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Abstract 

Background Cardiovascular diseases (CVDs) are the most common cause of death worldwide. CVDs share heteroge‑
neous pathophysiologic mechanisms, one of which includes increased oxidative stress.

Main Body Surplus levels of reactive oxygen species induce damage to cellular macromolecules such as DNA, 
proteins, and lipids. Increased reactive oxygen species result in decreased nitric oxide availability, vasoconstriction, 
and the development of procoagulant and proinflammatory states in blood vessels.

Conclusion Improved knowledge of biomolecular processes triggered by oxidative stress has helped develop 
tools for assessing oxidative stress markers and applying them in clinical settings. Nevertheless, some research gaps 
should be filled, specifically by defining the most clinically relevant biomarkers for oxidative stress with high sensitivity 
and specificity for CVD.

Keywords Biomarkers, Cardiovascular diseases, Endothelial cell dysfunction, Inflammation, Oxidative stress, Reactive 
oxygen species

1  Background
Cardiovascular diseases (CVDs) remain a top global issue 
[1] despite numerous initiatives to reduce their preva-
lence and impact on human health. The most prevalent 
type of cardiovascular disease (CVD) is coronary heart 
disease (CHD) [2]. Research evidence indicates that oxi-
dative stress is a significant factor in the development of 
CVDs [3]. Significant oxidative stress leads to dysfunc-
tion and inflammation in blood vessels, primarily affect-
ing endothelial cells (EC). Other blood vessel cells, such 
as vascular smooth muscle cells (VSMCs) or adventitia 
cells, are also involved [4]. However, ECs play a criti-
cal role in cardiovascular imbalance, e.g., endothelial 

dysfunction impairs vasoconstriction and vasodilata-
tion, causes EC apoptosis, increases the adhesion of ECs 
to monocytes, and alters the angiogenic potential of ECs 
[5]. Consequently, atherosclerotic plaques and lesions 
form and thus lead to CVD.

Excessive production or accumulation of reactive 
oxygen species (ROS) contributes to oxidative stress. 
ROS include the oxygen free radicals superoxide, 
hydroxyl, and peroxyl radicals) and nonradicals (hydro-
gen peroxide and hypochlorous acid) [6]. Mitochon-
dria are the primary drivers of intracellular oxidant 
production in most cell types [7], followed by sources 
such as nicotinamide adenine dinucleotide phosphate 
oxidases (NOXs), heme oxygenase 1, xanthine oxi-
dase, and cyclooxygenases [8, 9]. Basal levels of ROS 
generation are essential for signal transduction path-
ways, protection against microorganisms, gene expres-
sion, and the promotion of cellular survival, apoptosis 
or death [10, 11]. The body has protective measures 
against ROS, including enzymatic compounds such as 
glutathione peroxidase, superoxide dismutase (SOD), 
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and catalase, as well as nonenzymatic compounds such 
as nicotinamide, glutathione and tocopherol [12–15].

Identifying numerous biomarkers for oxidative 
stress has made it easier to measure the levels of ROS. 
However, the use of these biomarkers in clinical set-
tings still requires validation because of the consider-
able variation in oxidative stress levels across different 
diseases [16]. A biomarker is any substance or process 
that can be measured in the body or its products and 
can predict the occurrence of a disease or its outcome 
[17]. Many markers for oxidative stress can be meas-
ured, but their clinical applicability is a concern since 
there is no consensus on which one is superior to oth-
ers. For a biomarker to be clinically beneficial, it must 
meet at least one of the following criteria: (a) demon-
strate specificity for a particular disease, (b) have prog-
nostic value, and (c) be correlated with disease activity 
[16]. This review also highlights the use of currently 
employed drugs with cardioprotective effects, such as 
sodium‒glucose transport protein 2 (SGLT2), miner-
alocorticoid receptor antagonists, and glucagon-like 
peptide-1 (GLP-1) agonists, and their possible effects 
on oxidative stress.

This study investigated the connection between 
oxidative stress and endothelial cell dysfunction, par-
ticularly the impact of reduced nitric oxide (NO) 
bioavailability and inflammation caused by ROS. Fur-
thermore, the biomarkers utilized to assess oxidation-
specific epitopes (endogenous damage-associated 
molecular patterns) in CVD as indicators of oxida-
tive stress and currently used drugs with antioxidant 
effects are reviewed.

