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2. INTRODUCTION 

2.1. Background 

Cardiomyopathies constitute a group of myocardial disorders in which the 

structural and functional abnormality of the heart muscle is the dominant feature (in 

the absence of coronary artery disease, hypertension, valvular disease and congenital 

heart disease sufficient to cause the observed myocardial abnormality). 

Cardiomyopathies are classified into five morphological and functional phenotypes 

with distinct hemodynamic properties that can be caused by genetic and non-genetic 

mechanisms: dilated (DCM), hypertrophic (HCM), restrictive (RCM), arrhythmogenic 

right ventricular (ARVC) and unclassified cardiomyopathies (UCM) [1]. Dilated 

cardiomyopathy, mainly characterized by left ventricular chamber enlargement and 

impaired myocardial contractility, is the most common form of cardiomyopathy in 

both adults and children and currently is the most frequent indication for heart 

transplantation [2-4]. The management of patients with non-ischemic DCM can be 

extremely challenging with a disease course, difficult to predict. DCM occurs more 

frequently in men than in women, and is most common between the ages of 20 and 60 

years [5]. The history and clinical features are often nonspecific. Clinical 

manifestation of inflammatory cardiomyopathy varies, with a broad spectrum of 

symptoms ranging from asymptomatic courses over presentations with signs of 

myocardial infarction to devastating illness with cardiogenic shock. Symptoms usually 

develop gradually, and some patients are asymptomatic despite left ventricular 

dilatation for months or even years. The most striking symptoms of DCM are those of 

left ventricular systolic failure, but right-sided heart failure may also occur and is 

associated with a particularly poor prognosis [6, 7]. The diagnosis of inflammatory 

DCM cannot be established without endomyocardial biopsy. Practical and specific 

serological markers are not available during the acute phase of the disease.  

The recent progress in study on etiology of DCM has shown that viral infection, 

genetic abnormalities and autoimmune mechanisms are the major causes [8-10]. 

Starting from the early 1950s at least three distinct mechanisms were identified to 

explain the development of DCM. Currently the most accepted potential disease 

mechanism was developed in 1990s. It encompasses a slow, chronic, and continuous 
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destruction of cardiac myocytes or impairment of myocyte function, which is 

considered as a direct, albeit delayed, consequence of the initial viral infection and/or a 

virus-initiated immunologic process. Although viral infection has been already 

identified as a main cause of DCM, the heart can be also the primary target for 

bacterial, protozoa or parasitic infection. Moreover, it could be involved in the 

“collateral damage” of infective organisms (by toxins, chemokines or cytokines) and 

cross-reactive antibodies. A causal involvement of myocardial inflammation and viral 

agents in the pathogenesis of DCM is supported by the findings of myocardial viral 

genome persistence in DCM patients [1, 11-13]. The spectrum of the infectious agents 

that could be involved in the inflammatory cardiomyopathy varies with the geographic 

region, the patient’s age, application of different therapeutic procedures, and additional 

diseases. Infective agents show a remarkable organotropicity: viral infections, toxic 

and auto-reactive processes primarily affect the myocardium and the pericardium [14].  

The heart relies on a complex network of cells to maintain appropriate function. 

The contracting cells in the heart (cardiomyocytes) exist in a three-dimensional 

network of endothelial cells, vascular smooth muscle, and an abundance of fibroblasts 

as well as transient populations of immune cells. The connections of cardiomyocytes 

to the extracellular matrix (ECM) transduce the force and coordinate the overall 

contraction of the heart. The development of interstitial and perivascular fibrosis is a 

hallmark of pathology in the heart. Focal fibrosis composed primarily of collagen 

types I and III, occurs in the early stages of cardiomyopathy, but over time fibrosis 

increases and directly compromises the function of cardiomyocytes. The presence of 

collagen-rich regions in the myocardium cause disruption of excitation–contraction 

coupling between cardiomyocyte and increased stiffness of the myocardium, which 

leads to decreased contractility in the heart [15]. The different types of cell death, such 

as apoptosis, necrosis/oncosis, autophagy and proteasome degradation are contributing 

to the loss of cardiac myocytes depending on the intensity and origin of heart damage 

[16-18]. Given the complexity of the coordinated efforts of many proteins existing in 

multimeric complexes, and also complexity of inter-cellular signaling, dysfunction of 

heart occurs when these interactions are disrupted [19]. Although the heart may 

functionally tolerate a variety of pathological insults, adaptive responses that aim to 
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maintain function eventually fail resulting in a wide range of functional deficits or 

cardiomyopathy. 

Myocardial inflammation has been identified as an important causal factor 

responsible for the progression to DCM [20-25]. This includes autoimmune, viral or 

post-viral inflammation, mediated by the native and acquired immune response 

(cytotoxic T-lymphocytes, natural killer (NK) cells and macrophages) [26-28]. The 

damage of myocardium is carried out by a loco-regional effects of inflammatory 

mediators such as inducible nitric oxide synthase (iNOS) and cytokines released by the 

infiltrated lymphocytes, macrophages and/or endothelial cells. The further heart 

damage is caused by direct interaction of the antibodies against the β- and other 

plasma membrane receptors, myolemma, mitochondrial and microsomal membrane or 

intra-organelle proteins [29-32]. Finally, certain toxins (alcohol, anthracyclines, 

cocaine, etc.) might impair the membrane transport mechanisms or biochemical 

processes also induce the loss or dysfunction of the matrix proteins such as dystrophin, 

laminins, etc. Initial myocardial insults are difficult to identify, however, they very 

often lead to an autoimmune response and development of inflammatory DCM [24]. 

DCM is a consequence of persistent heart exposure to various stress signals, including 

pro-inflammatory, viral, oxidative, neuro-hormonal, and other micro- or macro- 

environmental factors subsequently leading to chronic heart failure (CHF) [33]. The 

understanding of CFH development has been changed from a simplistic disease to a 

multisystem disorder affecting immune, musculoskeletal, renal, and other systems.  

The application of molecular-biological, histological and immunohistochemical 

diagnostic techniques has identified the sub-groups of specific diseases which may 

better respond to certain therapies such as immuno-modulation, immuno-suppression 

or antiviral based on the underlying pathomechanisms [14, 34-37]. These new insights 

of the disease are mandatory allowing developing novel etiology-directed treatment 

strategies. Although significant progress has been achieved in the treatment of heart 

failure, as a result of cardiomyopathy, it is still a matter of fact that there are many 

patients with refractory heart failure that do not respond to available treatment. No 

doubt, that the best way to treat inflammatory DCM is to identify exactly and then 

eliminate the causes initiating heart injury. Since this is often a hard task, it is of high 

importance to understand the molecular mechanisms behind myocarditis progressing 
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to inflammatory DCM. This breakthrough could facilitate the search of the better 

treatment for the injured myocardium. As a proof of it, recent studies have provided 

evidence of a positive clinical impact of immunosuppressive therapy in up to 90% of 

patients with negative cardiac PCR for the main cardiotropic viruses [14, 36, 38]. 

Unfortunately, so far there are no unanimous agreements about the benefit of specific 

treatment in addition to conventional anti-heart failure therapy. 
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2.2. Hypothesis 

Molecular mechanisms ongoing in chronic dilated cardiomyopathy can differ 

depending on the intensity and origin of toxic exposures. Digital evaluation of cardiac 

fibrosis is more accurate and can replace the pathologist evaluation. 

2.3. Aims  

The aim of this study was to establish molecular mechanisms dominating in virus-

positive and idiopathic inflammatory dilated cardiomyopathy, and to develop and 

validate a tool for cardiac fibrosis quantification. 

2.4. Objectives 

1. To analyze virus-positive and virus-negative DCM biopsies and serums and 

investigate: 

1.1. Induction of inflammation, fibrosis and molecular mechanisms of intra-

myocardial cell death. 

1.2. Molecular mechanisms regulating extracellular matrix and fibrosis. 

2. To analyze biopsies and serums of inflammation-positive and inflammation-

negative sub groups and to: 

2.1. Estimate the release of inflammatory cytokines and infiltration of 

inflammatory cells in myocardium.  

2.2. Investigate role of intrinsic apoptotic pathway in cardiomyocyte death.  

2.3. Explore role of extrinsic apoptotic pathway in cardiomyocyte death. 

2.4. Investigate molecular mechanisms regulating development of cardiac fibrosis 

and changes of extracellular matrix. 

3. To evaluate the accuracy of digital image analysis (Genie and Colocalization) and 

the pathologist’s visual scoring for the measurement of fibrosis in human 

myocardial biopsies. 

2.5. The novelty and significance 

Despite intensive search for therapeutic interventions, DCM remains the major 

cause of heart failure in the patients of relatively young age eventually leading to heart 

transplantation. Limited availability of donor hearts results in long waiting of 

transplantation. Many patients with end-stage of heart failure perish before a donor 



16 

 

heart becomes available.  

The common proof of presence of the virus in the DCM myocardium is PCR 

analysis, whereas the inflammatory infiltrates in EMB supports the inflammatory 

origin of the disease. However, the data about the molecular mechanisms playing a 

key role in the pathogenesis of development of various origins of DCM are still 

missing. Therefore, the main goal of this study was to investigate in more details the 

molecular mechanisms in virus-positive and inflammatory-positive myocardiums. The 

identification of the processes dominating in DCM development and also the ability to 

regulate and control them is one of the main aims for clinicians. Additionally, the 

search of biomarkers for early identification of myocardial failure is not of less 

importance. Only the timely identification of secreted biomarkers being coincident 

with processes in the myocardium will allow us to improve diagnosis and proper 

treatment of heart preventing further destructive processes of DCM. 

One more important objective of this study was to develop a tool to quantify the 

cardiac fibrosis and also to evaluate the immunohistochemical stainings of the EMB. 

As a matter of fact, so far the interpretation of histomorphometric parameters in most 

clinical routine analysis and research studies is still primarily based on human visual 

scoring, which is not only hugely subjective and involving a substantial workload on a 

pathologist, but also has many limitations inherent to the traditional pathology. 

Consequently, since the evaluation of fibrosis was important for the interpretation of 

DCM molecular mechanisms, the digital algorithms for fibrosis estimation were 

validated against a criterion standard obtained by point counting used in interactive 

stereology. 

2.6. Cooperation 

This study was conducted in cooperation with the following science institutions: 

1. Vilnius University, Faculty of Medicine, Department of Pathology, Forensic 

Medicine and Pharmacology, Vilnius, Lithuania. 

2. State Research Institute, Center for Innovative Medicine, Dept. of Stem Cell 

Biology, Vilnius, Lithuania. 

3. National Center of Pathology, Affiliate of Vilnius University Hospital Santariskiu 

Klinikos, Vilnius, Lithuania. 
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4. Vilnius University Hospital Santariskiu Klinikos; Hematology, Oncology and 

Transfusion Medicine Center, Vilnius, Lithuania. 

5. Vilnius University, Faculty of Medicine, Department of Physiology, Biochemistry, 

Microbiology and Laboratory Medicine, Vilnius, Lithuania. 

6. Universitätsmedizin Mannheim, Department of Integrative Pathophysiology, 

Mannheim, Germany. 

7. University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany. 

8. University Hospital Gießen & Marburg, Department of Cardiology, Marburg, 

Germany. 

9. University of Normandy, Path-Image/BioTiCla, Unicaen, Caen, France. 

10. Hull York Medical School, Departament of Cardiology, Castle Hill Hospital, 

Cottingham United Kingdom. 
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3. LITERATURE REVIEW 

3.1. Suggested mechanisms of DCM 

A historically based literature review of the relationship between acute viral 

myocarditis and the subsequent development of DCM reveals an evolution of 

understanding of the DCM and starts in the early 1950s. The first scenario considered 

that DCM was a direct consequence of viral myocarditis and divided into acute or sub-

acute phases [39]. The injury was predominated by the myocyte necrosis caused by 

both acute viral infection and the intra-myocardial inflammatory cell infiltrate in 

response to the acute viral infection [40-42]. This mechanism was undisputedly 

supported with direct causal relation of Coxsackie B virus (CBV) myocarditis and 

subsequent sub-acute or chronic development of DCM. DCM state was considered as 

a direct consequence of myocyte necrosis and subsequent myocardial scarring that is 

directly attributable to the CBV infection. 

The second potential mechanism developed in 1990s encompasses a slow, chronic 

and continuous destruction of cardiomyocytes and impairment of cardiomyocyte 

function through continuous heart-specific inflammation carried out by the innate 

immune response. Postulated specific mediators of such a chronic process include 

protracted active viral infection and/or a virus-initiated immunologic process [43, 44]. 

The inflammation may persist because of mistaken recognition of endogenous heart 

antigens as pathogenic entities. Although the development of DCM is temporally 

remote from the acute bout of myocarditis, it must be considered as a direct, albeit 

delayed consequence of the initial infection along with auto-immune processes playing 

a key role [45]. This mechanism is still considered as the basis for further DCM 

analysis.  

The third and the most recent mechanism identifies a distinct and indirect 

mechanistic possibility of DCM developing long after complete resolution of the 

initial episode of myocarditis. The complete resolution of the process implies the 

absence of residual necrosis, scarring, or left ventricular (LV) dysfunction. In this case 

DCM develops as a result of an undefined process in which an episode of remote viral 

infection renders the healed myocardium more susceptible to the remote development 
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of idiopathic DCM. While the first two mechanisms are supported by the literature, the 

third mechanism remains controversial while hard evidence for the development of an 

idiopathic DCM as a late downstream complication following complete recovery from 

a bout of myocarditis is still not clear [46]. 

3.2. Classification of inflammatory heart disease 

The gold standard for diagnosis of myocarditis and inflammatory DCM is 

endomyocardial biopsy (EMB). It is now recognized that the Dallas criteria are not 

sensitive because they do not consider the presence of viral genome in the heart [47]. 

The use of the new tools of immunohistochemistry and viral polymerase chain reaction 

(PCR) has provided a better identification of the aetiology of inflammatory DCM and 

renewed interest in the mechanisms of the inflammatory process in the heart [14, 22, 

48].  

Myocarditis is defined as inflammation of the heart after immunohistochemical 

detection of focal or diffuse mononuclear infiltrates with >14 leukocytes per 1 mm
2
 

(CD3
+
 T lymphocytes and/or CD68

+
 macrophages) independent of the clinical 

phenotype or the presence of heart failure or ventricular dilatation [13, 49-51]. If there 

is hemodynamic compromise together with cardiac dilatation (LVEDD [left 

ventricular end-diastolic diameter] >55 mm and the ejection fraction is <50 %, 

histological myocarditis is categorized as inflammatory DCM [49]. The classification 

of inflammatory heart disease, myocarditis and peri-myocarditis is based on several 

consensus documents on the classification of cardiomyopathies [4, 51], the American 

Heart Association (AHA) guidelines on heart failure [52], the European Society of 

Cardiology (ESC) guidelines on the management of pericardial and peri-myocardial 

disease [53] and current knowledge on the diagnosis and treatment of cardiac 

inflammation from peer review publications [6, 8, 34, 35, 47, 54-61]. 

On the basis of results from biopsy sample analysis of immunohistochemistry 

(IHC) and PCR for virus detection it is possible to identify distinct subentities of 

myocarditis and inflammatory DCM with possible ethiopatogenetic treatment options 

(Fig. 1). 



20 

 

 

Fig. 1. Myocarditis diagnostics and possible ethiopatogenetic treatment (adapted from [14]). 

3.3. The influence of virus genome on myocardium functioning 

Viral infection of the heart is recognized as an important cause of both acute and 

chronic heart failure [11, 12, 54, 62, 63]. It might be a main reason behind myocarditis 

with ensuing DCM [24]. A large variety of molecular mechanisms are suggested to 

initiate myocardial viral infection, yet most of them do not enjoy unanimous 

approbation [23]. On the other hand, some authors disagree with implication of viruses 

in development of DCM [64, 65]. The controversy might be explained by the variation 

of investigation models and different intensity of intramyocardial viral infection.  The 

presence of viral genome in endomyocardial biopsy samples has also been reported in 

a subset of patients with idiopathic DCM even in the absence of classic histological 

myocarditis [12, 66]. Recent biopsy series in patients with DCM have revealed that 

long-term presence of cardiotropic viruses triggers heart failure: >70 % of patients 

with idiopathic DCM carry a cardiotropic virus in the heart [12, 61].  

It is known, that coxackievirus, belonging to the enteroviruses, infect 

cardiomyocytes, B cells, CD4
+
 T cells, macrophages and fibroblasts. In contrast to 

enteroviruses, all other viruses often detected in the human heart cannot infect 

myocytes, due to absence of the correspondent viral receptors. PB19 infects 

exclusively endothelial cells (this virus was found in endothelial cells of children and 
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adult patients with myocarditis). Herpesviruses including human herpesvirus type 6 

(HHV6) and Epstein-Barr virus (EBV), which also do not infect cardiomyocytes, were 

detected in cardiac inflammatory cells (macrophages, T or B lymphocytes). 

Furthermore, it was found that cytomegalovirus (CMV) infects macrophages, 

fibroblasts and endothelial cells, whereas human immunodeficiency virus (HIV) 

affects CD4
+
 T cells and macrophages [67]. 

Thus, numerous cardiotropic viruses do not damage the heart via cytolysis of 

cardiomyocytes but most likely via expression of cardiotoxic chemokines and 

cytokines from infected endothelial or immune cells, contributing to further attraction 

of potentially harmful immune cells into the heart. It is known that, for example, 

HHV6 may induce the expression of the proinflammatory cytokine IL-6 which is 

decisive for the invasion of T cells into infected organs [68]. Direct cytopathic effects 

and immune dysregulation induced by the viral myocarditis trigger cardiac 

dysfunction. Cardiotropic viruses are able to degrade cell-cell, cell-matrix, and 

intracellular elements. The proteases aim to facilitate the entry of the virus into cells, 

but also result in myocyte slippage, injury, and cardiac dysfunction [69]. The presence 

of viral genomes on endomyocardial biopsy is associated with subsequent worsening 

of heart function, the need for cardiac transplantation and sometimes even with a 

patient death [12, 50]. The intramyocardial virus can also be used to guide the 

treatment in acute and chronic inflammatory DCM [22].  

3.4. Types of cardiotropic viruses 

The myocardium can be infected by a wide variety of viruses (Table 1).  

If was established in 1950’s that the main cardio-tropic viruses were coxackievirus 

A and B, but these were later replaced by enteroviruses (EV) and adenoviruses (ADV) 

[62]. With the development of molecular techniques (e.g. PCR) to examine 

endomyocardial tissue, many other viruses and viral co-infections have been 

recognized: case reports and series have associated DCM with approximately 20 

viruses [12, 62, 66, 70]. At the turn-point in the year 1995, the prevalence of 

enterovirus decreased and soon this also happened with adenovirus. The recent day 

research revealed a new set of prevalent viruses: PVB19 followed by CMV, HHV-6, 

hepatitis C virus (HCV), EBV and only then the classic EV and ADV [10, 11, 47, 62, 
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64, 71-74]. Although the pathogenic role of enteroviruses in myocarditis and chronic 

DCM is well established, it remains unclear whether PB19 being currently the most 

commonly detected viral genome is incidental or pathogenic [12, 13, 50].  

Table 1 Cardiotropic viruses.  

Most important viruses in DCM pathogenesis are in bold phase type. 

 

Most humans are infected with parvovirus B19 early in life without any major 

sequela. It was recently recognized that PB19 can cause myocarditis and either latent 

or active viral cardiomyopathy with high virus copy numbers in endomyocardial 

biopsies [75]. Mean numbers of viral copies detected in patients with inflammatory 

DCM were up to 50-fold higher when compared to hypertrophic cardiomyopathy [76]. 

In the recent PCR series PB19 has been observed in 30% to 67% of investigated 

endomyocardial biopsy samples of patients with DCM and myocarditis [11, 77, 78].  

