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A B S T R A C T

The authors conduct a comprehensive analysis of the relationship between carbon emissions and income 
inequality for the Canadian provinces for the 1997 to 2020 period. The results indicate that the short-run and 
long-run effects of the income share of the top 10 % and the top 5 % on province-level emissions are positive, 
robust to various model specifications, net of multiple demographic and economic factors, not sensitive to 
exogenous shocks or outlier cases, symmetrical, statistically equivalent for emissions from different sectors, and 
their short-term effects do not vary in magnitude through time. The findings also consistently show that the 
estimated effect of the Gini coefficient on province-level emissions is not statistically significant. Overall, the 
results underscore the importance in modeling the effects of income inequality measures that quantify different 
characteristics of income distributions, and they are very consistent with analytical approaches regarding power 
concentration, overconsumption, and status competition that suggest that a higher concentration of income leads 
to growth in anthropogenic carbon emissions.

1. Introduction

Income inequality is a topic of substantial and growing interest 
within scientific research on the anthropogenic drivers of climate 
change [1–5]. Many studies focus on how carbon dioxide (CO2) emis
sions is associated with income inequality in global, national, and sub- 
national contexts [6–22]. The inclusion of and engagement with this 
research in synthesis and policy documents, such as the IPCC assessment 
reports and national climate assessments, has also grown in recent years 
[23,24]. This inclusion and engagement is perhaps not surprising, given 
that income inequality is found in many studies to be associated with 
anthropogenic emissions, which highlights the necessity for equity 
considerations when addressing both the societal causes and conse
quences of the climate crisis [10,25–31].

We add to this important area of climate change research by focusing 
on the relationship between CO2 emissions and income inequality in 
Canada, which is one of the world's largest emitters, ranking tenth in the 
year 2020 for territorial CO2 emissions [32] and eleventh for 
consumption-based (i.e., adjusted for trade) CO2 emissions [33]. Using a 

range of statistical modeling techniques, we conduct an analysis of the 
effects of inequality on emissions for the Canadian provinces for the 
1997 to 2020 period. While other recent research investigates the 
relationship between carbon emissions and income inequality for Can
ada as a whole [34], to our knowledge, the present study is the first to 
analyze this relationship in a longitudinal, Canadian cross-province 
context. Without question, Canada's economy is energy-intensive and 
the nation is among the world's greatest carbon polluters. We suggest a 
focus on province-level emissions is critical, given the power provinces 
have in regulating emissions and implementing measures that could 
reduce inequality. We consider multiple measures of income inequality, 
including the income share of the top 10 %, income share of the top 5 %, 
and the Gini coefficient. The inclusion of the three inequality measures 
is important on both measurement and substantive grounds: they cap
ture different characteristics of income distributions and are therefore 
well suited to empirically evaluate the arguments of different analytical 
approaches.

One analytical approach suggests that a higher concentration of in
come is likely to be associated with higher levels and growth in 
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anthropogenic CO2 emissions and other forms of pollution. Those in the 
top of the income distribution are more likely to be owners of carbon- 
polluting firms, be major investors in carbon-intensive sectors, serve 
on the boards of firms and corporations, consume more goods and ser
vices with substantial environmental impacts, live in larger spaces and 
own multiple homes, and participate much more frequently in expensive 
carbon-intensive activities, such as air travel [14,17,35]. They are also 
likely to utilize their economic resources to gain disproportionate in
fluence in climate, energy, and other areas of environmental policy, as 
they benefit financially from carbon-polluting economic activities 
[36–42]. A second approach argues that a higher concentration of in
come causes enhanced status competition, leading to increased CO2 
emissions. Middle- and low-income households increase their spending 
to emulate the highly visible and culturally desirable carbon-intensive 
lifestyles of high-income individuals and households [43]. This is 
referred to as both the “Veblen effect” [44,45] and the “influencer 

effect” [17], and is amplified when there is a greater concentration of 
income and wealth [46,47]. Many researchers consider concentration 
measures, such as the income share of the top 10 % and the top 5 %, to be 
ideal for empirically evaluating the propositions of these two ap
proaches, with multiple studies finding empirical support for them 
[1,13,16,34,47].

A third analytical approach suggests that CO2 emissions are nega
tively associated with income inequality since the marginal propensity 
to emit decreases as household income increases [48–50]. Each addi
tional dollar of household income will lead to a larger marginal increase 
in emissions in low-income households compared to middle-income 
households, and in middle-income households compared to high- 
income households. A fourth approach, influenced by Keynesian 
thinking, argues that the marginal propensity to consume declines with 
increases in household income, and therefore, a top-to-bottom redistri
bution of income, which reduces income inequality, could increase 

Fig. 1. Canadian Provinces and Their Total CO2 Emissions (kt) in 1997 and 2020. Notes: Abbreviations are used for provinces: BC = British Columbia, AB = Alberta, 
SK = Saskatchewan, MB = Manitoba, ON = Ontario, QC = Quebec, NL = Newfoundland and Labrador, NB = New Brunswick, PE = Prince Edward Island, and NS =
Nova Scotia; for emissions, provinces are listed in order from west to east based on their geographical locations.
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overall consumption and CO2 emissions [16]. Given how it measures 
inequality within distributions, the Gini coefficient is often considered 
the more appropriate income inequality measure for testing the argu
ments of these two approaches, with prior research yielding inconsistent 
findings [20,51–54].

