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Abstract: This study includes musculoskeletal disorder (MSD) risk evaluation based on
the IMU sensor data gathered from patient-lifting movement performed by healthcare
specialists. This is a continuation of previous research focusing on a novel multicriteria
statistical model integrating experimental and large-scale statistical datasets. The proposed
model estimates MSD probabilities over 5, 10, and 15 years for the neck (0.537 ± 0.156),
shoulder (0.449 ± 0.084), and elbows (0.277 ± 0.221). The model enables individual risk
profiling, influenced by dynamic parameters that can reduce the long-term risk by up
to 70.49%. The model is in its early development stages, i.e., it is the proof of concept
that offers a new approach to assessing MSD risk at work using motion tracking data in
combination with statistics. Further studies with larger sample sizes and validated criterion
weights are needed to refine and validate this approach.
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1. Introduction
Studies of repetitive motions and work ergonomics examine tasks involving repeated

movements, which are particularly common in industrial and office environments. The
goal of these studies is to identify the harmful movements or their segments and find
alternatives that can reduce the risk of acute and long-term injuries and minimize muscle
tension and pain, thereby improving occupational safety and employee well-being. The
medical sector faces the same risks, being heavily involved in challenges that require
handling live patients. This is even harder to define in research and control in practice [1].
People spend the majority of their time in the work environment, so monotonous tasks
that cause minor muscle tension can have a significant impact if postures and actions are
repeatedly maintained over many years [2]. This can lead to the accumulation of chronic
biomechanical disorders, resulting in an inability to function fully at work or in everyday
life. However, modeling these conditions often requires handling a lot of limitations and
complexity. Research boundary conditions determine the assumptions, complexity, and
level of detail used to analyze a given problem. In biomechanics, it is common to analyze a
fragment of motion, such as a stroke, cycle, or similar definition, thereby minimizing the
amount of data while maintaining the required accuracy or the level of precision dictated
by technical capabilities [3].

Patients in healthcare settings deserve high-quality care, which includes safe transfer
and transportation [4,5]. However, it is equally crucial to consider the well-being of
healthcare professionals aiming to maintain their work capacity and job satisfaction and
reduce the risk of becoming patients themselves. Evidence-based practice highlights
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the importance of ensuring the physical and psychological safety, health, and comfort
of healthcare professionals and their assistants through ergonomic work environments,
the use of assistive devices and equipment, appropriate workloads, adequate staffing,
and other supportive measures [6,7]. Healthcare professionals, especially rehabilitation
specialists and nurses, face significant health risks when performing patient transfers,
such as lifting patients in and out of beds or wheelchairs. These tasks often involve
awkward body postures, leading to improper body mechanics, rapid movements, and
sudden transitions from static to dynamic positions, frequently requiring excessive force
beyond an individual’s capacity. The varying physical characteristics of patients and
the close physical proximity during transfers can result in unbalanced, incorrect, and
uncomfortable postures.

Trauma risk modeling techniques can be employed to assess and mitigate these risks
more accurately. By developing detailed models of patient transfer tasks, healthcare
providers can identify specific risk factors, such as the patient’s weight, the height of the
transfer surface, and the caregiver’s strength and flexibility. These models can then be used
to simulate different transfer scenarios and evaluate the potential for injury. Additionally,
by quantifying biomechanical risks, this model may help identify the root causes of pain
in musculoskeletal disorders, enabling targeted prevention strategies and informing pain
management protocols during rehabilitation. Similar approaches have been applied in
sports contexts, such as evaluating pain and injury risk in surfing practice, where tailored
rehabilitation strategies are critical for managing musculoskeletal pain and optimizing
recovery [8]. By integrating data from wearable sensors, force plates, and motion capture
systems, researchers can develop personalized risk profiles for individual healthcare work-
ers and identify high-risk tasks. To develop such a model for chronic MSDs, continuous
study is required. This approach can help identify differences between individuals who
have experienced injuries or pain and those who have not. When addressing chronic
injuries, it is particularly challenging to isolate the impact of daily life activities. Injuries can
occur in various tissues with distinct mechanical properties and functional conditions, such
as bones, muscles, tendons, and cartilage. Injuries to these structures are associated with
damage to their mechanical properties, often caused by sudden or chronic environmental
loads [9]. Although beneficial, a prolonged study was not conducted, and an alternative
method for obtaining risk factors is presented. The application of this risk model extends
beyond healthcare, providing insights into the prevention of work-related musculoskeletal
disorders and sports injuries by identifying high-risk movements and behaviors. Ulti-
mately, the goal of trauma risk modeling is to inform the design of safer patient handling
equipment, the development of evidence-based training programs, and the optimization of
clinical workflows.