Adenoviruses account for 3–5 % of acute respiratory infections in children and 

less than 2 % of respiratory illnesses in adults. However, nearly 100 % of adults have 

serum antibody to multiple serotypes of this virus. The frequency of adenoviruses in 

PCR-positive DCM patients detected by nested PCR was from 1.6 % to 12.8 % [11, 

76, 79]. The detection of ADV was associated with considerably reduced graft survival 

after cardiac transplantation in a pediatric population [80].  

Enteroviruses (EV), in particular group B coxackievirus, have been detected in 

EMBs of myocarditis and DCM patients [81]. They have been linked to the transition 

from myocarditis to DCM and are considered to be important prognostic factors in 

DCM [82]. Despite the introduction of sensitive molecular biological methods for the 

detection of EV genomes, the incidence of EV infections in DCM was rather low, and 

thus, the hypothesized viral cause of DCM appeared to be confined to a small subset of 

DCM patients. The common rate of EV presence in the EBM is up to 9.4 % [11]. The 

evolvement of cardiac inflammation in EV infections is guided by viral cytotoxicity 

Viral agents of myocardium infection 

Adenovirus; Arbovirus; Coxsackievirus B; Cytomegalovirus; Dengue virus; Echovirus; 

Enterovirus; Epstein-Barr virus; Hepatitis C; Human Herpesvirus; Human 

immunodeficiency virus; Influenza virus; Mumps; Parvovirus B19; Poliomyelitis; Rabies; 

Rubella; Rubeola; Varicella; Variola; Yellow fever. 
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and virus persistence.  

In herpesvirus infections, the pathophysiology is rather determined by primary 

immune-mediated pathogenicity. Thus, herpesviruses including Epstein-Barr virus 

and human herpesvirus type 6 infections rarely induce cardiac symptoms in 

immunocompetent patients. Prevalence for HHV6 genomes detected in patients with 

myocarditis or DCM ranged from 8 to 21.6 % and for EBV genomes from 0 to 8 % 

[11, 67].  

The infections with human cytomegalovirus of unrecognized origin are common 

in childhood, and subsequently the majority of the adult population carry antibodies to 

CMV [83]. Primary infection after the age of 35 years, however, is uncommon and 

generalized infections usually occur in immunosuppressed patients only [84]. The 

frequency of this virus in PCR-positive DCM patients is from 0.8 % up to 3 % [11, 

76].  

The involvement of cardiac system in hepatitis is rare. There are contested data 

implicating hepatitis virus C infection as an etiologic factor in at least some cases of 

human viral cardiomyopathy [73]. In rare cases, fulminant myocarditis with congestive 

heart failure, hypotension, and death may occur.  

Although clinically apparent myocarditis is rarely seen in influenza, the presence 

of preexisting cardiovascular disease greatly increases the risk of morbidity and 

mortality [85]. During epidemics, 5–10 % of infected patients may experience cardiac 

symptoms [86]. Postmortem findings in fatal cases include biventricular dilatation, 

with evidence of a mononuclear infiltrate, especially in perivascular areas. The 

frequency of this virus in PCR-positive DCM patients is up to 0.5 % [76].  

Cardiac involvement occurs in up to 50 % of patients infected with human 

immunodeficiency virus (HIV). However, it leads to clinically apparent heart disease 

in only approximately 10 %. Congestive heart failure due to left ventricular dilatation 

and dysfunction is the most common finding in these patients [87]. 

3.5. Inflammatory infiltrates in DCM 

Although it is clear that viral genomes can be identified in a subset of patients with 

acute myocarditis and DCM, the impact of the presence of viral genomes on cardiac 

function and clinical outcome is still controversial. One clinical study showed the 



24 

 

association between viral persistence in the heart and progressive cardiac dysfunction 

[12]. In contrast, another clinical study reported that the presence of viral genomes per 

se could not be a predictor of cardiac death or heart transplantation in patients with 

clinically suspected myocarditis [50]. The latter clinical study further pointed out that 

the presence of inflammatory T cells and/or macrophages with enhanced expression of 

human leukocyte antigen (HLA) class II molecules in the heart can be a promising 

predictor of the clinical outcome even in the absence of viral genomes and Dallas 

criteria–positive findings [50]. 

The currently most accepted model is that viral infections trigger an inflammatory 

response leading to post-viral autoimmunity, chronic inflammation, cardiac injury and 

cardiomyopathy. The progression from acute injury to chronic DCM may be 

simplified into three phases (Fig. 2). Phase 1 is dominated by viral infection. Initial 

cardiomyocyte damage occurs in this phase by: direct viral damage, also by released 

perforins from cytolytic T cells and by many other ways. Acute cardiomyocyte injury 

leads to exposure of pathogens and intracellular sequestered antigens such as cardiac 

myosin or laminin and subsequent activation of the innate immune system. The innate 

immune response includes Toll-like receptor activation, release of cytokines, nitric 

oxide expression, and the recruitment of natural killer T cells [88]. The replication-

deficient enterovirus may be capable of cleaving the host cytoskeletal proteins without 

activation of immune response [89]. Phase 2 is characterized by the onset of multiple 

autoimmune (innate and acquired) reactions, as innate immune system is activated to 

support phagocytosis of viral particles. In this phase the development of antibodies and 

antigen-specific T cells occurs. Antibodies to pathogens may cross-react with 

endogenous epitopes (cardiac myosin, laminin and β-adrenergic receptor) causing 

further damage to the heart. They key role is played by regulatory T helper cells, 

which mainly decide whether the process will be a self-limiting or go further to 

become auto-immune. Phase 3 is finalized by recovery or persistent cardiomyopathy. 

In most cases, the pathogen is cleared and the immune reaction is down-regulated with 

little or no lasting cardiac damage. However, in a minority of cases either the virus or 

the inflammatory reaction persists and contributes to further progression to 

cardiomyopathy with or without an infectious agent and cardiac inflammation [11, 14, 

63, 88]. 
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Fig. 2. The suggested mechanism of DCM progression from acute injury may be simplified into 

a three-stage process. Acute injury leads to cardiac damage, exposure of intracellular antigens 

such as cardiac myosin, and activation of the innate immune system. Over weeks, specific 

immunity that is mediated by T lymphocytes and antibodies directed against pathogens and 

similar endogenous heart epitopes cause robust inflammation. In most patients, the pathogen is 

cleared and the immune reaction is downregulated with few sequelae. However, in other 

patients, the virus is not cleared and causes persistent myocyte damage, and heart-specific 

inflammation may persist because of mistaken recognition of endogenous heart antigens as 

pathogenic entities. Abbreviations: APC – antigen-presenting cell; Th1 – type 1 helper T cell; 

Th2 – type 2 helper T cell. Adapted from [90]. 
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The heart-specific inflammation may persist because of mistaken recognition of 

endogenous heart antigens as pathogenic entities. This phenomenon is explained 

through molecular mimicry, a chronic immune reaction, which may be stimulated by 

host antigens such as cardiac myosin or laminin (resembling pathogen proteins) long 

after the initial infection has been cleared [91]. Auto-antibodies can also cause 

powerful inflammatory responses leading to further damage of myocardium and 

progression of the heart dilation, thereby making viral myocarditis one of the main 

causes of DCM [92, 93]. Therefore, it is clinically important to identify biomarkers 

that may be predictive for early viral heart pathology. 

3.6. Cytokines involved in progression of DCM 

In most cases, the initial myocardial injury activates the immune response rather 

than causes congestive heart failure [94]. Moreover, the low level of inflammation 

activates the immune system and fights tissue injuries, whereas inadequate level or 

duration of inflammation causes myocarditis and inflammatory DCM [95]. The 

accumulated inflammatory infiltrates in an infected myocardium may eliminate toxic 

agents and, on the other hand, insult properly functioning myocardium trough 

induction of apoptosis and other pathological changes [96-98].  

Cytokines as regulators of the heart responses to toxic exposures, also contribute to 

either heart recovery or injury [99, 100]. Interleukin-1 (IL-1), interleukin-6 (IL-6) and 

tumor necrosis factor alpha (TNF-α) are autocrine/paracrine compensatory agents and 

have been referred to as pro-inflammatory cytokines that are mainly initiated by 

activated immune system [101]. The high concentrations and/or long-term of stresses 

leading to uncontrolled expression of pro-inflammatory cytokines may be maladaptive 

and cause myocardial injury [101]. On the other hand, it was shown that pro-

inflammatory cytokines are not constitutively expressed in the heart but are rapidly 

upregulated in response to cardiac stress and might function as an alarm system 

defending cardiomyocytes against low level of ischemic and other types of injuries 

[102, 103]. However, the possible molecular mechanisms dominating in vivo and 

progressing chronic inflammatory DCM are still under debate. 

Transforming growth factor β1 (TGF-β1), a polypeptide member of the 

transforming growth factor beta superfamily of cytokines, is an important factor for 
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stimulation of fibroblast proliferation and synthesis of extra-cellular matrix molecules 

[104]. Inhibition of TGF-β1 induced epithelial-mesenchymal transition simultaneously 

reduces collagen synthesis in fibroblasts [105]. Recent studies also indicate that TGF-

β1 is related to the dilated, ischemic and hypertrophic forms of cardiomyopathy 

through the activation of the TGF-β1-Smad pathway and stimulation of the collagen I 

gene promoter site [106]. Beside its involvement in collagen metabolism, TGF-β1 

signaling participates in cell differentiation and even apoptosis [107, 108].  

3.7. Involvement of hormones in regulation of DCM  

Adiponectin (APN) – a possible regulator of DCM development, is a protein 

hormone mainly produced by adipose tissue, though cardiomyocytes are also capable 

to produce APN by stimulating the APN receptors 1 and 2 [109]. APN mainly exhibits 

anti-apoptotic, anti-inflammatory and pro-angiogenic features regulating proper heart 

function [110-113]. On the other hand, APN can have pro-inflammatory, anti-

angiogenic and anti-proliferating effects as well [114-117]. However, some studies 

advocate that high plasma adiponectin levels were associated with lower risk of 

myocardial infarction and coronary artery diseases, whereas other studies demonstrate 

correlation of high plasma adiponectin level with an increased risk of mortality in 

chronic heart failure patients [112, 118, 119]. So far, little is known about the relation 

between adiponectin and viral myocardial infections. 

Brain natriuretic protein (BNP) is another hormone mainly produced by 

myocardium of the cardiac ventricular wall. The synthesis of BNP is up-regulated in 

the setting of volume expansion or pressure overload which leads to increased 

ventricular wall stretching often occurring in DCM [120]. The release of BNP results 

in improved myocardial relaxation and serves an important regulatory role in response 

to acute increase of ventricular volume by opposing the vasoconstriction, sodium 

retention and antidiuretic effects of the activated renin–angiotensin–aldosterone 

system [121]. BNP is widely used by clinicians as a diagnostic biomarker of severity 

of heart failure, left ventricular (LV) dysfunction as the circulating levels adversely 

increase in accordance with the degree of LV wall stretch [122, 123]. It also serves as 

an indicator of regional conditions and structural change in myocytes and also signals 

the risk of cardiovascular events and death [124]. BNP assessment is useful in 



28 

 

predicting the long-term risk of re-decompensation in non-ischemic DCM, even in low 

risk outpatients [125].  

Galectin-3 is a member of a large family of β-galactoside-binding lectins with the 

size of 30 kDa. It is expressed and secreted mainly by macrophages at the phagocytic 

cups and phagosomes during the process of phagocytosis [126]. It can be localized in 

the cytoplasm and nuclei of the cells and can act both extra- and intra-cellularly [127, 

128]. Galectin-3 interacts with various ligands located at the extracellular matrix, 

including laminin, collagen, synexin, and integrins [129, 130]. Extracellular galectin-3 

mediates cell migration and cell-cell interactions, whereas intracellular galectin-3 

regulates cell cycle and apoptosis [131]. Galectin-3 first came to attention in animal 

studies searching for potential mediators of decompensated heart failure. Galectin-3 is 

one of the most explored and promising heart failure biomarkers, a predictor of 

mortality, which appears to play an important role in the cardiac remodeling and is 

associated with development of myocardial fibrosis [132, 133].  

Heat shock protein-60 (HSP60) is an intracellular protein (80-85 % of which is 

primarily located inside the mitochondria, with the rest found in the cytosol) 

constitutively expressed in the majority of cells [134, 135]. Its expression is up-

regulated by a variety of stressors such as anoxia, oxidative stress, infection and 

inflammation [136]. HSP60 is known to have a protective role against stress-induced 

injury by maintaining cellular homeostasis and 3-dimensional structure of proteins 

[134, 135, 137]. In patients with heart failure, HSP60 has been reported to translocate 

to the myocardial cell surface before being released into the plasma [138, 139], also 

the increased levels of HSP60 in plasma membrane and serum have been 

paradoxically associated with an increase in myocardial apoptosis (caspase activation 

and DNA fragmentation) [140, 141]. Various studies have shown that serum HSP60 

levels have been linked with endothelial dysfunction and higher risk of coronary heart 

disease [142, 143], pro-inflammatory status (increase TNF-α) [144], suggesting an 

important role in the activation of vascular cells and also the immune system. Serum 

HSP60 level is related to the severity of the disease and associated with a high risk of 

cardiac events in patients with advanced chronic heart failure [145].  

Circulating troponin T is a very sensitive and specific biomarker of cardiomyocyte 

injury, and is used as the diagnostic and prognostic marker both in acute coronary 
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syndromes and heart failure (increased troponin T levels have been correlated with the 

severity and adverse outcomes) [146-149]. With the use of the standard assay for 

troponin T the elevations were detectable in only a small fraction of patients with heart 

failure, because the lower detection limit was only 0.01 ng/mL. With the recent 

development of the assay for a high-sensitivity troponin T (hsTnT) it became possible 

to measure concentrations about 10-fold lower than the lower detection limit of the 

previous standard assay [150]. In patients with heart failure, hs-TnT correlates with 

cardiac dysfunction (evaluated by echocardiography) and natriuretic peptides. The 

elevation of hs-TnT levels in heart failure may represent cardiac dysfunction due to 

minor and ongoing myocardial injury [151]. 

All previously mentioned data point out that the interaction of signaling pathways 

and molecules in regulation of viral and inflammatory DCM is very complicated. The 

understanding of these processes relies on complex cell-type, physiological and 

experimental condition-dependent processes, and, therefore not surprisingly, the 

investigation of molecular mechanisms of the heart damage and the finding of 

biomarkers identifying an early start of heart infection is of major importance.  

3.8. Myocardial cell death mechanisms in DCM 

The different types of cell death, such as apoptosis, necrosis, oncosis, autophagy 

and proteasome degradation are contributing to the loss of cardiac myocytes 

depending on the intensity and origin of heart damage [16-18]. Adult cardiomyocytes 

are terminally differentiated, so cell loss is detrimental to cardiac function. 

Additionally, when cardiomyocytes are lost, deposition of collagen occurs. Ultimately, 

this decreases heart compliance, increases cardiomyocyte wall stress, and impairs 

ventricular relaxation. The debilitating loss of cardiomyocytes in DCM and heart 

failure is considered to occur mainly from apoptosis rather than from necrosis [152-

154].  

Apoptosis is considered as a vital component of various processes including 

normal cell turnover, proper development and functioning of the immune system, 

hormone-dependent atrophy, embryonic development and chemical-induced cell death 

[155]. The mechanisms of apoptosis are highly complex and sophisticated, involving 

an energy-dependent cascade of molecular events (Fig. 3). Some cells apoptose 
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through extrinsic pathways that involve death receptors such as fatty acid synthetase 

(Fas) or tumor necrosis factor (TNF) receptors; others have a default death pathway 

(known as the intrinsic or mitochondrial) that must be blocked by a survival factor 

such as a hormone or a growth factor (the withdrawal from serum is a classic way to 

initiate this pathway) [155] (Fig. 3).  

 

 

Fig. 3. Mechanisms of apoptosis. A schematic view of the three main apoptotic pathways: the 

intrinsic pathway, the extrinsic pathway and the granzyme pathway. See text for explanation. 

Adapted from [155]. 

 

However, it is also known, that the two pathways are linked and that molecules in 

one pathway can influence the other [156]. In the end, apoptosis is an energy-

dependent process that involves the activation of a group of cystine proteases called 

"caspases" and involves a complex cascade of events that link the initiating stimuli to 

the death of the cell [155]. The two main regulatory mechanisms used by extracellular 

signals are either by targeting mitochondrial functionality (intrinsic pathway) or by 

directly transducing the signal via adaptor proteins to the apoptotic mechanisms 

(extrinsic pathway). There is an additional pathway mediating T-cell-induced 

cytotoxixity and perforin-granzyme (a serine protease) A or B-dependent killing of the 

cell (Fig. 3). 
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The mitochondrial pathway involves an increased mitochondrial permeability 

resulting in release in the cytosol of cytochrome c and small mitochondria-derived 

activators of caspases (SMACS) that bind to and deactivate inhibitors of apoptosis 

proteins (IAPs), repressing the caspases. Mitochondrial permeability is regulated 

positively or negatively by 25 members of the Bcl-2 family of proteins [157], under 

the control of the tumor suppressor protein p53. Cytochrome c and ATP released from 

the mitochondrial intermembrane space form the apoptosome consisting of ATP, 

apoptosis protease-activating factor (APAF), cytochrome c and caspase-9, which 

becomes activated by autoproteolytic cleavage and activates the execution caspase-3.-

6 and -7, which leads to the collapse of cellular infrastructure [158]. The extrinsic 

pathway involves binding of trimeric ligands to their receptors which cluster (FasL to 

the FasR or TNFa to the TNR1). Binding of FasL to FasR recruits the adapter protein 

Fas-associated death domain (FADD), while binding of TNFα to the TNR1 recruits the 

adapter protein TNF receptor-associated death domain (TRADD). TRADD then 

recruits FADD and receptor-interacting protein (RIP). FADD forms a death-inducing 

signalling complex (DISC) with procaspase-8 resulting in its autocatalytic activation 

[155] and triggering of the "execution phase". 

The extrinsic, intrinsic and granzyme B pathways converge on the same terminal 

"execution" pathway. This pathway is initiated by the cleavage of caspase-3 by 

caspases -8, -9 or -10 and results in DNA fragmentation, degradation of cytoskeletal 

and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, 

expression of ligands for phagocytic cell receptors and finally uptake by phagocytic 

cells. The granzyme A pathway activates a parallel, caspase-independent cell death 

pathway via single stranded DNA damage [159]. 

Studies from human heart biopsies reveal that greater cell loss is observed in the 

early stages of cardiomyopathy, suggesting that anti-apoptotic pathways are up-

regulated after cell loss has been initiated [160]. It follows that tight regulation of 

apoptosis is required for proper cardiac adaptation and that disruption of these 

pathways can have irreversible consequences in the heart. On the other hand, 

inflammation-initiated apoptosis plays an extremely important and positive role in the 

clearing of inflammatory infiltrates when they have completed their function [161]. 

Other authors marked the presence of apoptosis in inflammatory myocarditis or DCM 
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to be a problematic issue [162, 163]. Additionally to apoptosis, intramyocardial 

inflammation activates members of the matrix metalloproteinase (MMP) family, zinc-

dependent endopeptidases, that impairs cell membrane permeability and cleaves 

extracellular matrix (ECM) resulting in increased levels of extra-myocardial apoptotic 

molecules, chemokines and cytokines [164-166].  

3.9. The role of extracellular matrix in functioning of myocardium 

The heart relies on a complex network of cells to maintain appropriate function. 

The contracting cells in the heart (cardiomyocytes) exist in a three-dimensional 

network of endothelial cells, vascular smooth muscle, and an abundance of fibroblasts 

as well as transient populations of immune cells. The contraction of individual 

cardiomyocytes is coordinated electrochemically by gap junctions. The connections of 

cardiomyocytes to the ECM transduce the force and coordinate the overall contraction 

of the heart. Intracellularly, repeating units of actin and myosin form the backbone of 

sarcomeric structure, the basic functional unit of the cardiomyocyte. The sarcomere 

itself consists of around 20 proteins; however, more than 20 other proteins form 

connections between the myocytes and the ECM and regulate muscle contraction. 

