). We observe
that for high amplitudes, both linear and nonlinear systems display
a similar behavior, as can be seen by comparing Figs. 7(a) and
7(b) or Figs. 7(c) and 7(d). However, for low amplitudes of the
non-Hermitian modulation, there is a qualitative difference between
the linear and nonlinear systems, as shown in Fig. 7(e) and 7(f).
Although a similar behavior is present near resonance, Δq ∼ 0,
nonlinearity plays a stronger role, leading to the coexistence of
different modes in a wider range of the parameter space.

APPENDIX C: BEAM SHAPING, ROBUSTNESS, AND
EFFECTIVENESS

In addition to the mode-cleaning phenomenon, we also cal-
culate the beam propagation, taking into account the modulation
parameters that lay in the green and blue regions of Fig. 3(a).
Figure 8 shows the beam propagation upon an input noisy beam
for modulation parameter in the green region. We observe that the
participations of all modes decrease while the H1 and H2 modes
remain. Between these two, the H1 mode is maximized with some
participation of the H2 mode, as shown in Fig. 8(a). The intensity
profile evolution also shows how the beam profile changes along
the propagation and converts into almost the H1 mode, as shown
in Fig. 8(b).

FIG. 8. (a) Relative mode intensity, OI, for an incident noisy beam, as a function
of the propagation distance. (b) Evolution in the propagation of the correspond-
ing profiles depicted at particular distances, namely, z = 1ζ, 50ζ, 100ζ, 260ζ,
and 500ζ. The parameters used are mre = mim = 0.6, Q = 0.975, ϕ = 2.85. Other
parameters are same as those shown in Fig. 3.
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FIG. 9. (a) Relative mode intensity, OI, for an incident noisy beam, as a function
of the propagation distance. The inset shows the evolution of the beam quality
factor (M2) in space. (b) Evolution in the propagation of the corresponding profiles
depicted at particular distances, namely, z = 1ζ, 50ζ, 100ζ, 260ζ, and 500ζ. The
parameters used are mre = mim = 0.6, Q = 1.13, ϕ = 1.85. Other parameters are
the same as those shown in Fig. 3.

The beam propagation for a point in the blue region of Fig. 3(a)
is shown in Fig. 9. In this case, participation of the H2 mode domi-
nates as the beam propagates along the modulated waveguide, while
very little percentage of the other mode remains, as can be seen in
Fig. 9(a). The intensity profile propagation also shows that the out-
put profile almost becomes the H2 mode, as shown in Fig. 9(b). The
inset of Fig. S.2a shows the evolution of the beam quality factor,
M2, where the M2 value reaches at around 5, indicating the domi-
nance of higher order modes, as we know that for lowest order mode,
H0, its value is 1.

Throughout this paper, all the studies have been performed
considering a pure background parabolic potential where the modes
are equidistant. In this section, we perform an analysis of the robust-
ness of the proposed mechanism. In order to do that, we consider
some perturbation form the pure parabolic potential, making the
modes unequidistant. For this purpose, we deformed the potential
from the pure parabolic case V0 = −cx2 to the more general case

FIG. 10. Overlapped map of the normalized mode projections, OI, of all modes, in
the total field in the parameter space (δ, Q), for a fixed value of the modulation
amplitudes and spatial delay, where relative intensity of every mode corresponds
to one color: red to H0, green to H1, blue to H2, violet to H3, cyan to H4, brown
to H5, and black to the rest of modes. The parameters used are mre = mim = 0.6,
ϕ = 4.42, g = α = 0.1, c = d = 1.

FIG. 11. Study of mode cleaning for a flat gain profile. Evolution in the propa-
gation of the noisy beam with profiles depicted at particular distances, namely,
z = 1ζ, 100ζ, 220ζ, 370ζ, and 500ζ for cases (a) without modulation and
(b) with modulation. The parameters used are mre = mim = 1.85, Q = 0.925,
ϕ = 4.42, g = 0, α = 0.1, c = d = 1.

V′ = −cx2(1 ± δx2), where δ is a parameter controlling the defor-
mation of the potential, which makes the modes unequidistant. We
observe that the scheme is effective and mode-cleaning persists for
small perturbations from the parabolic index profile. To perform
this robustness analysis, we choose a point from the red region of
Fig. 3(a), where the mode-cleaning phenomenon has been observed.
So, we fix the spatial delay value at ϕ = 4.42 and map the normal-
ized mode projection of all the modes in the parameter space (δ, Q),
as shown in Fig. 10. We see that the dominance of the red region
in the parameter map means the mode-cleaning persists for the
perturbed potential. By adjusting the modulation frequency, Q, cor-
responding to the deformation parameter, δ, it is possible to have the
mode-cleaning phenomenon.

We also study the effectiveness of the mechanism for a flat
gain profile of the waveguide. Till now, all the studies have been
conducted considering a Gaussian gain profile with certain width,
p0e−gx2

, where g = 0.1. In this section, we examine whether this
mode management technique is effective for a flat gain profile, which
corresponds to g = 0. As an example, we consider the mode-cleaning
effect for a flat gain profile. At first, we propagate a noisy input
beam along the waveguide amplifier having a flat gain profile with-
out any non-Hermitian modulation. We observe that the noisy beam
remains as a multimodal beam as it propagates along the waveguide,
as shown in Fig. 11(a). Next, we launch a noisy beam along the mod-
ulated waveguide and observe the propagation. We see that now the
noisy beam converts into a bell-shaped Gaussian beam profile as it
propagates along the longitudinal direction, as shown in Fig. 11(b).
It should be noted that in this case of flat gain profile, we need much
higher (nearly 3 times) amplitude of modulations than the previ-
ously observed mode-cleaning phenomenon with a Gaussian gain
profile.
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