This study combines experimental motion-capture data with statistical analyses to
construct a comprehensive multicriteria model for predicting musculoskeletal disorder
risks. The approach focuses on three key phases: motion data collection during patient-
lifting scenarios, the integration of cumulative force profiles and joint moments, and the
extrapolation of risk probabilities using weighted criteria. This novel framework facilitates
individual risk profiling and provides insights into long-term occupational health risks for
healthcare professionals.

This paper presents research analyzing healthcare specialists during patient lifting
motions. This study proposes a multicriteria statistical model that combines individualized
motion capture data and broader population statistics to predict long-term MSD risks.
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2. Materials and Methods
2.1. Research Procedure

This study followed a structured three-phase research procedure to develop and
validate a predictive musculoskeletal disorder (MSD) risk model. First, during the data
collection phase, patient-lifting movements were recorded using Xsens Movella IMU sen-
sors in three distinct scenarios: (1) the patient not assisting, (2) the patient assisting by
placing their hands on the participant’s shoulders, and (3) the patient not assisting, with
the participant wearing an ergonomic belt. During all three scenarios, the patient was
holding around 30% of body weight on her own. Each of the 44 participants (16 men and
28 women) performed three trials per scenario, resulting in a total of 396 measurements.
The average age of participants was 28 ± 12 years, with a height of 175.11 ± 11.58 cm, and
a weight of 75.30 ± 12.58 kg. Supplementary patient load profiles were determined in a
separate experiment by estimating reaction forces and residual loads, providing crucial
biomechanical parameters for the model. Figure 1 presents the study procedure flowchart,
detailing the sequential steps from data collection to risk estimation. Second, during the
model development phase, experimental motion capture data were combined with statis-
tical datasets from prior studies to enhance the robustness of the model. Baseline MSD
probabilities for the neck, shoulders, and elbows were calculated using statistical regression
based on large-scale population data. A multicriteria statistical approach was employed,
with parameters such as physical readiness, motion symmetry, and cumulative joint mo-
ments assigned weighted coefficients based on their relative importance in predicting MSD
risks. The detailed weighting criteria and their application in the model are described
further in the methodology section. Finally, in the risk estimation phase, MSD probabilities
were extrapolated over 5, 10, and 15 years for each participant, accounting for variations
in ergonomic factors and dynamic movements observed during the study. Individualized
risk profiles were generated, highlighting the impact of specific factors like physical fitness,
technique, and equipment use on long-term MSD risks. By combining experimental sensor
data with comprehensive statistical analyses, this procedure established a foundation for
evidence-based recommendations to mitigate MSD risks in healthcare professionals.

Cumulative loads, such as the total moment of force, are used as a crucial component
for long-term risk extrapolation. It was decided to develop a multicriteria model to predict
long-term injury risks. The main drawbacks identified in this model are subjectivity, the
need for a significant amount of data, and the necessity to simplify computational condi-
tions. However, the model offers considerable flexibility by allowing updates to individual
criteria or related information and prioritizing input data based on its importance.

The model evaluation is based on observable differences between various data seg-
ments that influence ergonomic criteria. Due to the weighted criteria and the model’s
specificity, parameters can be added or removed, allowing for easy adaptation to changes.
This flexibility enables refinement of the model through additional research. The model is
based on clear parametric assumptions, components, and their weighted criteria, which are
selected based on the most statistically significant groups identified in this study.