Key terms

CVD – refers to atherosclerotic cardiovascular disease due to plaque 
buildup in artery walls, such as coronary artery disease, including acute 
coronary syndrome (myocardial infarction) and chronic coronary disease, 
cerebrovascular disease (stroke, transient ischemic attack, carotid artery 
stenosis), peripheral artery disease, abdominal and thoracic aortic aneu‑
rysm, and intestinal ischemia

Atherosclerosis – condition when cholesterol, fat, blood cells and other 
substances in blood form plaque on artery wall, leading to artery narrow‑
ness

Necrotic core – early stage of atherosclerosis defined by macrophage 
apoptosis and diminished clearance of apoptotic cells

EC – endothelial cells – cells that are located in tunica intima of blood 
vessels

Plaque formation – atherosclerotic plaque formation involving low 
density lipoprotein (LDL) accumulation in tunica intima, oxidation of LDL, 
recruitment of monocytes‑macrophages, uptake of oxidized LDL by mac‑
rophages and transformation of macrophages into foam cells

ROS – reactive oxygen species, including free radicals as superoxide, 
hydroxyl, and peroxyl radicals, and nonradical as hydrogen peroxide 
and hypochlorous acid

2  The Role of the Endothelium
Oxidative stress is the primary mechanism that pro-
vokes endothelial dysfunction characterized by the pro-
coagulant, proinflammatory, and proliferative phenotype 
of ECs, resulting in atherothrombosis and coexisting 
inflammation [18, 19]. Additionally, endothelial dysfunc-
tion can be directly caused by increased levels of fatty 
acids in the blood, which induce insulin resistance, acti-
vate the renin‒angiotensin system, and maintain inflam-
mation [18, 20].

Excess free radicals reduce the bioavailability of 
endothelium-secreted vasodilators such as nitric oxide 
(NO) and prostacyclin  (PGI2) [21, 22]. In particular, NO 
has anti-inflammatory, antithrombotic properties (inhib-
its platelet aggregation) and protects blood vessels from 
vasospasm (acts through guanylate cyclase located in the 
membrane of vascular smooth muscle cells) [23]. How-
ever, NO is inactivated during the reaction with superox-
ide anions, forming peroxynitrite  ONOO−. Free radicals 
also uncouple NO synthase (eNOS), thus decreasing its 
efficacy and the concentration of its substrates and cofac-
tors (L-arginine and tetrahydrobiopterin BH4, respec-
tively) and increasing the level of the endogenous eNOS 
inhibitor dimethylarginine (Fig.  1) [19, 24]. Moreover, 
free radicals monomerize eNOS dimers, significantly 
reducing the efficiency of NO synthesis. ONOO- nitrates 
cellular proteins, including those in the electron trans-
port chain, leading to mitochondrial dysfunction and cell 
apoptosis [19]. The hallmark of mitochondrial dysfunc-
tion is disturbed mitochondrial  Ca2+ ion homeostasis 
(ROS inhibit mitochondrial  Na+/Ca2+ exchangers) and 
altered membrane potential [25]. The mitochondrion 
itself also produces ROS, which cause mitochondrial 
DNA (mtDNA) damage [26] and contribute to endothe-
lial dysfunction [27]. Endogenous and exogenous ROS 
act through mitogen-activated protein kinases (MAPKs) 
and increase the concentration of proliferative molecules 
such as fibroblast growth factor, insulin-like growth 
factor, platelets, and epidermal growth factor and the 
expression of their receptors in the vascular smooth mus-
cle layer, which causes smooth muscle cells to migrate 
toward the endothelium and proliferate [28, 29]. Addi-
tionally, a dysfunctional endothelium initiates and 
maintains coagulation conditions through secreted von 
Willebrand factor (vWF), which interacts with platelet 
GPIα receptors, tissue factors, and plasminogen activator 
inhibitors [19].

3  The Role of Inflammation and Other Cells
During oxidative stress, ROS activate nuclear factor 
κB (NF-κB), which turns on target genes responsible 
for producing adhesion molecules (P and E selectins, 
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ICAM-1, VCAM-1), IL-1, IL-6, TNF-α, and monocyte 
chemoattractant protein-1 (MCP-1). As a consequence, 
neutrophils and monocytes are activated and migrate to 
damaged blood vessel tissues (Fig.  2) [30, 31]. Dysfunc-
tional endothelium also secretes extracellular vesicles 
with microRNA155 (miR155) and miR92a, which induce 
monocyte polarization toward a proinflammatory M1 

phenotype [30]. Additionally, in response to IL-1β, ox-
LDL promotes the structural and functional transition 
of smooth muscle cells to cells with a macrophage phe-
notype [32, 33]. Activated neutrophils begin to secrete 
cathepsin G, which acts on platelets such as thrombin 
(through PAR1 receptors) and tissue factor, triggering the 
coagulation cascade [34].

