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Abstract 

In the contemporary landscape, fraud is a widespread challenge in today’s financial 
landscape, requiring innovative methods and technologies to detect and prevent 
losses from the sophisticated tactics used by fraudsters. This paper emphasizes 
the main issues in fraud detection and suggests a novel feature selection method 
called FID-SOM (feature selection for imbalanced data using SOM). Feature selection 
can significantly improve classification performance. Given the inherent imbalance 
in fraud detection data, feature selection must be done with an enhanced focus. To 
accomplish this task, we use Self-Organizing maps, which are a special type of artifi-
cial neural network. FID-SOM is designed to address the challenge of dimensionality 
reduction in scenarios characterized by highly imbalanced data. It has been specifi-
cally designed to efficiently process and analyze vast and complex datasets commonly 
encountered in the financial sector, showcasing adaptability to the dynamic nature 
of big data environments. The uniqueness of the proposed method is in forming a new 
dataset containing the Best-Matching Units of the trained SOM as vectors of attributes 
corresponding to the initial features. These attributes are sorted based on variance 
in descending order. By keeping the required number of attributes that hold the high-
est percentage of variability, we select features corresponding to those attributes 
for further analysis. The proposed FID-SOM method has demonstrated its ability 
to perform on par with, if not surpass, existing methodologies. It also shows innovative 
potential.
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Introduction
In the dynamic landscape of financial crime detection, the ever-evolving tactics 
employed by fraudsters necessitate continuous advancements in analytical methodolo-
gies. Early efforts to combat fraud primarily relied on rule-based systems and manual 
inspection of transactions. Rule-based systems involve formulating predefined rules and 
heuristics to flag potentially fraudulent activities. However, these approaches are lim-
ited in their ability to adapt to new and evolving fraud patterns. Additionally, manual 
inspection is time-consuming and impractical for handling the vast volumes of digital 
transactions in real-time. Consequently, there is a demand for more sophisticated and 
automated methods.
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In order to tackle the ever-growing sophistication of fraudsters, financial institu-
tions need to harness the potential of artificial intelligence (AI) and machine learn-
ing (ML) algorithms. By leveraging advanced AI capabilities, these institutions can 
proactively detect and prevent fraudulent activities, safeguarding their customers 
and reputation. Machine learning algorithms emerge in fraud prevention area [1, 
2]. However, there are several challenges when applying ML to financial fraud data, 
with the most significant obstacle being data imbalance. For instance, most trans-
actions are legitimate when working with transactional data, while less than 1% of 
transactions are fraudulent.

Moreover, credit card fraud detection using machine learning suffers from con-
cept drift [3], high-dimensional categorical features [4], lack of public databases, and 
even some performance measures can be misleading when used for imbalanced data 
[5]. To address the challenges above, implementing effective feature selection meth-
ods becomes crucial. Feature selection plays a pivotal role in enhancing the perfor-
mance and efficiency of fraud detection models by selecting the most relevant and 
informative features from the dataset.

This paper introduces a novel method, FID-SOM (feature selection for imbalanced 
data using SOM), for feature selection utilizing the capabilities of a self-organizing-
map (SOM) to generalize data. FID-SOM is designed to address the challenge of 
dimensionality reduction in scenarios characterized by highly imbalanced data. We 
compare our method with five feature selection methods: univariate feature selec-
tion utilizing F-test, χ2 test and mutual information, recursive feature elimination 
(RFE), and XGBoost feature importance on different datasets. Our method outper-
forms comparison methods in the majority of cases.

The contributions of this study can be summarized as:

• Proposed method FID-SOM addresses the challenge of dimensionality reduction 
in scenarios characterized by highly imbalanced data.

• This paper identifies existing gaps in feature selection for imbalanced data, urg-
ing researchers to delve into this domain.

• The proposed method integrates a Self-Organizing Map, which can handle noise 
in features and identify patterns in the imbalanced data to improve feature selec-
tion for classification tasks.

• The proposed method significantly improves the classifier performance by find-
ing the proper features for particular imbalanced datasets.

The rest of the paper is organized as follows. Section “Related work” provides an 
overview of existing research in the field. Following this, Section “A novel method 
FID-SOM of feature selection for imbalanced data using SOM” outlines the approach 
taken in this study. Detailed information about the data used for experiments is pre-
sented in Sect. “Experimental results”, highlighting the datasets employed to validate 
the proposed method. The “Results” subsection in Section “Experimental results” 
showcases the outcomes of the experiments that were conducted. Lastly, the paper 
concludes with the “Discussions” and “Conclusions and Future Research” sections, 
summarizing the essential findings and implications of the research.
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Related work
The evolution of technology and the increasing complexities of digital transactions 
have given rise to sophisticated fraudulent activities, necessitating novel and intel-
ligent solutions for detecting and preventing such cyber threats. Here, we provide an 
overview of the feature selection methods when working with imbalanced datasets, 
especially in fraud detection applications.

Feature selection techniques are commonly categorized into three main groups: fil-
ters, wrappers, and embedded methods [6, 7]. The review paper [8] delves into the 
significance of feature selection in machine learning and data mining. It highlights 
contemporary challenges that are of particular importance. These challenges include 
feature selection for high-dimensional data with small sample sizes, dealing with 
large-scale data, and ensuring secure feature selection. Despite these challenges, sev-
eral noteworthy trends in feature selection have surfaced, such as stable feature selec-
tion, multi-view feature selection, distributed feature selection, multi-label feature 
selection, online feature selection, and adversarial feature selection. The paper goes 
on to explore recent advancements in these areas. For each trend, it examines the 
current issues, presents existing solutions, and discusses them. Beyond these trends, 
the paper also introduces diverse applications of feature selection. These applications 
span fields including bioinformatics, social media analysis, and multimedia retrieval, 
showcasing practical relevance.