The initial weighted criteria are constructed based on the scope of this research, and a
prognostic risk assessment is conducted for each participant. One of the most important
criteria in the model is the total moment of force in segments, as it directly reflects the load
on a joint during movement. Additionally, the cumulative moment allows us to extrapolate
the joint load over a defined time or number of repetitions.
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Figure 1. Flow chart of study procedure.

A Rhino Grasshopper model is used [10,11] to calculate motion amplitude, joint
moment, and accumulated moment. Calculation is performed on the neck, shoulders,
and elbows. In parallel, research on MSD is conducted to gather sufficient datasets that
would provide a base risk. This base profile is determined by using data extrapolation
tools. All these data are incorporated into the multi-criteria statistical model, along with
additional inputs such as weight coefficients and duration over which risk is estimated. A
more detailed analysis of the data used and methods applied in the model are presented
in further research. Once provided with all the necessary data, this multi-criteria model
generates an individual risk profile for each test subject across different durations of the
estimated timeline.

2.2. Research Experimental and Statistical Data

The study integrates experimental patient-lifting data [11] with statistical datasets to
develop a prognostic MSD risk model. The first dataset consists of experimental research
where patient-lifting motion is being analyzed by equipping test subjects with the Xsens
Movella Awinda costume, consisting of standard 17 IMUs (MTw2-3A7G6) [12]. For the
research, a mathematical model from the previous research [11] was utilized to process the
initial data received from measurements: location of joints at each frame, relative speed,
and acceleration of body segments. The start condition for all the different scenarios was the
N-pose, involving the test subject standing straight, with arms down. The same condition
was used when ending the motion recording. Afterward, the datasets were manually
reviewed to consist of distinctive and separate segments for each of the measurements.
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The analyzed scenarios are evaluated as part of the statistical model. The supple-
mentary measurement is performed to determine the patient load profile, which is then
integrated into the mathematical model. Both data-gathering experiments are described
in more detail in our previous article [12], while the experiment procedure is presented
in Figure 2. The sample size was chosen to have above 0.95 statistical confidence for this
cross-sectional study. Experimental research was conducted on a real healthcare specialist
and was further supported by the bioethics council permit (2023/3-1504-959).
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Figure 2. The experiment lifting procedure environment and schematical view: (A) patient transfer
motion capture setup; (B) patient load evaluation: (B.1) patient reaction force estimation; and
(B.2) patient residual reaction force estimation [13].

The second dataset is obtained by analyzing various studies in the literature where
a broader sample of statistical data are presented. The baseline scenario probability is
determined by analyzing scientific publications to gather more information and establish
the frequency of injuries or their symptoms in different groups. From the conducted search,
five key studies that examined a large sample of participants and determined probabilities
of MSDs in the neck, shoulders, and elbows were identified. A sample of five studies is
used to increase the overall data sample size, expand demographic variation, and thereby
improve statistical reliability. Table 1 shows the statistical data of the analyzed research
of healthcare specialists’ work-related MSD, grouped accordingly to neck, shoulder, and
elbow. These data are further processed using mathematical methods. Extrapolation is
made to determine the base statistical baseline for MSDs.

Table 1. Research data on the probability of musculoskeletal disorders [14–18].

Reference Ribeiro et al., 2016 [14] Adap et al., 2017 [15] Ryu et al., 2014 [16] Chung et al., 2013 [17] Arvidsson et al., 2016 [18]

Research
Country Portugal India USA Taiwan Sweden
Sample Size 409 212 531 1914 925
Sample average
age (±SD) 40 ± 9 31 ± 6 30 ± 7 34 ± 8 47 ± 10

Base risk of musculoskeletal disorder

Neck 0.501 0.331 0.333 0.434 0.390
Shoulders 0.378 0.346 0.448 0.440 0.453
Elbows 0.072 0.019 0.055 0.245 0.273
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Furthermore, each test subject completed a survey, which included criteria important
for mathematical calculations and allowing broader data cross-sections, such as sex, height,
and weight.