Fig. 1 Oxidative stress induced the uncoupling of eNOS in endothelial cells

Fig. 2 Mechanisms of atherosclerotic plaque formation. The role of inflammation
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Similarly, platelets can also activate neutrophils through 
their granule components (CXCL4 and HMGB1), stimu-
lating the neutrophil receptors Mac1, PSGL-1, and CD40 
[34, 35]. Neutrophils form and secrete neutrophil extra-
cellular traps (NETs) after being stimulated by ox-LDL, 
cholesterol crystals, activated platelets, and IL-8 [36].

Consequently, NETs stimulate macrophages to produce 
IL-1β cytokines, further contributing to the migration of 
neutrophils and T lymphocytes [37]. The latter secrete 
IL-17 and activate adaptive immunity [36]. When mono-
cytes turn into macrophages, they can absorb lipopro-
teins via receptors such as CD36, SRA1, and SRA2. This 
process can cause the transformation of macrophages 
into foam cells. Furthermore, the expression of the pro-
inflammatory endothelial adhesion molecules netrin-1 
and semaphorin-3E restricts macrophage migration from 
atherosclerotic lesions and blocks the cytokine receptors 
CCL19 and CCL21, thus inhibiting macrophage chemo-
taxis [38, 39]. The subsequent retention of macrophage 
migration and ineffective efferocytosis lead to the for-
mation of a necrotic lipid core with dead foam cells and 
efferocytes [39]. Mature dendritic cells, triggered by 
inflammatory cytokines and Toll-like receptor (TLR) 
agonists, begin to express CD11c + , CD11b + , and CD40 
receptors and present antigens to T lymphocyte subtypes 
(CD8 + T lymphocytes through MHC class I molecules 
and to CD4 + through MHC class II molecules) [40–
43]. Activated T lymphocytes (helper TH1, TH17 and 
cytotoxic CD8 + T cells) further increase inflammation 
(secretion of IFNγ, TNF, and IL-17) and stimulate vascu-
lar smooth muscle cell proliferation.

4  Oxidative Stress and Cardiovascular Disease
Oxidative stress is one of the most critical components 
in the pathogenesis of CVD, triggering thromboinflam-
mation [44, 45]. It is caused by the excessive production 
of free radicals (ROS, nitrogen, and sulfur) or insuffi-
ciency of the antioxidant system [19, 46]. ROS include 
the hydrogen peroxide  H2O2, superoxide anion  O2

−, and 
hydroxyl-OH [19]. They are byproducts of mitochon-
drial metabolism but can also be generated by the action 
of heme oxygenase 1, xanthine oxidase, and NADPH 
oxidases (NOXs) [47–49]. The mediators of oxidative 
stress in CVD include oxidized low-density lipoproteins 
(ox-LDL), angiotensin II, endothelin I, aldosterone, and 
glycosylated compounds. They bind to lectin-oxidized 
LDL receptor-1 (LOX-1) and activate NADPH oxidases 
(NOXs) [18, 29, 50–53]. Notably, increased blood pres-
sure results in increased expression of LOX-1 and upreg-
ulated NOXs (mainly NOX1 and NOX4), leading to 
decompensated oxidative stress and the development of 
atherosclerosis in individuals with arterial hypertension 
[29, 54, 55].

Endothelial dysfunction may lead to the rupture of an 
atherosclerotic plaque and thus clot formation. The risk 
of rupture is significantly increased if one of the follow-
ing conditions are present: a large necrotic core of the 
plaque, a thin fibrin cap (< 65  μm), pronounced inflam-
mation, or vascular remodeling [56]. As a consequence, 
macrophages express fibrin cap-lysing enzymes (colla-
genases and gelatinases) and, together with T lympho-
cytes, secrete IFNγ, which inhibits collagen synthesis and 
induces VSMC apoptosis [57, 58].