Given the complexity of the coordinated efforts of the many proteins that exist in 

multimeric complexes, dysfunction occurs when these interactions are disrupted [19]. 

Although the heart may functionally tolerate a variety of pathological insults, adaptive 

responses that aim to maintain function eventually fail, resulting in a wide range of 

functional deficits or cardiomyopathy.  

Cardiac fibrosis is associated with disruption of the normal myocardial structure by 

excessive deposition of extracellular matrix. The term fibrosis encompasses several 

processes including fibroblast proliferation, collagen synthesis and degradation as well 

as conversion of fibroblasts into a contractile “myofibroblast” phenotype. The 

development of interstitial and perivascular fibrosis is a hallmark of pathology in the 

heart. Focal fibrosis composed primarily of collagen types I and III, occurs in the early 

stages of cardiomyopathy, but over time fibrosis increase and directly compromises 

the function of cardiomyocytes. The presence of collagen-rich regions in the 

myocardium cause disruption of excitation–contraction coupling between 

cardiomyocyte and increased stiffness of the myocardium, which leads to decreased 
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contractility in the heart [15]. Fibrosis is primarily produced by resident fibroblasts in 

the heart however, there is evidence for collagen production also by cardiomyocytes 

[167].  

The key player in regulating the normal myocardial function and in adverse 

myocardium remodeling is a cardiac fibroblast (Fig. 4). 

 

 

Fig. 4. Pluripotent cardiac fibroblasts impact different aspects of cardiac structure and 

function. Cardiac fibroblasts can produce a number of active peptides (for example, cytokines, 

growth factors, peptides), extracellular matrix (ECM) proteins (collagens, elastin, fibronectin, 

and so forth), and ECM-regulatory proteins, matrix metalloproteinases (MMPs) and tissue 

inhibitors of matrix metalloproteinases (TIMPs). As such, cardiac fibroblasts can impact 

molecular and cellular events that collectively determine cardiac structure and function. 

Adapted from [168]. 

 

This most prevalent cell in the heart can transform in to myofibroblast, proliferate, 

secrete certain cytokines and growth factors and thus can alter extracellular matrix 

turnover through changes in matrix protein synthesis and degradation. While these 

changes in fibroblast function are an important adaptive response to altered 

environment that can aid myocardial recovery, they can also become maladaptive 

leading to pathological remodeling, fibrosis and heart failure. The cardiac extracellular 

matrix is composed of a collagen network that consists mainly of collagen type I (Col 

I) (85 %) and type III (Col III) (11 %) [169]. It provides architectural support for the 

muscle cells and also plays an important role in myocardial function and cardiac 

remodeling [170-172]. Collagen is synthesized by cardiac fibroblasts and is composed 
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of a triple helix, which generally consists of two identical chains (α1) and an additional 

chain that differs slightly in its chemical composition (α2) (Fig. 5).  

Several studies have shown, that alteration of the collagen network, such as a 

differential increase in Col I or Col III, may play an important role in myocardial 

dysfunction in the failing heart [173, 174]. It was also noted, that in DCM collagen 

content was characterized primarily by an increase in the percentage of Col I [175, 

176]. Col I represents a stiff fibrillar protein which provides tensile strength, and thus 

the increase in Col I protein levels may impose increasing myocardial stiffness, 

compromising diastolic and systolic ventricular function in DCM [177]. Col III forms 

an elastic network which stores kinetic energy as elastic recoil [178].  

 

 

Fig. 5. Structure of collagen molecule. Pro-collagen is comprised of two alpha-1 chains and one 

alpha-2 chain intertwined into a triple helix. Pro-peptide domains at the carboxy-terminals and 

amino-terminals are cleaved, resulting in formation of mature collagen. When collagen is 

degraded, during physiological turnover or pathological adverse remodeling, telopeptides (from 

the amino-terminals or carboxy-terminals) are cleaved and released into the plasma. Adapted 

from [168]. 

 

There are many markers that can be used to characterize collagen synthesis or 

destruction during cardiac failure. For example, N-terminal (PINP), C-terminal (PICP) 

propeptides are markers of collagen I synthesis and positively correlate with proper 
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functioning of cardiac collagen [179, 180], whereas the C-terminal telopeptide (CITP) 

is a marker of collagen I degradation and is usually released during collagen cleavage 

by MMP1, MMP2, MMP9 and other endopeptidases in chronic heart lesions [181]. 

Propeptides of collagen III (PIIICP and PIIINP) are not completely cleaved during the 

conversion of procollagen III to collagen III and remain in the final fiber [182]. The 

composition of extracellular matrix, however, basically depends on a proper balance 

between collagen deposition and degradation and its dysfunction has been shown to 

correlate with myocardial fibrosis and development of heart failure [183].  

The net effect of cardiac fibrosis is exaggerated by the increased tissue stiffness, 

impaired contraction due to myocyte slippage (separation), disrupted electrotonic 

connectivity and tissue hypoxia [184]. It is well known, that fibrosis and certain 

histological changes in the myocardium impact heart function and even survival [185, 

186]. For these reasons, cardiac fibrosis and ECM biology remains an important target 

of therapy. However, the mechanistic basis of fibrotic cardiac remodeling in response 

to injurious stimuli that do not result in cardiomyocyte death still remains poorly 

understood.  

3.10. Regulation of myocardial fibrogenesis by matrix 

metalloproteinases 

Maladaptive myocardial matrix remodeling and fibrosis are known to facilitate the 

structural and functional changes and appear to play a pivotal role in the development 

of ventricular dilatation and heart failure [187-189]. Matrix metalloproteinases, zinc-

dependent endopeptidases, which are readily present in the myocardium and are 

capable of degrading all the matrix components in the heart, are the driving force 

behind myocardial matrix degradation during remodeling.  

The MMP family consists of more than 20 enzymes, involved in the regulation of 

the extracellular matrix during physiological (development and organogenesis and 

pathological processes (inflammation and tissue injury) [190]. The MMPs can be 

divided into five classes according to their substrate specificity: 1. Collagenases 

(MMP-1, MMP-8 and MMP-13) cleave fibrillar collagens types I, II and III into 

smaller polypeptides, the gelatin; 2. Gelatinases (MMP-2 and MMP-9) further degrade 

gelatin, as well as collagen IV in the basement membrane; 3. Stromelysins (MMP-3 



36 

 

and MMP-10) degrade non-collagen matrix proteins, including proteoglycans, 

fibronectin, laminin and some other types of collagen; 4. Matrilysins (MMP-7, MMP-

26 and MMP-11) apart from matrix components can also digest cell surface molecules; 

5. Fifth group contains the new MMPs where substrate specificity is not yet clarified 

[191]. The expression of MMPs can be regulated at transcriptional level by multiple 

stimuli: inflammatory cytokines, growth factors, mechanical movement and 

phagocytosis. At the post-transcriptional level, secreted MMPs are synthesized and 

excreted as pro-enzymes (zymogens), which remain bound to matrix components until 

cleaved in order to be activated [192]. The complex interaction of MMP is presented 

in Fig. 6. 

 

 

Fig. 6. Mutual activation of MMP. Adapted from [193]. 

 

The activity of MMPs is counterbalanced by their physiological tissue inhibitors of 

MMPs (TIMPs), which bind to their catalytic domain in a 1:1 relationship and thus 

block their action [191]. The interplay between MMPs and TIMPs therefore 

determines the progression of both ventricular dilatation and fibrosis in the diseased 

hearts. The increased levels of MMPs and decreased levels of TIMPs within the 

myocardium resulting ECM degradation have been shown in idiopathic DCM [194, 

195]. There have been a large number of studies in various cardiac disease states that 

have showed abnormalities in MMPs and TIMPs expression within the myocardium. 
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These studies have identified that changes can occur in all known classes of MMPs, 

within the myocardium, leading to severe LV dysfunction [188, 189, 195-197]. The 

abnormalities in the expression and activity of myocardial MMPs have also been 

identified, as well as an association with the progression of LV remodeling. One of the 

first reports of abnormalities in MMP profiles in DCM was done by Gunja-Smith et al. 

[194], whereby increased MMP zymographic activity was associated with 

abnormalities in collagen cross-linking and overall matrix structure. Furthermore, 

increased plasma levels of collagen telopeptides indicating an increased matrix 

turnover have been reported in patients with DCM [198]. Finally, a number of past 

studies have showed the increased levels of certain MMPs such as the gelatinases, the 

matrilysins and the membrane-type MMPs in DCM [195, 199]. While associative, 

these past clinical studies have suggested that changes in myocardial MMP profiles 

can potentially accelerate the LV remodeling process, particularly LV dilation which is 

the architectural milestone in DCM. However, it must be recognized that induction of 

myocardial MMPs is not uniform, and that specific MMP sub-types specific to the 

underlying aetiology can be induced in LV remodeling process. For example, different 

profiles of MMPs exist in viral myocarditis as opposed to idiopathic DCM [195, 199]. 

3.11. Automated evaluation of cardiac fibrosis 

Evaluation of the extent of fibrosis, including semi-automated and semi-

quantitative methods has been introduced earlier, however, detailed literature on 

methodological and technical aspects of quantification of fibrosis is scarce [200]. Most 

previous studies explored liver and kidney fibrosis [201-205], but up to now only a 

few have attempted to automatically quantify cardiac fibrosis [206-212]. Another 

limitation of recent publications is that the evaluations of cardiac fibrosis mostly have 

been done on animal models (mice, rats, dogs, pigs) and only few studies are on 

human hearts [213, 214]. Moreover, the majority of such studies lack data validation to 

an appropriate criterion standard and the reference values are obtained by semi-

quantitative visual evaluations rather than by more direct quantitative estimates.  

Significant drift towards automation and quantification in pathology has occurred 

during the last decade [215-217]. Digital imaging in pathology provides users with 

similar functionalities of a microscope, but with numerous additional benefits and 
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consequently, replaces subjective visual evaluation by presumably more objective and 

reproducible digital analyses [218-221]. Several applications of image analysis have 

recently received clearance from US Food and Drug Administration, indicating that 

automated quantification may provide more reliable and reproducible results than 

visual evaluation [215, 222]. Numerous recent studies show that advanced computer 

image analyses can be successfully introduced in clinical practice and research [223-

225]. Meanwhile, the interpretation of histomorphometric parameters in clinical 

routine and research is still primarily based on human visual scoring, which is hugely 

subjective [220, 221]. Many factors affect human vision including: contrast, borders 

and color – all these impacts may be easily illustrated using a number of optical 

illusions. Semi-quantitative scoring not only involves a substantial workload on a 

pathologist, but also has several limitations inherent to the traditional pathology, such 

as significant intra- and inter-observer variation along with low efficiency [226].  

Segmentation of stained tissue images is a complex problem, because of a large 

variability of the tissue samples (shape, size, color and architecture) [227]. Growing 

numbers of virtual slides that must be processed, transmitted and analyzed create a 

clear need of additional image correction and standardization algorithms [228]. 

Automatic selection of slides, application of appropriate thresholds and also a reliable 

selection of the slide areas containing the most significant information (regions of 

interest (ROI)) to deriving the diagnosis is becoming of major importance in virtual 

pathology [229]. Only a complete set of these computerized algorithms can eventually 

replace the pathologist’s unique work [217, 230]. 

The most common practice of implementing a new digital algorithm is to compare 

the results obtained with the pathologist’s visual evaluation, that is, to validate it 

against the best clinically accepted method. This perception, however, is no longer 

valid: why should one calibrate a potentially more accurate and precise tool against a 

variable and semi-quantitative evaluation method? To estimate the accuracy of a new 

method, a criterion standard has to be obtained from an independent source measured 

in the most possible objective way. In this regard, stereology grid count, rather than 

the pathologist’s visual impression should be used [231-233]. Therefore, we performed 

this study on evaluating the accuracy of digital image analysis tools and the 

pathologist’s visual scoring for the measurement of fibrosis extent (ie: area fraction) in 
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human myocardial biopsies, based on reference data obtained by point counting 

performed on the same images. 
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4. MATERIALS AND METHODS 

4.1.  Secreted and intramyocardial biomarkers in DCM 

4.1.1. Inclusion and Exclusion Criteria 

Study subjects were 32 consecutive patients (25 males, 7 females, mean age 

43.14 ± 11.86 years), admitted to a tertiary referral Centre with clinically suspected 

DCM and post-myocarditis cardiomyopathy during the time period of July, 2010 to 

February, 2013. 

Inclusion criteria: 1) Newly-onset heart failure (HF) of two weeks’ duration 

associated with a normal-sized or dilated left ventricle (LV) and hemodynamic 

compromise; 2) Newly-onset HF of two weeks’ to three months’ duration associated 

with a dilated LV and new ventricular arrhythmias, second- or third-degree heart 

block, or failure to respond to usual care within one to two weeks; 3) 

Echocardiographic or angiographic evidence of global or regional LV dysfunction 

and/or LV dilation and/or LV reduced systolic LV ejection fraction less than 45 %; 4) 

Angiographic exclusion of significant coronary artery disease, defined as evidence of a 

proximal stenosis of one or more main coronary arteries of 50 % or greater, in one or 

more main coronary arteries. 

Exclusion criteria: 1) Known causes of heart failure, such as hypertension, 

significant coronary artery disease, valvular heart diseases, although not relative mitral 

regurgitation, endocrine disease, significant renal disease or drug or alcohol abuse; 2) 

Acute myocarditis and history of myocardial infarction; 3) Patients were excluded if 

they did not give written informed consent to EMB. 

All patients above the age of 16 years (the oldest patient was 67 years old) who 

met the previously mentioned criteria were included in the study. There was no upper 

age limit for inclusion.  

All patients were subjected to coronary angiography, right heart haemodynamic 

evaluation and endomyocardial biopsies. The same basic medical treatment scheme 

was applied to all patients.  
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4.1.2. Basic medical examinations  

All patients were interviewed about their medical history and underwent a 

careful physical examination, as well as selected laboratory studies, including test of 

thyroid function, serum electrolytes (sodium, potassium), high sensitivity C-reactive 

protein (hsCRP), glucose,  hemoglobin A1c (HbA1c), cholesterol, triglyceride, high-

density lipoprotein (HDL), low-density lipoprotein (LDL), cardiac enzymes: creatine 

kinase (CK), creatine kinase MB (CK-MB), aspartate aminotransferase (AST), high-

sensitivity troponin T (hsTnT), urea, creatinine, uric acid, coagulation tests: 

prothrombin time (PT), activated partial thromboplastin time (aPTT), blood count 

(hemoglobin, haematocrit, red blood cells (RBC), white blood cells (WBC) and 

platelet (PT) count. 

On admission, each patient underwent anthropometrical and blood pressure 

measurement, as well as electrocardiography, echocardiography, MRI, Holter 

monitoring and spiroergometry. All laboratory measurements were done according to 

the routine clinical protocols.  

4.1.3. Cardiac catheterization and endomyocardial biopsy 

Before EMB, each patient underwent coronary angiography to exclude 

coronary artery disease as well as right heart catheterization to assess haemodynamic 

parameters: mean pulmonary artery (PA) pressure, pulmonary capillary wedge 

pressure (PCWP), pulmonary vascular resistance (PVR) and cardiac index (CI).  

Right ventricular EMB was obtained using a flexible bioptome via the right 

femoral vein [234]. Biopsies were taken from the right inter-ventricular septum at 

three different levels (upper, medial and lower) from patients with confirmed absence 

of ischemia and cardiovascular pathology (stenosis and occlusion). Collected heart 

tissue biopsies were immediately inserted into clean cryovials, carefully labeled and 

registered. At least three EMBs from different septum levels were subjected to 

conventional histological and immunohistochemical evaluation, three EMBs to DNA 

and RNA extraction for the amplification of viral genomes and two EMBs were stored 

at -70°C in a biobank as retained biosamples and further processed for appropriate 

studies. Biopsy specimens were investigated within 24 hours. 

Before measurements tissue samples were lysed in 100 µl of RIPA lysis buffer 

(Thermo Scientific Inc., USA), supplemented with protease and phosphatase mini 
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inhibitor tablets, 1 mM PMSF, 1 mM Na2VO4, 25 mM NaF according to the 

manufacturer’s suggestion (Thermo Scientific Inc., USA). Biopsy samples were 

sonicated at 10 mV for 2 x 5 s on ice using a Bandelin Sonopuls sonicator, kept 30 min 

on ice, centrifuged at 12,000g for 15 min, aliquated and stored at -70°C. 

4.1.4. Collection and preparation of blood samples 

Three serum-separating (SST II) 8.5ml tubes (BD Vacutainer®) were collected 

for serum sampling from each patient at the same time as the EMB. Collected blood 

tubes were kept at room temperature for 30-45 min (no longer than 60 min) to allow 

clotting. Samples were centrifuged for 15 min at the manufacturer's recommended 

speed (1,000-2,000 RCF). The upper layer was carefully aspirated, checked for 

turbidity, aliquated into cryovials, labeled and stored at -70°C.  

Before measurement, all serum samples were thawed on ice, centrifuged at 

12,000 RCF for 5 min and, if necessary, appropriately diluted.  

4.1.5. Detection of viral genome on endomyocardial biopsy 

Genomic DNA and total RNA were extracted from endomyocardial biopsies 

using ZR-Duet™ DNA/RNA Miniprep kit (Zymo Research, Irvine, CA, USA). RNA 

(1 µg) was reversely transcribed in 20 µl reaction volumes using random hexamers 

and First Strand cDNA Synthesis Kit (Thermo Fisher, Vilnius, Lithuania) according to 

the vendor’s recommendations and diluted up to 100 µl with deionized water after 

reaction. Nested PCR primers for the detection of adenovirus [235], Herpes simplex 

viruses 1 and 2, varicella zoster virus, Epstein-Barr virus, cytomegalovirus, parvovirus 

B19, hepatitis C virus, enterovirus, rubella virus  [236], human herpes virus 6 (HHV-

6A and HHV-6B, GenBank accession no. NC001664.2 and NC000898.1, 

respectively), Kirsten rat sarcoma viral oncogene homolog (KRAS, GenBank 

accession no. NM033360) and ubiquitin C (UBC, GenBank accession no. NM021009) 

genes (Table 2) were synthesized by Metabion (Martinsried, Germany). Forward 

primers of the second round PCR were labeled with 6-carboxyfluorescein (FAM) at 

the 5′ end.  
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Table 2 Oligonucleotides used in nested PCRs. 

Target Primer Sequence Size (bp) 

HHV-6 HHV6-N1Fw ACCCGAGAGATGATTTTGCGTG 128 

 HHV6-N1Rev GCAGAAGACAGCAGCGAGATAG 

 HHV6-N2Fw CATAGCAACCTTTTCTAGCTTTGAC 

 HHV6-N2Rev TCTATAACATAAATGACCCCTGGGA 

UBC UBC-N1Fw TTCTTTCCAGAGAGCCGAAC 150 

 UBC-N1Rev CCCATCTTCCAGCTGTTTTC 

 UBC-N2Fw TGGGTCGCAGTTCTTGTTTG 

 UBC-N1Rev CCTTCCTTATCTTGGATCTTTGCC 

KRAS KRAS-N1Fw CTTTGGAGCAGGAACAATGTCT 160 

 KRAS-N2Fw AATCCAGACTGTGTTTCTCCCT 

 KRAS-N1Rev / N2Rev TACACAAAGAAAGCCCTCCCC 

 

All PCRs were run on a TProfessional Standard thermocycler (Biometra, 

Göttingen, Germany) as described [237]. KRAS and UBC detection was used to 

validate extraction of nucleic acids and was performed in parallel according to the 

conditions for DNA and RNR viruses, respectively. First round PCRs for DNA and 

RNA viruses were performed in a 50 µl reaction volume containing Maxima Probe 

qPCR Master Mix (Fermentas), 0.2 µM final concentration of each first-round primer, 

and 10 µl extracted DNA or cDNA solution. Uracil-DNA glycosylase (Fermentas) was 

added into each reaction mix (0.4 units) to prevent PCR cross-contamination. 

