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A B S T R A C T

Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its 
receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated 
with increased susceptibility to mental conditions.

This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the 
brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research 
that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on 
puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone 
therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens.

Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of 
emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor mod-
ulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion 
processing. The interaction between progestagens and the systems involved in the regulation of stress seems to 
influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only 
contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins 
used for contraception can influence neural processes as myelination and neuroprotection, exerting protective 
effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown.

Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intra-
cellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose 
effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in 
females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of pro-
gestagens from those of estrogens.

1. Introduction

Progestagens, including progesterone and synthetic progestins, 
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Abbreviations

ALLO Allopregnanolone
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ANS Autonomic nervous system
BDNF Brain-derived neurotrophic factor
cPRs Classical intracellular progesterone receptor
dACC Dorsal anterior cingulate cortex
GABA Gamma-aminobutyric acid
GnRH Gonadotropin-releasing hormone
HC Hormonal contraception
HCs Hormonal contraceptives
HPA axis Hypothalamic-pituitary-adrenal axis
HPG axis Hypothalamic-pituitary–gonadal axis
HT Hormone therapy
IUD Intrauterine device
JAK Janus kinase
LH Luteinizing hormone

MAPK Mitogen-activated protein kinase
MAPR Membrane-associated progesterone receptor
MCAO Middle cerebral occlusion
MPA Medroxyprogesterone acetate
mPRs Membrane progesterone receptor
mRNA Messenger ribonucleic acid
NETA Norethisterone acetate
NMDA N-methyl-D-aspartate
PGRMC Progesterone receptor membrane component
PI3K Phosphatidylinositol 3-kinase
PMDD Premenstrual dysphoric disorder
PMS Premenstrual syndrome
PND Perinatal depression
PR Progesterone receptor
SPRM Selective progesterone receptor modulator
STAT Signal transducer and activator of transcription
UPA Ulipristal acetate

Fig. 1. Schematic overview of the Pregnenolone-Progesterone-Allopregnanolone pathway and main receptors involved in their actions in brain. Progesterone 
synthesis requires the conversion of cholesterol inside the mitochondrion by the cytochrome P450 side-chain cleavage enzyme (P450scc) to pregnenolone and then 
the conversion of pregnenolone to progesterone by the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerases (3β-HSD). Progesterone can be metabolized into 5α- 
dihydroprogesterone by the steroid 5α-reductases, and then to allopregnanolone (ALLO) also named 3α,5α-tetra-hydroprogesterone by the 3α-hydroxysteroid 
oxidoreductase (3α-HSOR). Progesterone can bind to multiple receptors including the classical intracellular receptors (PR) the membrane receptors (mPRs) and the 
membrane binding sites (PGRMC1). 5α-dihydroprogesterone binds to the classical receptors PR and has relatively high binding affinity for mPRα. ALLO has no 
affinity for the intracellular PR, but is a potent allosteric modulator of GABAA receptors. Some neuroprotective effects of allopregnanolone may be mediated by the 
membrane progesterone receptor mPRδ. PRs = Progesterone Receptors, mPRs = Membrane Progesterone Receptors Receptors, PGRMC = Progesterone Receptor 
Membrane Component, GABAA = Gamma-Aminobutyric Acid type A, HC = Hormonal Contraception, HT = Hormone Therapy.
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constitute one of the three classes of sex steroids, along with estrogens 
and androgens (Plant & Zeleznik, 2014). Sex steroids are part of the 
broader steroid hormone family that also includes corticosteroids, 
namely glucocorticoids and mineralocorticoids, as well as vitamin D 
(Monastra et al., 2018; Plant & Zeleznik, 2014). Progesterone is the key 
steroidogenic precursor for the synthesis of estrogens, and androgens, as 
well as glucocorticoids and mineralocorticoids. Following its synthesis 
by the ovaries, placenta, and adrenal glands in females, progesterone 
can easily pass through the blood–brain barrier because of its high lip-
ophilicity, and can therefore accumulate in the brain (Bixo et al., 1997; 
Bixo et al., 1986). As a neurosteroid, it is synthesized locally within the 
nervous system (Guennoun 2020). Progesterone exerts its functions by 
acting on its receptors (Barth et al., 2015; Brinton et al., 2008; Mani, 
2006) that are expressed in brain areas relevant to cognitive and af-
fective processes. Furthermore, progestagens can influence the activity 
of the hypothalamic–pituitary–gonadal (HPG) axis through feedback 
mechanisms and modulation of upstream HPG components (Giatti et al., 
2016; Griksiene et al., 2022; Phumsatitpong et al., 2021) such as the 
negative feedback exerted on the hypothalamus and pituitary gland, by 
inhibiting the secretion of gonadotropin-releasing hormone (GnRH) and 
luteinizing hormone (LH).

Some effects of progesterone may be mediated by its neuroactive 
metabolite allopregnanolone (ALLO), also known as 3α5α-tetrahy-
droprogesterone. A schematic overview of the Pregnenolone- 
Progesterone-Allopregnanolone pathway and main receptors involved 
in their actions in brain is provided in Fig. 1 (for a review on proges-
terone biosynthetic and metabolic pathways and enzyme distribution in 
brain and spinal cord, see Guennoun, 2020; Guennoun et al., 2015). On 
the other hand, synthetic progestins, administered in the form of hor-
monal contraception (HC) or menopausal hormone therapy (MHT) 
differ in their chemical structure and binding properties. Table 1 lists 
commonly used synthetic progestins in HC and MHT.

In males, progesterone levels are relatively stable throughout fertile 
age (Oettel & Mukhopadhyay, 2004), but they significantly fluctuate in 
females during critical windows of their reproductive life, i.e., puberty, 
menstrual cycle, pregnancy and postpartum, perimenopause and even 
during HC use (Fig. 2; Carlson & Shaw, 2019; Stein et al., 2014; 
Sundstrom-Poromaa et al., 2020). This review will particularly focus on 
research on females. Notably, for some, these reproductive transition 
periods can be associated with affective and cognitive symptoms of 
varying severity (e.g., premenstrual dysphoric disorder (PMDD), peri-
natal depression (PND; including postpartum depression) or perimeno-
pausal depression) (Epperson et al., 2012; Hantsoo et al., 2022; 
Association, 2013). According to the hormone sensitivity hypothesis, the 
underlying cause may be an increased sensitivity to physiological 
reproductive hormone fluctuations, as these disorders have not been 

associated with altered levels of progesterone and/or estradiol (Pope 
et al., 2017; Schiller et al., 2015; Schweizer-Schubert et al., 2021; 
Skalkidou et al., 2012). Such hormonal changes have indeed the po-
tential to modulate neurophysiological and behavioral dynamics (e.g., 
emotion regulation), which is of relevance also to the general field of 
psychiatry, as it has been shown that the disproportionate sex-specific 
prevalence of mental conditions that are more common in females is 
associated with hormonal transition phases (Bale and Epperson, 2015, 
2017; Shansky and Murphy, 2021).

This review extends beyond the role of progesterone in reproduction, 
which includes the preparation of the lining of the uterus for a potential 
pregnancy and, if fertilization occurs, its maintenance to support the 
developing embryo. Instead, current knowledge on the effects of pro-
gesterone on the brain, mood, stress, and cognition is presented, 
together with insights from preclinical evidence and findings on pro-
gestins. A particular focus of this review is on experimental pharmacological 
studies that specifically target endogenous or exogenous progestagens in 
relation to the brain, mood, stress, and cognition. In addition, we provide 
overviews of key literature and reviews or meta-analyses of studies on 
the menstrual cycle, pregnancy, postpartum, menopausal transition, HC, 
and MHT. Importantly, in these studies, the specific effects of proges-
tagens cannot be disentangled from the effects of estrogens.

2. Progesterone across the female lifespan – from puberty to 
menopause

The female reproductive lifespan is characterized by significant 
fluctuations in progesterone. Estradiol levels increase until menarche, 
while progesterone does not increase until the first ovulation, which 
may not coincide with menarche as the first menstrual cycles may be 
anovulatory (Fig. 2A). During the follicular phase of the menstrual cycle, 
progesterone levels remain low when estradiol alone rises. Upon 
ovulation, the corpus luteum forms from the remains of the leading 
follicle, which undergoes luteinization and continues to produce sex 
hormones, predominantly progesterone, leading to an increase in hor-
mone levels. During the mid-luteal phase, progesterone reaches its 
maximum, and estradiol levels reach a secondary peak. Thereafter, both 
progesterone and estradiol levels decrease rapidly to their lowest levels 
during the late luteal phase until the onset of the next menstruation 
(Rehbein et al., 2021; Schmalenberger et al, 2021; see Fig. 2B for the 
progesterone profile).