VSMCs activate platelets through C-type lectin-like 
receptor 2 (CLEC-2), which has a very similar function 
to the collagen receptor GP VI (which also induces plate-
let activation) [59] CLEC-2 is a newly identified protein 
on the surface of platelets [59]. CLEC-2 and podoplanin, 
endogenous ligands of CLEC-2, are both expressed in 
advanced atherosclerotic lesions. However, in early ath-
erosclerotic lesions, only CLEC-2-binding sites are colo-
calized within VMSCs, whereas podoplanin expression is 
absent [60].

After atherosclerotic plaques rupture, large amounts 
of collagen, tissue factor, and vWF are released [61, 62]. 
vWF binds to the GP Ib–IX–V receptor complex of plate-
lets and collagen to GP Ia/IIa and VI receptors, thus acti-
vating platelets and changing their shape and granule 
contents (ADP, serotonin, thromboxane A2), leading to 
platelet adhesion [63, 64]. The release of tissue factor ini-
tiates the coagulation cascade via the extrinsic pathway 
and fibrin production, causing blood vessel thrombosis 
and, thus, CVD and possibly death.

5  Biomarkers of Oxidative Stress in Cardiovascular 
Diseases

There are numerous biomarkers for oxidative stress in 
CVD. Nevertheless, their clinical applicability is a con-
cern, mostly because no consensus exists on which 
method is superior. Hence, only biomarkers specific for 
CVD are discussed below.

5.1  Protein Carbonyls and Advanced Glycation End 
Products

Protein carbonyls are created in several ways, namely, 
(a) through the oxidative breakdown of the protein skel-
eton; (b) through the coupling of aldehydic lipid per-
oxidation products to lysine, cysteine, and histidine 
remnants and the production of advanced lipoxidation 
end products; and (c) through the nonenzymatic gly-
cation of reducing sugars [65–67]. Similarly, advanced 
glycation end products (AGEs) are formed via reactions 
between lysine and arginine residues and carbohydrates 
[16]. AGEs appear throughout normal metabolism but 
are more highly expressed in oxidative stress and hyper-
glycemic or hyperlipidemic states [65]. Consequently, 
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AGEs interact with macrophages and endothelial cells, 
induce inflammation in an NF-κB-dependent fashion, 
and trigger the expression of adhesion molecules and 
procoagulant tissue factors on the endothelium [68, 69]. 
AGEs are associated with arteriosclerosis, diabetes mel-
litus, and other conditions, such as obesity and neurode-
generative diseases [70]. Glycoxidation is another process 
that results in the generation of AGEs [16, 71, 72]. The 
essential clinically valuable feature of protein carbon-
yls is their stability in blood for up to 18 h [16]. Protein 
carbonyls are identified primarily after the derivatiza-
tion of 2,4-dinitrophenylhydrazine (DNP) [65, 73]. With 
respect to CVD (Table 1), Binti et al. compared the mean 
protein carbonyl levels of patients with acute coronary 
syndrome, comprising unstable angina, non-ST eleva-
tion, and ST-elevation myocardial infarction, with those 
of the control group. The difference between the groups 
was notable: 1.63 ± 1.06  nmol/mg in the control group 
and 3.16 ± 1.29  nmol/mg in the ACS group (p < 0.0001) 
[74]. Gryszczyńska et  al. [75] assessed the levels of car-
bonylated proteins (CP) and advanced oxidation protein 
products (AOPPs) in patients with abdominal aortic 
aneurysms (AAAs), aortoiliac occlusive disease (AIOD), 
and chronic kidney disease (CKD) (predialysis and 
hemodialysis). The results revealed that the AOPP con-
centration was highest in the prevalent AAA group, fol-
lowed by the AIOD group, but lowest in the predialysis 
and hemodialysis groups. However, CP was greater in the 
predialysis group than in the AAA or AIOD groups. It is 
known that increased oxidative stress can lead to CKD, 
which shares a common pathogenesis mechanism with 
CVD. This interrelationship has been observed in geriat-
ric patients (aged 60.9 ± 15.2 years) with CKD stages 1–5, 
where the level of plasma protein carbonyls increases 
as renal function decreases (as measured by creatinine 
clearance) (r = − 0.692, p < 0.0001) [76].

