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Abstract. A. Speiser showed that the Riemann hypothesis is equivalent to the ab-
sence of non-trivial zeros of the derivative of the Riemann zeta-function left of the
critical line. The quantitative version of this result was obtained by N. Levinson and
H. Montgomery. This result (or the quantitative version of this result proved by N.
Levinson and H. Montgomery) were generalized for many zeta-functions for which
the Riemann hypothesis is expected. Here we generalize the Speiser equivalent for
zeta-functions. We also investigate the relationship between the non-trivial zeros of
the extended Selberg class functions and of their derivatives in this region. This class
contains zeta functions for which Riemann hypothesis is not true. As an example,
we study the relationship between the trajectories of zeros of linear combinations of
Dirichlet L-functions and of their derivatives computationally.
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1. Introduction

In the first part of the 20th century, A. Speiser [7] studies the relationship between
the location of zeros of the derivative of the Riemann zeta-function and the Riemann
hypothesis. His result, achieved by geometric means, is that the Riemann hypothesis
is equivalent to the absence of non-real zeros of the derivative of the Riemann zeta-
function left of the critical line.

Later on, N. Levinson and H. Montgomery [5] investigate the relationship between
the zeros of the Riemann zeta-function and its derivative analytically. They prove the
quantitative version of Speiser’s result, namely, that the Riemann zeta-function and
its derivative have approximately the same number of zeros left of the critical line. In
this paper, we prove a similar result to a certain subset of functions from the extended
Selberg class (Šležiavičienė [12], Brase [3]).

We use the notation f(s) := f(s). A not identically vanishing Dirichlet series

F (s) =
∞∑
n=1

an
ns

which converges absolutely for σ > 1 belongs to the extended Selberg class S# if:
(i) (Meromorphic continuation) There exists k ∈ N such that (s − 1)kF (s) is an

entire function of finite order.
(ii) (Functional equation) F (s) satisfies the functional equation:

(1) Φ(s) = ωΦ(1− s),

where Φ(s) := F (s)Qs
∏r

j=1 Γ(λjs + µj), with Q > 0, λj > 0, <(µj) ≥ 0 and
|ω| = 1.

A not identically vanishing function F (s) belongs to the extended Selberg class S# if
and only if it satisfies the following conditions:

• The function F is of the form
∑∞

n=1 an/n
s, where an � nε for any ε > 0. Here

the implicit constant may depend on ε.
• There exists a non-negative integer k such that (s−1)kF (s) is an entire function.

The smallest such k is denoted kF and called the polar order of F .
• F satisfies the functional equation:

(2) Φ(s) = ωΦ(1− s).

Here Φ(s) := F (s)Qs
∏r

j=1 Γ(λjs + µj), Q, λj ∈ R, ω, µj ∈ C, |ω| = 1, Q > 0,
λj > 0, <(µj) ≥ 0.

While the functional equation need not be unique for a given function, the value dF =

2
∑r

j=1 λj is an invariant. It is called the degree of F .
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For the positive degree the zeros of F (s) located at the poles of the Gamma functions
of the functional equation (2), i.e. at s = −µj+k

λj
with k = 0, 1, 2, . . . and j = 1, . . . , r,

are called the trivial zeros. If degree is equal to zero then the functional equation of
F (s) has no gamma factors and thus F (s) has no trivial zeros. For any degree there is
σ0 such that F (s) 6= 0 in the right-half-plane σ ≥ σ0. Then by functional equation (2)
we see that in the left-half-plane σ ≤ 1− σ0 the function F (s) has only trivial zeros.

Next we consider a zero free regions of F ′(s) in the left-half-plane. If degree is equal
to zero then by the functional equation

F ′(s) = −ωF ′(1− s)Q1−2s − 2ωF (1− s)Q1−2s logQ.