Upon ovulation, if an oocyte becomes fertilized and pregnancy oc-
curs, progesterone levels continue to rise to levels approximately ten 
times the mid-luteal levels, peaking at term pregnancy, before rapidly 
returning to follicular-phase levels within 24–28 h after delivery 
(Löfgren & Bäckström, 1990; Sundstrom-Poromaa et al., 2020; see 
Fig. 2D). The reproductive lifespan ends with the cessation of menstrual 
periods, with fluctuating and decreasing levels during perimenopause 
and finally stable low levels of progesterone during postmenopause 
(Stein et al., 2014; Fig. 2E).

3. Synthetic progestagens

Synthetic progestagens, also known as progestins, were first devel-
oped in the 1930s with the aim of controlling ovulation and treating 
menstrual disorders such as irregular menstruation, amenorrhea, and 
premenstrual syndrome (García-Sáenz et al., 2023). After the introduc-
tion of “the pill” in the 1960 s, which was a pivotal feminist milestone 
and paved the way for female sexual self-determination, the use of 
synthetic progestins (and estrogens) became widespread (Petitti & Sid-
ney, 2005). Progestins are derived from plant sources, such as yams or 
soybeans, or are fully synthesized in the laboratory and are available in 
various forms that differ in their chemical structure and affinity for es-
trogen, progesterone, androgen, glucocorticoid, and mineralocorticoid 
receptors (Africander et al., 2011; Bitzer & Simon, 2011; Enfield et al., 
2020). They can be clustered into progestins structurally related to 

Table 1 
Progestins commonly used in hormonal contraception (HC) and menopausal 
hormone therapy (HT).

Synthetic Progestin

HC MHT

Drospirenonea,b x x
Levonorgestrela,b,c x x
Desogestrela,b x 
Dienogesta,b x 
Norethindronea,b x 
Gestodeneb x 
Norgestimateb x x
Etonogestreld x 
Medroxyprogesterone acetateb,e x x

a Used in progestin-only pills.
b Used in combined oral contraceptives.
c Used in intrauterine devices.
d Used in contraceptive implants and vaginal rings.
e Used in injections.
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progesterone (pregnane derivatives and 19-norpregnane derivatives), 
those related to testosterone (ethinylated estranes and 13-ethylgonanes, 
and the non-ethinylated dienogest), and the spironolactone derivative 
drospirenone (Stanczyk et al., 2024). Currently, progestins are used in 
both HC and MHT, as exemplified in Table 1.

HC is still one of the most reliable birth control methods and is used 
by millions of adolescents and adults worldwide. According to a recent 
report of the United Nations, worldwide around 26 % of women of 
reproductive age (15 – 49 years) currently use hormonal oral contra-
ceptives, injectable, or implants (247 million people) and additionally 
around 17 % (161 million) use intrauterine devices (IUDs, hormonal or 
copper) (United Nations, 2022). HC has evolved further since its intro-
duction, with a wide variety of formulations and administration 
methods currently commercially available, each containing one out of 
approximately nine different progestins (Griksiene et al., 2022; Table 1). 
Some contraceptives contain both a progestin and an estrogen compo-
nent (combined HCs), whereas others contain only progestin. HCs are 
available in various forms, including pills, patches, injectables, implants, 
and intrauterine devices (IUDs), and are typically prescribed in a cyclical 
(e.g., combined oral contraceptives (“the pill” or COCs), patches) or 
long-lasting/continuous (e.g., implants, IUDs) regimen. Through the 
administration of synthetic sex steroids, HCs affect estradiol, proges-
terone, and testosterone levels; and the majority of HCs nowadays 
suppresses ovulation (Fig. 2C; Lewis et al., 2019).

In MHT, progestagens are used alongside estrogens (and androgens) 
to alleviate symptoms associated with hormonal deficiencies, particu-
larly those occurring during perimenopause. In MHT, progestagens 
protect the endometrium from estrogen-induced hyperplasia and po-
tential malignancy (Stanczyk et al., 2013). The administered progesta-
gens include natural progesterone, dydrogesterone, and a range of 
synthetic progestins (e.g., medroxyprogesterone acetate, norethindrone, 
levonorgestrel; Table 1). MHT is also available in various forms, 
including tablets, patches, pessaries, and gels, and is typically prescribed 
in a cyclical or continuous regimen on the basis of individual needs 
(Stevenson et al., 2020). Besides their usage in (peri)menopause, vagi-
nally administered progestagens (e.g., utrogestan pessaries) may also 
provide hormonal support in in vitro fertilization and pregnancy (Child 
et al., 2018).

4. Progesterone receptors and their distribution in the brain

The brain’s response to progesterone involves a complex interplay of 
classical intracellular progesterone receptors (cPRs), membrane pro-
gesterone receptors (mPRs), and/or progesterone receptor membrane 
components (PGRMCs) (Griksiene et al., 2022; Fig. 1). This intricate 
system is widely distributed throughout the brains of vertebrates, with 

varying expression levels depending on the brain region, cell type, sex, 
and hormonal status (Brinton et al., 2008; Guerra-Araiza et al., 2002; 
Kato et al., 1994; Pang et al., 2013; Petersen et al., 2013; Schumacher 
et al., 2014).

cPRs primarily act as ligand-activated transcription factors and 
mediate slow, longer-lasting effects. cPRs undergo conformational 
modifications upon ligand binding and interact with coactivators to 
regulate the expression of target genes and protein synthesis (Brinton 
et al., 2008). In addition, cPRs can be membrane-associated and exert 
rapid responses by interacting with intracellular signaling pathways, 
mainly kinases (e.g., phosphatidylinositol 3-kinase (PI3K) and mitogen- 
activated protein kinase (MAPK; Schumacher et al., 2014). cPRs are 
classified into two primary isoforms, cPR-A and cPR-B, which result 
from alternative promoters and translation initiation sites of the same 
gene. PR-A and − B isoforms regulate a suite of genes that are unique to 
each isoform, with cPR-B regulating the expression of many more genes 
than cPR-A does. These isoforms also share the regulation of a subset of 
genes and for some genes, they exert opposite effects (Azeez et al., 2021; 
Brinton et al., 2008; Kato et al., 1994; Richer et al., 2002; Schumacher 
et al., 2014).

mPRs possess seven transmembrane domains and are characterized 
as G protein-coupled receptors that exist in five isoforms: mPRα, mPRβ, 
mPRγ, mPRδ, and mPRε (Azeez et al., 2021; Guennoun, 2020; Petersen 
et al., 2013). PGRMC receptors (PGRMC1/2), initially named 25-Dx, are 
members of the membrane-associated progesterone receptor (MAPR) 
family. These receptors activate the JAK/STAT and Src pathways and 
protein kinase G (Guennoun, 2020), which are not confined to a specific 
location or type of cell, are widely distributed, and are involved in 
various physiological and pathological processes (Azeez et al., 2021).