Fig. 1 provides a map of the ten Canadian provinces and bar charts 
for their total CO2 emissions (i.e., territorial emissions, also known as 
production-based emissions, for all sectors combined) in 1997 and 2000, 
and Fig. 2 includes bar charts for the three income inequality measures: 
income share of the top 10 %, income share of the top 5 %, and the Gini 
coefficient (see Methods section for descriptions of these data). Levels 
and changes in emissions differ greatly, with Alberta having the largest 
emissions in 2020 (204,324.30 kt), followed by Ontario (122,299.28 kt) 
and Quebec (57,113.66 kt), with Prince Edward Island having the 
smallest total emissions in 2020 (1124.89 kt), followed by Newfound
land and Labrador (7766.87 kt) and New Brunswick (9909.85 kt). Four 
provinces increased their emissions from 1997 to 2020 (Alberta, British 
Columbia, Manitoba, Saskatchewan), while six decreased their emis
sions to some extent (New Brunswick, Newfoundland and Labrador, 
Nova Scotia, Ontario, Prince Edward Island, Quebec).

For the inequality measures in Fig. 2, income share of the top 10 % 
for the year 2020 was greatest in Alberta (36.80 %), followed by Ontario 
(32.00 %) and British Columbia (31.00 %), with Prince Edward Island 
having the lowest (14.60 %), followed by New Brunswick (16.10 %), and 
Nova Scotia (17.90 %). Four provinces experienced an increase from 
1997 to 2020 (Alberta, Newfoundland and Labrador, Quebec, Sas
katchewan), while six experienced a decrease (British Columbia, Man
itoba, New Brunswick, Nova Scotia, Ontario, Prince Edward Island). 
Similar but not identical patterns occur for income share of the top 5 %: 
Alberta had the highest level in 2020 (25.10 %), followed by Ontario 
(20.80 %) and British Columbia (20.30 %), with Prince Edward Island 
having the lowest (9.00 %), followed by New Brunswick (9.60 %), and 
Nova Scotia (10.80 %). Alberta, British Columbia, Newfoundland and 
Labrador, Quebec, and Saskatchewan experienced increases from 1997 
to 2020, while the other five provinces experienced decreases in income 
share of the top 5 %. Ontario had the largest Gini coefficient in 2020 
(0.29), followed by British Columbia (0.28) and five provinces with 
coefficients of 0.27. Nova Scotia, Prince Edward Island, and Quebec had 
the lowest in 2020, each with a value of 0.26. All provinces except 
Newfoundland and Labrador and Prince Edward Island experienced 
decreases in their Gini coefficient from 1997 to 2020.

Informed by prior research and the various analytical approaches to 
the relationship between emissions and income inequality, our analysis 
focuses on both the short-run and long-run effects of income inequality 
on province-level CO2 emissions. We also assess if the effects of 
inequality are robust to various model specifications, net of multiple 
economic and demographic factors, symmetrical, sensitive to exogenous 
shocks, statistically equivalent for emissions from different sectors, and 
if the short-term effects of inequality on emissions vary in magnitude 
through time. We turn now to the Methods section, where we describe 
the analyzed sample and data, as well as the various statistical modeling 
techniques that we use to conduct the analysis.

2. Data and methods

2.1. Data

The analyzed dataset consists of yearly observations from 1997 to 
2020 for the ten provinces in Canada (Alberta, British Columbia, Man
itoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, 
Ontario, Prince Edward Island, Quebec, Saskatchewan). These are the 
years in which data are currently available for both the dependent 
variable and the key independent variables. Consistent with prior 
research on anthropogenic drivers of emissions, the Canadian Territory 
jurisdictions are excluded from this study because their political struc
tures differ from that of the provinces [55], and there is less data 

available on the primary independent variables for the territories than 
for the provinces.

The dependent variable is anthropogenic Total Carbon Dioxide (CO2) 
Emissions (i.e., territorial), measured in kilotons (kt). These data are 
publicly available from Canada's Official Greenhouse Gas Inventory (htt 
ps://www.canada.ca/en/environment-climate-change/services/c 
limate-change/greenhouse-gas-emissions/inventory.html). The inde
pendent variables of interest are Income Share of the Top 10 %, Income 
Share of the Top 5 %, and the Gini Coefficient. These data, which are 
based upon after tax income for all tax filers, are publicly available from 
Statistics Canada (https://www.statcan.gc.ca/en/start).

Additional independent variables, which are also obtained from 
Statistics Canada, include Total Population, GDP Per Capita (chained 
2012 dollars), Non-Dependent Population (percent of population aged 
15 to 64), Manufacturing as % GDP, Agriculture as % GDP, Services as % 
GDP, Energy as % GDP, and Fossil Fuels as % GDP. These economic and 
demographic measures, which capture a range of the characteristics of 
the provinces, are among the most common controls in the anthropo
genic drivers research [2,3,5]. Univariate descriptive statistics for all 
variables included in the analysis are provided in the table in Appendix 
1. The full dataset is available from the lead author upon request, and 
will also be posted on the lead author's lab website.

2.2. General modeling approach

All models are estimated using Stata (version 18), and all Stata code 
used for the reported analysis are available from the lead author upon 
request, and will also be posted on the lead author's lab website. 
Consistent with much other research on the anthropogenic drivers of 
CO2 emissions, all nonbinary variables are transformed into logarithmic 
form. This means the models estimate elasticity coefficients where the 
coefficient for the independent variable is the estimated net percentage 
change in the dependent variable associated with a 1 % increase in the 
independent variable [56].

With the exception of Table 5, Table 6, and Appendix 2, all reported 
models are estimated with the xtreg, fe command. Given the relatively 
small number of cases (10 provinces) and moderate size of T (24 yearly 
observations per province), hc2 clustered robust standard errors are 
estimated with all xtreg models, with the p-values computed using 
adjusted degrees of freedom [57,58]. The hc2 standard errors tend to 
produce slightly more conservative confidence intervals than other 
standard error approaches, leading to more conservative hypothesis 
testing [58]. The xtreg, fe command uses the within estimator to account 
for province-level fixed effects, and temporal fixed effects are derived 
from the inclusion of year-specific dummy variables [59].

