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Deuteron-3He reactions in the 15 to 40 MeV range are studied using a three-body model where the constructed 
nonlocal optical potentials rely on rigorous nucleon-3He scattering calculations. The differential cross section for 
the elastic scattering and neutron transfer reaction is predicted quite well up to 90 deg scattering angles. The 
importance of the Pauli term in complex potentials is demonstrated.
1. Introduction

Introduction of optical potentials into the nuclear reaction theory 
enabled the reduction of a many-nucleon problem, encountered in the 
nucleon-nucleus scattering, to an effective two-body problem. The enor-

mous complexity of the many-body problem in the continuum for a 
long time restricted the construction of optical potentials to the phe-

nomenological approach, where model parameters were adjusted to 
the experimental data, such as in the Chappel Hill [1], Koning and 
Delaroche [2], Weppner et al. [3] and many other optical potentials. 
Many-nucleon structure calculations using various methods such as the 
microscopic mean field, the no-core shell model, Green’s function Monte 
Carlo, coupled cluster approach, self-consistent Green’s function pro-

gressed significantly in the last decades, opening the doors for approx-

imate extensions to the continuum and microscopic calculations of the 
optical potentials as reviewed in Ref. [4]. For example, quite a typical 
approach is folding the microscopically calculated nuclear densities with 
the nucleon-nucleon interaction [5–7], either bare or 𝐺-matrix one. A 
prerequisite for this approach, limited to the first order scattering term, 
is high enough beam energy. This way some methods, like those based 
on the mean-field description, were able to develop microscopic optical 
potentials also for heavy nuclei above mass number 𝐴 = 200. In con-

trast, the lightest nuclei such as 3H and 3He remain beyond the reach 
of those methods as the individual character of their constituent nu-

cleons plays an important role, and it is not even clear to what extent 
the optical potential description can be successful. Since nucleon-4He
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scattering calculations are available only below the breakup threshold 
[8–10], we study the lighter isotope 3He, with rigorous nucleon-3He
scattering calculations available at energies well above the breakup 
threshold [11,12]. Furthermore, 3He has the nucleon separation energy 
around 5 MeV, which is quite a typical excitation energy for many light 
nuclei, in contrast to exceptionally tightly bound 4He, and thus might 
be more suitable to draw conclusions. Therefore we aim to construct 
the optical models for proton (𝑝) and neutron (𝑛) interactions with 3He
based on rigorous continuum calculations, a unique feature among the 
optical potentials. Beside the quality in reproducing the experimental 
nucleon-nucleus scattering data, the further criterion is the ability to 
describe more complicated reactions such as the deuteron-nucleus scat-

tering. Thus, another goal of the present work is the application of the 
developed nucleon-3He potentials to the deuteron-3He elastic scatter-

ing, breakup, and the neutron transfer reaction 3He(𝑑, 𝑝)4He at energies 
well above the breakup threshold of the involved nuclei. As the transfer 
reaction at very low energy is of high importance for the termonuclear 
fusion, in the regime below the breakup threshold it has also been stud-

ied using the no-core shell model with continuum [13,14].

A somehow similar idea has been explored in the past for 5H res-

onance study in the three-body 3H + 𝑛 + 𝑛 model by developing ef-

fective neutron-3H potential [15]. It contained several local Gaussian 
terms whose parameters were fitted to phase shifts below the inelastic 
threshold. Consequently, the imaginary part was vanishing. An impor-

tant feature of that potential was a strong partial-wave dependence of its 
parameters, quite common in few-nucleon systems. In the present work 
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we aim to develop complex potentials valid over a broader energy range 
with open inelastic channels, but we also expect the need for strongly 
partial-wave dependent parameters.

Section 2 recalls microscopic four-nucleon reaction calculations, sec-

tion 3 describes and validates the developed nucleon-3He optical poten-

tials, while section 4 reminds the three-cluster deuteron-3He scattering 
equations. Sections 5 and 6 contain the deuteron-3He scattering results 
and our conclusions, respectively.