With respect to progesterone receptors in rodents, cPRs are expressed 
in many brain areas, such as the amygdala, hippocampus, thalamus, 
frontal cortex, cerebellum, hypothalamus, nucleus tractus solitarius, and 
bed nucleus of the stria terminalis, (for review, see Brinton et al., 2008; 
Kato et al., 1994; Schumacher et al., 2014). In the hippocampus, cPRs 
are expressed throughout the entire neuron, including the cell soma, 
axons, dendrites, and synapses (Kapur & Joshi, 2021; Schumacher et al., 
2014). Although PR-A and PR-B isoforms have been detected in various 
brain regions, including areas implicated in reproductive behavior, 
mood regulation, and cognitive function (hypothalamus, hippocampus, 
prefrontal cortex; Brinton et al., 2008), the exact function of PR-A and 
PR-B across different brain regions remain understudied (Kapur & Joshi, 
2021; Schumacher et al., 2014). The messenger ribonucleic acid 
(mRNA) expression of five mPR molecules has been demonstrated in the 
rodent cortex, thalamus, hypothalamus, and mesencephalon (Pang 
et al., 2013; Zhu et al., 2003). In the rat brain, PGRMC1 protein is found 
in the hypothalamus, circumventricular organs, ependymal cells of the 

Fig. 2. Endogenous and synthetic progestagen levels across the female reproductive lifespan, including the time windows of A) puberty, B) the menstrual cycle, C) 
hormonal contraception use, D) pregnancy, and E) perimenopause. T1 = trimester 1 (1–12 weeks), T2 = trimester 2 (13–27 weeks), T3 = trimester 3 (28–40 weeks), 
HT = hormone therapy. a The profile of the depicted synthetic progestagens represents an example for Oral Contraception.
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ventricular walls, and the meninges (Meffre et al., 2005). PGRMC1/2- 
encoding mRNAs have been found in discrete neuroendocrine nuclei and 
in the hippocampal, cortical, and cerebellar regions (Intlekofer & 
Petersen, 2011; Petersen et al., 2013).

The mPRs play essential roles in mediating the effects of progesta-
gens in the brain, such as lordosis behavior, neuroprotection, respiratory 
control of apnea, olfactory responses to pheromones, and peripheral 
nerve regeneration (Thomas et al., 2022). In the brain, PGRMC signaling 
pathways have been suggested to be involved in the control of 
gonadotropin-releasing hormone (GnRH)/LH release, feminine mating 
behaviors, fluid balance, neuroprotection and seizure activity 
(Guennoun et al., 2008; Petersen et al., 2013).

Regarding their distribution in the human brain, the expression of 
cPR mRNA in the pituitary gland is greater than that of other types of 
PRs. However, throughout the central nervous system (neocortex, 
amygdala, hippocampus, nucleus accumbens, thalamus, hypothalamus, 
caudate, putamen, substantia nigra, medulla, pons, and spinal cord), the 
expression of different subtypes of mPRs seems to be greater than that of 
cPRs (Pang et al., 2013). Among the mPRs, the expression of mPRδ is the 
highest in most human brain areas. Interestingly, mPRδ showed the 
highest affinity not only for progesterone but also for its metabolite 
ALLO (Pang et al., 2013).

Progesterone and several of its metabolites including 3α-OH-pro-
gesterone metabolites (e.g., ALLO, pregnanolone) can act as modulators 
of neurotransmitters such as gamma-aminobutyric acid (GABA) (Barth 
et al., 2015; Giatti et al., 2020; Giatti et al., 2022; Schumacher et al., 
2007; González et al., 2020, Steckelbroeck et al., 2004). Progesterone 
appears to shift the excitatory/inhibitory balance in the brain toward 
inhibition by decreasing glutamate signaling (Cyr et al.,2001; Foy et al., 
2008; Yang et al., 2017) but, more consistently, by increasing 
GABAergic signaling (e.g., Kaura et al., 2007; Piekarski et al., 2017; 
Rhodes et al., 2005; Shen et al., 2005). These changes are not the result 
of a change in neurotransmitter levels (Luine et al., 2017) but rather 
occur in response to actions on N-methyl-D-aspartate (NMDA) and 
GABAA receptors, respectively. While the progesterone metabolite ALLO 
is an allosteric modulator of the GABAA receptor (Belelli & Lambert, 
2005; Belelli et al., 2022), progesterone itself appears to change the 
subunit composition of the GABAA receptor (Gangisetty & Reddy, 2009; 
Gangisetty & Reddy, 2010; Reddy et al., 2012). Moreover, ALLO en-
hances inhibitory neurotransmission mediated by GABAA receptors, 
resulting in anaesthetic, analgesic, anxiolytic, and anticonvulsant effects 
(Legesse et al., 2023; Schumacher et al., 2007; Steckelbroeck et al., 
2004). Similarly, isoallopregnanolone (3β,5α-tetrahydroprogesterone) 
can antagonize the effects of ALLO at GABAA receptors (Belelli & 
Lambert, 2005, Belelli et al., 2022).

Furthermore, progesterone increases brain-derived neurotrophic 
factor (BDNF) expression via a cPR-regulated mechanism, which might 
be related to the progesterone-related increase in AMPA receptor- 
mediated neurotransmission and increased excitability of CA1 neurons 
(Jodhka et al., 2009; Kapur & Joshi, 2021). Finally, progesterone, alone 
or in combination with estradiol, appears to increase neuromodulation 
via increased serotonin production (e.g., Bethea et al., 2000; Russo et al., 
2003; Lima et al., 2010) as well as increased striatal dopamine signaling 
(e.g., Cabrera et al., 2002; Kritzer et al., 2003; Zhang et al., 2008).

5. Selective progesterone receptor modulators: focus on 
ulipristal acetate

Selective progesterone receptor modulators (SPRMs) are synthetic 
compounds designed to selectively modulate cPR activity, either by 
mimicking, blocking, or modifying the receptor’s action (Rabe et al., 
2018). SPRMs can act as (partial) agonists and/or antagonists depending 
on the tissue context and receptor isoform (DeManno et al., 2003; Islam 
et al., 2020). SPRMs impact cPR function by altering receptor confor-
mation, influencing coactivator and corepressor recruitment, and 
selectively modulating gene transcription in a context-dependent 

manner (Islam et al., 2020; Bouchard et al., 2011).
The therapeutic potential of SPRMs has been demonstrated for gy-

necological conditions (Islam et al., 2020). Ulipristal acetate (UPA) is an 
SPRM used at high doses for emergency contraception (Brache et al., 
2013) and at low doses for the treatment of uterine fibroids (Croxtall, 
2012). It primarily acts as a progesterone receptor antagonist in various 
tissues (Whitaker et al., 2014), preventing circulating progesterone from 
binding to its receptor and thereby affecting progesterone metabolism 
and effects (Keenan, 2011; Rabe et al., 2018). Unlike other anti-
progestins, such as mifepristone, UPA has minimal anti-glucocorticoid 
activity (Melis et al., 2012), making it suitable for long-term use. UPA 
can inhibit ovulation if the luteinizing hormone (LH) increase has not 
yet occurred (Gemzell-Danielsson & Meng, 2010), while maintaining 
estradiol at mid-follicular levels and inducing anovulation in most 
women (Chabbert-Buffet et al., 2018; Chabbert-Buffet et al., 2007; 
Whitaker et al., 2014), thus avoiding vasomotor side effects and long- 
term bone demineralization.

6. Preclinical evidence of the effects of progesterone on the 
brain

Animal studies have provided evidence of various molecular pro-
cesses being modulated by progesterone, i.e., neurogenesis, synapto-
genesis, myelination, and neurotransmitter signaling, with inconclusive 
results for neurogenesis per se (Griksiene et al., 2022; McEwen & 
Woolley, 1994; Pletzer et al., 2023). Progesterone has neuroprotective 
properties, contributing to the maintenance and repair of nervous tissue 
(e.g., Barha et al., 2011; Ciriza et al., 2006; Djebaili et al., 2005; 
Guennoun, 2020; Jones et al., 2005; Jodhka et al., 2009; Liu et al., 2009; 
Stein, 2011). It is unfortunate that most studies are performed in males 
and only few recent studies are performed in animals of both sexes. 
Hence, confirmation of these effects in female animals is still lacking.

While progesterone alone may increase neuronal proliferation in the 
dentate gyrus (Bali et al., 2012; Liu et al., 2010), combined adminis-
tration of estradiol and progesterone does not alter neuronal prolifera-
tion (Bali et al., 2012; Chan et al., 2014; Kordower et al., 2010; Oboti 
et al., 2015). Thus, while estradiol appears to upregulate the formation 
of new neurons (Galea et al., 2006; Mahmoud et al., 2016; Wan et al., 
2021), progesterone appears to be involved in the survival of existing 
neurons, as well as their integration into existing brain networks via 
synaptogenesis and myelination.

Various studies have consistently demonstrated increased synapto-
genesis in various brain areas in response to progesterone (e.g., Baka 
et al., 2017; Barreto-Cordero et al., 2020; Bethea & Reddy, 2010; Chen 
et al., 2009; Li et al., 2019; Perrotti et al., 2000; Spencer et al., 2008), as 
well as increased myelination (Aryanpour et al., 2017; Gangisetty & 
Reddy, 2009; Ghoumari et al., 2020; Magnaghi et al., 2006; Schumacher 
et al., 2014; Swamydas et al., 2009).