Amplification conditions for DNA viruses included uracil-DNA glycosylase treatment 

at 50 °C for 2 min; initial denaturation step at 95 °C for 10 min; 35 cycles of 

denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 60 s; 

the final extension step was 72 °C for 7 min. Amplification conditions for RNA 

viruses included uracil-DNA glycosylase treatment at 50 °C for 2 min; initial 

denaturation step at 95 °C for 10 min; 35 cycles of denaturation at 95 °C for 45 s, 

annealing at 57 °C for 45 s, extension at 72 °C for 60 s; the final extension step was 

72 °C for 7 min. Each primer pair was tested in a reaction setup without DNA sample 

(negative template control). Second round PCRs were performed in a 50 µl reaction 

volume containing Maxima Hot Start PCR Master Mix (Fermentas), 0.2 µM final 

concentration of each second-round primer, and 2 µl of first-round product. 

Amplification conditions for DNA viruses were the same as for the first round except 

excluded uracil-DNA glycosylase treatment step. Amplification conditions for RNA 

viruses included initial denaturation step at 95 °C for 10 min; 35 cycles of denaturation 
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at 95 °C for 20 s, annealing at 57 °C for 20 s, extension at 72 °C for 20 s; the final 

extension step was 72 °C for 7 min. Ubiquitin C PCR detection was used to validate 

extraction and was performed in parallel according the conditions for DNA viruses.  

Final PCR products were 10-fold diluted and analyzed by capillary 

electrophoresis on a Genetic Analyzer 3130xl  using GeneScan™ 600 LIZ™ Size 

Standard  and Gene Mapper Software v4.1 (Applied Biosystems, Foster City, CA, 

USA) for sizing PCR fragments. In the case of positive result, the genomic DNA or 

RNR specimens extracted from whole blood samples were tested to exclude biopsy 

contamination with viruses circulating in the blood. 

4.1.6. ELISA assays 

Apoptotic and collagen synthesis/degradation protein levels in endomyocardial 

biopsies and serum samples were measured by specific ELISA assays. The following 

molecules were assessed: Bcl-2, Caspase-9, Caspase-8 (Novus Biologicals Europe, 

Cambridge, UK); Bax (Elabscience Biotechnology Co., Ltd, China); Caspase-3, TGF 

β1, matrix metalloproteinase-9 (MMP9), tissue inhibitor of metalloproteinase-1 

(TIMP1), APO1/Fas/CD95, Fas ligand (FasL) (Invitrogen, Paisley, UK); Procollagen I 

C-Terminal Propeptide, PICP (Bio-Medical Assay Co., Ltd., China); Cross-linked 

Carboxy-terminal telopeptide of type I collagen, ICTP (Shanghai BlueGene Biotech 

Co., Ltd, China); Heat Shock Protein-60 HSP60 (AssayPro, Saint Charles, Missouri, 

USA). 

Protein in serum and biopsy samples was measured using a modified Lowry 

Protein Assay kit according to the manufacturer’s recommendations (Thermo 

scientific Inc., USA). Absorbance was measured with a spectrophotometer (Asys 

UVM 340 Microplate Reader UK - Biochrom Ltd.) set at 750 nm. A bovine serum 

albumin (BSA) standard curve was made to determine the protein concentration of 

each unknown sample. Protein concentration was expresses as µg/ml. Final 

concentration of searching molecules was expressed as ng/mg of protein. 

4.1.7. Additional biochemical measurements 

The pro-inflammatory cytokine TNFa, IL-6 and IL-1β in serum samples were 

assayed by solid-phase, chemoluminescent immunometric assays using 

IMMULITE/Immulite 1000 systems (Immulite, Siemens) according to manufactures 
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instructions: TNFa (Catalog No: LKNFZ (50 test), LKNF1 (100 tests); IL-6 (Catalog 

No: LK6PZ (50tests), LK6P1 (100 tests); IL-1β (Catalog No: LKL1Z (50 tests), 

LKL11 (100 tests).  

Adiponectin was measured by Millipore Adiponektin assay according 

manufacturers’ recommendations (Milipore, USA).  

The myocardial necrosis marker, a high-sensitivity troponin T (hsTnT) was 

measured in serum using an Elecsys 2010 analyzer (Roche Diagnostics, Indianapolis, 

Indiana) and expressed as µg/ml. 

Brain natriuretic protein (BNP) was measured by a two-step immunoassay in 

human plasma using CMIA technology and protocols referred as Chemiflex. Briefly, 

sample and anti-BNP coated paramagnetic particles were combined. After incubation, 

samples were washed and combined with an anti-BNP acridinium-labeled 

conjugate. Samples were incubated, washed again and the chemoluminescence 

initiating mixture was added. Resulting chemoluminescent reaction was measured as 

relative light units (RLU) by a chemoluminometer.  

Galectin-3 in serum samples was estimated using an in vitro diagnostic device 

of enzyme linked immunosorbent assay (ELISA) on a micro plate according to the 

manufacturers' instructions (BG Medicine, Inc.). 

4.1.8. Histology and immunohistochemistry of endomyocardial 

biopsies 

EMB samples for histological analysis were fixed in 10 % buffered formalin 

and subsequently paraffin-embedded in a tissue processor. 3 μm-thick sections were 

used through the study.  The EBM sections were stained with Haematoxylin and Eosin 

(H&E) according to the standard protocol for the routine histological evaluation. The 

experienced pathologist evaluated: endocardium (thickness, subendocardial fat, 

fibrosis and inflammation); myocardium (muscle fibre number, size and damage); 

interstitium (fibrosis, fat, edema and inflammation) and intramural vessels (size, signs 

of inflammation, damage and luminal stenosis). To estimate the extent of fibrosis the 

EMB specimens were stained with Masson's trichrome connective tissue stain 

according to a standard protocol. Keratin and muscle fibers stained red, whereas 

collagen stained blue.  
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Immunohistochemical staining was performed on fixed, paraffin-embedded 

material using antibodies: anti-CD3 (DAKO Hamburg, Germany), anti-CD45Ro 

(DAKO Hamburg, Germany) and anti-CD68 (DAKO Hamburg, Germany), anti-α 

smooth muscle actin (α-SMA) (Biocompare, USA); anti-MMP1 (Spring Bioscience 

Corp., USA); anti-MMP2 (Leica Biosystems Newcastle Ltd, UK); anti-MMP9 (Leica 

Biosystems Newcastle Ltd, UK), anti-MMP13 (Novus Biologicals Europe, Cambridge, 

UK), anti-HLA-DR (DAKO Hamburg, Germany), anti-PICP (EMD Millipore, 

Temecula, USA). 

4.1.9. Evaluation of histochemical and immunohistochemical 

stainings in endomyocardial biopsies 

Inflammatory infiltrates in the biopsies were immunohistochemicaly classified 

on tissue sections, according to expression of CD3
+
 (T lymphocytes), CD45Ro

+
 

(active-memory T lymphocytes) and CD68
+
 (macrophages). The number of positively 

stained cells in each biopsy sample was scored by a highly experienced pathologist 

and expressed as number of positive cells/mm
2
.  According to the World Health 

Organization / International Society and Federation of Cardiology Task Force on the 

Definition and Classification of Cardiomyopathies, EMB were considered to be 

inflamed after immunohistochemical detection of focal or diffuse mononuclear 

infiltrates with >14 leukocytes per 1 mm
2
 (CD3

+
 T lymphocytes and/or CD68

+
 

macrophages) in the myocardium [13, 50, 51]. 

Additionally myocardial necrosis was estimated by routine histochemical 

staining of fixed biopsy samples with Haematoxylin and Eosin (H&E). Normal 

myofibres had peripheral nuclei, intact sarcolema and non-fragmented nuclei. 

Pyknosis of muscle fibers nuclei, edema, and beginning of leuco-diapedesis from the 

capillaries suggested that these myocardial cells reached the stage of necrosis. A 

pathologist scored the number of necrotic myofibres on at least three independent 

tissue sections. 

Digital images from the experimental glass slides were obtained using 

ScanScope Digital Slide Scanner (Aperio, Vista, CA) at x20 magnification and 

archived on a devoted Spectrum Server 11.1.0.751 (Aperio). Quality control of the 

scanned images and all further analysis were performed using ImageScope 

V11.1.2.760 (Aperio) and WebScope V11.1.0.756 (Aperio).  
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Genie algorithm was used to measure the extent of fibrosis, to calculate 

immunostained cells and to evaluate the area of immunohistochemically stained 

elements in the myocardium. Genie (GENetic Imagery Exploration [238]) is a pattern 

recognition algorithm that distinguishes spatial and morphological features based on 

structures (classes) provided by the user. The algorithm was run for the whole slide, 

ignoring the number of overlapped tissue sections on it – making the process fully 

automated. Specific Genie classifiers were developed for this study: 

1. Myocardial fibrosis identification was made by using basic tissue recognition 

Genie classifier v1 algorithm. Total cardiac fibrosis (including interstitial and 

perivascular) was assessed. For better identification fibrosis, we used only 

spatial recognition, disabling the detection of morphological features. For this 

purpose, the Genie system was trained to distinguish the myocardium, fibrous 

tissue (fibrosis) and glass (Fig. 7). Total cardiac fibrosis percentage was 

adjusted to a total tissue area in the image analyzed, ignoring the glass. 

A B 

  
Fig. 7 Fibrosis mark-up on digitized slide at x10 magnification. (A) Masson trichrome original 

staining, (B) Genie algorithm. 

 

2. For counting activated immune cells (HLA-DR) and cardiac fibroblasts (α-

SMA) in myocardium tissue Genie Nuclear v9.0 algorithm was used. This 

algorithm distinguishes and counts immunostained positive and negative cells 

(Fig. 8).  Depending on parameters it can mark different size and shape cells. 

Thus, in order to get accurate analysis, for different immunocell types, different 

Nuclear v9.0 parameters were set. After analysis the results were shown as total 

amount of immunopositive cells in the tissue area measured and expressed as 

cells/mm
2
.  
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A B 

  
Fig. 8 Immunopositive cell mark-up on digitized slide at x20 magnification. (A) α-SMA staining, 

(B) Genie algorithm. 

 

3. For measuring immunostained proteins (MMP1, MMP2, MMP9, MMP13 and 

PICP) in myocardial biopsies Genie pixel counting Algorithm was used. Firstly 

on digital slide the region of interest (myocardial biopsy) was marked and after 

that the algorithm was ran in this area. The results were shown as total amount 

of weak/ moderate/ strong positive and negative pixels (Fig. 9). For each 

protein a sum of weak, moderate and strong positive pixels was calculated as 

“positive”. After that the percentage of positive pixels were counted manually 

and adjusted to a total tissue area. 

A B 

  
Fig. 9 Immunostained protein mark-up on digitized slide at x20 magnification. (A) MMP2 

staining, (B) Genie algorithm. 
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4.2. Quantification of myocardial fibrosis by digital image analysis and 

interactive stereology 

4.2.1. Experimental model 

The study was conducted on endomyocardial biopsy (EMB) material from 38 

patients (29 males, 9 females, mean age 42.3 ± 12.2 years) diagnosed with 

inflammatory dilated cardiomyopathy. All EMB specimens were collected between 

July, 2010 and February, 2013. Before EMB, each patient underwent coronary 

angiography to exclude coronary artery disease. Right ventricular EMB was obtained 

using a flexible bioptome via the right femoral vein [22]. At least 3 EMBs were 

subjected to histological evaluation. All specimens were included in the study to 

provide a full range of fibrosis.  

Tissue samples for histological analysis were fixed in 10 % neutral buffered 

formalin with subsequent routine paraffin embedding. 3 μm-thick sections were used 

through the study.  Sections were stained with Masson's trichrome according to a 

standard protocol. Whole slide images (WSI) from the experimental glass slides were 

obtained at a resolution of 0.5 µm using a digital microscopic scanner (ScanScope


 

XT, Aperio Technologies, Vista, CA, USA) at a 20x objective magnification and 

stored in a tiled Tiff format on a devoted WSI server (Spectrum 11.1.0.751, Aperio) 

(Fig. 10). One section was later randomly chosen from the slide for all subsequent 

analyses. Aperio Colocalization and Genie algorithms were used for image analysis. 

 
Fig. 10 Fibrosis mark-up on digitized slide (Masson trichrome original staining). 

 

4.2.2. Colocalization algorithm 

Colocalization uses the color deconvolution [239] to separate the stains and 

classifies each pixel according to the number of stains present. For Colocalization, the 
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threshold for each stain is specified for a required stain (e.g. Masson’s trichrome) and 

the algorithm reports the percentage of total tissue area for which each stain 

combination is detected: 1, 2, 3, 1+2, 1+3, 2+3, 1+2+3, or none (up to 3 stains are 

supported). The algorithm also provides an eight-color mark-up image for the 

visualization of the colocalized stains. The total percentage of cardiac fibrosis in 

biopsy samples was calculated according to the sums of the following stain 

combinations: 3, 2+3 and 1+3 (Fig. 11). 

 
Fig. 11 Fibrosis mark-up on digitized slide (Colocalization algorithm). 

4.2.3. Genie algorithm 

Genie (GENetic Imagery Exploration [238]) is a pattern recognition algorithm 

that distinguishes spatial and morphological features based on structures (classes) 

provided by the user. A specific Genie classifier was developed as follows: 1. New 

Genie project and training set created; 2. Digital slides added to a training set; 3. The 

classes of interest defined and marked in the digital slides in the training set (Fig. 12); 

4. Training montage created by running Genie Training v1 algorithm (1000 training 

iterations set) on user-selected tissue sub-regions (the algorithm estimated the training 

accuracy at 99.4 %); 5. Based on the training macro, Genie Classifier v1 algorithm 

was used to create the specific Classifier to be tested and used (Fig. 13). After testing 

the classifier the classes can then be selected for subsequent analysis using specific 

task algorithms. For better identification of cardiac fibrosis, we used only spatial 

recognition, disabling the detection of morphological features. For this study, the 

Genie system was trained to distinguish the myocardium, fibrous tissue (fibrosis) and 

glass (Fig. 13). Total cardiac fibrosis percentage was adjusted to a total tissue area in 

the image analyzed, ignoring the glass (Fig. 14). 
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Fig. 12 Training and using of the Genie. Defining and marking the classes of interest. 
 

 
Fig. 13 Training and using of the Genie. Testing and using the new specific classifier. 
 

 
Fig. 14 Fibrosis mark-up on digitized slide (Genie algorithm). 

4.2.4. Stereology 

Stereology is an interdisciplinary field for volume estimation of three-

dimensional structures by their planar sections. We performed the study on tissue 

sections of 3 μm, thus the stereology was performed on a projection rather than on 

ideal 2D plane. A point counting grid was used to estimate the fraction area [240]. 

“Stereology toolkit 4.2.0” from ADCIS (Saint Contest, France) was used in this study. 

This stereology module allows defining a ROI and a grid that overlay an area of a 

virtual slide. Then the type, the spacing and the pattern size of the grid must be 

adjusted (Fig. 15). 150-200 test points are recommended for acceptable analysis 
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precision [241, 242]. The grid of point counting, with the sampling interval of 200 

pixels and a pattern size of 20 pixels was chosen to evaluate the area fraction of 

myocardial tissue and cardiac fibrosis. These adjustments of the stereology grid 

ensured a minimum of 500 test points in the smallest myocardial biopsies and higher 

counting precision. The structures of interest: glass, fibrosis, myocardium, other 

(including inflammation, necrosis, glass areas inside the myocardium) were manually 

highlighted by the observer (Fig. 16). The total percentage of cardiac fibrosis was 

counted using the number of points ignoring the “glass” and “other” category. The 

area fraction, equivalent to the volume fraction of cardiac fibrosis was then estimated 

as the ratio between the number of test marked as fibrosis and the total number of test 

points included in the ROI, points ignoring the “glass” and “other” categories. The 

results were expressed as percentages together with the corresponding uncertainty 

computed according to Weibel [241]. 

 
Fig. 15 Fibrosis mark-up on digitized slide using Stereology protocol. ImageScope V11 view 

incorporating grid (sampling step of 200 pixels and size of the pattern 20 pixels). 

 

A B 

  
Fig. 16 Fibrosis mark-up on digitized slide using Stereology protocol. Structures of interest 

(glass, fibrosis, myocardium, other) manually highlighted by observer. (A) View at x10 

magnification, (B) View at x20 magnification. 
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4.2.5. Pathologist’s visual scoring 

The extent of total cardiac fibrosis in the samples was also evaluated as a 

percentage of the sample area by a highly-experienced pathologist using a light 

microscope. Two evaluations were performed with the time interval of two weeks.  
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4.3. Statistical analyses 

Data are presented as the mean and standard error of mean (Mean ± SEM). All 

statistical analyses of data were performed using the SPSS package (version 19.0 for 

Windows; SPSS Inc., Chicago, IL, USA) at 5 % significance level.  

4.3.1. Analysis of DCM data 

The normality of the data distribution was tested by the Shapiro-Wilk test. 

Differences in parameters of virus-negative and virus-positive and also inflammation-

negative and inflammation-positive patient groups were tested by Student’s t test or 

the Wilcoxon–Mann–Whitney rank sum nonparametric test (specified in figure 

legends and table titles). For comparative purposes Pearson’s correlation coefficient 

was used. Pearson's Chi-square test was used when appropriate to compare categorical 

variables. 

4.3.2. Analysis of fibrosis quantification data 

For the statistical comparison of data, the Pearson’s correlation coefficient, 

Friedman’s test with post hoc (Wilcoxon signed-rank with a Bonferroni correction 

applied) and scatter-dot graphs (with R
2
, intercept and slope) were used. To enable a 

standard approach to the data, a natural logarithmic transformation of all 

measurements was performed before drawing scatted-dot plots. The agreement 

between fibrosis measurement methods was tested with Bland-Altman plots [243], 

using the stereology estimation as a reference method for the X axis [244].  

4.4. Ethical approval 

The study was approved by the Vilnius Regional Biomedical Research Ethics 

committee (License Nr.158200-09-382-103). All patients gave written informed 

consent to include their data in the study for each investigational procedure.  

The investigation conforms to the principles outlined in the Declaration of 

Helsinki. 
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5. RESULTS 

5.1. Virus-positive DCM patient study group 

5.1.1. Identification of viral genome in endomyocardial biopsy 

From a total of 32 patient included in this study, viral genome was detected in 

the myocardium of 14 subjects (43.8 %). The following virus species were detected: 

parvovirus B19 (PVB19) (n = 11; 34.4 %), human herpes virus type 6 (HHV6) (n = 4; 

12.5 %), enterovirus (EV) (n = 1; 3.1 %), hepatitis C virus (HCV) (n = 1; 3.1 %), 

Epstein-Barr virus (EBV) (n = 1; 3.1 %), Varicella-zoster virus (VZV) (n = 1; 3.1 %). 

Among the 3 (9.38 %) patients with double infections: co-detection of PVB19 and 

HHV6 prevailed in 2 EMB samples, whereas 1 EMB sample had PVB19 and HCV co-

infection. There was one patient with triple infection with PVB19, HHV6 and EV.  

All patients were subdivided into two groups: virus-negative (n = 18) and virus-

positive (n = 14) according to detection of virus genomes in the EMB analysis.  

5.1.2. Basic clinical parameters 

Patient baseline characteristics for the study groups are shown in Table 3. No 

significant differences in distribution of sex, age and heart failure symptoms between 

groups were observed. 