All estimated models are dynamic, meaning they include the lagged 
dependent variable as a control. Panel data are often autoregressive, 
meaning the data tend to be correlated over time, and excluding the lag 
of the dependent variable from the model will result in omitted variable 
bias if the outcome variable is truly a function of their past value [60]. 
Including the lagged dependent variable also allows for the estimation of 
both short-run and long-run effects of independent variables. The gen
eral equation for Model 3 in Table 1 and Table 2 (the first model in each 
of the two tables to include both relevant inequality variables) is as 
follows: 

CO2Emissionsi,t = λ1CO2Emissionsi,t− 1

+ β1Income Share of Top 10% or Top 5%i,t

+ β2Gini Coefficienti,t + β3Total Populationi,t

+ β4GDP per capitai,t

+ β5NonDependent Populationi,t + αi + ut + εi,t.

The short-run estimated effects are β1 to β5, and the long-run effects 
are estimated by dividing each short-run estimate by 1-λ1. The long-run 
effects are calculated using the community-contributed lreff command 
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in Stata [61], which serves as a wrapper for the nlcom command that 
computes standard errors using the delta method. The short-run esti
mates correspond to the immediate change in emissions, while the long- 
run effects estimate the total change in emissions over time.

2.3. Asymmetrical analysis

For the asymmetrical analysis reported in Table 3 and Table 4, we 
follow the standard approach to modeling asymmetry by including the 
positive and negative partial sums of each income inequality measure in 
the models [62–65]. xi,t is decomposed as xi,t = xi,0 + x+

i,t + x−
i,t , where x+

i,t 

and x−
i,t are partial sums around a threshold of zero: 

x+
i,t =

∑t

j=1
Δx+

i,t =
∑t

j=1
max

(
Δx+

i,t ,0
)

x−
i,t =

∑t

j=1
Δx−

i,t =
∑t

j=1
min

(
Δx−

i,t , 0
)

In other words, two series are generated that estimate the running 
totals of the positive (x+

i,t) and negative (x−
i,t) changes in xi,t. A Wald test is 

then used to test whether the coefficients of the two sums are equal. If 
they are statistically different then there is evidence of asymmetry. The 
partial sums are generated in Stata 18 using the community contributed 
xtasysum command [66].

2.4. Testing the simultaneous effects of income inequality on energy and 
non-energy emissions

We use a stacked regression analysis, reported in Table 5 and Table 6, 
to test whether the effects of income inequality are different on energy 
and non-energy CO2 emissions. “Stacking” is a procedure that appends 
the two samples of data together, which doubles the number observa
tions used in the analysis [67]. A new dependent variable is generated 
that equals the value of energy emissions in the first half of the data and 
equals the value of non-energy emissions in the second half. Indepen
dent variables, unit-specific intercepts, and time-specific intercepts are 
generated for each sample too. A useful property of this approach is that 
the coefficients and standard errors are equal to the non-stacked esti
mates, and a simple Wald test can be performed to test whether the 
effects are equivalent.

2.5. Interactions between income inequality and time

The models reported in Table 7 include interactions between income 
share of the top 10 % and the top 5 % and the dummy variables for year. 
The reference year is 1997, and the coefficient for the main effect of each 
inequality measure is it's estimated short-term effect on CO2 emissions in 
1997. The short-term effect of the inequality measures for the other time 
points equals the sum of the coefficient for their main effect (i.e., their 
effect in 1997) and the appropriate interaction term if the latter is sta
tistically significant [59].

Fig. 2. Income Share of Top 10 %, Income Share of Top 5 %, and Gini Coefficient for Canadian Provinces in 1997 and 2020. Notes: Abbreviations are used for 
provinces: BC = British Columbia, AB = Alberta, SK = Saskatchewan, MB = Manitoba, ON = Ontario, QC = Quebec, NL = Newfoundland and Labrador, NB = New 
Brunswick, PE = Prince Edward Island, and NS = Nova Scotia; provinces are listed in order from west to east based on their geographical locations.
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3. Results

Table 1 reports eight dynamic models of province-level CO2 emis
sions for the 1997 to 2020 period, which focus on the short-run and long- 
run effects of the income share of the top 10 % and the Gini coefficient. 
All models control for population size, GDP per capita, the relative size 
of the non-dependent population, lagged CO2 emissions, and include 
both case-specific and year-specific fixed effects. Models 4 through 8 
include a different economic sector measure as an additional control: 
manufacturing as % GDP, agriculture as % GDP, services as % GDP, 
energy as % GDP, or fossil fuels as % GDP. Since the overall sample size 

is relatively small, we do not estimate fully saturated models that 
include all the control variables. Models 1 and 2 focus on the income 
inequality measures separately, while Models 3 through 8 include both. 
As a reminder, elasticity coefficients are reported, where the coefficient 
for an independent variable is the estimated net percentage change in 
the dependent variable associated with a 1 % increase in the 

Table 1 
Coefficients for the regression of total CO2 emissions for Canada Provinces, 1997 to 2020.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Income Share of Top 10 % 0.150^ 0.170* 0.172^ 0.161* 0.182* 0.163* 0.172*
(0.056) (0.056) (0.068) (0.054) (0.051) (0.059) (0.056)

Gini Coefficient − 0.054 − 0.177 − 0.173 − 0.191 − 0.194 − 0.183 − 0.181
(0.139) (0.145) (0.164) (0.157) (0.151) (0.161) (0.146)

Total Population 0.396** 0.308 0.387** 0.383** 0.405** 0.379** 0.429** 0.387**
(0.090) (0.173) (0.088) (0.075) (0.093) (0.092) (0.092) (0.089)

GDP Per Capita 0.175 0.217^ 0.179 0.176 0.144 0.067 0.218^ 0.169
(0.079) (0.091) (0.084) (0.094) (0.077) (0.195) (0.084) (0.100)