5.2  Oxidized Low‑Density Lipoprotein
The potential of oxidized low-density lipoproteins 
(oxLDLs) as biomarkers in CVD has been reviewed in 
many studies [77–79]. As biomarkers, the most inves-
tigated oxLDL component is oxidized phospholipids 
(oxPLs), and their elevation is thought to play a signifi-
cant role in oxLDL-induced vascular inflammation and 
subsequent coronary, carotid and femoral artery diseases 
[77, 80–82]. OxLDLs, as well as oxPLs, are directly iden-
tified by some TLRs (TLR4, TLR6) [83], complement 
components, and scavenger receptors (CD36) [84–87]. 
CD36 induces OxLDL uptake and promotes the intracel-
lular formation of cholesterol crystals, further activating 
the inflammasome via the proinflammatory activity of 
IL-1 [88].

Furthermore, exogenous oxPLs cause apoptotic cell 
death, a critical mechanism of atherogenesis [89]. Dijk 
et  al. evaluated six atherosclerotic lesion types of post-
mortem carotid endarterectomy by immunostaining 
for the detection of oxPLs, malondialdehyde (MDA) 
and apoprotein an (apo(a)) epitopes [85]. The results 
demonstrated that all atherosclerotic lesions, such as 
necrotic cores, fibrous caps, foamy macrophages, and 
VSMCs, expressed oxidization-specific epitopes [85]. 
Furthermore, Tsimikas et  al. established a strong posi-
tive correlation between oxPLs/apoB and lipoprotein a 
(LP(a)) (r = 0.85, p < 0.001), a cardiovascular risk factor 
[90]. A meta-analysis of three studies [91], in which two 
assessed oxLDL levels in participants with HIV (human 
immunodeficiency virus) disease either with or without 
associated CVD (468 vs. 487, respectively), revealed that 
increased oxLDL levels were significantly related to CVD.

Notably, the interaction of oxPLs and plasminogen is 
related to the increased potential to induce fibrinolysis 
and thus is associated with a lower atherothrombotic risk 
[92]. Notably, plasma oxLDL has been shown to be stead-
ily increased in patients with CVD, insulin resistance, 
diabetes and obesity, regardless of the assay used [16, 78].

5.3  Trans‑4‑hydroxy‑2‑nominal and malondialdehyde
Aldehydes such as trans-4-hydroxy-2-nominal (4-HNE) 
and malondialdehyde (MDA) are lipid peroxidation 
products characterized by their rapid reactivity with pro-
teins to form Michael adducts (advanced lipoxidation 
end products) [16, 93, 94]. 4-HNE is the most plentiful 
lipid-derived reactive carbonyl species. It is a major toxic 
product that induces apoptotic cell death [95]. However, 
the antioxidant system functions normally, and the cell 
can degrade modified proteins. In that case, glutathione 
transferases rapidly neutralize these compounds, espe-
cially glutathione-S-transferases 4–4, heme oxygenases, 
aldehyde dehydrogenases and glutamate-cysteine ligases 
[96–98]. As mentioned above, proteins participating in 
reactions with aldehydes are residues of apolipoprotein 
B (apoB) [99], and subsequent alterations in its structure 
by MDA increase its affinity for the scavenger receptors 
of macrophages and cause their transformation into foam 
cells [100]. 4-HNE provokes cellular oxidative stress in 
addition to inducing the activation of endoplasmic retic-
ulum stress [101]. Both aldehydes and oxidized phos-
pholipids can trigger inflammation by stimulating the 
expression of inflammation-related genes [85]. This can 
lead to an increase in the production of class A scaven-
ger receptors on macrophages and smooth muscle cells, 
as well as strong upregulation of the cytokine TGF-β1 
and activated NF-κB [88–90]. Notably, 4-HNE, especially 
MDA and other lipid oxidation end products, are among 
the most researched and are most commonly used as 
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oxidative stress markers [77, 93, 102]. Considering CVD, 
HNE and MDA as markers are preferable to other lipid 
oxidation products for estimating the risk of acute car-
diovascular events, especially myocardial infarction and 
ischemic stroke [77, 103]. A large study [104] compared 
the levels of protein-bound HNE products (HNEp) in 61 
heart failure (HF) patients with those in 71 healthy indi-
viduals. In addition to HNEp, the levels of different types 
of circulating fatty acids, including n-6 PUFAs, such as 
linoleic acid, which can conceivably lead to the forma-
tion of HNEp, were estimated. In HF, increased HNEp 
contributed to more severe HF and decreased HDL-C 
levels. Another work by Taty Zau et al. [105] assessed the 
effectiveness of a cardiac rehabilitation program in man-
aging systemic oxidative stress in patients with chronic 
stable coronary disease who underwent coronary artery 
bypass grafting. A significant and progressive decrease 
in the oxidative markers of lipid damage, which included 
MDA and protein carbonyl levels, was observed in this 
cohort. Additionally, there was an ensuing decrease in 
superoxide dismutase, catalase, and glutathione peroxi-
dase activities.