Physical readiness of each of the test subjects was evaluated qualitatively in a score
from 1 to 10, based on physical activities frequency, discipline, etc.

The scoring evaluation was developed by the team of this research. The distribution
of such scores is presented in Figure 3. In terms of physical fitness, the results indicate
that there is a relatively wide distribution among fitness levels, allowing the subjects to be
classified into low (1–6), medium (7–8), and high (9–10) physical fitness groups.
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2.3. Matchematical Method

A multicriteria statistical model is developed for the scope of this study. It is assumed
that components with higher probability or importance are assigned a greater weighted
index. This is called the utility performance index in decision-making processes, where
the probability is positively correlated with the above-mentioned coefficients. The mathe-
matical expression of the model is based on published scientific works [14,19]. The model
incorporates weighted criteria such as physical readiness, motion symmetry, and cumu-
lative joint moments. Each parameter is assigned a weighting coefficient based on its
significance in MSD risk.

The probability of each scenario is derived from the baseline scenario probability,
which is based on a larger statistical sample, incorporates a time dimension, and uses actual
injury statistics. In this way, the probability of experiencing an injury or symptoms under
Scenario A is as follows:

p(A) = Qj·
n

∑
i=1

Xi, (1)

here, p(A) represents the probability of scenario A occurring, Qj is the baseline scenario
probability, Xi is the element factor, and n is the number of elements considered in
the model.

The element factor is a key value in the model with the potential to influence whether
the baseline scenario has a higher or lower probability of occurring. The element factor is
determined as follows:

Xi = qiaij, (2)

here, qi is the weight coefficient, and aij is the j-th likelihood of the Xi element happening at
a higher or lower probability.

Element possibilities are defined individually for each data segment, determining the
relative weight based on the available data sample. For example, if the average of a metric
across the entire research population is Y, the average in the gender-based segment for men
is 1.05 Y and for women it is 0.9 Y, then the corresponding aij values will be 1.05 and 0.9,
assuming a linear relationship. This means that for men there is 5% higher likelihood for
event Z to happen, while for women it is 10% lower.
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The weighting coefficients are a central metric of the entire model, assigning weights
to different scenario possibilities based on their established importance. The weighting
coefficient for each scenario is determined as follows:

qi = Bi

(
n

∑
i=1

Bi

)−1

, (3)

here, Bi is the element weight score, while n—number of evaluated elements in the model.
A mathematical condition must be satisfied when defining elements and calculating

weighting factors. This condition can also be used to verify whether the weights are
correctly distributed:

n

∑
i=1

qi = 1, (4)

here, qi is the weight coefficient.
This model allows for the evaluation of both acute and chronic injury risks. The

primary limitation of the model is understanding which criteria has greater significance for
the probability of the analyzed event. However, this can be assessed through isolated or
large-scale studies.

Since this study does not directly investigate injury probability, not all necessary data
for risk assessment are derived from the established sample. For this reason, the baseline
scenario probability is determined and presented in Table 1. The statistics presented in
the table do not directly indicate baseline scenario probabilities; however, by evaluating
different scenarios and age conditions, baseline scenario probabilities can be extrapolated.
Different sample sizes are considered to have a greater impact on statistical trends. Statisti-
cal regression is used to extrapolate curves. The statistical trend is modeled as a quadratic
dependence taking the shape of a parabola because, with aging, both the body’s capacity
and accumulated load create increasing conditions for the onset of MSD. This approach
produces baseline probability curves for each of the analyzed joints (neck, shoulder, and
elbow). The extrapolation results for the analyzed age range are shown in Figure 4 and
specified in Equations (5)–(7).
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The base probability curve for neck musculoskeletal disorder is modeled as follows:

y =
(

6.67·10−5
)

x2 + 0.003x + 0.213. (5)