Non-Dependent Population 0.797 0.734 0.834 0.856 1.105^ 0.792 0.825 0.834
(0.475) (0.648) (0.463) (0.608) (0.465) (0.467) (0.429) (0.466)

Manufacturing as % GDP − 0.006
(0.078)

Agriculture as % GDP − 0.052
(0.031)

Services as % GDP − 0.140
(0.290)

Energy as % GDP 0.043
(0.028)

Fossil Fuels as % GDP 0.002
(0.006)

Lagged Carbon Emissions 0.756*** 0.825*** 0.748*** 0.748*** 0.729*** 0.750*** 0.743*** 0.746***
(0.037) (0.042) (0.036) (0.043) (0.043) (0.037) (0.035) (0.040)

Long-Run Effects for 0.616*** 0.673*** 0.680*** 0.595*** 0.727*** 0.634*** 0.677***
Income Share of Top 10 % (0.188) (0.181) (0.208) (0.137) (0.189) (0.177) (0.175)
R-squared within 0.874 0.875 0.876 0.876 0.878 0.876 0.877 0.876

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard errors, p-values computed using adjusted degress of freedom); N = 240, with 24 
observations per province; non-binary variables are in logarithmic form; ***p < .001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 clustered robust standard errors in 
parentheses; all models include province-specific fixed effects derived from the within estimator and unreported year-specific intercepts; p-value for income share of 
top 10 % is 0.053 in Model 1 and 0.062 in Model 4; long-run effects estimated with Thombs' user-generated lreff command in Stata.

Fig. 3. The long-run effect of the income share of the top 10 % on total CO2 emissions. Notes: Based on Model 3 in Table 1; Cum. Effect = Cumulative effect; 95 % CI 
= 95 % confidence intervals.
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independent variable.1

The findings indicate that the income share of the top 10 % has a 
positive and statistically significant short-run effect on CO2 emissions, 
while the estimated effect of the Gini coefficient is not statistically sig
nificant. The point estimate of the elasticity coefficient for income share 
of the top 10 % is relatively consistent across models, ranging from 

0.150 in Model 1 to 0.182 in Model 6. For Model 3, which is the first to 
include both inequality measures, the point estimate is 0.170, meaning 
that in the short run, a 1 % increase in the income share of the top 10 % 
leads to a 0.170 % increase in CO2 emissions.

The long-run effect of the income share of the top 10 % is provided 
towards the bottom of the table (the long-run effect of the Gini coeffi
cient is not estimated and reported since the short-run effect is not 
significantly different than zero). For Model 3 it is 0.673 and statistically 
significant, meaning that a 1 % increase in the income share of the top 
10 % increases CO2 emissions by 0.673 % over the long run. Fig. 3 il
lustrates the percentage change in emissions over a 10-year period 

Table 2 
Coefficients for the regression of total CO2 emissions for Canada Provinces, 1997 to 2020.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Income Share of Top 5 % 0.122^ 0.136* 0.138^ 0.129* 0.148* 0.131* 0.138*
(0.046) (0.046) (0.056) (0.044) (0.043) (0.048) (0.046)

Gini Coefficient − 0.055 − 0.172 − 0.167 − 0.184 − 0.192 − 0.178 − 0.176
(0.139) (0.139) (0.158) (0.150) (0.145) (0.155) (0.140)

Total Population 0.364** 0.308 0.351** 0.346** 0.369* 0.339* 0.393** 0.350*
(0.084) (0.173) (0.086) (0.075) (0.094) (0.092) (0.096) (0.089)

GDP Per Capita 0.175^ 0.217^ 0.179 0.175 0.146 0.047 0.217^ 0.167
(0.071) (0.091) (0.076) (0.086) (0.068) (0.210) (0.081) (0.096)

Non-Dependent Population 0.854 0.734 0.896 0.924 1.148^ 0.851 0.884 0.897
(0.450) (0.648) (0.433) (0.576) (0.448) (0.440) (0.406) (0.437)

Manufacturing as % GDP − 0.007
(0.077)

Agriculture as % GDP − 0.050
(0.030)

Services as % GDP − 0.165
(0.288)

Energy as % GDP 0.042
(0.026)

Fossil Fuels as % GDP 0.002
(0.006)

Lagged Carbon Emissions 0.764*** 0.825*** 0.758*** 0.758*** 0.740*** 0.761*** 0.753*** 0.756***
(0.035) (0.042) (0.033) (0.039) (0.040) (0.035) (0.034) (0.037)

Long-Run Effects for 0.518** 0.563*** 0.571** 0.494*** 0.621*** 0.529*** 0.567***
Income Share of Top 5 % (0.164) (0.160) (0.187) (0.124) (0.174) (0.153) (0.157)
R-squared within 0.874 0.876 0.876 0.876 0.878 0.876 0.877 0.876

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard errors, p-values computed using adjusted degress of freedom); N = 240, with 24 
observations per province; non-binary variables are in logarithmic form; ***p < .001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 clustered robust standard errors in 
parentheses; all models include province-specific fixed effects derived from the within estimator and unreported year-specific intercepts; p-value for income share of 
top 5 % is 0.052 in Model 1 and 0.065 in Model 4; long-run effects estimated with Thombs' user-generated lreff command in Stata.

Fig. 4. The long-run effect of the income share of the top 5 % on total CO2 emissions. Notes: Based on Model 3 in Table 2; Cum. Effect = Cumulative effect; 95 % CI 
= 95 % confidence intervals.

1 The results of tests for serial correlation in the errors, using the community 
contributed xtserialpm command in Stata [68], are not statistically significant 
for all models in Table 1 and Table 2.
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resulting from a 1 % increase in the share of income going to the top 10 
%. As the figure shows, the largest increase in emissions occurs in the 
immediate time period (0.170, which is the short-run effect). By year 10, 
94.5 % of the total effect occurs (0.636).