Heart failure is described as the symptomatic syndrome, graded according to 

the New York Heart Association (NYHA) functional classification [245]. Most of the 

patients enrolled to the study had moderate NYHA III class symptoms (11 (61 %) 

patients in virus negative group, 12 (85 %) patients in virus positive group). There 

were more patients with severe symptoms of cardiac insufficiency (NYHA IV class) in 

virus negative group (6 (33 %) patients) than in virus positive group (1 (7 %) patient), 

however the difference was not significant (p = 0.075).  

The prevalence of atrial fibrillation (AF) or left bundle branch block (LBBB) on 

ECG did not significantly differ between the groups (AF 3 (17 %) versus 1 (7 %), p = 

0.360; LBBB 5 (28 %) versus 2 (14 %), p = 0.360) and was even lower in virus-

positive patient group. 

Generally, main parameters of echocardiography demonstrated characteristic 

signs of DCM: reduced left ventricular ejection fraction (LVEF), dilatation of left 
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ventricular. However, there were no significant differences in these parameters 

between the groups: LVEF 23.11 ± 1.6 % versus 24.93 ± 1.39 % (p = 0.413), left 

ventricular end-diastolic diameter (LVEDD) 6.87 ± 0.24 cm versus 6.64 ± 0.18 cm, 

left ventricular end-diastolic diameter index (LVEDDI) 3.66  ± 0.12 cm/m
2
 versus 

3.54  ± 0.12 cm/m
2
. 

Table 3 Baseline characteristics of patients. 

* Significant at p < 0.05 level. † Chi-square test. Data are presented as means ± SEM. Abbreviations: 

NYHA – New York Heart Association functional class; LBBB – left bundle branch block; AF – atrial 

fibrillation; LVEF -  left ventricular ejection fraction; LVEDD –  left ventricular end-diastolic 

diameter; LVEDDI –  left ventricular end-diastolic diameter index; Ao –  aortic; RAP –  right atrial 

pressure; PCWP – pulmonary capillary wedge pressure; PAP – pulmonary artery pressure; CI – 

cardiac index. 

 

Cardiac catheterization was performed to evaluate hemodynamic impairment, to 

confirm pulmonary hypertension (PH) diagnosis or to access severity of PH (PH is 

confirmed when the mean pulmonary artery pressure (PAP) is ≥25 mmHg at rest [246], 

mean pulmonary capillary wedge pressure (PCWP) is necessary for differential 

diagnosis of PH due left heart impairment [247]. In both groups these hemodynamic 

parameters were elevated, which confirms PH diagnosis due to left heart disease. 

However hemodynamic parameters (PAP, PCWP, RAP) were significantly higher in 

virus negative group (mean PAP 40.19 ± 3.45 versus 25.42 ± 2.6, p = 0.003; mean 

Variable Virus-negative group Virus-positive group  

No. 

of 

pts. 

Value No. 

of 

pts. 

Value p Value 

Sex (male/female) 18 16 (89 %) / 2 (11 %) 14 9 (64 %) / 5 (36 %)  0.095 

Age (years) 18 45.11 ± 3.18 14 40.79 ± 2.29  0.279 

NYHA      

     II 18 1 (6 %) 14 1 (7 %) 0.854† 

    III 18 11 (61 %) 14 12 (85 %) 0.125† 

    IV 18 6 (33 %) 14 1 (7 %) 0.075† 

Cardiac parameters      

    LBBB (%) 18 5 (28 %) 14 2 (14 %) 0.360† 

    Permanent AF (%) 18 3 (17 %) 14 1 (7 %) 0.419† 

    LVEF (%) 18 23.11 ± 1.6  14 24.93 ± 1.39  0.413 

    LVEDD (cm) 18 6.87  ± 0.24  14 6.64  ± 0.18  0.460 

    LVEDDI (cm/m
2
) 13 3.66  ± 0.14 14 3.54  ± 0.12  0.522 

    Mean Ao (mmHg) 11 91.73  ± 3.26 10 84.6000  ± 3.44  0.149 

    Mean RAP (mmHg)  15 17.00  ± 2.22 11 9.00  ± 1.54  0.011* 

    Mean PCWP (mmHg) 16 29.00  ± 2.62 12 17.75  ± 2.18  0.004* 

    Mean PAP (mmHg) 16 40.19  ± 3.45 12 25.42  ± 2.6  0.003* 

    CI (L/min/m2) 13 2.08  ± 0.2 8 2.41  ± 0.17  0.309 
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PCWC 29.00 ± 2.62 versus 17.75 ± 2.18, p = 0.004; mean RAP 17.00 ± 2.22 versus 

9.00 ± 1.54, p = 0.011). The difference among the groups shows more advanced PH in 

virus negative group and is associated with worse prognosis [248]. Cardiac index (CI) 

was reduced in both groups, although, did not differ significantly (2.08 ± 0.2 versus 

2.41 ± 0.17, p = 0.309). The better hemodynamic situation in virus-positive patients 

compared to the virus-negative ones might be explained by reduced myocardial 

fibrosis and decreased levels of heart contraction regulating proteins. The persistent 

presences of virus in myocardium can swift hemodynamic parameters to the expansion 

direction indicating worse prognosis. 

Additionally, the inverse correlation between LVEF with hsCRP and BNP (R= 

-0.803, p = 0.005; R = -0.630, p = 0.016, respectively) also revealed that further 

presence of virus in myocardium might increase inflammation, fibrosis and subsequent 

release of ventricular natriuretic protein that may unbalance proper functioning of 

myocardium and induce heart failure (Table 3 and Table 5).   

Both patient groups received the same basic treatment according to guidelines 

(Table 4) [249-251]. No significant difference in prescribed medication was observed 

between the groups. 

Table 4 Basic treatment for the study patient groups (according ESC guidelines). 

Conventional treatment of heart failure Virus-negative 

group 

Virus-positive 

group 

ACE inhibitors 

β-blockers 

Digitalis (in atrial fibrillation) 

Diuretics 

Anticoagulation (atrial fibrillation, EF < 40 %) 

Antiarrhythmics (class III: amiodarone)  

9 (50 %) 

16 (89 %) 

3 (17 %) 

18 (100 %) 

14 (78 %) 

5 (28 %) 

7 (50 %) 

13 (93 %) 

6 (43 %) 

14 (100 %) 

7 (50 %) 

2 (14 %) 

Interventions   

Implantable cardiac defibrillator (ICD) 

Cardiac resynchronization therapy (CRT) 

0 (0 %) 

3 (17 %) 

0 (0 %) 

1 (7 %) 

 

5.1.3. Estimation of inflammation and cardiomyocyte death in virus-

positive and virus-negative DCM samples 

Intramyocardial viral infection has been suggested to be mainly an 

inflammatory-related process leading to myocardial cell death. However, the data 

show that levels of inflammation and apoptosis were reduced both in serum and biopsy 

samples. The decrease of inflammatory cytokines IL-6 and hsCRP in sera was 
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statistically significant (Fig. 17), whereas changes of apoptotic markers were 

significant only in biopsies (Fig. 18 and Fig. 19 p < 0.05). 

 

 
Fig. 17 Levels of the inflammatory markers in serum. ELISA data are presented as means ± 

SEM. Data were considered significant at *p < 0.05. 

 

  
Fig. 18 Levels of the apoptotic markers in 

serum. ELISA data are presented as means ± 

SEM. 

Fig. 19 Levels of the apoptotic markers in 

biopsy. ELISA data are presented as means ± 

SEM. Data were considered significant at *p < 

0.05. 

 

The level of inflammatory infiltrates, CD3
+
, CD45Ro

+
 and CD68

+
, in virus-

positive biopsies was also depressed, confirming the absence or low level of 

intramyocardial inflammation (Fig. 20).  
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Fig. 20 Levels of the inflammatory infiltrates in biopsy. Immunohistochemically positive stained 

cell count data are presented as means ± SEM from at least three independent locations by 

highly experienced pathologist. 

 

Additionally, the biomarker of myocardial necrosis, the high-sensitivity 

troponin T (hsTnT), was also 2.6 fold down-regulated in virus positive serum samples, 

revealing the absence of necrosis (Table 5). The absence of necrosis was also 

confirmed by histological analysis of biopsies stained with hematoxylin and eosin. 

Table 5 Summary data of estimated proteins in virus-negative and virus-positive DCM serums 

and biopsies.  

 

Variable 

Virus-negative group Virus-positive group  

No. 

of pt. 

Value No. 

of pt. 

Value p 

Value 

ELISA assays of  

proteins in serums  

     

MMP9 (ng/mg protein) 18 1.4886 ± 0.0648 14 1.4320 ± 0.0630 0.536 

TIMP1 (ng/mg protein) 18 6.1611 ± 0.2028 14 5.7538 ± 0.2945 0.266 

MMP9/TIMP1 18 0.2428 ± 0.0084 14 0.2529 ± 0.0108 0.465 

PICP (ng/mg protein) 18 0.1589 ± 0.0321 14 0.0792 ± 0.0180 0.039* 

ICTP (ng/mg protein) 18 0.0177 ± 0.0023 14 0.0148 ± 0.0033 0.495 

PICP/ICTP 18 11.2537 ± 2.1036 14 8.6832 ± 3.9652 0.573 

TGFβ (pg/mg protein) 18 13.9515 ± 1.9427 14 13.7339 ± 2.1101 0.940 

ELISA assays of  

proteins in biopsies  

     

MMP9 (ng/mg protein) 18 2.9149 ± 1.0740 13 1.3321 ± 0.3952 0.089¡ 

TIMP1 (ng/mg protein) 18 9.6116 ± 1.4578 13 5.8772 ± 1.6243 0.266 

MMP9/TIMP1 18 0.3434 ± 0.0838 13 0.4107 ± 0.1461 0.694 

PICP (ng/mg protein) 18 4.2779 ± 2.3323 13 1.0708 ± 0.5718 0.312¡ 

ICTP (ng/mg protein) 18 0.0733 ± 0.0337 13 0.2636 ± 0.1184 0.196¡ 

PICP/ICTP 18 14.6047 ± 6.3008 13 3.4117 ± 2.1170 0.154 

TGF-β1 (pg/mg protein) 18 122.0955 ± 82.6902 13 34.3392 ± 29.0622 0.622¡ 
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Data are presented as the mean ± SEM. * Significant at 0.05 level; ¡ Wilcoxon–Mann–Whitney rank 

sum nonparametric test. Abbreviations: Bcl-2 – B-cell lymphoma 2 protein; Bax – Bcl-2–associated X 

protein; MMP – matrix metalloproteinases; TIMP – tissue inhibitors of matrix metalloproteinases; 

PICP – type I procollagen carboxy-terminal propeptide; ICTP – type I collagen carboxyterminal 

telopeptide; TNF-a – tumour necrosis factor-alfa; IL-1β – interleukin 1 beta;  IL-6 – interleukin 6; 

hsCRP – high sensitivity C-reactive protein; hsTnT – high sensitivity troponin T; TGF-β1 - 

transforming growth factor β1; BNP – brain natriuretic protein. 
 

5.1.4. Impact of virus on contraction proteins in myocardial tissue 

The absence of inflammation (Fig. 21), apoptosis and necrosis in virus-positive 

myocardium, stimulated to investigate contraction properties and proteins mostly 

regulating it.  

A B 

  
Fig. 21 Inflammation representation in right ventricular EMB. Micrographs show one 

representative picture from one patient of each group. (A) virus-negative; (B) virus-positive. 

Hematoxylin and Eosin staining. Magnification: x10. 

 

Data presented in Table 5, Fig. 22 and Fig. 23 show lower intensity of fibrosis 

in virus-positive myocardium.  

Immuno- and 

histochemical assays of 

proteins in biopsies  

     

MMP1 (%) 15 6.6747 ± 1.5248 14 14.6564 ± 22.9998 0.022* 

MMP2 (%) 15 2.8940 ± 0.3412 14 7.0350 ± 3.9725 0.292 

MMP9 (%) 15 10.9707 ± 4.2136 14 9.6871 ± 1.5709 0.783 

MMP13 (%) 15 12.2860 ± 2.5354 14 12.6650 ± 2.6789 0.919 

α-SMA (%) 15 24.1400 ± 4.6102 14 21.4821 ± 2.5839 0.620 

HLA-DR (%) 15 0.8253 ± 0.21629  14 0.8886 ± 0.21432 0.837 

Other determinations in 

serums 

     

Adiponectin (μg/mL) 18 28.3389 ± 3.4627 14 15.0143 ± 2.7360 0.005* 

BNP (pg/mL) 18 1841.7944 ± 

341.4525 

14 936.4786 ± 

260.1920 

0.044* 

hsCRP (µg/mL) 17 22.8118 ± 7.7080 10 5.4170 ± 2.0884 0.043* 

hsTnT (pg/mL) 18 74.0878 ± 29.8031 13 28.8277 ± 4.9154 0.151 

Galectin-3 (ng/mL) 18 12.8344 ± 0.8536 14 11.0579 ± 1.0107 0.190 

Cardiac fibrosis (%) 18 17.9724 ± 2.2076 14 10.4818 ± 1.6854 0.012* 



61 

 

 
Fig. 22 Levels of fibrosis in biopsies. Data are presented as means ± SEM from at least three 

independent measurements. Data were considered significant at *p < 0.05. 
 

A B 

  
Fig. 23 Fibrosis in right ventricular EMB. Micrographs show one representative picture from 

one patient of each group. (A) virus-negative patient (digitally quantified fibrosis – 21.20 %); (B) 

virus-positive patient (digitally quantified fibrosis – 9.79 %). Masson trichrome staining for 

cardiac fibrosis (collagen is colored blue). High amounts of collagen reflect a high level of 

fibrosis. Magnification: x10.  

 

Additionally, the carboxy-terminal propeptide of procollagen type I (PICP), a 

marker of collagen I biosynthesis in biopsies was reduced four-fold, whereas carboxy-

terminal telopeptide of collagen type I (ICTP), a marker of collagen I degradation, was 

increased 3.6 fold (Fig. 24, Fig. 25 and Fig. 26). Change of ICTP in myocardial tissue 

was not confirmed immunohistochemicaly due to the absence of appropriate 

antibodies.  
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Fig. 24 Levels of the collagen I synthesis (type I 

procollagen carboxy-terminal propeptide 

(PICP)) biomarker. Data are presented as 

means ± SEM from at least three independent 

measurements. 

Fig. 25 Levels of the collagen I degradation 

(type I collagen carboxyterminal telopeptide; 

ICTP) biomarker in virus-negative and virus-

positive serum samples. Data are presented as 

means ± SEM. 

 

A B 

  
Fig. 26 Collagen I synthesis (type I procollagen carboxy-terminal propeptide (PICP)) biomarker 

in right ventricular EMB. Micrographs show one representative picture from one patient of 

each group. (A) virus-negative patient (digitally quantified PICP – 13.70 %); (B) virus-positive 

patient (digitally quantified PICP – 16.43 %). Immunohistochemical staining was performed 

using anti-PICP antibodies (brown color represents a positive staining for PICP). Magnification: 

x10. 

 

We also found that myocardial fibrosis in virus-positive biopsies significantly 

correlated with the PICP/ICTP ratio and the general serum inflammatory marker 

hsCRP, suggesting activation of inflammation and fibrosis in further presence of 

intramyocardial virus (Fig. 27). 
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Fig. 27 Correlation analysis of additional markers in virus-positive patient serum samples. 

Correlation of collagen synthesis/degradation biomarkers (PICP/ICTP) ratio in biopsy (by 

ELISA) with cardiac fibrosis and the general inflammatory biomarker high sensitivity C-

reactive protein (hsCRP) in serum. Correlation was significant at a level of p < 0.05. Linear 

regression line is presented within 95 % confidence interval. Regression coefficients (R
2
) are 

shown in the graphs.  

A more detailed correlation analysis, presented in Table 6, show that the marker 

of collagen I synthesis (PICP) as well as MMP9 level in virus-positive biopsies were 

mostly associated with secreted inflammatory cytokine IL-6. Moreover, the turnover 

of collagen I, and MMP9 activation significantly depended on proper functioning of 

the mitochondrial outer membranes: the release of mitochondrial outer membrane 

stabilizing protein Hsp60 strongly correlated with serum markers of collagen I 

synthesis (PICP) and degradation (ICTP), matrix metalloproteinase 9 (MMP9) and 

inflammation (IL-6) (Table 6). The correlation data suggest that further presence of 

virus in myocardium will activate inflammation leading to increased release of Hsp60 

and MMP9 activation. Our data show that chronic intramyocardial viral infection is 

able to induce processes initiating heart failure. 

Table 6 Correlation of collagen I turnover markers in biopsy and serum samples. 

 
PICP in 

biopsy 

ICTP in 

biopsy 

MMP9 in 

biopsy 

IL-6 in 

serum 

hsCRP in 

serum 

ICTP in biopsy 0.806**     

MMP9 in biopsy 0.283 0.385    

IL-6 in serum 0.572* 0.489 0.584*   

hsCRP in serum 0.913** 0.933** 0.527 0.576  

HSP60 in serum 0.641* 0.641* 0.646* 0.756** 0.591 

Two tailed significance: *p < 0.05; **p < 0.01. Significant correlations are in bold phase type. 

Abbreviations: PICP – type I procollagen carboxy-terminal propeptide; ICTP – type I collagen 

carboxyterminal telopeptide; MMP9 – matrix metalloproteinase 9; IL-6 – interleukin-6; hsCRP – high 

sensitivity C-reactive protein ; Hsp60 – heat shock protein 60. 
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5.1.5. Changes of released contraction-regulating proteins in virus-

positive serums  

The data show that the release of most tested intramyocardial apoptotic, 

inflammatory, and contraction-regulating proteins such as TGF-β1, MMP9,  TIMP1, 

hsTnT, galectin-3 and PICP/ICTP in virus-positive serums were reduced Table 5.  

The decrease of collagen I synthesis biomarker (PICP) in serum was even 

significant (Fig. 28, p < 0.05). However, the level of collagen I synthesis (PICP) in 

biopsy inversely correlated with its level in serum, showing that further presence of 

viral infection will impair myocardial permeability (Fig. 29).  

 

 

 
Fig. 28 Levels of collagen I synthesis 

biomarker (type I procollagen carboxy-

terminal propeptide; PICP) in virus-negative 

and virus-positive serum samples. Data are 

presented as means ± SEM and considered to 

be significant at *p < 0.05. 

Fig. 29 Inverse correlation between 

distribution of collagen synthesis biomarker 

PICP (type I procollagen carboxy-terminal 

propeptide) in virus-positive patient group 

serum and biopsy samples. Correlation was 

significant at a level of p <0.05. Linear 

regression line is presented within 95 % 

confidence interval. Regression coefficients 

(R
2
) are shown in the graphs. 

 

Additional correlation analysis showed that markers of apoptotic pathways, the 

intrinsic (Bcl-2 and caspase-9) and the extrinsic (FasL and caspase-8) also were 

strongly associated with the release of collagen I turnover biomarkers (Fig. 30 and Fig. 

31).  
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Fig. 30 Correlation analysis of contraction-

regulating proteins in virus-positive patient 

group. Correlation of collagen 

synthesis/degradation biomarkers (PICP/ICTP) 

ratio in serum with the markers of intrinsic 

apoptotic pathway (BcL-2 and caspase-9) in 

biopsies. Correlation was significant at a level of 

p <0.05. Linear regression line is presented 

within 95% confidence interval. Regression 

coefficients (R
2
) are shown in the graphs. 

Fig. 31 Correlation analysis of contraction-

regulating proteins in virus-positive patient 

group. Correlation between the collagen I 

synthesis biomarker PICP with markers of 

the extrinsic apoptotic pathway (Fas ligand 

and caspase-8). Correlation was significant at 

a level of p < 0.05. Linear regression line is 

presented within 95% confidence interval. 

Regression coefficients (R
2
) are shown in the 

graphs. 