The shoulder musculoskeletal disorder base probability curve is modeled as follows:

y =
(

3·10−5
)

x2 + 0.0019x + 0.3. (6)
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The elbow musculoskeletal disorder base probability curve is modeled as follows:

y =
(

1.767·10−4
)

x2 + 0.0047x + 0.083. (7)

The probability of developing a MSD at a given moment, depending on the specified
age, is indicated by the extrapolated and offset data. The base extrapolation curves show
the risks of developing MSD at the test subject’s current age, at a given moment. The model
forecasts MSD probabilities over time by shifting baseline curves. Figures 5–7 illustrate
these trends for neck, shoulder, and elbow risks. For example, if at age 40 the probability of
event A occurring is p(A) = 0.5, and the forecasted scenario is 5 years, then this point is
shifted by 5 years. In this way, the probability of event A occurring becomes p(A) = 0.5 at
age 35. Using a weighted coefficient criterion, it is then determined whether the probability
will increase or decrease under current working conditions and belonging to the current
probability group.

Based on the graphs presented in Figures 5–7, the baseline probabilities of developing
a MSD are determined. Next, by observing trends from the numerical model results,
criteria and their weighted coefficients are established to assess whether ergonomic risks
will increase or decrease. From the developed risk graphs, the shoulders are in the highest
risk zone during the early periods and in the lowest-risk zone over time.
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The final undefined component of the risk model is the exact criteria and their corre-
sponding weight values. The assignment of weighted scores is based on three primary data
evaluations: range of motion, maximum moment, and cumulative moment. Given that a
long-term perspective is being assessed, the cumulative moment is particularly important
and is accordingly prioritized in the weighting. The calculation of the criteria’s components
involves summing all average deviations from the population’s overall values for each
experimental data subset and applying weighting coefficients of 1:1:2 for the range of
motion, maximum moment, and cumulative moment, respectively.

Additionally, since discrepancies between moments in the right and left limbs are
consistently observed in all measurements, motion symmetry and the relative distribution
of movement direction (between sides) are also considered important criteria. Techniques
and motion side distributions are relative calculations conducted between two scenarios,
predicting the proportional contribution of each element, e.g., 40/60, 30/70, or 50/50. In
such cases, the expression applied is the following:

a1
ij·c1 + a2

ij·c2 = aij, when c1 + c2 = 1 (8)

Since defining some elements through absolute numbers or averages results in a loss
of precision, elements can also be set parametrically. This allows each subject to provide an
individual component value based on variable input data. Parametric criteria are calculated
using formulas from the mathematical model and are inputted as datasets rather than single
numeric values, as in the case of demographic parameters. In the scope of this research,
parametric data—such as range of motion, moment, and cumulative moment—are directly
input from the mathematical model into the statistical risk model. This assumes that the
individual’s technique remains unchanged throughout the forecast period. It is understood
that this assumption is not inherently accurate; however, no data are available on the extent
to which the technique may improve. Main model elements with their weighted coefficient
and pre-made generalized calculations are shown in Tables 2–4, respectively, for the neck,
shoulders, and elbows.

It is important to note that the element likelihood (a) is a unit that indicates whether
the risk of injury for the element is higher or lower. Numbers higher than 1 mean that the
chances are increasing, while numbers lower than 1 mean that the chances are decreasing.
These sizes were calculated by comparing the sample size of the experimental data of this
research to determine the population average and derive likelihoods from that dataset.
Using the criteria given in the tables above and research data, the risk for each of the test
subjects can be calculated.
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Table 2. Statistical values of neck multicriteria MSD prognosis values.

Criteria Physical Readiness Sex Technique Scenario Amplitude Moment Cumulative Moment

Weight score (B) 1 1 1 1 1 2

Weight coefficient (q) 0.143 0.143 0.143 0.143 0.143 0.285

Element title Low Medium High Male Female w/o Belt w Belt — — —

Element likelihood (a) 1.018 0.901 0.161 1.120 0.930 0.952 1.024 — — —

Element factor (X) 0.146 0.129 0.023 0.160 0.133 0.136 0.146 a · q a · q a · q

Table 3. Statistical values of shoulder multicriteria MSD prognosis values [made by author].