5.4  F2‑Isoprostanes
F2-isoprostanes, which arise from polyunsaturated fatty 
acid (PUFA) peroxidation, are prostaglandin-like com-
pounds characterized by platelet–activating and vasocon-
strictive properties [102, 106, 107]. Both  F2–isoprostanes 
 (F2-IsoPs) and reactive γ–ketoaldehydes (isolevuglan-
dins) are formed during the nonenzymatic rearrange-
ment of  H2-isoprostanes [16]. The latter compounds are 
products of the oxidation of arachidonic acid, which is 
physiologically esterified in tissue phospholipids [108]. 
Specifically,  F2-IsoPs are frequently treated as the most 
credible markers for monitoring oxidative stress in  vivo 
because they are correlated with the extent of CVD, reli-
able outcome prediction and chemical stability [102, 109, 
110]. Several studies have established the level of  F2-IsoPs 
as one of the many risk factors for coronary heart dis-
ease (CHD) [111, 112]. Shishehbor et al. quantified nine 
distinct lipid peroxidation products in the plasma of 
patients via mass spectrometry. After this, patients were 
evaluated by diagnostic.

Coronary angiography revealed a statistically signifi-
cant correlation between higher lipoxidation product 
levels and CHD. The results of the study revealed that 
 F2-IsoPs were significantly greater in those diagnosed 
with CHD (OR 9,7 in the highest  F2-IsoP quartile and 
plasma levels 1, fivefold greater in CHD) [112]. A subse-
quent study revealed 93 patients with CHD patients and 
93 healthy controls were confirmed by measuring the 
levels of  F2-IsoPs along with standard risk markers such 
as hypercholesterolemia, low HDL, diabetes, body mass 

index, systolic blood pressure, CRP, and smoking status 
[111]. A correlation between higher F2-IsoP values and 
a broader spectrum of risk factors was verified, such as 
between higher F2-IsoP levels and CHD (OR 27.3 in the 
highest F2-IsoP tertile) [111]. Many studies have shown 
that the levels of  F2-IsoPs can be used to indicate CHD 
severity. Vassalle et  al. reported a relationship between 
elevated plasma levels of  F2-IsoPs and a greater number 
of diseased vessels  (F2-IsoP plasma levels are 1.5-fold 
greater with 1-vessel disease and 2.0-fold greater with 
multiple vessel disease) [115]. In an extensive system-
atic review [116], higher levels of plasma F2-isopros-
tanes were measured in ischemic stroke patients than 
in healthy participants. Furthermore, more elevated uri-
nary 8-iso-PGF2α (a major F2-isoprostane isomer) was 
observed in patients with chronic lower limb ischemia 
than in healthy controls. However, F2-isoprostanes were 
not associated with coronary artery disease.

6  Cardioprotective Drugs with Antioxidant Effects
Current antidiabetic cardiovascular drugs, such as 
sodium‒glucose transport protein 2 inhibitors (SGLT2i), 
glucagon-like peptide-1 (GLP-1) analogs, and mineralo-
corticoid receptor antagonists, effectively reduce CVD 
risk by inhibiting inflammatory and oxidative stress 
mechanisms [3].

On the basis of numerous clinical trials, the European 
Society of Cardiology confirmed updated acute and 
chronic heart failure diagnosis and treatment guide-
lines, which recommend SGLT2 inhibitors as agents 
that reduce cardiovascular death, worsening heart fail-
ure and hospitalization due to heart failure [117]. The 
impact of SGTL2i on ameliorating thromboinflamma-
tion has been investigated in many basic and clinical 
studies. Agents such as empagliflozin and ipragliflozin 
attenuate ROS, VCAM-1 and ICAM-1 in the abdomi-
nal aorta of mice [118]. Furthermore, empagliflozin was 
revealed to decrease mitochondrial production of ROS in 
the endothelial cells of diabetic and hypertensive elderly 
patients [119]. Uthman et al. conducted a study to inves-
tigate whether empagliflozin and dapagliflozin decrease 
TNF-α-induced inflammation in human coronary arte-
rial endothelial cells. The results revealed that SGLT2i 
inhibited ROS generation and thus diminished inflamma-
tion in TNF-α-induced coronary arterial endothelial cells 
[120]. Another study demonstrated that uremic serum 
from patients with chronic kidney disease harms cardiac 
microvascular endothelial control of cardiomyocytes and 
that empagliflozin recovers this intercellular crosstalk 
by reducing ROS and restoring NO levels in cardiomyo-
cytes, improving their relaxation and contraction [121].