Turning to the control variables, the estimated coefficient for pop
ulation size is positive and statistically significant, with the exception of 
Model 2, while the coefficient for GDP per capita is positive and statis
tically significant in Models 2 and 7, and the coefficient for non- 
dependent population is positive and significant in Model 5. The 

Table 3 
Asymmetric regression of total CO2 emissions for Canada Provinces (short-run 
effects), 1997 to 2020.

Top 10 % Top 5 %

Income Share of Top 10 % (+) 0.171^
(0.075)

Income Share of Top 10 % (− ) 0.166
(0.087)

Income Share of Top 5 % (+) 0.151^
(0.061)

Income Share of Top 5 % (− ) 0.108
(0.055)

Short-Run Asymmetry (Wald Test) 0.00 0.29

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard 
errors, p-values computed using adjusted degress of freedom); N = 240, with 24 
observations per province; non-binary variables are in logarithmic form; ***p <
.001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 clustered robust standard 
errors in parentheses; all models include province-specific fixed effects derived 
from the within estimator and unreported year-specific intercepts; models 
control for Gini Coefficient, Total Population, GDP Per Capita, Non-Dependent 
Population, and Lagged Carbon Emissions; p-value for Income Share of Top 
10 % (+) is 0.074 and for Income Share of Top 5 % (+) is 0.057; Wald Tests are 
not statistically significant.

Table 4 
Asymmetric regression of total CO2 emissions for Canada Provinces (long-run 
effects), 1997 to 2020.

Top 10 % Top 5 %

Income Share of Top 10 % (+) 0.676**
(0.230)

Income Share of Top 10 % (− ) 0.657^
(0.383)

Income Share of Top 5 % (+) 0.605***
(0.185)

Income Share of Top 5 % (− ) 0.434^
(0.233)

Long-Run Asymmetry (Wald Test) 0.00 0.32

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard 
errors, p-values computed using adjusted degress of freedom); N = 240, with 24 
observations per province; non-binary variables are in logarithmic form; ***p <
.001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 clustered robust standard 
errors in parentheses; all models include province-specific fixed effects derived 
from the within estimator and unreported year-specific intercepts; models 
control for Gini Coefficient, Total Population, GDP Per Capita, Non-Dependent 
Population, and Lagged Carbon Emissions; p-value for Income Share of Top 
10 % (− ) is 0.086 and for Income Share of Top 5 % (− ) is 0.062; long-run effects 
estimated with Thombs' user-generated lreff command in Stata; Wald Tests are 
not statistically significant.

Table 5 
Stacked regression of energy and non-energy CO2 emissions for Canada Prov
inces (short-run effects), 1997 to 2020.

Top 10 % Top 5 %

Income Share Coefficients for Energy Emissions 0.172* 0.138*
(0.057) (0.047)

Income Share Coefficients for Non-Energy Emissions 0.207 0.201
(0.100) (0.103)

Wald Test for Short-Run Income Share (Energy Emissions) 0.09 0.22
= Short-Run Income Share (Non-Energy Emissions)

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard 
errors, p-values computed using adjusted degress of freedom); N = 480, with 24 
observations per province for each emissions outcome; non-binary variables are 
in logarithmic form; ***p < .001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 
clustered robust standard errors in parentheses; all models include province- 
specific fixed effects derived from the within estimator and unreported year- 
specific intercepts; models control for Gini Coefficient, Total Population, GDP 
Per Capita, Non-Dependent Population, and Lagged Carbon Emissions; Wald 
Tests are not statistically significant.

Table 6 
Stacked regression of energy and non-energy CO2 emissions for Canada Prov
inces (long-run effects), 1997 to 2020.

Top 10 % Top 5 %

Income Share Coefficients for Energy Emissions 0.670*** 0.562***
(0.191) (0.169)

Income Share Coefficients for Non-Energy Emissions 0.574^ 0.551^
(0.308) (0.322)

Wald Test for Long-Run Income Share (Energy Emissions) 0.06 0.01
= Long-Run Income Share (Non-Energy Emissions)

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard 
errors, p-values computed using adjusted degress of freedom); N = 480, with 24 
observations per province for each emissions outcome; non-binary variables are 
in logarithmic form; ***p < .001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 
clustered robust standard errors in parentheses; all models include province- 
specific fixed effects derived from the within estimator and unreported year- 
specific intercepts; models control for Gini Coefficient, Total Population, GDP 
Per Capita, Non-Dependent Population, and Lagged Carbon Emissions; for Non- 
Energy Emissions, p-value for Income Share of Top 10 % is 0.062 and for Income 
Share of Top 5 % is 0.087; long-run effects estimated with Thombs' user- 
generated lreff command in Stata; Wald Tests are not statistically significant.

Table 7 
Coefficients for the regression of total CO2 emissions for Canada Provinces, 1997 
to 2020.

Income share of Income share of

Top 10 % Top 5 %

Inequality 0.233* (0.087) 0.201* (0.081)
Inequality*1998 − 0.023 (0.066) − 0.024 (0.055)
Inequality*1999 0.104 (0.063) 0.089 (0.060)
Inequality*2000 0.040 (0.054) 0.031 (0.052)
Inequality*2001 − 0.035 (0.065) − 0.042 (0.053)
Inequality*2002 − 0.069 (0.088) − 0.078 (0.082)
Inequality*2003 − 0.038 (0.061) − 0.035 (0.060)
Inequality*2004 − 0.068 (0.073) − 0.064 (0.067)
Inequality*2005 0.004 (0.067) − 0.006 (0.068)
Inequality*2006 − 0.060 (0.062) − 0.064 (0.058)
Inequality*2007 − 0.112 (0.073) − 0.108 (0.069)
Inequality*2008 − 0.041 (0.078) − 0.050 (0.075)
Inequality*2009 − 0.130 (0.086) − 0.119 (0.076)
Inequality*2010 − 0.055 (0.061) − 0.057 (0.063)
Inequality*2011 − 0.154 (0.078) − 0.137 (0.075)
Inequality*2012 − 0.034 (0.085) − 0.038 (0.083)
Inequality*2013 0.037 (0.118) 0.017 (0.107)
Inequality*2014 − 0.008 (0.099) − 0.025 (0.092)
Inequality*2015 − 0.074 (0.082) − 0.079 (0.073)
Inequality*2016 − 0.096 (0.097) − 0.094 (0.089)
Inequality*2017 − 0.046 (0.113) − 0.054 (0.100)
Inequality*2018 − 0.021 (0.109) − 0.035 (0.096)
Inequality*2019 − 0.045 (0.102) − 0.055 (0.091)
Inequality*2020 − 0.049 (0.110) − 0.051 (0.100)
R-squared within 0.895 0.895