 

Data in Fig. 32 show that release of intracellular fibrosis-related proteins 

cardiac high-sensitivity troponin T (hsTnT) and galectin-3 into serum was also 

reduced. Moreover, galectin-3 significantly correlated with macrophage-secreted 

cytokines TNF-α and IL-6, suggesting possible its co-localization and secretion by 

infiltrated macrophages (Fig. 33).  

The lower level of infiltrated macrophages and secreted cytokines TNF-α and 

IL-6 in tested samples can be a reason of lower serum level of galectin-3 (Fig. 20). The 

detection of intracellular proteins in plasma indicates the loss of integrity of cell 

membrane due to the acute myocardium and cardiovascular injuries. Considering this, 

data show that viral infection in tested samples is not acute but chronic and does not 

impair cell membrane permeability. However, the correlation analysis shows that 

prolonged intramyocardial viral infection will activate inflammation, cardiomyocyte 

apoptotic death and fibrosis leading to heart failure. 
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Fig. 32 Levels of the contraction-regulating 

proteins: cardiac high-sensitivity troponin T 

(hsTnT) and galectin-3 in serum samples. Data 

are presented as means ± SEM. 

Fig. 33 Correlation of galectin-3 in serum with 

pro-inflammatory cytokines: tumor necrosis 

factor α (TNF-α) and interleukin-6 (IL-6) in 

serum. Correlation was significant at a level of 

p < 0.05. Linear regression line is presented 

within 95 % confidence interval. Regression 

coefficients (R
2
) are shown in the graphs. 

 

5.1.6. Other mechanisms regulating progression of viral DCM  

In the last experiments, it was found that the serum levels of adipocytokine 

adiponectin and BNP in virus-positive serums were significantly (almost two fold) 

lower as compared to the virus-negative ones (Fig. 34 and Fig. 35; Table 4).  

  
Fig. 34 Levels of adiponectin in virus-negative 

and virus-positive serum samples. Data are 

presented as means ± SEM and considered to 

be significant at *p < 0.05.  

Fig. 35 Levels of brain natriuretic protein B 

(BNP) in virus-negative and virus-positive 

serum samples. Data are presented as means ± 

SEM and considered to be significant at *p < 

0.05.  
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A correlation analysis revealed that serum adiponectin significantly correlated 

with main regulator of collagen I transformed growth factor- β1 (TGF-β1) (Fig. 36) 

and brain natriuretic protein (BNP) (Fig. 37).  

 

  
Fig. 36 Correlation analysis of additional 

markers in virus-positive patient serum 

samples. Correlation between adiponectin and 

transforming growth factor β1 (TGF- β1). 

Correlation was significant at a level of p < 

0.05. Linear regression line is presented within 

95 % confidence interval. Regression 

coefficients (R
2
) are shown in the graphs. 

Fig. 37 Correlation analysis of additional 

markers in virus-positive patient serum 

samples. Correlation between adiponectin and 

brain natriuretic protein B (BNP). Correlation 

was significant at a level of p < 0.05. Linear 

regression line is presented within 95 % 

confidence interval. Regression coefficients 

(R
2
) are shown in the graphs. 

 

Additionally, serum adiponectin significantly correlated with macrophages 

(CD68
+
) (Fig. 38), whereas BNP correlated with memory T cells (CD45Ro

+
) and T 

lymphocytes (CD3
+
) (Fig. 39). Serum TGF-β1 also showed strong correlation with 

intramyocardial macrophages (CD68
+
, R = 0.649; p = 0.022) and MMP9 (R = 0.689; p 

= 0.009). 
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Fig. 38 Correlation analysis of additional 

markers in virus-positive patient group. 

Correlation between adiponectin in serum and 

infiltrated macrophages (CD68
+
) in cardiac 

biopsy. Correlation was significant at a level of 

p < 0.05. Linear regression line is presented 

within 95 % confidence interval. Regression 

coefficients (R
2
) are shown in the graphs. 

Fig. 39 Correlation analysis of additional 

markers in virus-positive patient group. 

Correlation of BNP in serum with T cells 

(CD3
+
) and T memory cells (CD45Ro

+
) in 

cardiac biopsies. Correlation was significant at 

a level of p < 0.05. Linear regression line is 

presented within 95 % confidence interval. 

Regression coefficients (R
2
) are shown in the 

graphs. 

 

Data of this section shows that increased intramyocardial inflammations due to 

sustained presence of viruses will upregulate levels of serum adiponectin and BNP 

leading to further activation of TGF-β1, collagen synthesis and fibrosis. The main 

collagen I synthesis regulator, TGF-β1, can be also activated directly by inflammation 

infiltrates, particularly macrophages. The sustained presence of the virus in the heart 

will increase inflammation leading to activation of fibrosis and heart failure.  
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5.2. Inflammation-positive DCM patient study group 

5.2.1. Detection of inflammatory infiltrate in endomyocardial biopsy 

Not only can the persistent presence of virus influence the inflammatory 

processes in myocardium. In most of the cases DCM is caused by inflammatory 

processes of unknown origin. Since is always the goal to determine the origin of 

inflammation, (which is not always achieved), in this part of our study we have 

explored the molecular mechanisms dominating in the inflammatory DCM of 

unknown origin. The inflammatory process in the myocardium was determined by the 

presence of inflammatory infiltrates. From the immunohistochemically assessed 

inflammatory cells in EMB T lymphocytes (CD3
+
) was the most frequently detected 

cell (11.28 ± 1.21), followed by active-memory T lymphocytes (CD45Ro
+
) (8.29 ± 

0.91) and macrophages (CD68
+
) (7.75 ± 0.85). 

All patients were subdivided into two groups: inflammation-negative (n = 10) 

and inflammation-positive (n = 22) according to the presence of inflammatory 

infiltrate following the World Health Organization / International Society and 

Federation of Cardiology Task Force on the Definition and Classification of 

Cardiomyopathies recommendations [13, 50, 51]. 

5.2.2. Basic clinical parameters 

Patient baseline characteristics for the study groups are shown in Table 7. No 

significant differences in distribution of sex, age and heart failure symptoms between 

the groups.  

Heart failure is described as the symptomatic syndrome, graded according to the 

New York Heart Association (NYHA) functional classification [245]. Most of the 

patients enrolled to the study had moderate (NYHA III class 7 (70 %) patients in 

inflammation negative group, 15 (68 %) patients in inflammation positive group) or 

severe symptoms of cardiac insufficiency (NYHA IV class 2 (20 %) patients versus 7 

(32 %) patients).  
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Table 7 Baseline characteristics of patients. 

Data are presented as the means ± SEM. * Significant at 0.05 level. ¿ Chi-square test. Abbreviations: 

NYHA – New York Heart Association functional class; LBBB – left bundle branch block; AF – atrial 

fibrillation; LVEF – left ventricular ejection fraction; LVEDD – left ventricular end-diastolic 

diameter; LVEDDI – left ventricular end-diastolic diameter index; Ao – aortic; RAP – right atrial 

pressure; PCWP – pulmonary capillary wedge pressure; PAP – pulmonary artery pressure; CI – 

cardiac index. 

 

The prevalence of atrial fibrillation (AF) was significantly higher in 

inflammation negative group compared to inflammation positive 2 (20 %) versus 0 (0 

%) respectively, p < 0.001, which might be explained by a lower degree of fibrosis 

(Fig. 50) in the former group (Table 1). There was no significant difference noticed in 

the prevalence of left bundle branch block on ECG among the groups 3 (30 %) versus 

5 (22 %), p = 0.659.  

Generally, main parameters of echocardiography demonstrated characteristic 

signs of DCM: reduced left ventricular ejection fraction (LVEF), dilatation of left 

ventricular. However, there were no significant differences in these parameters 

between the groups: LVEF 24.10 ± 2.2 % versus 23.05 ± 1.3 %, left ventricular end-

diastolic diameter (LVEDD) 6.89 ± 0.17 cm versus 6.89  ±  0.19 cm,  left ventricular 

end-diastolic diameter index (LVEDDI) 3.68  ± 0.21 cm/m
2
 versus 3.71  ± 0.09 cm/m 

cm/m
2
. 

Variable Inflammation-negative 

group 

Inflammation-positive 

group 

 

No. 

of 

pts. 

Value No. 

of 

pts. 

Value p Value 

Sex (male/female) 10 8 (80 %) / 2 (20 %) 22 17 (77 %) / 5 (33 %)  0.863¿ 

Age (years) 10 46.7 ± 5.87 22 42.36 ± 2.07 0.389 

NYHA      

     II 10 1 (10 %) 22 0 (0 %) 0.132¿ 

    III 10 7 (70 %) 22 15 (68 %) 0.918¿ 

    IV 10 2 (20 %) 22 7 (32 %) 0.491¿ 

Cardiac parameters      

    LBBB (%) 10 3 (30 %) 22 5 (22.7 %) 0.659¿ 

    Permanent AF (%) 10 2 (20 %) 22 0 (0 %) 0.000¿* 

    LVEF (%) 10 24.10 ± 2.28 22 23.05 ± 1.35 0.678 

    LVEDD (cm) 10 6.89  ± 0.17 22 6.89  ± 0.19 0.998 

    LVEDDI (cm/m
2
) 10 3.68  ± 0.21 22 3.71  ± 0.09 0.847 

    Mean Ao (mmHg) 10 92.00  ± 3.95 22 86.06  ± 2.71 0.291 

    Mean RAP (mmHg)  10 16.22  ± 3.19 22 11.44  ± 1.74 0.164 

    Mean PCWP (mmHg) 10 25.00  ± 2.79 22 23.45  ± 2.70 0.731 

    Mean PAP (mmHg) 10 34.89  ± 4.33 22 32.95  ± 3.24 0.734 

    CI (L/min/m2) 10 2.38  ± 0.33 22 2.2  ± 0.14 0.573 
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Cardiac catheterization was performed to access the severity of hemodynamic 

impairment. Although, hemodynamic parameters did not differ significantly between 

the groups, the average values of pulmonary artery pressure (PAP) in both groups: 

34.89 ± 4.33 mmHg versus 32.95 ± 3.24 mmHg, p = 0.734) were increased, which 

confirms pulmonary hypertension (PH) diagnosis (PH is confirmed when the mean 

PAP is ≥25 mmHg at rest [246]). Elevated mean pulmonary capillary wedge pressure 

(PCWP) (>15 mmHg) among the groups 25.00 ± 2.79 mmHg versus 23.45 ± 2.70 

mmHg, p = 0.731 shows post-capillary PH due to left heart impairment [247]. 

Elevated mean right atrial pressure (RAP), elevated mean PAP and decreased cardiac 

index (CI) in both groups indicate a worse prognosis [248]. 

Both patient groups received the same basic treatment according to guidelines 

(Table 8) [249-251]. No significant difference in prescribed medication was observed 

between the groups. 

Table 8 Basic treatment for the study patient groups (according ESC guidelines). 

Conventional treatment of heart failure Inflammation-

negative group 

Inflammation-

positive group 

ACE inhibitors 

β-blockers 

Digitalis (in atrial fibrillation) 

Diuretics 

Anticoagulation (atrial fibrillation, EF < 40 %) 

Antiarrhythmics (class III: amiodarone) 

 5 (50 %) 

 10 (100 %) 

 2 (20 %) 

 10 (100 %) 

 7 (70 %) 

 1 (10 %) 

 10 (46 %) 

 19 (87 %) 

 7 (32 %) 

 22 (100 %) 

 15 (68 %) 

 5 (23 %) 

Interventions   

Implantable cardiac defibrillator (ICD) 

Cardiac resynchronization therapy (CRT) 

1 (10 %) 

1 (10 %) 

0 (0 %) 

3 (14 %) 

 

5.2.3. Inflammatory markers in dilated cardiomyopathy 

The inflammatory process was monitored by detecting CD3
+
, CD45Ro

+
 and 

CD68
+
 expression in inflammatory infiltrates by immunohistochemistry. In addition, 

we determined the inflammatory cytokines TNF-α, IL-6 and IL-1β. Representative 

immunohistochemical micrographs show expression of CD3
+
, CD45Ro

+
 and CD68

+
 

from individual inflammatory DCM patients (Fig. 40, Fig. 41 and Fig. 42).  
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A B 

  
Fig. 40 Inflammatory infiltrate in right ventricular EMB represented by CD3

+
 cells (T 

lymphocytes). (A) inflammation-negative (CD3
+
 = 3 cell/mm

2
); (B) inflammation-positive (CD3

+
 

= 20 cell/mm
2
). Immunohistochemical staining was performed using anti-CD3 antibodies. 

Magnification: x10. 
 

A B 

  
Fig. 41 Inflammatory infiltrate in right ventricular EMB by CD45Ro

+
 cells (active-memory T 

lymphocytes). (A) inflammation-negative (CD45Ro
+
 = 3 cell/mm

2
); (B) inflammation-positive 

(CD45Ro
+
 = 17 cell/mm

2
). Immunohistochemical staining was performed using anti-CD45Ro 

antibodies. Magnification: x10. 
 

A B 

  
Fig. 42 Inflammatory infiltrate in right ventricular EMB by CD68

+
 cells (macrophages). (A) 

inflammation-negative (CD68
+
 = 5 cell/mm

2
); (B) inflammation-positive (CD68

+
 = 20 cell/mm

2
). 

Immunohistochemical staining was performed using anti-CD68 antibodies. Magnification: x10. 

 

Total expression of cytokines in infiltrates from inflammatory-negative and 

inflammatory-positive groups is shown in Fig. 43. The inflammatory infiltrates mostly 
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upregulated in inflammatory DCM patients were: T-lymphocytes (CD3
+
) and active 

memory T-lymphocytes (CD45Ro
+
) (2.38-fold and 2.1; p < 0.001 and p < 0.01, 

respectively), whereas the macrophages (CD68
+
) were only enhanced 1.63 fold (Fig. 

44). Significant accession of CD3
+
 and CD45Ro

+
 in inflammatory DCM myocardium 

also suggests increased myocardial micro-vascular permeability. 

  
Fig. 43 Levels of the inflammatory markers in 

serum. ELISA data are presented as means ± 

SEM from at least three independent 

measurements. Data were considered 

significant at *p < 0.05. 

Fig. 44 Levels of the inflammatory infiltrates 

in biopsy. Immunohistochemically positive 

stained cell count data are presented as means 

± SEM from at least three independent 

locations, evaluated  by highly experienced 

pathologist. Data were considered significant 

at *p < 0.05, **p < 0.01 and ***p < 0.001. 

 

Data in Table 9 summarize the upregulation of specific and general 

inflammatory markers interleukin-6 (IL-6) and high sensitivity C-reactive protein 

(hsCRP), respectively, in inflammatory DCM serum samples (3.45, and 2.76 folds). 

The mean value of the inflammatory cytokine IL-6 was three times increased in 

inflammatory DCM serum samples (p < 0.05). The tumor necrosis factor alpha (TNF-

α) level in inflammatory-positive DCM serum samples was approximately two folds 

enhanced compared to non-inflammatory DCM patients, suggesting its possible 

activation of caspase-8 (Table 9). Interleukin-1beta (IL-1β), also known as catabolin, 

did not show significant changes in serum samples. 

5.2.4. Changes of apoptotic biomarkers in inflammatory DCM samples 

Correlation analysis of inflammatory cytokines and other secreted biomarkers 

pointed to importance of the intrinsic apoptotic mechanism in inflammatory DCM. 

Data presented in Fig. 45 show significant correlation between CD3
+
 and IL-6.  
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Fig. 45 Correlation between inflammatory and mitochondrial membrane destabilization 

markers in inflammation-positive patient group. Correlation between serum inflammatory 

cytokine IL-6 and CD3
+
 cell count on EMB. Correlation was significant at a level of p < 0.05. 

Linear regression line is presented within 95 % confidence interval. Regression coefficients (R
2
) 

are shown in the graphs. 

 

Moreover, significant correlation of IL-6 and hsCRP with the mitochondrial 

chaperonic protein Hsp60 and pro-apoptotic Bax, respectively, in serums suggests that 

myocardial inflammation mostly affected integrity of mitochondrial membranes and 

activated Bax-dependent apoptotic pathway (Fig. 46 and Fig. 47).  

  
Fig. 46 Correlation between inflammatory and 

mitochondrial membrane destabilization 

markers in inflammation-positive patient 

group. Correlation between IL-6 and 

mitochondrial membrane stabilizing 

chaperone Hsp60 in serums. Correlation was 

significant at a level of p < 0.05. Linear 

regression line is presented within 95 % 

confidence interval. Regression coefficients 

(R
2
) are shown in the graphs. 

Fig. 47 Correlation between inflammatory and 

mitochondrial membrane destabilization 

markers in inflammation-positive patient 

group. Correlation between high sensitivity C-

reactive protein (hsCRP) and Bax in serums. 

Correlation was significant at a level of p < 

0.05. Linear regression line is presented within 

95 % confidence interval. Regression 

coefficients (R
2
) are shown in the graphs. 
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Additionally, the levels of the mitochondrial membrane stabilizing protein Bcl-

2 and Hsp60 in inflammatory-positive serums were 1.86 and 8.97 (p < 0.05) folds 

higher, respectively, supporting the theory of increased permeability of both outer 

mitochondrial and myocardial cell plasma membranes in inflammatory DCM (Table 

9). In parallel, Bcl-2 in inflammatory DCM biopsies was depressed 1.34 fold, whereas 

Bax was 1.22 fold increased, revealing activation of the Bcl-2/Bax-dependent 

apoptotic pathway (Table 9). Parallelly, the level of APO1/Fas/CD95 (FasR), a main 

receptor of the extrinsic apoptotic pathway, was only slightly increased in serum and 

biopsy samples from inflammatory DCM patients, whereas Fas ligand (FasL) in 

biopsies was even down-regulated (Table 9).  

Data presented in Fig. 48 demonstrate statistically significant (p < 0.05) 

increase of caspase-9, -8 and -3 in serums with most prominent expression of caspase-

9. Increased expression of the same caspases in endomyocardial biopsy samples (Fig. 

49) was not statistically significant due to high variation. However, the basic mean 

value of caspase-9 in inflammatory DCM patients was 31 and 118 folds higher 

compared to caspase-8 and -3, respectively, additionally pointing on the higher role of 

intrinsic apoptotic pathway in inflammatory DCM (Fig. 49). 

  
Fig. 48 Levels of pro-caspases-9, -8, and -3 in 

serum samples. Data are presented as means ± 

SEM from at least three independent 

measurements. Data were considered 

significant at *p < 0.05. 

Fig. 49 Levels of pro-caspases-9, -8, and -3 in 

EMB samples. Data are presented as means ± 

SEM from at least three independent 

measurements. 
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Table 9 Summarized data of measured biomarkers. 

 

Variable 

Inflammation-negative group Inflammation-positive group  

No. of 

pts. 

Value No. of 

pts. 

Value p Value 

Markers of inflammation in 

serum 

     

TNF-α (pg/mL) 8 7.9313 ± 0.5106 21 14.2819 ± 5.0280 0.223 

IL-6 (pg/mL) 8 3.3938 ± 0.8554 21 11.4038 ± 3.3614 0.031* 

IL-1β   (pg/mL) 8 5.0000 ± 0.0000 21 4.7619 ± 0.2381 0.329 

hsCRP (µg/mL) 8 7.6875 ± 5.0460 19 21.5563 ± 6.9633 0.066¡ 

Markers of apoptosis in serum      

Bcl2 (ng/mg protein) 10 0.0288 ± 0.0288 22 0.0536 ± 0.0455 0.889¡ 

Bax (ng/mg protein) 10 2.1527 ± 0.2400 22 2.3354 ± 0.1606 0.535 

Caspase-9 (ng/mg protein) 10 0.0130 ± 0.0013 22 0.0808 ± 0.0283 0.038* 

Caspase-8 (ng/mg protein) 10 0.0010 ± 0.0001 22 0.0031 ± 0.0009 0.043*¡ 

Caspase-3 (ng/mg protein) 10 0.0029 ± 0.0022 22 0.0105 ± 0.0023 0.025* 

APO1/Fas/CD95 (ng/mg protein) 10 0.0000 ± 0.0000 22 0.0000 ± 0.0000 0.857¡ 

FasL (ng/mg protein) 10 0.0000 ± 0.0000 22 0.0000 ± 0.0000 N.A. 