We see that F ′(1− s) → 0 and F (1− s) → 1 as σ → −∞. Therefore for dF = 0 there
is σ1 such that F ′(s) 6= 0 if σ ≤ σ1. For dF > 0 a zero free region of F ′(s) is described
by the next proposition.

Proposition 1. Let F (s) ∈ S# and dF > 0. Let σ0 be such that F (s) 6= 0 for σ ≥ σ0.
There is τ ≥ 0 such that F ′(s) 6= 0 in σ ≤ 1− σ0, |t| ≥ τ .

From the proof of Proposition 1 we see that for a given function F (s) the explicit
upper bound for τ can be calculated.

In this paper T always tends to plus infinity. The main results of this article are the
following:

Theorem 2. Let F (s) ∈ S# and dF > 0. Let τ be the same as in Proposition 1. Let
N(T ) and N1(T ) respectively denote the number of zeros of F (s) and F ′(s) in the region
τ < t < T , σ < 1/2. Then

N(T ) = N1(T ) +O(logT ).

Moreover, if N(T ) < T/(2σ0 − 1) + O(1) then there is a monotone sequence {Tj},
Tj → ∞, j → ∞ such that

N(Tj)−N(T1) = N1(Tj)−N1(T1).

Theorem 3. Let F (s) ∈ S# and dF = 0. Let N(T ) and N1(T ) respectively denote the
number of zeros of F (s) and F ′(s) in the region 0 < t < T , σ < 1/2. Then

N(T ) = N1(T ) +O(1).

It is well known that ζ ′(1/2 + it) 6= 0 if ζ(1/2 + it) 6= 0, see Spira [8, Corollary 3].
Analogous statement is true for the functions from the extended Selberg class.

Proposition 4. Let F (s) ∈ S#. Then there is τ ≥ 0 such that, for t ≥ τ ,

F ′(1/2 + it) 6= 0 if F (1/2 + it) 6= 0.



ON THE SPEISER EQUIVALENT FOR THE RIEMANN HYPOTHESIS 5

Moreover, if dF = 0 then τ = 0.

In [2], E. Balanzario and J. Sánchez-Ortiz calculate the locations of the zeros of the
Davenport-Heilbronn zeta-function. This function is famous for the fact that it satisfies
a symmetric functional equation but the Riemann hypothesis for it fails. However, one
of the results of our paper is that the difference between the number of zeros of this
function and its derivative still satisfies similar conditions to those of the Riemann
zeta-function.

In order to carry out their calculations, E. Balanzario and J. Sánchez-Ortiz study
convex combinations of two zeta-functions, one of them being the Davenport-Heilbronn
zeta-function. They observe that a symmetric functional equation prevents the zeros
from leaving the critical line unles as they move along it depending on a parameter,
they meet another zero. We note that, in addition, it must be the case that a zero of
the derivative, moving from the right, meets the point where the trajectories of the two
zeros of the original function touch each other.

Earlier in [1], E. Balanzario provides a way to construct Dirichlet series from already
known ones. Of special interest are the Dirichlet series constructed from the Riemann
zeta-function. In the same paper, the author offers a way to construct functional
equations for such series. Based on these results, it is easy to find linearly indepedent
Dirichlet series satisfying functional equations similar to that of the Riemann zeta-
function. For such linearly independent Dirichlet series, other Dirichlet series can be
made which could have a zero at any preassigned place in the complex plane.

In what follows, we first present the graph showing how the trajectory of the zero of
the derivative crosses the critical line as it moves from right to left depending on the
parameter at the point where, again depending on the parameter, the trajectories of
the zeros of the function itself meet each other. This suggests that the number of zeros
of the function left of the critical line should be equal to the number of the zeros of the
derivative. Later on, we shift our attention to the proofs of the theorems.

2. Computations

In this section we compute the trajectories of zeros depending on a parameter. We
investigate the function of the following form:

(3) f(s, τ) := f0(s) · (1− τ) + f1(s) · τ.