7. Progesterone and its effects on the human brain and behavior

Supported by preclinical findings on how progestagens affect neu-
rogenesis, synaptogenesis, and neuroprotection (Pletzer et al., 2023), 
increasing evidence points to human brain structure changes concomi-
tant with fluctuations in progesterone, although the quantitative rela-
tionship between progesterone hormone levels and brain anatomy 
remains understudied and is accompanied by effects with inconclusive 
directions (Rehbein et al., 2021).

The effects of progesterone, potentially mediated by its neuroactive 
metabolite ALLO, have been observed also in terms of brain function, 
particularly in areas related to emotion and cognition and of relevance 
to mental health (Sundstrom-Poromaa et al., 2020). Endogenous fluc-
tuations in progesterone throughout the menstrual cycle have indeed 
been associated with differential activation of corticolimbic regions 
during the performance of cognitive tasks or emotion processing in 
healthy individuals (Dubol et al., 2021). However, from a behavioral 
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point of view, cognitive function and, to a certain extent, emotion pro-
cessing remain sparsely linked to such variations in progesterone levels 
and brain response, hindering conclusions (Sundstrom Poromaa & 
Gingnell, 2014). Furthermore, studying the effects of progesterone in the 
context of the menstrual cycle limits the generalizability of the results 
and leaves the underlying mechanisms undiscovered, as the effects may 
be confounded by other hormonal changes related to the menstrual 
cycle, as in the case of estradiol (Dubol et al., 2021). This limitation also 
applies to studies on combined oral contraceptives (Griksiene et al., 
2022; Pletzer et al., 2023) and MHT (Comasco et al., 2014; Griksiene 
et al., 2022).

Pharmacological experiments in the context of neuroimaging as-
sessments can be instrumental in advancing the mechanistic under-
standing of the effects of progesterone. In a double-blind, crossover, 
functional magnetic resonance imaging study, the neuronal and 
behavioral effects of progesterone were investigated twice during the 
early follicular phase of different menstrual cycles upon the adminis-
tration of 400 mg progesterone or placebo in healthy females (van 
Wingen et al., 2007, 2008). The psychological assessment consisted of a 
brief emotional task, where participants had to indicate which 
emotional facial expression corresponded to the target emotion (van 
Wingen et al., 2008), followed by a memory task, where faces needed to 
be memorized and recognized (van Wingen et al., 2007). While pro-
gesterone had no effect on behavioral outcomes in the emotion task, it 
was associated with changes in neuronal activity, particularly in the 
amygdala and its connectivity with distant brain regions (van Wingen 
et al., 2008). Specifically, progesterone was associated with increased 
amygdala reactivity and functional connectivity with the dorsal anterior 
cingulate cortex (dACC) during emotion processing. In contrast to these 
findings, during the memory task, progesterone was associated with a 
reduction in amygdala activity and impaired memory performance, as 
shown by decreased recognition accuracy (van Wingen et al., 2007).

This paradoxical effect of progesterone on amygdala activity may be 
attributable to the differences between tasks but also to the study design, 
namely, the different progesterone levels during the implementation of 
each of the two tasks (van Wingen et al., 2007; van Wingen et al., 2011). 
While during the emotional task, serum levels of progesterone were in 
the range of the luteal phase, during the memory task (which took place 
later), progesterone reached concentrations commonly found in early 
pregnancy. This is supported by the detrimental effect on memory 
function observed during the follicular phase in females receiving 0.07 
mg/kg ALLO (leading to third-trimester pregnancy serum concentra-
tions), in comparison with placebo (Kask et al., 2008).

Therefore, a dose-dependent effect of progesterone on amygdala 
activity has been suggested, with a stimulating effect of progesterone at 
moderate levels and an inhibitory effect at higher doses. These effects 
may be mediated by ALLO, which has been shown to have an inverted U- 
shaped relationship with mood (Andréen et al., 2006; Bäckström et al., 
2014, 2015). At both low and high doses, ALLO exerts anxiolytic effects, 
whereas moderate levels of ALLO may be associated with negative mood 
and manifest as premenstrual symptoms. This paradoxical anxiogenic 
effect of ALLO is analogous to the one exerted by other modulators of the 
GABAA receptor, such as benzodiazepines, which are usually anxiolytic 
but can also exhibit anxiogenic effects at certain doses (Bäckström et al., 
2015). The opposing effects on amygdala activity could thus be 
explained by the nonlinear relationship with ALLO, increasing amygdala 
activation at moderate doses and inhibiting amygdala activation at high 
doses.

Taken together, progesterone-induced impairment in memory for-
mation and retrieval, underlined by differential brain function, may for 
example help to explain cognitive complaints experienced by some fe-
males during pregnancy. The findings regarding the emotional task 
could contribute to the understanding of negative affect during the 
luteal phase of the menstrual cycle, especially in the context of PMDD. In 
fact, greater amygdala activation has been observed when emotional 
stimuli are processed during the luteal phase (Dubol et al., 2020; 

Stiernman et al., 2023). Therefore, heightened amygdala activation 
upon progesterone administration may suggest a neural mechanism by 
which progesterone, or ALLO, may increase anxiety and worsen mood in 
hormone-sensitive individuals. On the other hand, increased connec-
tivity with top-down regulatory regions, such as the dACC and the 
fusiform gyrus involved in facial stimuli recognition, could indicate 
modulatory effects of progesterone on larger brain circuitries.

Despite offering unique insights into the behavioral effects and un-
derlying mechanisms of progesterone, such pharmacological studies 
remain scarce. Furthermore, small sample sizes compromise the gener-
alizability of the findings and warrant replication. Therefore, further 
investigations on the behavioral and neuronal effects of progesterone 
are needed, and caution is advised when interpreting existing findings.

8. Progestagens and stress

An acute stress reaction is an adaptive response to real or perceived 
threats, while chronic stress can have negative neurobiological, physi-
ological, and psychological consequences, potentially leading to various 
physical and psychological disorders (Bell & Ross, 2014). A bidirectional 
relationship has been demonstrated between the HPG and the HPA 
(hypothalamic-pituitary-adrenal) axis, with the production of sex ste-
roid hormones and stress hormones (glucocorticoids) being mutually 
influenced (Oyola & Handa, 2017; Phumsatitpong et al., 2021). Notably, 
in response to stress, the adrenal glands in both animals and humans 
release progesterone along with their respective primary glucocorticoid; 
corticosterone in many animal species and cortisol in humans (Herrera 
et al., 2016; Kalil et al., 2013). Likewise, the HPA axis activity seems to 
be influenced by menstrual cycle-dependent changes in hormone pro-
duction via the HPG axis. A greater salivary cortisol response to an acute 
stressor has been observed during the luteal than the follicular phase 
(Kirschbaum et al., 1999; Montero-López et al., 2018), thus suggesting 
an effect of progesterone. In line, the autonomic nervous system (ANS) 
was found to exhibit a sympathetic predominance in the luteal phase of 
the menstrual cycle (Brar et al., 2015; Tada et al., 2017; Yazar et al., 
2016). This reflects the body’s adaptation to potential pregnancy and 
energy demands during this cycle phase, with increased activity in the 
sympathetic branch of the ANS influencing physiological parameters 
such as heart rate and blood pressure (Stadler et al., 2019).

Moreover, progesterone affects the stress response also through its 
neuroactive metabolite ALLO. In females, ALLO is synthesized from 
progesterone in the ovaries, adrenal glands, placenta and nervous sys-
tem (Cáceres et al., 2024). This neurosteroid plays an important regu-
latory role in responding to acute stress, potentiating the effects of the 
GABAergic system, and its level decreases under chronic stress (Bali 
et al., 2016; Pisu et al., 2022). As the primary inhibitory neurotrans-
mitter in the brain, GABA helps to maintain homeostasis and prevent 
overstimulation of the nervous system by dampening excessive neural 
activity during stress (Purdy et al., 1991; Schweizer-Schubert et al., 
2021). Chronic stress is associated with blunted HPA axis activity and 
also altered ALLO levels, which may contribute to the development of 
stress-related disorders (Almeida et al., 2021). These characteristics 
suggest ALLO as a potential biomarker for stress-related disorders 
accompanied by hormone sensitivity not only to fluctuations in sex 
steroids but also concerning the response to regulatory stress mecha-
nisms (Schiller et al., 2014; Schweizer-Schubert et al., 2021).