Criteria Physical Readiness Sex Technique Scenario Symmetry Amplitude Moment Cumulative Moment

Weight score (B) 1 1 1 2 1 1 2

Weight coefficient (q) 0.111 0.111 0.111 0.222 0.111 0.111 0.223

Element title Low Medium High Male Female w/o Belt w Belt Left Right — — —

Element likelihood (a) 1.009 0.997 1.030 1.016 0.991 0.919 1.041 1.009 0.998 — — —

Element factor (X) 0.112 0.110 0.114 0.113 0.110 0.102 0.116 0.224 0.222 a · q a · q a · q

Table 4. Statistical values of elbow multicriteria MSD prognosis values [made by author].

Criteria Physical Readiness Sex Technique Scenario Symmetry Amplitude Moment Cumulative Moment

Weight score (B) 1 1 1 2 1 1 2

Weight coefficient (q) 0.111 0.111 0.111 0.222 0.111 0.111 0.222

Element title Low Medium High Male Female w/o Belt w Belt Left Right — — —

Element likelihood (a) 1.008 0.998 1.029 1.019 0.989 0.976 1.017 1.005 0.999 — — —

Element factor (X) 0.112 0.109 0.114 0.114 0.110 0.108 0.113 0.223 0.222 a · q a · q a · q

3. Results
The results of the risk assessment calculations are shown in Figures 8–10. The cal-

culations are performed using the mathematical expression (1), the element factors listed
in Tables 2–4, the individual anthropometric data of the subjects, and the measurement
data obtained during the experiment using IMU sensors. The baseline probability is cal-
culated based on the graphs presented in Figures 5–7 (which were generated using the
mathematical expressions (5), (6), and (7)).
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The results presented in Figures 8–10 indicate that the baseline scenario probability is
the most critical component of the model. The data distribution, sorted by age, resembles
the curves of different scenarios. However, differences between individual subjects are
evident, reflecting variations in ergonomics during movement execution. All subjects were
trained in safe handling techniques, so no significant differences were expected.

The overall element factor for the neck ranges from 0.614 to 1.542, with an average
of 1.119 ± 0.185. The probability of experiencing MSD in the neck region after 5 years is
0.445 ± 0.135, increasing to 0.489 ± 0.145 after 10 years, and 0.537 ± 0.156 after 15 years.

In the shoulder region, the element factor is less variable, ranging from 0.884 to
1.131. The probability of MSD in the shoulders after 5 years is 0.407 ± 0.073, increasing to
0.427 ± 0.078 after 10 years, and 0.449 ± 0.084 after 15 years.

For the elbows, the element factor ranges from 0.916 to 1.587, with an average value of
1.081 ± 0.124. The probability of MSD in the elbows after 5 years is 0.176 ± 0.165, increasing
to 0.222 ± 0.191 after 10 years, and 0.277 ± 0.221 after 15 years.

The overall impact of dynamic parameters on long-term risk variability reaches up to
70.49%. When the data are sorted by gender, it is observed that the risk for men is higher
than for women. Over a 15-year period, the risk for men is 14.57% higher in the neck, 1.19%
higher in the shoulders, and 5.29% higher in the elbows compared to women.

By comparing the model’s outcomes with theoretical extreme data, statistical ranges for
specific scenarios can be determined, offering a clearer understanding of the risk domain when
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modifying different criteria. For example, two scenarios—maximum and minimum—can be
compared. The minimum scenario includes criteria associated with the lowest risk, such as
optimal technique, good physical fitness, balanced left–right movement distribution, use of
ergonomic aids, etc. Conversely, the maximum scenario involves the worst criteria, such as
poor technique, etc., with each segment evaluated individually.