Here τ ∈ [0, 1], f0(s) := (1 +
√
5/5s)ζ(s), ζ(s) is the Riemann zeta-function, and

f1(s) := L(s, χ
(5)
2 ), which is a Dirichlet L-function given by the following sum:

(4) L(s, χ
(5)
2 ) = 1− 1

2s
− 1

3s
+

1

4s
+

0

5s
+ · · · .
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Figure 1. Red zero trajectory sr(τ): f(sr(τ), τ) = 0, sr(0) = 0.5 +
i60.84, sr(1) = 0.5 + i61.14. Black zero trajectory sb(τ): f(sb(τ), τ) = 0,
sb(0) = 0.5 + i60.51, sb(1) = 0.5 + i62.13. Blue derivative zero trajectory
s1(τ): f ′

s(s1(τ), τ) = 0, s1(0) = 0.52 + i60.68, s1(1) = 0.76 + i61.55.

It is quite likely that all the non-trivial zeros of f0 and f1 are located on the line
σ = 1/2. However, this is not true in general of fτ .

E. Balanzario and J. Sánchez-Ortiz [2] prove that given a zero ρ of f0, for small τ0 > 0

and δ > 0, there exists a zero of fτ0 in the δ-neighborhood of ρ. By continuing the
procedure of deforming τ , we get a trajectory of a zero as a function of τ .

Both f0 and f1 satisfy the functional equation

(5) f(s) = T−s+1/2χ1(s)f(1− s),

here χ1 := 2(2π)s−1Γ(1− s) sin
(
πs
2

)
and T = 5.

It follows that provided the Riemann hypothesis holds for f0 and if we have its simple
zero, the symmetric functional equation forbids this zero from leaving the critical line
as τ increases unless it meets another zero. Only in the case of zeros of degree two they
can leave the critical line. Moreover, their trajectories are symmetric with respect to it.
In addition, the derivative of fτ must vanish at this meeting point. Thus the trajectory
of a zero of the derivative of fτ with respect to τ meets the trajectories of the simple
zeros at their meeting point.

Figures 1 and 2 are parametric plots of the trajectories of the zeros of fτ and its
derivative, solid and dotted lines respectively. As we have already mentioned, the
trajectory of the derivative crosses from right to left at the meeting point of the zeros
of fτ . Let

f ′
s(s, τ) =

∂f(s, τ)

∂s
.

We consider solutions (zero trajectories) s(τ) and s1(τ), 0 ≤ τ ≤ 1, of

f(s(τ), τ) = 0 and f ′
s(s1(τ), τ) = 0.
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To find s(τ) and s1(τ) we solve differential equations

∂s(τ)

∂τ
= −

∂f(s,τ)
∂τ

∂f(s,τ)
∂s

and ∂s1(τ)

∂τ
= −

∂2f(s,τ)
∂s∂τ

∂2f(s,τ)
∂s2

For initial conditions some zeros of f(s, 0) = (1 +
√
5

5s
)ζ(s) and f ′

s(s, 0) are used.
Further we consider the Davenport-Heilbronn zeta-function defined by

`(s) :=
1

2 cosα
(
e−iαL(s, χ2) + eiαL(s, χ2)

)
,

where χ2 mod 5, χ2(2) = i, and tanα =

√
10−2

√
5−2√

5−1
. Functional equation

`(s) = 51/2−s2(2π)s−1Γ(1− s) cos
(πs
2

)
`(1− s).

`(s) ∈ S#.