2. Four-body calculation of the nucleon-𝟑𝐇𝐞 scattering

A rigorous quantum-mechanical description for the nucleon scat-

tering from the three-nucleon bound state can be given by the Alt, 
Grassberger and Sandhas (AGS) equations [16] for transition oper-

ators 𝛽𝛼 that constitute a momentum-space integral equation for-

mulation of the Faddeev-Yakubovsky (FY) four-particle theory [17]. 
Previous benchmark calculations [18,19] with alternative theoretical 
frameworks, namely, the hyperspherical harmonics expansion method 
[20,21] and the coordinate-space FY equations [22,23], performed be-

low the breakup threshold, revealed good agreement between the three 
methods, confirming their reliability. The symmetrized form of the AGS 
equations [24], most convenient for the four-nucleon system in the 
isospin formalism, reads

11 = − (𝐺0 𝑡𝐺0)−1𝑃34 − 𝑃34𝑈1𝐺0 𝑡𝐺011

+𝑈2𝐺0 𝑡𝐺021, (1a)

21 = (𝐺0 𝑡𝐺0)−1(1 − 𝑃34) + (1 − 𝑃34)𝑈1𝐺0 𝑡𝐺011, (1b)

where 𝐺0 is the free resolvent that gives rise to energy-dependence of 
the transition operators, 𝑡 = 𝑣 + 𝑣𝐺0𝑡 is the two-nucleon transition op-

erator derived from the two-nucleon potential 𝑣 including the screened 
Coulomb force for the two-proton pair, and

𝑈𝛼 = 𝑃𝛼𝐺
−1
0 + 𝑃𝛼𝑡𝐺0𝑈𝛼 (2)

are subsystem transition operators. The subscripts 1 and 2 label the 
(12,3)4 and (12)(34) partitions, while 𝑃𝛼 and 𝑃34 are permutation op-

erators, explained in Ref. [24] together with other details. The on-shell 
elements of 11 between the neutron-3He or proton-3He channel states 
yield the respective amplitudes for the elastic scattering.

The AGS equations (1) are solved in the momentum-space partial-

wave representation where they become a large system of up to 30000 
equations in three continuous variables, the Jakobi momenta. Two spe-

cial procedures are employed: (i) screening and renormalization method 
[25–28] to include the Coulomb interaction between the protons, and 
(ii) the complex-energy method with special weights [29] to deal with 
integrable but highly complicated singularities in the integral equation 
kernel; see Refs. [11,12,29] for more details and example results for 
scattering observables.

3. Nucleon-𝟑𝐇𝐞 optical potential

Typically, the parameters of phenomenological optical potentials 
are determined by fitting the experimental data for rather few selected 
scattering observables, such as the differential cross section, analyzing 
power and inelastic cross sections. As we base our nucleon-3He optical 
potential on rigorous microscopic calculations, the quantities to be re-

produced are the theoretical elastic scattering amplitudes. Furthermore, 
since the transition operators contain full information on the physical 
system including inelastic processes, reproducing elastic amplitudes im-

plies also reproducing the predictions for the inelastic cross section, 
that can be calculated via optical theorem from the imaginary part of 
the forward scattering amplitude. In the neutron-3He case it has contri-

butions not only from the breakup but also from the charge exchange 
3He(𝑛, 𝑝)3H and proton transfer 3He(𝑛, 𝑑)2H reactions. One might per-

haps question whether those channels can be accounted for by the opti-
2

cal potential, since the proton-3H threshold is even lower in energy than 
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the neutron-3He one. However, this is relevant near the threshold only, 
while in the considered energy regime the elastic neutron-3He cross sec-

tion exceeds the ones for charge exchange and proton transfer by one 
order of magnitude [12].

Previous studies [11,12] found that the experimental data for 
nucleon-3He scattering in the 10 to 35 MeV regime are best reproduced 
using the inside-nonlocal outside-Yukawa (INOY04) two-nucleon po-

tential by Doleschall [30,22]. Thus, the scattering amplitudes obtained 
solving four-nucleon AGS equations with this potential will be used as 
input for the construction of nucleon-3He optical potentials.