The discussed interactions between endogenous progesterone, ALLO, 
and stress support the assumption that synthetic progestins also influ-
ence the stress systems. Notably, most studies included users of com-
bined HCs, it is thus unclear which of the observed effects are 
attributable to progestins or to estrogens, and/or their interactive effect 
(Gervasio et al., 2022; Laird et al., 2019; Lewis et al., 2019).

For instance, in studies comparing HC users and regularly cycling 
controls, differences in stress and inflammation markers such as altered 
HPA axis activity and reactivity of the ANS have been observed (Herrera 
et al., 2019; Masama et al., 2022; Mengelkoch et al., 2024; Nielsen et al., 
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2013; Rohleder et al., 2003), though this may be due to the effect of 
ethinyl estradiol rather than progestins (Kangasniemi et al., 2022; 
Kangasniemi et al., 2023). Interestingly, progestins may affect stress and 
mood parameters depending on their level of androgenicity (Herrera 
et al., 2019), as some studies reported mood-stabilizing effects of HCs 
containing anti-androgenic progestins (Lopez et al., 2012) and adverse 
effects on stress and mood among users of HCs with androgenic pro-
gestins (Pletzer et al., 2023; Schaffir et al., 2016). However, cross- 
sectional comparisons are prone to selection bias, and may reflect in-
dividual sensitivity to progestins rather than pharmacological differ-
ences between different types of progestins.

Studies on progestagen-only contraception and the HPA-axis are very 
few. One cross-sectional study, by Aleknaviciute et al. (2017), provides 
initial evidence suggesting an association between levonorgestrel-IUD 
(LNG-IUD) and potentiated stress reactivity, both acutely under stan-
dardized laboratory conditions, as well as chronically under naturalistic 
conditions. Exaggerated salivary cortisol and a potentiated heart rate in 
response to the Trier Social Stress Test, as well as elevated levels of hair 
cortisol (as a proxy of long-term exposure to stress), was observed 
among LNG-IUD users compared with oral ethinylestradiol/levonor-
gestrel users and regularly cycling controls. Further, LNG-IUD and oral 
ethinylestradiol/levonorgestrel users had a blunted salivary cortisol 
response to adrenocorticotropic hormone administration, compared to 
controls (Aleknaviciute et al. 2017). On the other hand, a prospective 
cohort study found no differences in hair cortisol between LNG-IUD and 
copper IUD users (Doty et al., 2023).

The role of progestagens in the response to stress may have important 
implications for neuropsychiatric disease risk and resilience across the 
lifespan in females (Bale & Epperson, 2015). Stress-related disorders are 
more common in females than males (Bale & Epperson, 2017; 
Schweizer-Schubert et al., 2021; Solomon & Herman, 2009), thus urging 
the investigation of the biopsychological interactions between stress and 
progestagens. Additionally, there is also a lack of studies regarding the 

impact of such interactions on everyday life function that would allow to 
profile their ecological validity.

9. Progesterone receptor modulation: effects of ulipristal 
acetate on the brain and mood in patients with PMDD

PMDD presents itself as a model to study the impact of progesterone 
on the brain in relation to mental health (Dubol et al., 2020), as the 
cyclical occurrence of symptoms coincides with its fluctuations. While 
estradiol and progesterone levels do not differ from normative ranges in 
PMDD patients (Backstrom et al., 2014), fluctuations of the levels of 
these steroids have been proposed as triggers of PMDD symptomatology. 
Indeed, their suppression has been associated with symptom improve-
ment (Nyberg et al., 2007; Schmidt et al., 2017; Schmidt et al., 1998; 
Segebladh et al., 2009; Wyatt et al., 2004).

The hypothesis that SPRMs may prevent progesterone from inducing 
negative effects has been tested with the aim of identifying a potential 
new treatment for PMDD. A randomized placebo-controlled trial 
demonstrated the efficacy of the SPRM UPA (5 mg per day) in reducing 
the psychological symptoms of PMDD, with negligible side effects 
(Comasco et al., 2021, see Fig. 3). The mean improvement in the daily 
record of severity of problems (DRSP) total score during the last pre-
menstrual period was 41 % and 22 % in the treatment and placebo 
groups, respectively (mean difference, − 18 %). The effects on mental 
health were most pronounced for depressive and anger/irritability 
symptoms. Complete or partial remission during the last premenstrual 
period was attained by 50 % and 35 %, respectively, in the treatment 
group. These findings expand on a borderline significant trend observed 
in a small sample tested with mifepristone (Chan et al., 1994) and the 
beneficial effects on self-reported premenstrual symptoms in women 
undergoing treatment with ulipristal acetate for uterine leiomyomas 
with PMS (Chen et al., 2017).

By modulating progesterones actions, the SPRM UPA has been 

Fig. 3. Randomized controlled trial of pharmacological treatment of premenstrual dysphoria disorder with the selective progesterone receptor modulator ’ulipristal 
acetate’ (for study details, see Comasco et al., 2021). SPRM = Selective progesterone receptor modulator. ns = non-significant effects. a This subscale includes 
symptoms of depressed mood; feelings of hopelessness, worthlessness and guilt; sleep difficulties; and feeling overwhelmed. b This subscale includes symptoms of 
anger, irritability, and interpersonal conflicts. c This subscale includes symptoms of breast tenderness, bloating, headache, and joint or muscle pain.
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investigated to gain mechanistic insights into the role of progesterone in 
PMDD (Sundstrom-Poromaa et al., 2020). Recent pharmaco- 
neuroimaging research has begun to reveal the neural effects of SPRM 
treatment. Using multimodal neuroimaging techniques, scientists have 
mapped the structural and functional brain changes associated with 
symptom relief in PMDD patients before and during SPRM treatment. 
These findings indicate that SPRM treatment enhances reactivity in the 
dorsal anterior cingulate cortex and dorsomedial prefrontal cortex 
during aggressive responses to provocations (Kaltsouni et al., 2021, see 
Fig. 3). In contrast, more aggressive responses were linked to lower 
reactivity in these fronto-cingulate regions in the placebo group 
(Kaltsouni et al., 2021). Since aggressiveness is a potential outcome of 
core PMDD symptoms such as irritability and anger, these results sug-
gest that progesterone receptor antagonism may improve top-down 
emotion regulation in PMDD. This is possibly achieved by enhancing 
the activation of brain regions involved in attentional control, cognitive 
control, and the regulation of negative emotions. In turn, this could 
explain the beneficial effects of SPRM treatment in reducing irritability, 
anger, and conflict, which involve responding to salient stimuli, evalu-
ating potential behavioral responses, and controlling immediate input. 
Conversely, the anatomical properties of the brain seem to remain un-
changed upon SPRM treatment (Kaltsouni et al., 2022; Kaltsouni et al., 
2024, see Fig. 3), suggesting that structural variations do not explain 
PMDD symptom relief. This finding is further supported by brain 
structure alterations found in patients with PMDD compared to controls 
across both symptomatic and asymptomatic menstrual cycle phases, 
indicating trait vulnerability markers of PMDD (Dubol et al., 2024). 
Thus, in addition to proposing SPRM as a potential new treatment for 
PMDD (Comasco et al., 2021, see Fig. 3), these results provide new in-
sights contributing to advancing our understanding of the influence of 
progesterone on female’s brain and mental health (Fig. 3).