Titchmarsh: `(s) has zeros with σ > 1 and has infinitely zeros on the critical line.
S.M. Voronin: `(s) has zeros in 1/2 < σ < 1. It belongs to the extended Selberg class
and hence falls within the class of functions for which our theorems hold. It should
be noted that the zeros of the Davenport-Heilbronn zeta-function have been subject to
much analysis. R. Spira in [9] calculates the Davenport-Heilbronn zeta-function zeros
off the critical line σ = 1/2 in the region 0 ≤ t ≤ 200. He does not find any zeros of its
derivative left of σ = 1/2 in this region although he does find several locations of the
zeros of the function itself. This would go against our result there are approximately
the same number of zeros of the functions of the extended Selberg class and of their
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Figure 2. Red, green, and black are zero trajectories (s(τ) is a zero
trajectory if f(s(τ), τ) = 0, 0 ≤ τ ≤ 1). Blue and brown are derivative
zero trajectories(s1(τ) is a derivative zero trajectory if f ′

s(s(τ), τ) = 0,
0 ≤ τ ≤ 1).
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derivatives. However, we recalculated the zeros of the derivative of the Davenport-
Heilbronn zeta-function and we did find zeros left of the critical line with imaginary
parts less that 200.

For 0 ≤ t ≤ 200 R. Spira calculated 8 zeros of `(s) off the critical line:
0.80+i 85.69,
0.65+i 114.16,
0.57+i 166.47,
0.72+i 176.70

and claimed that ‘no zeros of `′(s) were found in σ < 1/2, 0 ≤ t ≤ 200’. We found 4
zeros of `′(s) in σ < 1/2, 0 ≤ t ≤ 200:
0.40+i 85.70,
0.47+i 114.15,
0.49+i 166.47,
0.43+i 176.70.

The Davenport-Heilbronn zeta-function belongs to the extended Selberg class.

3. Proofs

Proof of Proposition 1 . Let τ ′ > τ and σ′ < 1 − σ0. Let R and R be two rectangles
with vertices 1 − σ0 + iτ , 1 − σ0 + iτ ′, σ′ + iτ ′, σ′ + iτ and 1 − σ0 − iτ , 1 − σ0 − iτ ′,
σ′ − iτ ′, σ′ − iτ respectively. Using Lemma 7 we will show that there is τ such that for
any τ ′ and any σ′ the inequality

(6) <F ′

F
(s) < 0

holds for s ∈ R and s ∈ R. By argument principle from this it follows that F ′(s) and
F (s) have the same number of zeros inside of the rectangle R (also in R). This will
prove the proposition since for sufficiently large τ the function F (s) has no zeros inside
of the rectangles R and R (see the note before Lemma 7).

By the definition of the extended Selberg class there is an integer nF such that the
function G(s) = snF (s − 1)nFΦ(s) is an entire function and G(1) 6= 0. By functional
equation (2) we have that G(0) 6= 0. Moreover G(s) is an entire function of order 1 (see
Lemma 3.3 and a comment below the proof of Lemma 3.3 in Smajlović [6]). Applying
Hadamard’s factorization theorem to the function G(s) analogously as in Šležiavičienė
[12, Proof of Theorem 3, formula (6)] (see also Smajlović [6, formulas (8), (10)]) we
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have that

<F ′

F
(s) =

∑
ρ nontrivial

ρ 6=0,1

σ − β

|s− ρ|2
− nFσ

|s|2
− nF (σ − 1)

|s− 1|2
− logQ(7)

−<
r∑

j=1

λj
Γ′

Γ
(λjs+ µj),

where the summation is over nontrivial zeros of F (s) except possible nontrivial zeros
at s = 0 and s = 1.

Next we will prove inequality (6). In view of Γ(z)Γ(1− z) = π/ sin(πz) we can write
r∑

j=1

λj
Γ′

Γ
(λjs+ µj) =

r∑
j=1

(
λj

Γ′

Γ
(1− λjs− µj)− λj cot (π(λjs+ µj))

)
.

Recall that λj > 0, j = 1, . . . , r and
∑r

j=1 λj > 0. Then by formulas

(8) Γ′

Γ
(s) = log s+O

(
|s|−1

)
(<(s) ≥ 0, |s| → ∞),

cot z = 1 +O
(
e−|=z|) (=z → ±∞),

Γ′/Γ(s+1) = Γ′/Γ(s) + 1/s and equality (7) we have that there is τ such that, for any
τ ′ and σ′, inequality (6) is true if s ∈ R or s ∈ R. This proves Proposition 1.