We demand that solutions of the two-body Lippman-Schwinger equa-

tion

𝑇𝑁 = 𝑉𝑁 + 𝑉𝑁𝐺0𝑇𝑁 (3)

with the nucleon-3He optical potentials 𝑉𝑁 reproduce accurately the 
respective microscopic elastic scattering amplitudes over the energy 
range of roughly 13 to 30 MeV, which is relevant for the application 
to the deuteron-3He scattering and where the four-body calculations 
are available. There is some arbitrariness in choosing the form of the 
potential. Optical potentials in general are energy-dependent, however, 
it is well known that the energy dependence is weaker if the potential 
is nonlocal in the coordinate space. Using the proton-24Mg elastic and 
inelastic scattering as example [31] we demonstrated recently that an 
energy-independent nonlocal optical potential may provide a reason-

able description of the experimental data in finite energy range. For this 
reason we assume the nonlocal form also for the nucleon-3He optical 
potential, i.e.,

𝑉𝑁 (𝐫′, 𝐫) = 1
2
[
𝐻(|𝐫′ − 𝐫|)𝑉 (𝑟) + 𝑉 (𝑟′)𝐻(|𝐫′ − 𝐫|)], (4)

where 𝐫′ and 𝐫 are final and initial distances between particles, and

𝐻(𝑥) = 𝜋−3∕2𝜌−3𝑒−(𝑥∕𝜌)
2

(5)

is the nonlocality function with the nonlocality range 𝜌. As in Ref. [31]

we use typical value 𝜌 = 1 fm. The local part we represent by several 
Gaussian terms as it is quite common for effective potentials [7,15], 
i.e.,

𝑉 (𝑟) =
2∑

𝑗=1
𝑉𝑗𝑒

−(𝑟∕𝑅𝑗 )2 + 𝑖𝑊𝑐𝑒
−(𝑟∕𝑅𝑤)2

+ [𝑉𝑠𝑒−(𝑟∕𝑅𝑠)2 + 𝑖𝑊𝑠𝑒
−(𝑟∕𝑅𝑤)2 ](𝛿𝑠𝐬𝑁 ⋅𝐋+ 𝛿𝑡𝑆̂12)

(6)

where 𝑉𝑘 and 𝑊𝑘 are strengths of various real and imaginary terms, 
𝑅𝑘 are their Gaussian radii, and 𝐬𝑁 , 𝐋 and 𝑆̂12 are the nucleon spin, 
nucleon-3He orbital angular momentum and tensor [32] operators, re-

spectively. Additionally, 𝛿𝑠 and 𝛿𝑡 being either 1 or 0 control the pres-

ence/absence of spin-orbit and tensor terms. The proton-3He potential is 
supplemented by the Coulomb force, which below the Coulomb radius of 
1.7 fm is taken as the potential of uniformly charged sphere. First fitting 
attempt using single parameter set for all partial waves was not success-

ful, consistently with previous neutron-3H studies [15], and confirming 
our expectation for a need of partial-wave dependent parameters. We 
therefore fitted each partial wave separately. In doing this we tried to 
keep as few fitting parameters as possible. That is, in many cases some 
terms in Eq. (6) could be set to zero, or at least share the same radius. 
Furthermore, we found that the tensor term 𝛿𝑡 = 1 is only important for 
coupled partial waves with 𝐿 = 𝐽 ± 1, 𝑆 = 1, while the spin-orbit term 
𝛿𝑠 = 1 is only important for coupled partial waves with 𝐿 = 𝐽 , 𝑆 = 0, 1, 
where 𝐽 and 𝑆 is the total angular momentum and spin, respectively. 
Thus, tensor and spin orbit terms are not included simultaneously, and 
are missing in the uncoupled waves. We also found that in the regime 
up to 30 MeV the partial waves with 𝐿 > 3 can be safely neglected. In 
order to estimate uncertainties, we developed several parameter sets for 
optical potentials. Quite typically, they differ in range and strength, i.e., 

smaller radii imply larger strengths. While some changes can be seen 
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in small components of two-body scattering amplitudes on a fine scale, 
we verified that the predictions for the nucleon-3He and deuteron-3He
scattering observables are not visibly affected.