Another antidiabetic agent, GLP-1, is currently being 
extensively researched. Different clinical trials and 
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studies have revealed reduced major cardiovascular 
events in patients treated with GLP-1. In the clinical 
trial LEADER (Effects of Liraglutide on Cardiovascular 
Outcomes in Patients With Diabetes With or Without 
Heart Failure), patients treated with liraglutide had 
a lower risk of cardiovascular death, AMI, or stroke 
[122]. GLP-1, as well as SGLT2i, has antioxidant effects 
by decreasing ROS in endothelial cells, reducing the 
accumulation of macrophages in the vascular wall and 
the expression of VCAM-1, ICAM-1, and E-selectins 
and thus preventing atherosclerotic plaque formation 
[123]. The activation of the mineralocorticoid recep-
tor (MR) in various cell types plays a crucial role in the 
development of cardiac hypertrophy and dysfunction, 
ultimately leading to heart failure [124]. For example, 
Rac1, a Rho family of GTPase members, acts as a cellu-
lar modulator that can activate the MR. In mice under-
going transverse aortic constriction, the activation of 
Rac1 leads to increased accumulation of MR in the 
nucleus and increased expression of MR target genes, 
such as the NOX4 gene, resulting in overproduction 
of ROS [125]. In rodent models of heart failure, MR 
antagonists have been shown to reduce cardiac hyper-
trophy and dysfunction [125]. For example, eplerenone 
has been shown to decrease myocardial fibrosis and 
apoptosis, whereas spironolactone inhibits cardiac 
fibroblast proliferation. Compared with eplerenone, 
finerenone has been demonstrated to significantly 
reduce left ventricular wall thickness and mass [126]. 
The Randomized Aldactone Evaluation Study in 1999 
reported a significant reduction in mortality in the 
spironolactone group [127]. For more than 10  years, 
eplerenone treatment was associated with a reduction 
in deaths from CVD or hospitalization for heart failure 
[128]. MR expression is upregulated in the postinfarct 
state [129]. In rats with myocardial infarction, there 
is impaired diastolic function and increased collagen 
content in the LV interstitium and the aorta [130]. MR 
antagonists were found to reduce the infarct area and 
abnormal LV remodeling. In addition to improved left 
ventricular compliance and elastance, treatment with 
finerenone reduces interstitial fibrosis in mice with 
MI [131]. A clinical trial called the Role of eplerenone 
in Acute Myocardial Infarction–Double-Blind, Early 
Treatment Initiation, Randomized, placebo-controlled, 
multicenter study (REMINDER) documented a signifi-
cant reduction in brain natriuretic peptide (BNP)/N-
terminal pro-b-type natriuretic peptide (NT-proBNP) 
levels and the composite primary endpoint in patients 
receiving eplerenone within 24  h after ST-elevated 
myocardial infarction (STEMI) [132].

7  Conclusions
Redox imbalance contributes to oxidative stress 
and triggers the development and acceleration of 
CVD. Importantly, excess ROS production leads to 
endothelial dysfunction, which affects cardiovascu-
lar homeostasis and orchestrates thromboinflamma-
tion. Oxidative stress biomarkers could be utilized for 
estimating CVD risk or improving the diagnosis of 
CVD. To date, only some of the researched biomarkers 
have been used regularly in the clinic as oxidized low-
density lipoproteins because of their unstable nature, 
hardly detectable levels, or methodological challenges. 
Nevertheless, targeting ROS generation or using car-
dioprotective drugs with antioxidant effects might aid 
in restoring endothelial cell function and improving 
CVD symptoms. Hence, further discoveries on oxida-
tive stress, its biomarkers, and antioxidants will change 
the routine clinical approach to CVD treatment.
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