Under these conditions, the predicted neck complaint risks for a 20-year-old over a
15-year period range of [0.171:0.529], while shoulder complaint risks range of [0.336:0.440],
and elbows complaint risks range of [0.121:0.176]. For a 40-year-old, neck risks are
[0.247:0.764], shoulder risks are [0.415:0.544], and elbow risks are [0.315:0.436]. For a
60-year-old, neck risks are [0.346:0.764], shoulder risks are [0.520:0.625], and elbow risks
are [0.643:0.811].

It is important to note that this statistical model would benefit from further validation,
although the values used in it have been verified in separate studies and have statistically
significant relevance. However, the model’s accuracy could be improved by incorporating
additional elements, assessing their necessity and importance, refining the examination
of relative differences and weighting coefficients, and better substantiating assumptions
or determining a more precise baseline scenario. Additionally, it was observed that the
cumulative probabilities of the baseline scenario do not follow a linear or other clear trend
and may be influenced by demographic differences.

4. Discussion
Repetitive tasks in industrial and healthcare environments contribute to acute and

chronic injuries, particularly MSDs. In healthcare, lifting patients introduces significant
ergonomic risks for professionals, such as nurses and rehabilitation specialists. Current
solutions focus on isolated factors but lack comprehensive integration of experimental
and statistical data. Our findings of the developed prognostic, multi-criteria risk model
provide valuable insights into the factors influencing the likelihood of musculoskeletal
complaints over time. The estimated baseline probabilities of neck, shoulder, and elbow
disorders reveal a nuanced interaction between occupational demands, physical char-
acteristics, and quality of performed technique. For example, healthcare professionals
are particularly susceptible to high short-term loads on their hands and neck [1]. The
increased risk observed among male participants, who showed a 14.57% higher probability
of neck disorders compared to females, is primarily associated with the larger range of
motion used in performing tasks, possibly related to greater differences in physical strength
or height.

Dynamic parameters of technique, influencing up to 70.49% of long-term risk variabil-
ity, highlight the importance of prioritizing ergonomically sound practices, particularly
during unavoidable unsafe transfers. While the model’s baseline probabilities are based on
large-scale statistical studies, the parametric variations drawn from the experimental data
highlight the role of individualized factors like physical fitness, technique, and symmetry
in shaping risk profiles. These results emphasize the need for targeted interventions, such
as enhanced training and ergonomics optimization, to mitigate risks. For instance, the
risk model can help anticipate conditions like cervical radiculopathy in desk workers or
shoulder impingements in overhead athletes, enabling early intervention and tailored
rehabilitation approaches. Rehabilitation strategies tailored to address musculoskeletal
pain have proven effective in sports settings, such as surfing, where personalized inter-
ventions are critical for mitigating pain and improving performance [8]. This highlights
the potential for integrating such targeted approaches into occupational settings to better
manage pain and enhance recovery outcomes. The data suggest that interventions should
receive increasing attention as MSDs rise due to our evolving lifestyle [20]. The findings
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of this study can be integrated into prevention strategies by designing targeted training
programs that improve movement ergonomics, particularly in healthcare professionals and
athletes prone to neck and shoulder injuries.

However, this is the early phase of the model, and it requires further research and
improvements before it can be applied more broadly. Key limitations were identified during
the course of this research.

First, the proposed statistical model has not been validated at the current time. Further
detailed studies may be needed to validate it as a fully developed tool. Although, it is still
difficult to validate a statistical model since probability cannot be quantified and defined as
the certainty of an event. However, in the absence of data on the real system, assumptions
can be made based on sensitivity analysis [21]. Furthermore, the current weighting criteria
have more of a demonstrative purpose. The basis of the weighting is subjective and requires
additional and detailed studies to be carried out for each weighting criterion. Although,
this model provides great flexibility since each of the criteria can be modified, analyzed, or
implemented as a separate fragment of the model, without compromising the functionality
of the model.

The element factor is supported by the sample size of this precise study. Although
its size is 396 measurements, this is still a relatively limited population of 44 healthcare
professionals. This increases the statistical variance when it comes to constructing element
factors and determining the probability of the risk that is the influence of various criteria.
However, if the model were to be expanded and used more widely, a public database would
allow each study to contribute to the study data, increasing the reliability and probability
of the element factor variance. This would significantly reduce uncertainty and could help
analyze, define, or address various health-related symptoms of MSDs [22].