Except for the 1𝑆0 neutron-3He partial wave all the other nucleon-
3He 𝐿 = 0 waves are Pauli repulsive. This is reflected by mostly positive 
𝑉𝑗 values in those waves. Another way [33] to take into account this 
Pauli repulsion is to use attractive potential supplemented by a strong 
repulsive nonlocal term |𝑏⟩Γ⟨𝑏|. This approach is often used in simple 
nuclear structure models for the nucleon-nucleus real binding poten-

tial to project out the state |𝑏⟩ corresponding to an occupied shell. An 
example close to our present study is the real low-energy nucleon-4He
potential in the 𝐿 = 0 state [34]. While the differences in the two ap-

proaches for three-body bound state calculations are moderate at most, 
in scattering calculations they become tremendous [34,35]. To the best 
of our knowledge, such a Pauli-repulsive term has not yet been in-

cluded into complex optical potentials, and will be investigated in the 
present work. The 𝑆-wave component of the deuteron and 3He overlap 
⟨𝑑𝑞(𝐿 = 0)|3He⟩ = ⟨𝑞|𝑏⟩, 𝑞 being the spectator nucleon momentum, is 
an appropriate representation of the occupied 𝐿 = 0 state in 3He. For 
simplicity we add the same term |𝑏⟩Γ⟨𝑏| to the potential (4) in the 3𝑆1
wave and, for proton-3He, in the 1𝑆0 wave, and refit the parameters of 
(6). The strength of the Pauli-repulsive term is set to Γ = 1 GeV, but we 
verified that results become largely independent of Γ once it exceeds 
few hundred MeV.

Furthermore, a modification of the neutron-3He potential in the 1𝑆0
partial wave is needed for the calculation of the 3He(𝑑, 𝑝)4He reaction. 
The potential must be real to simulate the 4He nucleus as the bound state 
of 3He and neutron, though due to its large binding energy of about 20.6 
MeV this is not a good model. We demand the effective neutron-3He
potential to reproduce not only this binding energy, but also that the 
bound-state wave function mimics (up to a factor) the ⟨3He|4He⟩ over-

lap function, ensuring that the spatial and momentum distribution of the 
neutron in our model is similar to that in the 4He nucleus. To estimate 
the uncertainties, we used two choices for this binding potential (6), 
namely, 𝑉1 = −2𝑉2 = −132.848 MeV and 𝑉1 = −𝑉2 = −156.113 MeV, 
with radii 𝑅1 = 2𝑅2 = 1.7 fm in both cases. Such approach of approx-

imating the single-particle wave function by an overlap becomes quite 
common in including the many-body nuclear structure information into 
the few-body description of nuclear reactions [36]. In Faddeev or AGS 
few-body calculations the bound-state wave function must be normal-

ized to unity, thus, the calculated single-particle theoretical cross section 
has to be multiplied by the corresponding norm of the overlap, i.e., the 
spectroscopic factor (SF), as explained in detail in Ref. [36]. The SF from 
our microscopic 3He and 4He calculations with INOY04 potential equals 
to 1.65. A similar approach in representing the overlaps by solutions of 
the single-particle Schrödinger equation was developed in Ref. [37]. De-

spite using different nuclear Hamiltonian, the resulting overlap and SF 
≈ 1.6 turn out to be close to ours. The agreement becomes even better 
in a recent update [38] using soft nuclear forces, leading to SF = 1.65.

We demonstrate the quality of our optical potentials by compar-

ing with results of microscopic four-body calculations. As examples in 
Figs. 1 and 2 we show the proton-3He and neutron-3He differential cross 
sections, achieving quite a satisfactory agreement between the predic-

tions of two- and four-body models. The agreement is almost perfect 
around the middle of the considered energy region, but some deviations 
occur at lowest and highest energies. However, even those deviations 
are smaller than the spread of the four-nucleon calculations obtained 
with different realistic two-nucleon potentials [11,12]. The only more 
sizable deviation occurs near the neutron-3He differential cross section 
minimum at higher energy when using a real potential in the 1𝑆0 par-

tial wave supporting the 4He bound state and thereby not fitted to the 
scattering amplitudes. A further evidence of the accuracy can be found 
in the Supplemental material, together with the parameters of the de-
3

veloped optical potentials.
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Fig. 1. Differential cross section for the proton-3He elastic scattering at 10.8, 
19.4 and 30 MeV beam energy as function of the c.m. scattering angle. Re-

sults of microscopic four-nucleon calculations (solid curves) are compared with 
predictions obtained using two-body optical potentials (2b OP), either without 
(dotted curves) or with (dashed-dotted curves) the Pauli term. The experimen-

tal data are from Refs. [39,40].