HSP60 (ng/mg protein) 10 0.0419 ± 0.0253 22 0.3760 ± 0.1468 0.035* 

Markers of apoptosis in biopsy      

Bcl2 (ng/mg protein) 10 83.5523± 26.2936 21 63.8790 ± 17.2137 0.540 

Bax (ng/mg protein) 10 5.6452 ± 2.6905 21 6.8873 ± 3.7924 0.724¡ 

Caspase-9 (ng/mg protein) 10 29.6575 ± 12.5969 21 38.7122 ± 9.6108 0.950¡ 

Caspase-8 (ng/mg protein) 10 0.9483 ± 0.1640 21 1.1611 ± 0.1962 0.413 

Caspase-3 (ng/mg protein) 10 0.2503± 0.0773 21 0.2586 ± 0.0649 0.935 

APO1/Fas/CD95 (ng/mg protein) 10 3.4651 ± 0.6568 21 4.1921 ± 0.6607 0.443 

FasL (ng/mg protein) 10 4.5550 ± 1.3594 21 4.0588 ± 1.1083 0.780 

HSP-60 (ng/mg protein) 10 24.1262 ± 6.9102 21 19.2656± 4.5617 0.565 

Marker of heart tissue contraction 

in serum 

     

hsTnT (pg/mL) 8 35.4988 ± 9.0908 20 66.4145  ± 26.9755 0.289 

Markers of extracellular matrix 

degradation in serum 

     

MMP9 (ng/mg protein) 10 1.3867 ± 0.0674 22 1.5261 ± 0.0508 0.115 

TIMP1 (ng/mg protein) 10 5.9610 ± 0.3597 22 6.1223 ± 0.1497 0.686 

MMP9/TIMP1 10 0.2355 ± 0.0090 22 0.2511 ± 0.0086 0.223 

Markers of extracellular matrix 

degradation in biopsy 

     

MMP9 (ng/mg protein) 10 2.3698 ± 1.1931 21 2.7630 ± 0.9394 0.798 

TIMP1 (ng/mg protein) 10 9.4917 ± 1.7605 21 7.8056 ± 1.4029 0.462 

MMP9/TIMP1 10 0.1931 ± 0.0729 21 0.4760 ± 0.1048 0.035* 

Other measurements      

BNP (pg/mL) 10 1277.8500 ± 428.5054 22 1603.2591 ± 276.3777 0.532 

Adiponectin (µg/mL) 8 24.1000 ± 3.5914 21 22.9048 ± 3.5287 0.815 

Galectin-3 (ng/mL) 10 12.4670 ± 1.9009 22 12.3895 ± 0.8635 0.971 

Cardiac fibrosis (%) 10 15.8447 ± 2.6319 22 14.5632 ± 1.9258 0.699 

Data are presented as the means ± SEM. * Significant at 0.05 level. ¡ Wilcoxon–Mann–Whitney rank sum 

nonparametric test. Abbreviations: TNF-α—tumor necrosis factor α; IL-6 – interleukin-6; IL-1β – interleukin 

1β; Bcl-2 – B-cell lymphoma 2 protein; Bax – Bcl-2–associated X protein; Hsp60 – heat shock protein 60; 

MMP9 – matrix metalloproteinase 9; TIMP1 – tissue inhibitor of matrix metalloproteinase 1; TNF-a – tumor 

necrosis factor-alfa; IL-1β – interleukin 1 beta;  IL-6 – interleukin 6; hs TnT – high sensitivity troponin T; 

hsCRP – high sensitivity C-reactive protein, N.A. – not available. 

 



77 

 

5.2.5. Induction of necrosis in inflammatory DCM samples 

The mean value of the high-sensitivity troponin T (hsTnT), a major structural 

sarcomeric protein in the heart, was two folds upregulated in serums of inflammatory-

positive patient group (Table 9). The release of hsTnT from the myocardium revealed 

chronic structural and functional degradation of myocardium that corresponded to a 

decreased level of fibrosis in inflammatory DCM biopsies (Fig. 50 and Fig. 51).  

 
Fig. 50 Cardiac fibrosis in right ventricular EMB. Data are presented as means ± SEM from at 

least three independent measurements. 

 

A B 

  
Fig. 51 Micrographs show one representative picture from one patient of each group. (A) 

inflammation-negative (quantified fibrosis – 20.34 %); (B) inflammation-positive (quantified 

fibrosis – 18.65 %). Masson trichrome staining for cardiac fibrosis (collagen is colored blue). 

High amounts of collagen reflect a high level of fibrosis. Magnification: x10. 

 

Additionally, there was no necrosis in the samples assayed by histological 

analysis in myocardial biopsies (Fig. 52). The two fold of hsTnT upregulation in tested 

inflammatory DCM serums suggests a steady hsTnT release and slow impairment of 

striated muscle contraction rather than induction of necrosis in inflammatory DCM.  
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A B 

  
Fig. 52 Inflammation representation in right ventricular EMB. Micrographs show one 

representative picture from one patient of each group. (A) inflammation-negative; (B) 

inflammation-positive. Hematoxylin and Eosin staining. Magnification: x10.   

 

5.2.6. The interaction between apoptotic pathways supporting 

progression of inflammatory DCM 

Data in Fig. 53 demonstrate that caspase-9, a serum cysteine-aspartic acid 

specific protease, named apoptosis-initiating caspase, strongly correlated with the 

general inflammatory marker high sensitivity C-reactive protein (hsCRP) additionally 

confirming sensitivity of intrinsic apoptotic pathway to inflammation.  

 

  
Fig. 53 Correlation of caspase-9 with 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-9 

with high sensitivity C-reactive protein 

(hsCRP) in serum samples. Linear regression 

line is presented within 95 % confidence 

interval. Coefficients of regression (R
2
) and 

statistical significance (p < 0.05) are shown in 

the graphs. 

Fig. 54 Correlation of caspase-9 with 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-9 

with matrix metalloproteinase-9 (MMP-9) in 

serum samples. Linear regression line is 

presented within 95 % confidence interval. 

Coefficients of regression (R
2
) and statistical 

significance (p < 0.05) are shown in the graphs. 
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In parallel, the correlation between caspase-9 and MMP9 (Fig. 54) tells us that 

caspase-9 might either be directly activated by the MMP9 or, alternatively, through 

other mediators of intrinsic apoptotic pathways, such as Bcl-2 and Bax (Fig. 55 and 

Fig. 56; p < 0.05).  

  
Fig. 55 Correlation of caspase-9 with 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-9 

with B-cell lymphoma 2 protein (Bcl-2) in 

serum samples. Linear regression line is 

presented within 95 % confidence interval. 

Coefficients of regression (R
2
) and statistical 

significance (p < 0.05) are shown in the graphs. 

Fig. 56 Correlation of caspase-9 with 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-9 

with Bcl-2–associated X protein (Bax) in serum 

samples. Linear regression line is presented 

within 95 % confidence interval. Coefficients 

of regression (R
2
) and statistical significance (p 

< 0.05) are shown in the graphs. 

 

Data in Fig. 57 and Fig. 58 also demonstrate that intrinsic apoptotic pathway-

initiating caspase-9 is not the only caspase participating in regulation of myocardium 

destruction. A strong correlation (p < 0.05) between caspase-9 and executing caspase-

3, and extrinsic apoptotic pathway-initiating caspase-8 suggest an interaction between 

intrinsic and extrinsic apoptotic pathways.  

Furthermore, Fig. 59 shows a statistically significant correlation between main 

players of extrinsic apoptotic pathway caspase-8 and the APO1/Fas/CD95 in 

inflammatory DCM serums. The significant correlation between caspase-8 and Bax 

additionally confirms the intersection of extrinsic and intrinsic pathways at 

mitochondrial level with particular role of pro-apoptotic Bax in it (Fig. 60). 
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Fig. 57 Correlation of caspase-9 with 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-9 

with Caspase-8 in serum samples. Linear 

regression line is presented within 95 % 

confidence interval. Coefficients of regression 

(R
2
) and statistical significance (p < 0.05) are 

shown in the graphs. 

Fig. 58 Correlation of caspase-9 with 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-9 

with Caspase-3 in serum samples. Linear 

regression line is presented within 95 % 

confidence interval. Coefficients of regression 

(R
2
) and statistical significance (p < 0.05) are 

shown in the graphs. 

 

  
Fig. 59 Correlation between caspase-8 and 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-8 

with Fas receptor (APO1/Fas/CD95) in serum 

samples. Linear regression line is presented 

within 95 % confidence interval. Coefficients 

of regression (R
2
) and statistical significance (p 

< 0.05) are shown in the graphs. 

Fig. 60 Correlation between caspase-8 and 

biomolecules in inflammation-positive patient 

group serum samples. Correlation of caspase-8 

with Bcl-2–associated X protein (Bax) in serum 

samples. Linear regression line is presented 

within 95 % confidence interval. Coefficients 

of regression (R
2
) and statistical significance (p 

< 0.05) are shown in the graphs. 

 

Additionally, a correlation between caspase-8 and MMP9, similarly to caspase-

9, suggested an involvement of matrix metalloproteinases, in direct pro-caspases’ 

activation and/or in the relocation of proapoptotic proteins into the extracellular space 

(Fig. 61). 
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Fig. 61 Correlation between caspase-8 and biomolecules in inflammation-positive patient group 

serum samples. Correlation of caspase-8 with matrix metalloproteinase-9 (MMP-9) in serum 

samples. Linear regression line is presented within 95 % confidence interval. Coefficients of 

regression (R
2
) and statistical significance (p < 0.05) are shown in the graphs. 

 

5.2.7. The expression of apoptotic biomarkers in myocardial tissue 

Next, it was investigated if secretion of apoptotic biomarkers to the blood 

reflects similar processes in inflammatory DCM myocardium. Caspase-9 in heart 

tissue, similarly to that in serum, had a high correlation with inflammation, particularly 

inflammatory cytokine IL-6, whereas caspase-8 showed more prominent correlation 

with Bax and caspase-3 (see caspase-8 and -9 correlations in Table 10). An executing 

caspase-3 demonstrated a significant correlation with activators of both intrinsic (Bax, 

Bcl-2) and extrinsic (APO1/Fas/CD95 and FasL) pathways (see caspase-3 correlation 

in Table 3). Similarly to serums, members of both apoptotic pathways (Bcl-2, and 

APO1/Fas/CD95, FasL) in biopsies had significant correlation with MMP9 and its 

inhibitor TIMP1 (Table 10). We also observed a strong (p < 0.001) correlation 

between changes of Bax in biopsies and Bax in sera (data not shown). Finally, the 

sarcomeric protein hsTnT in inflammatory DCM sera also strongly correlated with 

caspases-8, Bax and caspase-3 in biopsies, suggesting the present apoptotic pathway to 

be mostly involved in caspase-regulated release of hsTnT (see hsTnT correlation in 

Table 10).    
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Table 10 Correlation of apoptotic, necrotic and inflammatory biomarkers. 

 Caspase 9  

in biopsy 

Caspase 8 

in biopsy 

Caspase 3 

in biopsy 

Bcl2 in 

biopsy 

FasR in 

biopsy 

FasL in 

biopsy 

Bax in 

biopsy 

Caspase 8 in biopsy 0.303       

Caspase 3 in biopsy 0.063 0.436*      

Bcl2 in biopsy -0.202 0.175 0.486*     

FasR in biopsy -0.097 -0.074 0.526* 0.739**    

FasL in biopsy -0.046 0.007 0.442* 0.835** 0.907**   

MMP9 in biopsy -0.229 0.024 0.419 0.764** 0.730** 0.824**  

TIMP1 in biopsy -0.012 -0.205 0.213 0.517* 0.795** 0.722**  

Bax in biopsy 0.283 0.584** 0.678** 0.056 0.139 0.053  

IL-6 in serum 0.518* -0.016 -0.011 -0.262 -0.202 -0.154 0.131 

hsTnT in serum 0.434 0.598** 0.563* -0.125 -0.067 -0.165 0.954** 

Two tailed significance: *p < 0.05; **p < 0.01. Significant correlations are in bold phase type. 

Abbreviations: IL-6 – interleukin-6; Bcl-2 – B-cell lymphoma 2 protein; FasR—Fas receptor; FasL – Fas 

ligand; MMP9 – matrix metalloproteinase 9; TIMP1 – tissue inhibitor of matrix metalloproteinase 1; Bax – 

Bcl-2–associated X protein; Hsp60 – heat shock protein 60; hsTnT – high sensitivity troponin T. 
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5.3. Quantification of myocardial fibrosis by digital image analysis and 

interactive stereology 

A total of 116 slides were analyzed digitally, by visual scoring and using 

stereology grids.  

The mean result of fibrosis obtained by Colocalization software was 13.72 ± 1.14 

% being closest to the reference value of stereology (RVS: 13.21 ± 1.42 %). The mean 

values obtained by the Genie software (11.60 ± 1.43 %) and the pathologist’s score at 

week 0 (11.20 ± 1.44 %) and week 2 (10.76 ± 1.61 %) indicated a slight 

underestimation relative to RVS. However, the range of Colocalization software was 

73.79 % being the lowest of all tested methods with a difference of around 20 %. The 

range of the Genie software was 88.22 % and the pathologist’s score had the highest 

range of 100 %. These results were comparable to the range of the RVS (96.50 %), 

Table 11. 

Table 11 Summary statistics for cardiac fibrosis (%) evaluation methods. 

 Stereology Colocalization Genie Pathologist 

week 0 

Pathologist 

week 2 

Number of observations 116 116 116 116 116 

Mean 13.21 13.72 11.60 11.20 10.76 

Median 8.70 11.12 7.39 5.00 5.00 

Std. Error of Mean 1.42 1.14 1.43 1.44 1.61 

Range 96.50 73.79 88.22 100.00 100.00 

Minimum 0.00 1.57 0.05 0.00 0.00 

Maximum 96.50 75.36 88.27 100.00 100.00 

 

Both the Colocalization and Genie methods correlated very strongly with the RVS 

cardiac fibrosis estimates, yielding R = 0.928 and R = 0.946 (p < 0.001), respectively. 

Similarly, the pathologist’s visual score strongly correlated with RVS: R = 0.913 (p < 

0.001) at week 0 and R = 0.929 (p < 0.001) at week 2 (Table 12). 

Table 12 Pairwise correlations between stereology, digital algorithms and pathologist score 

(Pearson’s coefficients, p < 0.001, n = 116). 

 Stereology Colocalization Genie Pathologist 

week 0 

Colocalization 0.928    

Genie 0.946 0.973   

Pathologist week 0 0.913 0.839 0.841  

Pathologist week 2 0.929 0.853 0.856 0.965 
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Friedman’s test revealed statistically significant differences in the results of tested 

cardiac fibrosis evaluation methods χ
2
(3) = 62.405, p = 0.000. Post hoc analysis with 

Wilcoxon signed-rank tests with a Bonferroni correction (significance level set at p < 

0.0125) was applied. The differences in the results of Colocalization versus RVS were 

statistically insignificant (Z = -2.259, p = 0.024) with a mean difference value of 0.50 

%. However, post hoc analysis showed significant differences between the results of 

Genie versus RVS (Z = -5.000, p = 0.000) and the pathologist’s mean score versus 

RVS (Z = -4.422, p = 0.000) with mean difference values of: -1.61 % and 2.24 %. 

Similarly significant difference of the results between both digital methods (Genie 

versus Colocalization) was noted: Z = -6.639, p = 0.000 with a variance bias of 2.11 % 

(Table 13). 

 

Table 13 Paired comparison of cardiac fibrosis (%) evaluation methods. 

 Paired Differences Z* p Value* 

Mean Std. Error 

Mean 

Pair 1 Colocalization – Stereology 0.50 0.56 -2.259 0.024 

Pair 2 Genie – Stereology -1.61 0.47 -5.000 0.000 

Pair 3 Pathologist mean – 

Stereology  

2.24 0.56 -4.422 0.000 

Pair 4 Colocalization – Genie 2.11 0.42 -6.639 0.000 

* Based on post hoc analysis with Wilcoxon signed-rank tests (Bonferroni correction applied with 

significance level set at p < 0.0125). 

 

Single linear regression model plots demonstrated some advantage of Genie 

software over the Colocalization software with noticeably better values in both 

original raw and log-transformed measurements for R-square 0.896 and 0.804 (log) 

versus 0.861 and 0.707 (log); slope 0.956 and 1.222 (log) versus 0.745 and 0.639 

(log); intercept -1.033 and -0.860 (log) versus 3.875 and 0.972 (log) (Fig. 62 and Fig. 

63).  

The pathologist’s mean score correlation with RVS was similar: R-square 0.864 

and 0.684 (log), slope 0.994 and 0.838 (log), intercept -2.155 and 0.062 (log); the 

inter-observer variation at week 0 and week 2 was negligible: R-square 0.931 and 

0.824 (log), slope 1.079 and 0.939 (log), intercept -1.328 and -0.020 (log). 

Surprisingly, both digital methods did not correlate as well as expected with still 
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acceptable R-square values (0.947 and 0.794 (log)), but high intercept (4.744 and 

1.500 (log)) and slope far from ideal (0.773 and 0.486 (log)) (Fig. 64, Fig. 65 and Fig. 

66). 

A B 

  
Fig. 63 Single linear regression models with reference values. Original raw (A) and log-

transformed measurements (B) for Genie and Stereology. Linear regression line is presented 

within 95 % confidence interval. 

 

A B 

  
Fig. 62 Single linear regression models with reference values. Original raw (A) and log-

transformed measurements (B) for Colocalization and Stereology. Linear regression line is 

presented within 95 % confidence interval. 
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A B 

  
Fig. 64 Single linear regression models with reference values. Original raw (A) and log-

transformed measurements (B) for Pathologist mean score and Stereology. Linear regression 

line is presented within 95 % confidence interval. 

 

A B 

  
Fig. 65 Single linear regression models with reference values. Original raw (A) and log-

transformed measurements (B) for Pathologist score at week 0 and week 2. Linear regression 

line is presented within 95% confidence interval. 

 

A B 

  
Fig. 66 Single linear regression models with reference values. Original raw (A) and log-

transformed measurements (B) for Colocalization and Genie. Linear regression line is presented 

within 95 % confidence interval. 
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Bland-Altman plots showed a bidirectional bias dependent on the magnitude of the 

measurement: Colocalization software overestimated the area fraction of fibrosis in the 

lower end, and underestimated it in the higher end of the RVS scale (Fig. 67).  

A B 

 

 
Fig. 67 Bland-Altman plots (A) and histograms (B) of the method score differences. 

Colocalization and Stereology. Horizontal line represents mean difference within limits of 

agreement, which are defined as the mean difference ± 2 standard deviations. 

 

Meanwhile, Genie software as well as the pathologist’s mean score showed 

more uniform results throughout the complete scale with a slight underestimation in 

the mid-range for both (Fig. 68 and Fig. 69). 

A B 

 
 

Fig. 68 Bland-Altman plots (A) and histograms (B) of the method score differences. Genie and 

Stereology. Horizontal line represents mean difference within limits of agreement, which are 

defined as the mean difference ± 2 standard deviations. 
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A B 

 

 
Fig. 69 Bland-Altman plots (A) and histograms (B) of the method score differences. Pathologist 

mean score and Stereology. Horizontal line represents mean difference within limits of 

agreement, which are defined as the mean difference ± 2 standard deviations. 