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard 
errors, p-values computed using adjusted degress of freedom); N = 240, with 24 
observations per province; non-binary variables are in logarithmic form; ***p <
.001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 clustered robust standard 
errors in parentheses; all models control for Total Population, GDP Per Capita, 
Non-Dependent Population, and Lagged Carbon Emissions; all models include 
province-specific fixed effects derived from the within estimator and unreported 
year-specific intercepts.
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coefficients for the economic sector controls in Models 4 through 8 are 
not statistically significant, while as expected, the coefficient for the 
lagged dependent variable is positive and significant across all models.

Table 2 reports the same models as in Table 1, but they include the 
income share of the top 5 % instead of the top 10 %, and the results are 
very similar (these two income concentration measures are very highly 
correlated and therefore included in separate models). The income share 
of the top 5 % has a positive and statistically significant short-run effect 
on province-level emissions, with point estimates for the elasticity co
efficient ranging from 0.122 to 0.148 across the estimated models, 
which are modestly smaller than for the income share of the top 10 %. 
The effect of the Gini coefficient remains not statistically significant. The 
long-run effect of the income share of the top 5 % in Model 3 is 0.563 and 
statistically significant, meaning that a 1 % increase in the income share 
of the top 5 % increases CO2 emissions by 0.563 % over the long run. 
Fig. 4 illustrates the percentage change in emissions over a 10-year 
period resulting from a 1 % increase in the share of income going to 
the top 5 %. As the figure shows, the largest increase in emissions occurs 
in the immediate time period (0.136, which is the short-run effect). By 
year 10, 93.7 % of the total effect occurs (0.528).

The table in Appendix 2 reports a series of robustness checks, where 
models are estimated with the wild cluster bootstrap approach and with 
Prais-Winsten regression with panel-corrected standard errors.2 The 
results are consistent with the analyses presented in Tables 1 and 2, 
indicating that both the income share of the top 10 % and the top 5 % 
increase province-level CO2 emissions, while the estimated effect of the 
Gini coefficient on emissions is not statistically significant. To assess if 
the results are sensitive to potential Covid pandemic effects that are not 
fully accounted for by the time fixed effects, the table in Appendix 3
reports models that exclude observations for the year 2020, and the 
findings remain very consistent. In analyses available upon request, we 
exclude Alberta (the province with the highest levels of emissions and 
the two income concentration measures) and re-estimate the models 
reported in Table 1 and Table 2, and the results, again, remain very 
consistent. Overall, the findings of interest appear robust and consistent 
across different model estimation techniques, are not sensitive to 
exogenous shocks, most notably the start of the Covid pandemic, and not 
sensitive to the inclusion of Alberta.

Next, we assess if the short-run and long-run effects of the income 
share of the top 10 % and top 5 % on province-level CO2 emissions are 
asymmetrical, meaning that positive and negative changes in an inde
pendent variable differentially affect the dependent variable. Modeling 
for potential asymmetry in their short-run and long-run effects is 
important on climate mitigation and overall solutions grounds [64,65]. 
To do so, and as described in the Methods section, we follow the stan
dard approach to modeling asymmetry by including the positive and 
negative partial sums of each income inequality measure in the models. 
The findings are presented in Table 3 (short-run effects) and Table 4
(long-run effects). The results of the Wald tests are all not statistically 
significant, indicating that there is no asymmetry in the short-run or 
long-run effects of either of the two inequality measures. In other words, 
an increase and a decrease in the income share of the top 10 % or the top 

5 % result in the same proportional change in CO2 emissions. Therefore, 
the initial estimated short-run and long-run effects reported in Table 1
and Table 2 are symmetrical and can be interpreted as the effect of an 
increase or decrease in income share of the top 10 % or the top 5 % on 
emissions.

As the next step, we use a stacked regression analysis to test whether 
the effects of the income share of the top 10 % and top 5 % are different 
for emissions from the overall energy sector relative to emissions from 
all other sectors combined (i.e., non-energy emissions).3 Based on IPCC 
categorizations, which these data are structured with, energy sector 
emissions account for the lion's share of emissions for every province. In 
the analyzed data, they account for between 87.3 % (Ontario) and 99.2 
% (Prince Edward Island) of province-level emissions in 1997, and be
tween 86.1 % (Quebec) and 99.3 % (Newfoundland and Labrador) in 
2020. While energy sector emissions are the more dominant category for 
all provinces, using stacked regression allows us to assess if the findings 
are driven by the relationship between energy emissions and inequality, 
or if they also apply to other sectors as well. As noted in the Methods 
section, an advantage of the stacked regression approach is that the 
coefficients and standard errors are equal to the non-stacked estimates, 
and a Wald test can be performed to test whether the effects are 
equivalent or different. The findings are presented in Table 5 (short-run 
effects) and Table 6 (long-run effects). The results of the Wald tests (all 
not statistically significant) indicate that the short-run and long-run 
effects of each income share measure are statistically equivalent for 
energy and non-energy emissions. In additional analysis available from 
the lead author upon request, estimated seemingly unrelated regression 
models lead to the same conclusions.