Fig. 2. Differential cross section for the neutron-3He elastic scattering at 12 and 
23.7 MeV beam energy. Curves as in Fig. 1, while additional dashed-double-

dotted curves label results with a real neutron-3He potential in the 1𝑆0 partial 
wave supporting the 4He bound state. The experimental data are from Ref. [41].

4. Three-body AGS equations

Deuteron scattering from a nucleus 𝐴 has been calculated in many 
works using the Faddeev or its equivalent AGS transition operator for-

malism, see Ref. [35] for the deuteron-4He example. The three-body 
transition operators are obtained from the AGS equation

𝑈𝑏𝑎 = 𝛿𝑏𝑎 𝐺
−1
0 +

∑
𝑚=𝑝,𝑛,𝐴

𝛿𝑏𝑚 𝑇𝑚 𝐺0𝑈𝑚𝑎, (7)

where the usual odd-man-out notation is used, 𝛿𝑏𝑎 = 1 −𝛿𝑏𝑎, the nucleon-

nucleus transition operators 𝑇𝑝 and 𝑇𝑛 are given by Eq. (3), and 𝑇𝐴 by an 
analogous equation with the neutron-proton potential. For consistency 

we take the INOY04, though we verified that using other realistic poten-



Physics Letters B 860 (2025) 139151A. Deltuva and D. Jurčiukonis

Fig. 3. Differential cross section for deuteron-3He elastic scattering in the energy range 14.6 to 39.9 MeV. Predictions using optical potentials with/without Pauli 
term and with/without bound neutron-3He state are compared with the experimental data from Ref. [42].
tials yields very similar results. The solution of the scattering equations 
(7) is again performed using the momentum-space partial-wave repre-

sentation, while more technical details can be found in Refs. [35,31]

and references therein.

On-shell matrix elements of 𝑈𝑏𝑎 taken between the two- or three-

cluster channel states determine the physical transition amplitudes for 
the respective reactions [35], from where the differential cross sections 
are calculated, as for example outlined in Ref. [12].

5. Results

Using the nonlocal interaction models described in Sec. 3 we solve 
the AGS equations (7) and calculate deuteron-3He differential cross sec-

tions at deuteron beam energy 𝐸𝑑 = 14.6, 19.7, 24.9, 30.0, 34.9 and 
39.9 MeV, where the experimental data from Berkeley laboratory [42]

are available. In Fig. 3 we compare experimental data for elastic differ-

ential cross sections with three calculations, that isolate two dynamics 
ingredients: (i) including or excluding the Pauli term, and (ii) including 
or excluding the 4He bound state by using real or complex neutron-3He
potential in the 1𝑆0 partial wave. The latter effect of the bound state 
turns out to be very small, discernible only near the minimum at large 
scattering angles, with no any visible sensitivity to the parametriza-

tion of the binding potential. In contrast, the effect of the Pauli term 
is very large, significantly changing the shape of the angular distribu-

tion. Though none of the predictions are in a perfect agreement with 
data, those including the Pauli term are considerably closer to the data, 
especially in the shape at intermediate and backward angles. One may 
perhaps argue that 𝐸𝑑 = 14.6 MeV is too low for our optical potentials 
fitted from 13 to 30 MeV nucleon energy, as typically one takes energy-

dependent nucleon optical potentials at 𝐸𝑑∕2. This might explain a abit 
larger discrepancy at small angles. On the other hand, one can question 
also the experimental data which does not show monotonic variation 
in energy, for example, the 30 MeV data at forward angles lies between 
the 19.7 and 24.9 MeV data. In contrast, our theoretical predictions vary 
smoothly with energy.