It is necessary to mention the high complexity of the movements. When a person
performs a difficult movement while recording, uncertainty is inevitable. In addition, this
study uses a live participant imitating the patient. This expands the area of uncertainty,
this being the repeatability of movements, the variability of circumstances from person to
person, etc. Also, healthcare professionals often try to help the patient, ignoring the safety
instructions presented to them during the participation in the study [4].

Like any other ergonomics-related measurement, this one is no exception. This study
estimates risk prediction only in terms of the work environment, although there is a large
influence of life outside work. Basic statistics, which use large sample data, help to mitigate
this limitation, because real CRS data include other life factors, although in this case,
demographic differences between countries, education, and quality of life also have a
difference that cannot be ignored.

Although the model has its limitations, it clearly demonstrates the benefits of com-
bining extensive statistics and experimental sensor data. This can be adapted and used in
any other field of science or engineering to model various factors. Using it in a narrower
engineering setting can lead to even fewer limitations and a more accurate relationship
between each element and its weighting factors. The main difference between this study
and other works examining MSD that have been reviewed is that none of the models adjust
their experimental data with statistics collected from other studies. Many models and risk
studies separate their conclusions from the study’s background [23–25]. Most other studies
perform risk assessments using a questionnaire or modeling methods for basic resources.
Since this study already incorporated several studies reporting MSD data, the results were
not compared with the existing literature. Instead, this study’s results serve as a derivative,
indicating increased or decreased risk based on those studies, with the distribution of the
base data outlined in the methods section.
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Our future work is directed toward obtaining more time-distributed data samples.
The sensor measurement experiment is a single point in time when a technique is assessed.
The aim is to conduct multiple assessments and collect data on how a technique evolves.
Obviously, techniques can change for the better or for the worse, but the influencing factors
may not be so clear. A separate study needs to be conducted, aiming to identify and
define the factors that would allow us to determine, using only a single measurement,
whether a person is likely to deteriorate or improve their technique. This would be useful
not only for the risk assessment model but also for all science branches modeling the
musculoskeletal system from IMU data, as it would be easily applicable for prevention.
The ability to quickly identify risks enables us to prioritize and focus more attention on
professionals at higher risk of injury, especially as we work and live in environments with
limited resources [3]. Future developments could expand the framework by incorporating
rehabilitation techniques that have shown efficacy in sports-related pain management [8],
bridging the gap between predictive models and actionable clinical applications.

5. Conclusions
This study emphasizes the use of experimental IMU sensor data to broaden the risk base

for MSDs. A research model is presented that demonstrates the general applicability of both
experimental and broader statistical data by combining them through a multicriteria statistical
model. The initial conditions of the model are based on large-scale statistical research, and the
parameter fluctuations are derived from data collected during the patient-lifting experimental
study. It was found that for the sample group of this study, using the developed statistical
model and their performed methodologies, the probability of neck disorders after 15 years
is 0.537 ± 0.156, the probability of shoulder disorders—0.449 ± 0.084, and the probability of
elbow disorders—0.277 ± 0.21. The main risk factors are high, albeit short-term, loads on the
hands and neck and the technique used.

It was found that men are more likely to experience MSDs. It is predicted that over
the next 15 years, men working in the health and social care sectors will experience 14.57%
more neck, 1.19% more shoulder, and 5.29% more elbow disorders than women. The
main factor increasing this risk is the range of motion used by men when performing
handling movements. A higher range of motion may be associated with greater differences
in physical strength and/or height.

It has been found that the dynamic parameters of the methods performed can influence
up to 70.49% of the variable component in the long-term risk calculation. For this reason,
to reduce the likelihood of chronic injuries, pain, or other complaints, it is recommended to
focus on proper techniques and prioritize them when performing ergonomically unsafe
handling movements.
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