The analysis thus far indicates that the short-run and long-run effects 
of income share of the top 10 % and top 5 % on province-level CO2 
emissions are positive, robust to various model specifications and not 
sensitive to initial Covid pandemic effects, symmetrical, and statistically 
equivalent for energy and non-energy emissions. As a final step, we 
assess the extent to which their short-run effects on emissions change in 
magnitude through time. To do so, we estimate dynamic models, re
ported in Table 7, that include interactions between the two inequality 
measures (income share of the top 10 % and top 5 %) and dummy 
variables for year. The estimated coefficient for the main effect of each 
inequality measure is for the reference year, 1997. For both, the main 
effect is positive and statistically significant, with an elasticity coeffi
cient of 0.233 for income share of the top 10 % and 0.201 for income 
share of the top 5 %. All interactions in both models are not statistically 
significant, suggesting that the short-run effects of both inequality 
measures on emissions are temporally stable and do not change in 
magnitude through time.

4. Conclusion

Income inequality is a topic of substantial and growing interest in 
research on the climate crisis in general, and in the anthropogenic 
drivers of emissions literature in particular [1–4,7,73]. Our analysis 
contributes to this body of interdisciplinary research by focusing on the 

2 The models that serve as robustness checks, reported in Appendix 2, are 
estimated with the wild cluster bootstrap approach (wildbootstrap fe com
mand) and with Prais-Winsten regression with panel-corrected standard errors 
(xtpcse command). For the wildbootstrap fe models we specify normal error 
weights, symmetric p-values, and 10,000 replications. The t-statistics are re
ported for these models as they do not provide standard errors [58,69,70]. Like 
hc2 clustered robust, wild cluster bootstrap is an approach that is quite suitable 
for when there are relatively few clusters. The Prais-Winsten regression models 
estimate panel-corrected standard errors, allowing for disturbances that are 
heteroskedastic (i.e., each panel has its own variance) and contemporaneously 
correlated across panels (i.e., each pair of panels has its own covariance) 
[71,72].

3 Energy sector emissions consist of those from (1) stationary and (2) trans
port fuel combustion activities as well as (3) fugitive emissions from the fossil 
fuel industry. Stationary fuel combustion emission sources include use of fossil 
fuels by the electricity generating industry, the oil and gas industry, 
manufacturing industry, and the residential and commercial sectors. Emissions 
from transport fuel combustion include domestic aviation, road transportation, 
railways, domestic marine, off-road vehicle use and pipelines. Fugitive emis
sions associated with the fossil fuel industry are the intentional (flaring) or 
unintentional releases (leaks or accidents) resulting from production, process
ing, transmission, and storage of fuels. Non-energy emissions consist of those 
from (1) industrial processes and product use, (2) agriculture, (3) waste, and (4) 
land use, land-use change and forestry.
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relationship between CO2 emissions and multiple measures of income 
inequality in Canada's provinces for the 1997 to 2020 period. To the best 
of our knowledge, this is the first study to analyze these relationships in 
a longitudinal, Canadian cross-province context. The Canadian context 
has global and nontrivial implications, given that Canada is among the 
world's nations with the highest overall emissions, and Fig. 1 and Fig. 2
highlight the notable differences in emissions and inequality between 
and within provinces through time.

The results of the statistical analysis indicate that the short-run and 
long-run effects of income share of the top 10 % and the top 5 % on 
province-level CO2 emissions are positive, robust to various model 
specifications, net of multiple demographic and economic factors, not 
sensitive to exogenous shocks such as initial Covid pandemic effects, not 
sensitive to the inclusion of the province with the highest levels of 
emissions and income concentration, symmetrical, statistically equiva
lent for energy and non-energy emissions, and their short-run effects do 
not vary in magnitude through time. The findings also consistently show 
that the estimated effect of the Gini coefficient on province-level emis
sions is not statistically significant. Overall, the results underscore the 
importance in modeling the effects of income inequality measures that 
quantify different characteristics of income distributions, and they are 
very consistent with the analytical approaches that suggest that a higher 
concentration of income is likely to be associated with growth in 
anthropogenic CO2 emissions [13,14,16,17,36–41,43,46,47].

From a climate mitigation perspective, the findings underscore the 
necessity for Canada's provinces to seriously address the role of income 
inequality, since a high concentration of income towards the top of the 
distribution appears to be a notable driver of their anthropogenic 
emissions through time. Based on Model 3 in Table 1 (see also Fig. 3), 
and using the emissions data included in the reported analysis (see also 
Fig. 1 and Fig. 2), a 1 % increase in the income share of the top 10 % in 
the year 2020 would lead to a short-run increase in CO2 emissions for the 
provinces combined of 885.124 kt, and a long-run increase in their 
combined emissions of 3504.05 kt. Regarding the other income con
centration measure, based on Model 3 in Table 2 (see also Supplemen
tary Fig. 1), a 1 % increase in the income share of the top 5 % in the year 
2020 would lead to a short-run increase in the provinces' combined CO2 
emissions of 708.099 kt, and a long-run increase in their combined 
emissions of 2931.323 kt. Since the analysis also indicates that the short- 
run and long-run effects of the income concentration measures are sta
tistically symmetrical, it is reasonable to suggest that decreasing these 
forms of income inequality could lead to substantial reductions in 
province-level emissions.