 

Presented histograms indicate a normal distribution of the differences for each plot 

(Fig. 67, Fig. 68 and Fig. 69). 
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6. DISCUSSION 

6.1. Molecular mechanisms of virus-induced DCM 

The myocardium consists mainly of myocytes, extracellular matrix (ECM) and a 

capillary microcirculation system, the impairment of which causes various heart 

problems that demand different treatment strategies. A proper myocyte function is 

responsible for myocardial tension and contractile functioning, whereas ECM function 

ensures structural integrity of adjoining myocytes, myofilaments and microcirculation. 

Which of these processes: cardiomyocyte death or ECM degradation impairs 

myocardial functioning mostly depends on intensity and duration of the injury. It is 

important to estimate which part of myocardium from previously mentioned is injured 

by persistent presence of virus [252, 253].  

Data presented in this study show that persistent presence of vira (chronic viral 

infection) in myocardial tissue do not initiate inflammation, fibrosis and apoptosis. 

Decreased serum level of the sarcomeric protein hsTnT, a marker of necrotic cell death 

[254], confirms the absence of necrotic cardiomyocytic death as well. However, 

chronic viral infection may not be as innocent as it seems because the collagen 

synthesis/degradation balance (PICP/ICTP ratio) in virus-positive biopsies was found 

to be reduced 4.3 fold. Since the myocardium up to 85-90 % consists of collagen I and 

only up to 10-15 % of collagen III and other components [253, 255], the disturbance of 

collagen I turnover in the tested myocardiums may be one of the most significant 

factors in development of chronic viral DCM. In addition to the decrease of collagen I 

turnover in biopsies, α-SMA, an intracellular fibrosis marker, was also slightly down-

regulated (1.13 fold). The positive correlation of collagen I synthesis with the general 

inflammation marker CRP in serum suggests that the sustained presence of vira in the 

myocardium may further upregulate inflammation and fibrosis. Based on the results, it 

may be stated that degradation of contracting proteins, particularly collagen I, in a 

persistently virus-infected myocardium overshadows induction of inflammation and 

cardiomyocyte death.  

One of the main factors strongly implicating collagen I synthesis in myocardium is 

transforming growth factor β1 (TGF-β1). TGF-β1 plays a key role in heart remodeling 
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trough mediating cardiomyocyte growth, fibroblast activation and ECM deposition 

[256]. The TGF-β1 is not only known as fibrogenic, but also as an anti-inflammatory 

cytokine; therefore its suppression might affect both collagen synthesis as well as the 

immune system and activate inflammation [257-259]. The data show that TGF-β1 was 

3.6 fold down-regulated in virus-positive DCM biopsies, whereas in serums its level 

was almost non-altered. The mechanism by which TGF-β1 affects collagen synthesis 

is very complex and not fully known. It was also shown that TGF-β1 can directly 

activate synthesis of collagen I [260]. Additionally, TGF-β1 can activate collagen 

synthesis indirectly through the phosphorylation of SMAD proteins, increased 

endoglin expression, stimulation of TIMP1, activation of lysyl oxidase and other 

signaling systems [261-264]. The correlation analysis shows that prolonged 

intramyocardial viral infection will activate inflammation, particularly macrophage 

activity, with subsequent activation of MMP1, MMP2 and TGF-β1. Similar molecular 

mechanisms of TGF-β1 activation and collagen I deposition has been shown by other 

authors [265]. Moreover, the release of MMP9 to serum was significantly associated 

with Hsp60 (Table 6), showing that untreated viral infection might activate MMP9 and 

increase mitochondrial outer membrane permeability leading to mechanical myocyte 

dysfunction. There is also a possibility that part of MMP9 is located in and, therefore, 

released from virus-damaged mitochondria [266]. 

In parallel to TGF-β1, secreted galectin-3 may also induce collagen I production. 

Galectin-3 is a member of β-galactoside-binding animal lectins and is predominantly 

located in macrophages, whereas its expression in human hearts is limited [132]. It is 

shown that activated macrophages secrete cardiac galectin-3 that activates fibroblast 

proliferation, collagen deposition and contributes to the development of heart failure 

[132]. Galectin-3 can also activate fibrosis by increasing expression of α-SMA, an 

intracellular fibrosis marker, and collagen I α-1 chain (COL1A1), an extracellular 

fibrosis marker [267]. Parallely, galectin-3 might also affect fibrosis trough the down-

regulation of TIMP1 and MMP9 [267]. The depressed levels of α-SMA, collagen I, 

TIMP1 and MMP9 observed in the virus-positive biopsies may be a result of reduced 

serum level of galectin-3 and infiltrated macrophages. On the other hand, activation of 

MMP1 and MMP2 by intramyocardial viral infection might be enough to remodel 

myocardial collagen I trough binding to the ά-2 chain [268].  
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The last ones of the tested mechanisms indirectly affecting collagen turnover might 

be related to myocardial protecting systems. One of them is immunoregulator 

adiponectin, the role of which under different toxic conditions seems to be quite 

paradoxical. The majority of evidences show that over-expression of adiponectin has 

anti-diabetic, anti-apoptotic and anti-inflammatory effects [110, 111]. It has been also 

indicated that high adiponectin levels lower the risk for myocardial infarction but 

increases the risk for heart failure, whereas hypo-adiponectinemia was connected to 

cardiovascular diseases [112, 118, 269]. Additionally to adiponectin, BNP was also 

shown to have a cardio-protective effect [270]. However, the significantly and almost 

two fold decreased serum levels of BNP and adiponectin, and its correlation with anti-

inflammatory cytokine TGF-β1 (R
2
 = 0.459, p = 0.008) might not only show some 

endothelial dysfunction but also the reduced myocardial protection. Slight 

upregulation of major histocompatibility agent class II HLA-DR also pointed on 

endothelial cell injury in viral myocardium. Since levels of pro-inflammatory 

infiltrates and cytokines in virus-positive myocardium were reduced compared to 

virus-negative ones, the slight HLA-DR upregulation might be a direct effect of vira. 

On the other hand, correlation of adiponectin and BNP with pro-inflammatory 

infiltrates suggests a possible BNP and adiponectin overproduction due to persistent 

presence of intramyocardial viral infection leading to heart failure. Similar dependence 

of adiponectin, BNP and inflammation in heart failure were also observed by other 

authors [271, 272].  

6.2. Molecular mechanisms dominating in inflammatory DCM 

Myocarditis is a predominant cause of heart failure of young age patients [273]. 

When the immune system fails to eliminate infections in a timely fashion, a chronic 

myocardial destruction starts. Thereby, approximately 20 % of myocarditis-affected 

individuals develop a chronic heart disease leading to inflammatory DCM and only 

half of the patients survive longer than 5 years [274, 275].
 
This severe prognosis urges 

detailed investigations of the molecular mechanisms triggering progression of 

inflammation into inflammatory DCM and heart failure. 

The pathophysiology of DCM is an exceedingly complex process caused by 

activation of neurohormones and pro-inflammatory cytokines. It is becoming apparent 
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that inflammatory mediators play a crucial role in the development of DCM, 

subsequently progressing to heart failure. It is shown that the pro-inflammatory 

cytokines, such as TNF-α, IL-6 and IL-1β, may act synergistically at both messenger 

RNA (mRNA) and protein levels inducing cardiac contractile defects [276, 277]. On 

the other hand, IL-6 also referred to as myokine, activates anti-inflammatory pathways 

[278, 279]. This dual IL-6 effect might be explained by different durations of IL-6 

exposure: a short and acute IL-6 increase has a positive effect, whereas chronic 

hyperproduction results in a pathological condition [280].
 
Data of the study revealed a 

significant upregulation of IL-6 (3.23 fold, p < 0.05), much less for TNF-α (1.76 fold) 

and none for IL-1β (0.88 fold) in inflammatory DCM sera. Since inflammatory DCM 

has a chronic way of progression, the significant over-production of IL-6 in the tested 

sera may be a cause of inflammatory DCM rather than its consequence. Additionally, 

the significantly increased serum level of IL-6 and its correlation with myocardial 

CD3
+
 suggest T-lymphocytes to be involved in inflammatory DCM apoptosis, whereas 

only a slight increase of infiltrated macrophages confirmed the absence of necrosis. 

The default of pro-interleukin-1 beta (IL-1β) activation in the tested sera might be 

explained by the low intensity of myocardium inflammation, absence of caspase-1 

cleavage-activation and a pyroptotic way of cardiomyocyte death [281]. 

Recently, a strong and direct influence of IL-6 was shown on mitochondrial 

function: IL-6 inhibits adipocyte mitochondrial membrane potential, ATP production 

and increased intracellular reactive oxygen species (ROS) level [282, 283]. 
 

Additionally, a general inflammatory biomarker secreted C-reactive protein (CRP), 

similarly to IL-6, also correlates with poor DCM prognosis, heart failure and 

mitochondrion-mediated myocyte apoptosis [284-286].
 
Findings in this study showed 

that IL-6 and CRP levels in inflammatory-positive DCM serums were not only 

significantly upregulated but also significantly correlated with the secreted 

mitochondria-related apoptotic biomarkers Hsp60 and Bax suggesting that the intrinsic 

apoptotic pathway in myocardium is more sensitive to inflammation than the extrinsic 

one. The low level of upregulations of the Fas receptor, Fas ligand and caspase-8 also 

confirmed that extrinsic apoptotic pathway is less important in development of 

inflammatory DCM. 
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Many signaling pathways, including the intrinsic and extrinsic apoptotic ones, 

might have mutual interaction leading to the synergistic implication on final 

myocardial response. It was shown that the member of the extrinsic apoptotic pathway 

pro-caspase-8 might cleave the BH3 domain-only protein Bid, which in turn, activates 

Bax that integrates to mitochondrial membranes, thereby releasing cytochrome C [287, 

288].
 
In agreement with previous observations, data in the present study show a 

significant correlation between caspase-8 and Bax in inflammatory DCM sera, 

suggesting that Bax is one of the most important intersection points between the 

intrinsic and extrinsic apoptotic pathways. However, the approximately 30 folds higher 

initial level of caspase-9 compared to caspase-8 in inflammatory DCM biopsies 

suggests the intrinsic apoptotic pathway to be leading in inflammatory DCM. 

Similarly, other authors also have observed a low impact of the extrinsic apoptotic 

pathway on cardiomyocyte death [289]. 

In addition to the intrinsic apoptotic pathway, MMP-9 was also found to be 

sensitive to inflammation and to participating in the pathogenesis of cardiomyopathy 

[290].
 
The intensity of MMP9 activation also indicates the level of heart damage: 

higher proteolytic MMP9 activity is related to more pronounced heart damage. Data of 

this study show a slight increase of MMP9/TIMP1 ratios both in biopsies (from 0.25 to 

0.35) and in serums (from 0.23 to 0.25) of inflammatory DCM patients. Even if the 

increase of the MMP9/TIMP1 ratio in inflammatory DCM biopsies was mild and not 

fully significant, it significantly correlated with markers of both apoptotic pathways 

(Bcl-2, Fas receptor and Fas ligand, Table 10) supporting the idea of chronic 

remodeling of the mitochondrial outer membrane and activation of the extrinsic 

apoptotic pathway. Additional correlation of MMP-9 with caspase-9 and -8 in the 

tested serums confirmed previous statement. 

In parallel to apoptosis, we investigated the necrotic way of myocardial cell death. 

Necrosis, as a passive and adenosine triphosphate (ATP)-independent process, was 

shown to be more characteristic to acute and global cardiomyocyte damage than to 

chronic processes [291]. Another way of cell death, a regulated necrosis (also known 

as caspase-independent death or necroptosis), is suppressed by activated pro-caspase-8 

and therefore absent in tested samples similar to what has been shown by others [292].
 

Since histological analysis of the samples did not show myocardial necrosis and 
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fibrosis, the release of serum sarcomeric protein hsTnT is related to decreased 

myocardium contraction. However, the myofilament degradation and irreversible 

myocardium damage might be supported by prolonged hsTnT leakage out of 

myocardium. Additionally, we suggest that the release of hsTnT is a caspase-related 

process, as the secreted hsTnT significantly correlated with activation of the apoptotic 

signaling cascade: caspases-8, Bax and caspase-3 in inflammatory DCM biopsies.  

6.3. Quantification of myocardial fibrosis by digital image analysis and 

interactive stereology 

To this day a pathologist’s visual score is widely accepted as ground truth and, 

despite already available digital methods, it is still used as a primary method for 

histomorphometric evaluations. Many attempts to incorporate digital methods into 

clinical practice face the same issue of proper validation – the digital analysis data are 

commonly compared to semi-quantitative visual evaluation, while most direct criterion 

standard yet requires time-consuming procedures. 

The early study of Vasiljevic et al. [208] based on human endomyocardial biopsies 

compared results of semi-quantitative scoring, point-lesion counting (using a grid) to 

computer-assisted methods. This was the first study to demonstrate strong correlation 

of different cardiac fibrosis scoring methods, however, due to considerable input by 

the investigator in computer analysis it still can be considered as subjective to some 

degree. Particularly since a stereology test grid was not used for RVS. Hadi et al. [211] 

quantified cardiac fibrosis by automated analysis using ImageJ software and traditional 

polarization microscopy, with subsequent validation of the results, using stereology 

data as criterion standard. To our knowledge, it is the only study of cardiac fibrosis 

that applied stereology procedures to obtain RVS; however, the validation was 

performed on rat cardiac rather than human samples (the analysis was then tested on a 

post-mortem tissue samples from a 78 year old man). 

In this study, several methods were tested to evaluate the extent of human cardiac 

fibrosis, which can be readily implemented in clinical practice today. Stereology was 

used as the most independent and objective RVS available and a modified Bland-

Altman plot as the best statistical tool to measure agreement between the tested 

method and a RVS. 
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The initial data were somewhat in favor of the Colocalization software: it 

demonstrated the closest fibrosis mean value to a reference and resulting difference of 

0.50 % was statistically insignificant. However, the Colocalization software had a 

noticeably narrower variation, which was 20 % behind the RVS and the pathologist’s 

range, and also 15 % behind the Genie software. This drawback may be not of great 

importance in clinical practice, as the range limitation was only evident in the higher 

range and myocardium fibrosis hardly reaches these values, whereas the lower range 

was acceptable. Further analysis revealed the superiority of Genie software: the higher 

correlation with RVS, the better values in single linear regression against the reference 

and, most importantly, more uniform results in Bland Altman analysis. While the 

Colocalization software was overestimating at the lower end and underestimating at 

the higher end, Genie software was only slightly underestimating in a mid-range with 

the results still exceeding those of the pathologist’s mean score. Of note, both digital 

algorithms produced slightly different results, a fact that might appear surprising. 

Despite both algorithms are aimed to measure the same feature, namely, the proportion 

of connective tissue in the myocardium, they are still based on different principles and 

may result in different measurement errors. While Colocalization classifies each pixel 

according to its color characteristics, the Genie software is based on a far more 

complex pattern recognition system, which also refers to spatial aspects of the image. 

Probably, the only relevant drawback of Genie was the underestimation bias of 1.61 % 

from the RVS. Overall, the Genie classifier performed best in this study, being closest 

to the RVS, with almost perfect correlation, adequate range and uniform results 

throughout the whole scale.  

Potential limitations of the Genie software are related to the necessity to train the 

system to identify the various structures of interest, which is time-consuming and 

based on the inherent subjectivity of the “human trainer”. This fact also makes the 

Genie software sensitive to inter-laboratory reproducibility issues. However, after the 

adaptation of Genie software to the clinical needs it can be run fully automated and as 

a result it can be equally as time-efficient as the Colocalization software is. The Genie 

software has the possibility of tuning the algorithm, which makes it more flexible in 

practical maintenance. Even if 2 % is an acceptable error for cardiac fibrosis estimate 
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in clinical sense, this algorithm may require further adaptation to potential sources of 

slide quality variation. 

The Colocalization software has also proved to be a fully acceptable method for 

cardiac fibrosis measurement. In clinical practice, the Colocalization software should 

provide similar precision and accuracy as the Genie tool, because cardiac fibrosis 

values are rarely exceeding 40 %, and a slight overestimation in the lower range may 

be acceptable. The Colocalization software is less complex, simpler to use and 

calibrate, and less expensive. Furthermore it can be run fully automated from image 

scanning to the final results and it is very time efficient. The Colocalization algorithm 

is less dependent on human investigator input at any point of the process (except initial 

settings for color deconvolution), making it more transparent and manageable for 

users. 

6.4. Summary 

Finalizing data presented in this study we can state that therapeutic strategies for 

myocarditis and dilated cardiomyopathy should be obtained through analysis of the 

acute, subacute and chronic phases. Most of recent studies are concentrated on the 

investigation of acute myocardial injuries, whereas chronic myocardial injuries are less 

symptomatic but more complicated for investigation and treatment. In this study we 

investigated molecular mechanisms dominating in chronic viral cardiomyopathy due 

to viral persistence in dilated heart without ongoing inflammation and chronic 

inflammatory DCM. The aetiology of inflammatory DCM was assumed to be either 

infectious, toxic or autoimmune. The most important thing is that both types of 

investigated chronic DCM, showed different molecular mechanism suggesting more 

options for further DCM treatment. 

However, chronic DCM patients are usually treated according to general 

guidelines regardless of their etiology. Our data suggest that conventional therapeutic 

agents for chronic DCM and heart failure such as β-blockers, angiotensin-converting 

enzyme (ACE) inhibitors, angio-tensin receptor blockers and other can be combined 

with others such as collagen I metabolism regulating (in case of chronic viral DCM) 

and anti-apoptotics (in case of idiopathic chronic inflammatory DCM). The 

foreseeable future therapeutic approach for various types of chronic dilated 



97 

 

cardiomyopathy should be directed to control and regulation of molecular mechanisms 

progressing DCM. The technological and scientific progress is also improving a 

quality of estimation of myocardial functioning regulating processes such as fibrosis. 

We sincere hope that our data contribute not only to a better understanding of 

molecular mechanism progressing chronic DCM but also to new therapeutic options. 
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7. CONCLUSIONS 

1. Chronic viral DCM did not induce inflammation, fibrosis and cardiomyocyte 

death. Destruction of myocardial contraction, particularly trough changed 

collagen I turnover, dominates in virus-positive DCM. 

2. The improper functioning of collagen I in virus-positive biopsies is affected 

by reduction of TGF-β1 (3.55 fold) and activation of MMP1 and MMP2 

(2.19 and 2.43 fold). Decreased serum levels of galectin-3, adiponectin and 

BNP (1.16, 1.88 and 1.97 fold) indirectly down-regulated collagen I turnover 

and diminished general resistance of viral myocardium. 

3. Chronic inflammatory-positive myocardium compared to inflammatory-

negative showed the highest level of infiltrated T-lymphocytes(14.6 

cell/mm
2
) that significantly correlated with 3.50 fold augmented secretion of 

inflammatory cytokines, particularly IL-6. 

4. Chronic myocardial inflammation significantly increased the release of 

caspase-9,-8, and-3 (6.24, 3.10, 3.62 folds, (p < 0.05)) into serum. 

Significant increase of Hsp60 (8.97 fold) in serum showed the impairment of 

mitochondria and also the importance of intrinsic apoptotic pathway in 

inflammatory DCM. 

5. The extrinsic apoptotic pathway (FasR, FasL and caspase-8) was a supporter, 

but not a main leader in the progression of chronic inflammatory DCM. The 

pro-apoptotic Bax is an important intersection point for the extrinsic-and 

intrinsic apoptotic pathways. 

6. Slight increase of MMP9/TIMP1 ratios both in biopsies (from 0.19 to 0.48, 

p<0.05) and in serums (from 0.23 to 0.25) and two fold increased release of 

hsTnT into serum attenuated fibrosis in chronically-inflamed myocardium. 

7. The Genie algorithm proved to be the method of choice with the single 

drawback of a slight underestimation bias that can be acceptable for clinical 

and research demands to quantify the extent of fibrosis in myocardial 

biopsies. 
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