10. Progesterone’s metabolite allopregnanolone and perinatal 
depression

As a friend vs. foe, progesterone exerts beneficial effects on another 
female-specific psychiatric disorder such as PND, compared with the 
detrimental effects observed in the case of PMDD (Sundstrom-Poromaa 
et al., 2020). Such negative effects in PMDD are likely explained by the 
impact of ALLO on mood, as proven by successful trials inhibiting it or 
its synthesis, or targeting its allosteric modulation (Sundstrom-Poromaa 
& Comasco, 2023). On the other hand, the continuous intravenous 
administration of ALLO/brexanolone is used to treat PND (Meltzer- 
Brody et al., 2019), and the beneficial effects of its more viable coun-
terpart zuranolone have launched it as a rapid-acting, oral, and well- 
tolerated treatment (Deligiannidis et al., 2023). PND is suggested to 
be triggered by sensitivity to hormonal withdrawal experienced upon 
giving birth (Skalkidou et al., 2012). This is the first time that a hor-
monal treatment has been successfully approved for a female-specific 
psychiatric disorder, sparking interest, as demonstrated by research on 
zuranolone as a potential treatment for major depressive disorder 
(Gunduz-Bruce et al., 2019), although it has been tested for only 14 days 
(Ten Doesschate et al., 2022). Explorative research on the therapeutic 
use of ALLO in the treatment of mood disorders and other neurological 
conditions is therefore warranted.

11. Synthetic progestins and the brain

Bürger et al. (2021) conducted the first review on the impact of LNG- 
IUDs on stress, mental health, and brain architecture. Besides the lack of 
studies on the brain, variation in study design, population, and quality of 
methods was the major observation regarding the literature, thus calling 
for systematic research on the effects of progestin-only HCs such as LNG- 
IUDs on the brain and mental health.

Recently, a national cohort study using Danish register data on first- 
time users of LNG-IUDs provided strong evidence of a dose-dependent 

association between parenteral LNG administration and incident 
depression (Larsen et al., 2024), backing findings of previous national 
health registry-based studies (Skovlund et al., 2018; Stenhammar et al., 
2023). In addition, two recent papers on cross-sectional EEG in-
vestigations demonstrated greater amplitude of the attention-related 
component (N2, EEG) during emotion regulation task in LNG-IUD 
users compared to COC users or regularly cycling controls (Zelionkaitė 
et al., 2024), but found no differences in resting stated EEG parameters 
(alpha power, individual alpha peak frequency, and aperiodic activity) 
between these groups (Gaižauskaitė et al., 2024). As suggested by re-
views and case reports, methodologically well-designed studies on LNG- 
IUDs and the brain are lacking and more research is warranted (Bürger 
et al., 2021; Elsayed et al., 2023; Zeiss et al., 2020).

Otherwise, the impact of combined HC and MHT on the brain and 
different aspects of cognition (e.g., visuospatial, social) seems to vary 
depending on the progestin contained though such effect cannot be fully 
disentangled from estrogenic effects (Beltz, 2022; Song et al., 2023). 
Randomized controlled trials shall be performed to rule out individual 
differences in sensitivity to progestins when comparing COCs containing 
different progestin types (e.g. androgenic vs. anti-androgenic 
progestins).

12. Progestagens and perimenopause

The menopausal transition is associated with symptoms such as hot 
flashes and sleep problems, and, for some individuals, an increased 
susceptibility to mood disorders, such as depression (Badawy et al., 
2024), and increased vulnerability to stress and cognitive decline 
(Monteleone et al., 2018; Weber et al., 2014). However, the underlying 
mechanisms are still poorly understood, and little attention has been 
given to investigating the role of progestagens in (peri)menopausal 
symptoms and the effects of MHT. Postmortem analyses of the brain 
tissues of postmenopausal women revealed the accumulation of pro-
gesterone in the amygdala, cerebellum, and hypothalamus (Bixo et al., 
1997), suggesting local synthesis of progestagens in the brain even 
postmenopausally (Labrie, 2015).

MHT appears to have modulatory effects on brain regions associated 
with cognitive function, as well as on the cholinergic and serotonergic 
systems, while the emotional brain remains understudied. There is evi-
dence that progestagens counteract the neural effects of estrogens dur-
ing MHT. However, as estradiol supplementation is the prerequisite for 
relief of the menopausal symptoms, no studies on progestin-only treat-
ment in perimenopausal women are available (Comasco et al., 2014; 
Griksiene et al., 2022).

MHT commonly improves mood, but the progestagen component in 
combined MHT might counteract the beneficial effect of estrogen or 
induce negative mood in asymptomatic females (Toffol et al., 2015). For 
synthetic progestins, small randomized trials comparing medrox-
yprogesterone acetate (MPA) and norethisterone acetate (NETA) have 
shown reduced depressed mood with MPA combinations in both 
sequential and continuous combined treatments (Bjorn et al., 2000; 
Odmark et al., 2004), but the overall evidence is weak. Two randomized 
controlled trials on oral bioidentical progesterone did not find proges-
terone to counteract the beneficial effect of estrogen on mood (Gleason 
et al., 2015; Gordon et al., 2018), whereas two separate randomized 
clinical trials on estradiol together with oral and vaginal progesterone, 
respectively, found that bioidentical progesterone does induce negative 
mood (Andréen et al., 2005; Andréen et al., 2006). However, the effects 
of progesterone on mood seem to depend on the level of metabolism to 
ALLO and individual vulnerability to hormonal fluctuations (Backstrom 
et al., 2015).

Cognitive complaints are common during peri- and postmenopause 
(Edwards et al., 2019; Reuben et al., 2021) but to date, there is 
consensus that MHT is not useful for improving cognition in post-
menopausal women with cognitive decline (Hogervorst et al., 2009). 
Instead, combinations with MPA seem to increase the risk of dementia, 
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as shown in the large Women’s Health Initiative Memory Study 
(Shumaker et al., 2003). In previously healthy women, MPA also stands 
out as a possible risk factor for cognitive impairment compared with 
combinations with NETA, levonorgestrel, dienogest (Griksiene et al., 
2022) or micronoized progesterone (Memi et al., 2024). Worth to note, 
in a randomized controlled trial, bioidentical progesterone in combi-
nation with different estrogens did not affect cognition in early meno-
pause (Gleason et al., 2015). On the other hand, ALLO, MPA, and some 
MPA metabolites with GABAergic effects have been shown to cause 
memory impairment in animal studies (Bengtsson et al., 2016; Das et al., 
2022), indicating that not all effects observed in the animal brain could 
be easily translated to humans. It is also difficult to compare different 
progestagens in terms of their effects on mood and cognition, as both are 
influenced by the nature of the progestagen used, the regimen, dose of 
progestagen and/or estrogen, administration route, timing, and indi-
vidual risk factors.

13. Progestagens and neuroprotection

Progestagens, including progesterone, its metabolites, and its syn-
thetic derivatives, have demonstrated protective effects in animal 
models of neurodegenerative diseases such as Alzheimer’s disease (AD) 
as well as traumatic brain injury, and stroke (Guennoun et al., 2019; 
Guennoun et al., 2020; Melcangi et al., 2012; Melcangi et al., 2014; 
Schumacher et al., 2014; Irwin and Brinton 2014). However, translation 
to clinical medicine has not always been straightforward.

Regarding neuroprotection by progestagens in AD, in a preclinical 
model using 3xTg-AD mice, progesterone treatment was associated with 
lower hyperphosphorylation of the protein Tau stabilizing brain cell 
structure (Carrol et al., 2007) and ALLO treatment promoted neuro- 
regeneration and cognitive function; decreased neuroinflammation 
and the accumulation of beta-amyloid; and restored the deficits of bio-
energetics (Irwin & Brinton, 2014). Results of a phase 1b/2a clinical trial 
on ALLO as a regenerative therapeutic for AD indicated that the rate of 
decline in hippocampal volume was slowed, and in some cases reversed, 
in the ALLO group compared to placebo (Raikes et al., 2022). Gain of 
hippocampal volume was evident in APOE ε4 carriers. ALLO as a 
regenerative therapeutic for mild Alzheimer’s disease has entered phase 
2: A multi-center, double-blind, randomized, placebo-controlled proof- 
of-concept efficacy clinical trial is currently in progress (REGEN-BRAIN 
study; NCT04838301).

Remarkable neuroprotective effects of progesterone in traumatic 
brain injury (TBI) were demonstrated in a large number of preclinical 
studies using animal models of TBI and two phase 2 clinical trials 
(Wright et al., 2007, Xiao et al., 2008). However, two large, multicenter, 
randomized and placebo-controlled Phase 3 trials (ProTECT III and 
SyNAPSE) did not find clinical benefits of progesterone for TBI (Wright 
et al., 2014; Skolnick et al., 2014) and a meta-analysis including five 
randomized clinical trials failed to show efficacy of progesterone to 
decrease mortality or disability after TBI (Ma et al., 2016). Multiple 
reasons for the failure of the clinical trials have been extensively dis-
cussed (Stein 2015; Schumacher et al. 2016; Ma et al., 2016; Guennoun, 
2020).