In Fig. 4 we compare experimental data for the transfer reaction 
3He(𝑑, 𝑝)4He to several theoretical predictions including or excluding 
the Pauli term. Again, the effect of this term turns out to be sizable, 
especially at larger scattering angles, where the shape of the angular 
distribution is changed dramatically, leading to one more local maxi-

mum of the differential cross section. Although the absolute value is 
4

significantly underpredicted in this region, this change of shape due to 
the Pauli term is clearly supported by the experimental data. The com-

parison of results with different neutron-3He binding potentials in the 
1𝑆0 partial wave reveals some sensitivity, but is far less important than 
the Pauli term.

Finally, in Fig. 5 we show that the Pauli term affects significantly also 
the differential cross section in the deuteron breakup reaction. In the 
case of fully exclusive breakup the observables are often shown for fixed 
solid scattering angles Ω𝑎 (polar 𝜃𝑎 and azimuthal 𝜙𝑎) of two detected 
particles as functions of the arclength 𝑆 in the plane of their kinetic 
energies [35]. In Fig. 5 those two particles are assumed to be 3He and 
proton.

6. Conclusions

We considered elastic, transfer and breakup reactions in deuteron 
collisions with 3He nuclei. We have not solved the underlying five-

nucleon problem rigorously, but our study does not rely on the ex-

perimental information beyond the one contained in the realistic two-

nucleon potential INOY04. We used exact solutions of four-nucleon AGS 
scattering equations for the transitions operators and, as an interme-

diate step, developed nucleon-3He optical potentials quite accuractely 
reproducing scattering amplitudes from four-body calculations. We con-

structed also a model containing the Pauli term, not included up to now 
into complex optical potentials. Inserting those potentials into three-

body AGS equations, that treat the 3He nucleus as an inert particle but 
exatly account for the breakup of the deuteron, led to predictions for 
deuteron-3He reactions.

In cases of the elastic scattering and 3He(𝑑, 𝑝)4He reaction the com-

parison with the experimental differential cross section revealed quite a 
good agreement up to about 90 deg scattering angles, but discrepancies 
remained at larger angles.

The model including the Pauli term is considerably closer to the data, 
especially in the shape at intermediate and backward angles. Notewor-

thy, our description of the 3He(𝑑, 𝑝)4He transfer reaction is consider-

ably more successful than the DWBA analysis of Ref. [42], though it 
used initial- and final-channel optical potentials well fitted to the elas-

tic deuteron-3He and proton-4He data.

We speculate that the large-angle discrepancy, especially in the 
deuteron elastic scattering, is a signature for the reaction mechanism 
specific to very light nuclei but not included in our model. Namely, the 
reaction can proceed via the one-proton exchange, i.e., the 3He(𝑑, 3He)𝑑

reaction, where the deuteron picks one proton from 3He becoming a 
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Fig. 4. Differential cross section for the 3He(𝑑, 𝑝)4He reaction in the energy range 14.6 to 39.9 MeV. Predictions using optical potentials with/without Pauli term are 
compared with the experimental data from Ref. [42]. The two solid curves correspond to different neutron-3He binding potentials in the 1𝑆 partial wave.
Fig. 5. Fivefold differential cross section for the deuteron breakup in collision 
with 3He at 30 MeV beam energy as function of the arclength 𝑆 . The final state 
kinematical configuration is characterized by 3He and proton scattering angles 
(𝜃𝐴, 𝜙𝐴) = (15◦, 0◦) and (𝜃𝑝, 𝜙𝑝) = (45◦, 180◦). Predictions of optical potentials 
with and without Pauli term are compared. The 4He bound state is not sup-

ported.

“new” 3He, while the target 3He after loosing one proton becomes a 
“new” deuteron. Qualitatively the same reaction mechanism is present 
in the nucleon-deuteron scattering, where it is responsible for the back-

ward angle cross section increase. In four-nucleon reactions it is a two-

nucleon transfer that produces a similar effect.

Our finding of general importance for nuclear reaction description is 
the significance of the Pauli term not only for real but also for complex 
optical potentials. Further studies have to be performed to evaluate the 
relevance of the Pauli term in heavier systems.
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Supplementary material related to this article can be found online at 
https://doi .org /10 .1016 /j .physletb .2024 .139151.
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