While this study makes distinct and significant contributions, it also 
has limitations that should be addressed in future research. First, while 
the findings are consistent with analytical approaches that hypothesize 
that a higher concentration of income is associated with growth in CO2 
emissions, the reported analysis, based on current data availability, do 
not include measures that fully capture the underlying mechanisms tied 

to power, overconsumption, and status competition that are proposed to 
shape the emissions and inequality relationship. We hope to address this 
limitation in future research, as doing so has implications for climate 
mitigation action and policy, as well as for more nuanced hypothesis 
testing and theory refinement. Second, due to current data availability, 
the reported analysis covers the 1997 to 2020 period. Future research 
would do well to also include years post 2020 to assess if the effects of 
income inequality on province-level emissions remained consistent or 
shifted in magnitude in more recent years. Third, while the analysis 
focuses on provinces, it overlooks potential variation between smaller 
geographic units within provinces. Future research, data permitting, 
would do well to assess the effects of income inequality on emissions 
within Canada at even smaller scales. Fourth, while we find that none of 
the economic sector measures suppress the estimated effects of the in
come concentration measures, nor do they exert significant effects on 
carbon emissions themselves, future research should consider if the 
structure of economic sectors and industries shape income inequality 
within and across provinces, as well as if economic elites in some 
provinces have benefited from fossil capitalism in ways that shape their 
political power and the overall relationship between emissions and 
inequality [74]. Fifth, future research should also assess the effects of 
income inequality on province's consumption-based (i.e., adjusted for 
trade) emissions, if and when such data become available. Finally, it is 
unclear if the findings are widely generalizable outside of Canada. While 
prior longitudinal research yields similar results for U.S. states [16], 
future research would do well to conduct similar analysis in other sub- 
national contexts.

Code availability

All Stata commands used in the analysis are available upon reason
able request from the lead author and will be publicly available on their 
lab's website.
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Appendix 1. Univariate descriptive statistics

Mean Std Dev Skewness Kurtosis

Total CO2 Emissions 56,011.57 63,006.91 1.32 3.38
Energy Emissions 51,685.00 57,709.06 1.38 3.64
Non-Energy Emissions 4326.57 6214.17 1.54 4.22
Income Share of Top 10 % 25.29 8.54 0.87 2.85
Income Share of Top 5 % 16.1 6.59 1.19 3.74
Gini Coefficient 0.30 0.02 − 0.27 2.93
Total Population 3,348,572.00 3,949,318.00 1.46 4.02
GDP Per Capita 47,059.30 13,352.74 0.93 2.76
Non-Dependent Population 67.83 1.88 − 0.34 2.31
Manufacturing as % GDP 9.56 4.02 0.55 3.17
Agriculture as % GDP 3.44 2.37 1.19 3.47
Services as % GDP 66.79 11.24 − 0.77 2.02

(continued on next page)
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(continued )

Mean Std Dev Skewness Kurtosis

Energy as % GDP 2.09 0.89 0.61 2.33
Fossil Fuels as % GDP 6.97 10.71 1.39 3.74

Notes: Std Dev = standard deviation; all variables are converted into logarithmic form prior to analysis; N = 240.

Appendix 2. Coefficients for the regression of total CO2 emissions for Canada Provinces, 1997 to 2020

WCB WCB PCSE PCSE

Model 1 Model 2 Model 1 Model 2

Income Share of Top 10 % 0.170* 0.175***
[3.63] (0.052)

Income Share of Top 5 % 0.136* 0.138***
[3.57] (0.041)

Gini Coefficient − 0.177 − 0.172 − 0.174 − 0.168
[− 1.33] [− 1.35] (0.107) (0.106)

Total Population 0.387** 0.351** 0.408*** 0.365***
[4.66] [4.21] (0.100) (0.096)

GDP Per Capita 0.179^ 0.179^ 0.191^ 0.188^
[2.55] [2.73] (0.114) (0.113)

Non-Dependent Population 0.834 0.900 0.870** 0.922**
[1.95] (2.23) (0.318) (0.311)

Lagged Carbon Emissions 0.748*** 0.758*** 0.731*** 0.746***
[21.49] [23.38] (0.054) (0.051)

R-squared 0.999 0.999

Notes: WCB models estimated with wild cluster bootstrap in Stata (wildbootstrap xtreg, 10,000 replications, ptype symmetric, error weight normal); PCSE models 
estimated Prais-Winsten regression in Stata (xtpcse, panel-corrected standard errors, AR[1] correction).
N = 240, with 24 observations per province; non-binary variables are in logarithmic form; ***p < .001 **p < .01 *p < .05 ^p < .10 (two-tailed); t statistics for WCB 
models in brackets; panel-corrected standard errors for PCSE models in parentheses; WCB models include province-specific fixed effects derived from the within 
estimator; PCSE models include province-specific intercepts; all models include unreported year-specific intercepts.

Appendix 3. Coefficients for the regression of total CO2 emissions for Canada Provinces, 1997 to 2019

Model 1 Model 2

Income Share of Top 10 % 0.172*
(0.050)

Income Share of Top 5 % 0.141*
(0.042)

Gini Coefficient − 0.179 − 0.175
(0.169) (0.162)

Total Population 0.366* 0.327*
(0.097) (0.101)

GDP Per Capita 0.178 0.180
(0.104) (0.094)

Non-Dependent Population 0.717 0.789
(0.525) (0.490)

Lagged Carbon Emissions 0.748*** 0.757***
(0.029) (0.026)

Long-Run Effects for
Income Share of Top 10 % (Model 1) 0.684*** 0.578***
Income Share of Top 5 % (Model 2) (0.190) (0.172)
R-squared within 0.860 0.860

Notes: models estimated with xtreg fe in Stata 18 (hc2 clustered robust standard errors, p-values computed using adjusted degress of freedom); N = 230, with 23 
observations per province; non-binary variables are in logarithmic form; ***p < .001 **p < .01 *p < .05 ^p < .10 (two-tailed); hc2 clustered robust standard errors in 
parentheses; all models include province-specific fixed effects derived from the within estimator and unreported year-specific intercepts; long-run effects estimated 
with Thombs' user-generated lreff command in Stata.

Data availability

The data that support the findings of this study are available upon 
reasonable request from the lead author and will be publicly available 
on their lab's website. 
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