Regarding neuroprotection by progestagens, stroke has also been 
investigated. Stroke is the leading cause of acquired disability and the 
second leading cause of dementia (Feigin et al., 2009; Lo et al., 2003) 
and mortality (Feigin et al., 2021). The incidence and outcomes of 
ischemic stroke are significantly influenced by both age and sex, with 
age being the greatest non-modifiable risk factor. While lifetime stroke 
rates are typically higher in males (Popa-Wagner et al., 2020; Rothwell 
et al., 2004; Roy-O’Reilly & McCullough, 2018), after menopause, the 
risk of stroke in females exceeds that of age-matched males, along with 
higher morbidity and mortality, and more difficult recoveries (Appelros 
et al., 2009; Fukuda et al., 2009; Glader et al., 2003; Mozaffarian et al., 
2016; Niewada et al., 2005; Petrea et al., 2009; Roger et al., 2011; 
Roquer et al., 2003). This difference is thought to be related to hormonal 

changes. During their fertile years, women seem protected against stroke 
by ovarian hormones such as estrogen and progesterone, in line with 
animal models (Alkayed et al., 1998; Selvamani et al., 2014). A major 
factor contributing to this observation may be the variation of the levels 
in neuroprotective steroids within the brain. Following stroke, endoge-
nous neuroprotective processes are triggered to counteract ischemic 
damage, with neuroactive steroids like progesterone and its metabolites 
potentially playing a role (Guennoun et al., 2019; Zhu et al., 2017).

Several studies have described the neuroprotective benefits of pro-
gesterone treatment in stroke models, highlighting its versatile use as a 
neuroprotective agent (Wali et al., 2016; Gaignard et al., 2016; Gibson 
et al., 2011). Progesterone has been shown to mediate cerebroprotection 
by regulating critical processes such as edema formation, neurotoxicity, 
blood–brain barrier integrity, inflammation, and mitochondrial func-
tions (Guennoun et al., 2019). In both young male and female mice, 
progesterone preserved mitochondrial function and reduced oxidative 
damage after middle cerebral occlusion (MCAO) (Gaignard et al., 2016). 
Post-ischemic administration of progesterone to ovariectomized mice 
improved neurological outcome with no effect on lesion volume, while 
in aged female mice it significantly reduced lesion volume but did not 
improve neurological outcomes (Gibson et al, 2011). Transgenic male 
mice lacking neural PR expression showed larger ischemic brain infarcts 
and increased motor dysfunction, demonstrating the importance of PR- 
dependent mechanisms in protecting the brain post-stroke and high-
lighting the importance of neural PRs in mediating protective effects of 
endogenous progesterone (Zhu et al, 2017). PR is a key player for the 
mediation of the beneficial effects of progesterone (Liu et al., 2012; Zhu 
et al, 2019), suggesting that targeting PR could be a viable strategy for 
enhanced recovery after stroke. However, most studies have been per-
formed in young, male mice. In contrast to progesterone, treatment with 
ALLO reduced brain edema, infarct volume, and improved functional 
outcomes by a signaling mechanisms independent of PR, as evidenced 
by its efficacy in PR knockout mice (Liu et al., 2012). As a positive 
modulator of GABAA receptors, ALLO may counteract the excitotoxicity 
in response to stroke.

Progestins have been designed to target the PR, and given the 
established importance of PR in neuroprotection, these compounds 
emerge as promising candidates for stroke treatment. Segesterone ace-
tate (16-methylene-17α-acetoxy-19-nor-pregn-4-ene-3, 20-dione) is a 
19-norprogesterone derivative and selective agonist for PR without 
interacting with other steroid receptors (Sitruk-Ware et al., 2024). It was 
initially investigated for hormonal contraception and hormonal therapy; 
recent studies have shown its beneficial effects in the central nervous 
system and suggest that it could be a promising complementary treat-
ment for stroke (Fréchou et al., 2021; Sitruk-Ware et al., 2024). Des-
ogestrel and drospirenone are progestins commonly used in hormonal 
contraceptives and have been found to improve neurological scores and 
reduce infarct volumes in experimental stroke-induced brain injury (El 
Amki et al., 2019).

Remarkably, potential cerebroprotective effects have been associ-
ated with HC use. While COC use increases the risk of myocardial 
infarction or ischemic stroke depending on estrogen dosage (Gillum 
et al., 2000; Roach et al., 2015), oral progestin-only HC use does not 
increase the risk of developing various cardiometabolic outcomes (Glisic 
et al., 2018). Advancements in our knowledge of how progesterone and 
its synthetic variants function in cerebroprotection can lead to the 
development of females specific therapies to improve outcomes, not 
only in stroke patients but also in HC users.

14. Methodological considerations and future perspectives

The scarcity of studies carried out in female subjects is a major 
hindrance to our understanding of the effect of progesterone, ALLO, and 
progestins across the female reproductive life. Remarkably, major 
methodological issues need to be overcome, including small sample 
sizes, a lack of longitudinal data, a loose assessment of hormonal 
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profiles, and poor characterization of study participants. Experimental 
evidence disentangling the effects of progesterone on the human brain, 
mood, stress and cognition is extremely scarce, as exemplified by the 
single study-findings described in this review. Moreover, studies on 
puberty, the menstrual cycle, pregnancy, perimenopause, HC, and MHT 
are hampered by the difficulty to assess the individual effects of pro-
gestagens vs. the effects of estrogens. Another shortcoming in the cur-
rent research landscape is the lack of studies investigating to what extent 
progestagen affect the daily life of females who are naturally cycling, 
pregnant, menopausal, on MHT, or using HC.

Placebo-controlled trials are advancing our knowledge of the effi-
cacy and safety profile of progestagens and SPRM treatments, including 
side effects and contraindications. Nevertheless, their rare combination 
with neuroimaging and behavioral assessments limits a mechanistic 
understanding of the role of progesterone in brain health. On the other 
hand, crossover trials in which each participant acts as own control are 
needed to rule out individual differences in neuropsychological response 
to the various types of progestins included in HC. Important to note are 
also progestagen metabolites and their biological activity (Stanczyk 
et al., 2024), as for example those structurally related to progesterone (e. 
g., MPA), for which little is known but are widely used in HC or MHT.

Overall, studies of the interaction between progestins, stress, and 
mood show mixed results, with the underlying mechanisms and their 
implications for everyday life remaining unclear (Jentsch et al., 2022). 
Potential explanatory factors are not only the investigation of COC that 
include estrogens, but also the cross-sectional design, comparison group, 
lack of considerations of progestin type, dosage, route of administration, 
timing, and absence of ecologically valid study designs. Further, more 
research is warranted on interactions of different progestins with other 
steroid hormone receptors (androgen, estrogen, mineralocorticoid, and 
glucocorticoid receptors) and progesterone receptor affinity itself, 
which is up to four times greater for some progestins than for endoge-
nous progesterone (Africander et al., 2014; Griksiene et al., 2022; 
Hapgood et al., 2014; Pletzer et al., 2023). This knowledge gap should 
be targeted comprehensively in future research, as initial findings point 
to substantial differences in the effects of different progestins on the 
brain. For example, MPA seems to exert undesirable effects on brain 
tissue and cognition, whereas endogenous progesterone and other pro-
gestins even have neuroprotective effects and slow cognitive decline 
(Griksiene et al., 2022). To target some of those questions in a more 
structured manner, animal models may be required (Tronson & Schuh, 
2022).

Progesterone and compounds that target PR as well as ALLO are 
beneficial after stroke, as they can preserve tissue and improve func-
tional outcomes, presenting a new potential treatment strategy 
(González et al., 2020; Guennoun et al., 2019; Guennoun, 2020; Sitruk- 
Ware et al., 2024; Melcangi et al., 2014). Advancements in our knowl-
edge of how progestagens and their synthetic variants function in cer-
ebroprotection in young and aged females can lead to the development 
of sex- and age- specific therapies to improve outcomes in patients with 
stroke but also contribute to minimize adverse cardiovascular effects on 
the brain of HC users.