�

Proof of Theorem 2. Let

R =

{
s ∈ C : τ < t < T, 1− σ0 < σ <

1

2

}
,

where τ and σ0 are the same as in Proposition 1. To prove the theorem it is enough to
consider the difference of the number of zeros of F (s) and F ′(s) in the region R.

Without loss of generality we assume that F (σ + iT ) 6= 0 and F ′(σ + iT ) 6= 0 for
1 − σ0 ≤ σ ≤ 1/2. We consider the change of argF ′/F (s) along the appropriately
intended boundary R′ of the region R. More precisely upper, left, and lower sides of R′

coincide with upper, left, and lower boundaries of R. To obtain the right-hand side of
the contour R′ we take the the right-hand side boundary of R and deform it to bypass
the zeros of Z(1/2+it) by left semicircles with an arbitrarily small radius.

To prove the first part of Theorem 2 we will show that the change of argF ′(s)/F (s)

along the contour R′ is O(logT ).
By formula (7), similarly as in the proof of Proposition 1, we have that

<F ′

F
(1− σ0 + it) < 0,

where τ ≤ t ≤ T .



10 RAIVYDAS ŠIMĖNAS

We switch to the right hand side of R′. For this we evaluate terms of equality (7).
In view of the symmetry of zeros in the respect of the critical line we consider

σ − β

|s− ρ|2
+

σ − 1 + β

|s− 1 + ρ|2
= −2

(
1

2
− σ

)
(t− γ)2 + (σ − 1

2
)2 − (1

2
− β)2

|s− ρ|2|s− 1 + ρ|2
.

Let

(9) I1 := 2
∑
β<1/2

(t− γ)2 + (σ − 1
2
)2 − (1

2
− β)2

|s− ρ|2|s− 1 + ρ|2
+

∑
β=1/2

1

|s− ρ|2
.

Then

(10) I :=
∑

ρ nontrivial

σ − β

|s− ρ|2
= −

(
1

2
− σ

)
I1.

Suppose that s = 1/2+ it is not a zero of F (s). When I = 0 (see equation (10)). Again,
similarly as in the proof of Proposition 1, we see that <F ′/F (s) < 0. Let ρ0 = 1/2+ iγ0

is a zero of F (s). Then I1 (see formula (9)) can be made arbitrarily large as we move
along a left semicircle with an arbitrarily small radius and center at ρ0. This is because
the term 1/|s− ρ0|2 → ∞ as |s− ρ0| → 0. Hence on the right hand side of R′ we again
have <F ′(s)/F (s) < 0.

By the Phragmén-Lindelöf principle and the functional equation we have that for
any σ′ there is A > 0 such that

F (σ + iT ) = O(TA)(11)

uniformly in σ ≥ σ′ (cf. Steuding [10, Theorem 6.8]). By the Cauchy differentiation
formula and by bound (11) we have that the bound analogous to (11) is true also for
F ′(s). Then using Jensen’s theorem it is possible to show that the change of argF (s)

and argF ′(s) along the vertical sides of R′ is O(logT ) (cf. Šležiavičienė [12, Proof of
Theorem 1] or Titchmarsh [11, Section 9.4]). This proves the first part of Theorem 2.

We will prove the second part of Theorem 2. Suppose there is a monotone sequence
{Tj}, Tj → ∞, j → ∞ with the property <(F ′/F (σ + iTj)) < 0, here σ0 < σ < 1/2.
Then by the first part of the proof we have that N(Tj)−N(T1) = N1(Tj)−N1(T1).

Suppose there is no such sequence {Tj}. Then for sufficiently high t there is 1−σ0 ≤
σ ≤ 1/2 such that <F ′/F (s) ≥ 0. Thus I > 0 and I1 < 0. Then at least one term in
I1 must be negative. Hence there is a zero ρ = β + iγ with 1− σ0 < β < 1/2 such that(

1

2
− β

)2

> (t− γ)2 +

(
σ − 1

2

)2

.