15. Conclusions

The present review highlights the effects of progestagens on the 
brain, mood, stress, cognition, and cerebroprotection in females, as an 
area where further research is needed. To date, experimental pharma-
cological research on progesterone/progestins-only effects is confined to 
single studies including small samples. The rest of the literature is 
limited by the nested effects of progestagens and estrogens. The thera-
peutic efficacy of SPRMs for PMDD and of ALLO for PND paves the way 
for new sex-specific treatments and a deeper understanding of the 
neuroendocrine mechanisms involved in the mental conditions in 
females.
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Andréen, L., Sundström-Poromaa, I., Bixo, M., Nyberg, S., Bäckström, T., 2006. 
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Buitelaar, J.K., Fernández, G., 2008. Progesterone selectively increases amygdala 
reactivity in women. Mol. Psychiatry 13 (3), 325–333. https://doi.org/10.1038/sj. 
mp.4002030.

Wali, B., Ishrat, T., Stein, D.G., Sayeed, I., 2016. Progesterone improves long-term 
functional and histological outcomes after permanent stroke in older rats. Behav. 
Brain Res. 305, 46–56. https://doi.org/10.1016/j.bbr.2016.02.024.

Wan, L., Huang, R.-J., Luo, Z.-H., Gong, J., Pan, A., Manavis, J., Yan, X.-X., Xiao, B., 
2021. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. 
Neural Plast. 2021 (1), 3651735. https://doi.org/10.1155/2021/3651735.

Weber, M.T., Maki, P.M., McDermott, M.P., 2014. Cognition and mood in 
perimenopause: A systematic review and meta-analysis. J. Steroid Biochem. Mol. 
Biol. 142, 90–98. https://doi.org/10.1016/j.jsbmb.2013.06.001.

Whitaker, L.H., Williams, A.R., Critchley, H.O., 2014. Selective progesterone receptor 
modulators. Curr. Opin. Obstet. Gynecol. 26 (4), 237–242. https://doi.org/10.1097/ 
GCO.0000000000000082.

Wright, D.W., Kellermann, A.L., Hertzberg, V.S., Clark, P.L., Frankel, M., Goldstein, F.C., 
Salomone, J.P., Dent, L.L., Harris, O.A., Ander, D.S., Lowery, D.W., Patel, M.M., 
Denson, D.D., Gordon, A.B., Wald, M.M., Gupta, S., Hoffman, S.W., Stein, D.G., 2007. 
ProTECT: a randomized clinical trial of progesterone for acute traumatic brain 
injury. Ann. Emerg. Med. 49 (4), 391–402.e4022. https://doi.org/10.1016/j. 
annemergmed.2006.07.932.

Wright, D.W., Yeatts, S.D., Silbergleit, R., Palesch, Y.Y., Hertzberg, V.S., Frankel, M., 
Goldstein, F.C., Caveney, A.F., Howlett-Smith, H., Bengelink, E.M., Manley, G.T., 
Merck, L.H., Janis, L.S., Barsan, W.G., Investigators, N.E.T.T., 2014. Very early 

C. Bencker et al.                                                                                                                                                                                                                                Frontiers in Neuroendocrinology 76 (2025) 101160 

15 

https://doi.org/10.1176/appi.ajp.2017.16101113
https://doi.org/10.1210/er.2006-0050
https://doi.org/10.1016/j.pneurobio.2013.09.004
https://doi.org/10.1016/j.pneurobio.2013.09.004
https://doi.org/10.1016/j.jsbmb.2015.11.010
https://doi.org/10.3389/fmed.2020.479646
https://doi.org/10.1016/j.ajog.2009.03.016
https://doi.org/10.1016/j.ajog.2009.03.016
https://doi.org/10.1042/CS20130565
https://doi.org/10.1038/s41593-021-00806-8
https://doi.org/10.1038/s41593-021-00806-8
https://doi.org/10.1016/j.neuropharm.2005.04.026
https://doi.org/10.1016/j.neuropharm.2005.04.026
https://doi.org/10.1001/jama.289.20.2651
https://doi.org/10.1016/j.yfrne.2024.101136
https://doi.org/10.2217/whe.12.55
https://doi.org/10.1056/NEJMoa1411090
https://doi.org/10.1176/appi.ajp.2017.17060616
https://doi.org/10.1016/j.physbeh.2009.02.033
https://doi.org/10.1016/j.physbeh.2009.02.033
https://doi.org/10.1016/j.yfrne.2022.101051
https://doi.org/10.1016/j.neuroscience.2008.05.049
https://doi.org/10.1016/j.neuroscience.2008.05.049
https://doi.org/10.1080/13697137.2019.1622085
https://doi.org/10.1210/er.2012-1008
https://doi.org/10.1210/er.2012-1008
https://doi.org/10.1016/j.steroids.2024.109427
https://doi.org/10.1074/jbc.M313308200
https://doi.org/10.1016/j.neuroscience.2011.04.013
https://doi.org/10.1016/j.neuroscience.2011.04.013
https://doi.org/10.3109/02699052.2015.1065344
https://doi.org/10.3109/02699052.2015.1065344
https://doi.org/10.1016/j.psyneuen.2014.04.008
https://doi.org/10.1016/j.ijpsycho.2023.08.003
https://doi.org/10.1016/j.ijpsycho.2023.08.003
https://doi.org/10.1038/s41398-023-02424-3
https://doi.org/10.3389/fnins.2014.00380
https://doi.org/10.1007/s40263-023-01004-9
https://doi.org/10.1016/j.yfrne.2020.100856
https://doi.org/10.1016/j.yfrne.2020.100856
https://doi.org/10.1002/jnr.21943
https://doi.org/10.3177/jnsv.63.249
https://doi.org/10.1016/j.jad.2022.06.085
https://doi.org/10.1210/endocr/bqac147
https://doi.org/10.1097/GME.0000000000000323
https://doi.org/10.1016/j.yfrne.2022.101035
https://doi.org/10.1016/j.yfrne.2022.101035
https://doi.org/10.1016/j.neuroscience.2011.04.042
https://doi.org/10.1523/JNEUROSCI.1715-07.2007
https://doi.org/10.1038/sj.mp.4002030
https://doi.org/10.1038/sj.mp.4002030
https://doi.org/10.1016/j.bbr.2016.02.024
https://doi.org/10.1155/2021/3651735
https://doi.org/10.1016/j.jsbmb.2013.06.001
https://doi.org/10.1097/GCO.0000000000000082
https://doi.org/10.1097/GCO.0000000000000082
https://doi.org/10.1016/j.annemergmed.2006.07.932
https://doi.org/10.1016/j.annemergmed.2006.07.932


administration of progesterone for acute traumatic brain injury. N. Engl. J. Med. 371 
(26), 2457–2466. https://doi.org/10.1056/NEJMoa1404304.

Wyatt, K.M., Dimmock, P.W., Ismail, K.M., Jones, P.W., O’Brien, P.M., 2004. The 
effectiveness of GnRHa with and without ’add-back’ therapy in treating 
premenstrual syndrome: a meta analysis. BJOG 111 (6), 585–593. https://doi.org/ 
10.1111/j.1471-0528.2004.00135.x.

Xiao, G., Wei, J., Yan, W., Wang, W., Lu, Z., 2008. Improved outcomes from the 
administration of progesterone for patients with acute severe traumatic brain injury: 
a randomized controlled trial. Crit. Care 12 (2), R61. https://doi.org/10.1186/ 
cc6887.

Yang, R., Zhang, B., Chen, T., Zhang, S., Chen, L., 2017. Postpartum estrogen withdrawal 
impairs GABAergic inhibition and LTD induction in basolateral amygdala complex 
via downregulation of GPR30. Eur. Neuropsychopharmacol. 27 (8), 759–772. 
https://doi.org/10.1016/j.euroneuro.2017.05.010.
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Zhu, X., Fréchou, M., Liere, P., Zhang, S., Pianos, A., Fernandez, N., Denier, C., 
Mattern, C., Schumacher, M., Guennoun, R., 2017. A Role of Endogenous 
Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion 
of Its Intracellular Receptors. J. Neurosci. 37 (45), 10998–11020. https://doi.org/ 
10.1523/JNEUROSCI.3874-16.2017.
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