It follows that |t−γ| < σ0− 1/2. Thus if for sufficiently high t we divide the imaginary
line into intervals of length 2σ0 − 1, it would follow that for every interval there will be
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at least one zero whose imaginary part falls into that interval. Since we started with
sufficiently high t, it follows that in this case F (s) has more than T/(2σ0 − 1) + O(1)

zeros in the region R. This concludes the proof.
�

Proof of Theorem 3. Let us denote the set of degree zero functions of the extended
Selberg class S#

0 . Let F (s) ∈ S#
0 and let q =

√
Q, where Q is from functional equation

(2) of F (s). By Kaczorowski and Perelli [4] we have that q is a positive integer and

F (s) =
∑
n|q

an
ns

,

where
a(n) =

ωn
√
q
a
( q

n

)
,

moreover, if √q ∈ N then a(
√
q) = εb with b ∈ R, where ε denotes a fixed square root

of ω.
The fact that dF = 0 means that there are no Gamma factors in the functional

equation. Hence

(12) F ′

F
(s) = −2 logQ− F ′

F
(1− s).

Let σ1 be a real number such that F (s) 6= 0 and F ′(s) 6= 0 for σ ≤ σ1 (see the
comment before Proposition 1). Let R be a rectangle with vertices 1/2−δ, 1/2−δ+iT ,
σ1+ iT , σ1, where δ > 0 is as small as we like and it will be decided later. Without the
loss of generality we assume that F (s) 6= 0 and F ′(s) 6= 0 on the rectangle R. To prove
the theorem it is enough to show that the change of argF ′/F (s) along the rectangle R

is O(1) as T → ∞.
Easy to see that

lim
σ→∞

F ′

F
(σ + it) = 0.

Suppose that s′ is on the left-hand side of R and suppose that <s′ is small. Then
<F ′/F (s′) < 0.

Similarly as in the proof of Theorem 2, on the horizontal sides the change in argument
is O(1) since F (s) is bounded on vertical strips.

We consider the right-hand side 1/2 − δ + it, 0 ≤ t ≤ T of R. By equality (12) we
see that

<F ′

F

(
1

2
+ it

)
= − logQ
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if 1/2 + it is not a zero of F (s). We claim that there is a sufficiently small δ = δ(T )

such that, for 0 ≤ t ≤ T ,

(13) <F ′

F

(
1

2
− δ + it

)
≤ − logQ

2
.

To prove this inequality it is enough to consider the case then t is in the neighborhood
of a zero ρ = 1/2 + iγ. We have

(14) F ′(s)

F (s)
=

m

s− ρ
+m′ +O(|s− ρ|),

where m is the multiplicity of ρ. Hence taking s = 1/2− δ + it we see that

(15) <F ′

F
(s) = − mδ

|s− ρ|2
+ <(m′) +O(|s− ρ|).

Thus <m′ = − logQ. This proves the inequality (13). Therefore, the argument change
along the right side of the contour is O(1). This gives the proof of Theorem 3.

�

Proof of Proposition 4. Let a degree dF > 0. Assume the contrary, that there is a large
number t such that F ′(1/2 + it) = 0 and F (1/2 + it) 6= 0. Then by Hadamard’s type
formula (7), Gamma function property (8), and using that σ = 1/2 in (10) we obtain
the contradiction

0 = <F ′

F
(1/2 + it) < 0.

This proves the proposition for dF > 0. If dF = 0 then the proposition follows by
formula (12).

�

4. Ending notes

The basic intention of this paper consists of the study of certain zeta-functions and
their derivatives. Our analysis shows that the zeros of the two are connected in a deep
way. We hope that the results of this kind would prove helpful when looking at a bigger
picture: the Riemann hypothesis.
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