An alternative approach to arranging feature selection methods involves distin-
guishing between global and instance-wise feature selection strategies. The primary 
objective of global feature selection is to identify a singular feature selector applica-
ble to all data samples, focusing on minimizing the number of features while retain-
ing the capacity for discriminative predictions. On the other hand, instance-wise 
feature selection involves calculating distinct selectors for each instance, resulting 
in enhanced performance compared to the global feature selection approach. In ref. 
[9] suggests group-wise feature selection, which occupies an intermediate position 
between global feature selection and instance-wise feature selection.

The paper [10] highlights the importance of feature selection in reducing data pro-
cessing complexity, particularly in the context of high-dimensional data. The study 
introduces the concept of fuzzy combination entropy (FCE) to address the limitations of 
classical combination entropy, especially in handling continuous features. The paper pre-
sents the development of FCE based on fuzzy �-similarity relation, incorporating fuzzy 
rough sets and combination entropy. Furthermore, the concepts of global and local fea-
ture correlations are defined, leading to the design of a feature selection method, FSm-
FCE. Experimental findings demonstrate the algorithm’s ability to preferentially select a 
smaller feature set while maintaining commendable classification performance.

Feature selection for imbalanced data

When working with imbalanced datasets, where one class is significantly more prev-
alent than the other, feature selection becomes an even more complex task. Imbal-
anced datasets can introduce biases and negatively affect the performance of machine 
learning models.
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The work by ref. [11] suggests a feature selection technique that centers around 
class decomposition. The suggested approach initially subdivides majority classes 
into more manageable pseudo-subclasses characterized by relatively balanced sizes. 
Subsequent feature selection operates on these newly decomposed data to calculate 
feature goodness metrics. Moreover, the study introduces a feature selection method 
reliant on the Hellinger distance. It measures distribution divergence, offering greater 
resilience to imbalanced class distributions [11].

Researchers propose many different approaches for feature selection when work-
ing with imbalanced data. For instance, neighborhood rough set theory is employed 
for feature selection [12]. The empirical findings showed the effectiveness of RSFSAID 
(Rough-Set-based Feature Selection Algorithm for Imbalanced Data) across binary and 
multiclass datasets. Nevertheless, in most scenarios, the information about the minority 
class holds greater significance. The noise within the minority class might impact the 
classifier’s generalization ability when utilizing the chosen features.

The paper [13] introduces a feature selection technique for imbalanced data, utilizing 
a new regularization method called IR-LDA to enhance classification performance by 
emphasizing the minority class. The method employs cosine similarity to address feature 
redundancy issues and incorporates the regularization into the global feature selection 
framework, improving classifier performance and reducing feature redundancy.

Application of the self‑organizing‑map related with imbalanced data

SOM, being an unsupervised neural network, offers a promising solution by enabling 
the visualization and clustering of high-dimensional data while preserving its intrinsic 
structure. In cases of imbalanced data, SOM can benefit in identifying and understand-
ing the distribution of minority classes, potentially uncovering hidden patterns and 
relationships. It is used in many applications like Cyber Intrusion and Anomaly [14–16] 
detection, investigation of energy demand [17], or even for text-independent speaker 
identification [18].

SOM is frequently employed for unsupervised dataset clustering [19–21]. Sometimes, 
it is used to cluster data into similar subsets and apply feature selection on each cluster 
[22]. By incorporating SOM as a preprocessing step or integrating them into ensemble 
methods, researchers and practitioners can enhance the robustness and accuracy of their 
models when dealing with imbalanced data, contributing to improved decision-making.

A novel method FID‑SOM of feature selection for imbalanced data using SOM
In this section a novel method FID-SOM (feature selection for imbalanced data using 
SOM) for feature selection utilizing the capabilities of a self-organizing-map (SOM) to 
generalize data has been presented.

Consider a multidimensional dataset represented as an array X containing n data 
points, where each data point Xi ( i = 1, . . . , n ) is a vector Xi = (xi1, xi2, . . . , xim) in Rm . 
These data points are observations of objects or phenomena influenced by m different 
features ( x1, x2, . . . , xm ). Some of these features are numerical, while others are categori-
cal. Furthermore, each data point is associated with a class label yi , where yi indicates the 
category to which the sample Xi belongs.
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In our specific context, these features describe various aspects of customers’ finan-
cial behavior. We have categorized these data points into two classes where 0 represents 
Regular or Legitimate transactions, and 1 signifies Fraudulent transactions. Therefore, 
the target variable y assumes values yi ∈ {0, 1} for i = 1, . . . , n.

The Self-Organizing Map [23], often called SOM or Kohonen map, is a powerful 
unsupervised machine learning technique that falls under the category of artificial neu-
ral networks. Developed by Finnish professor Teuvo Kohonen in the 1980s, SOMs are 
used for dimensionality reduction, data visualization, clustering, and pattern recognition 
tasks. Despite the method being created at the end of the 20th century, it is still widely 
used for many actual applications. E.g. its combination with multidimensional scaling 
[24, 25] enlarged its possibilities to understand patterns in data. The fundamental con-
cept behind SOM is to map high-dimensional input data onto a lower-dimensional grid 
while preserving the topological relationships between data points.

In our case, a SOM consists of a two-dimensional grid of nodes arranged in a rectan-
gular pattern. Each node, also known as a neuron, is associated with a weight vector of 
the same dimension as the input data.

The dimensions of the map are evaluated by calculating the quantity of neurons based 
on the number of observations present in the training data, employing a formula [26]:

where M represents the number of neurons, approximating an integer value near the 
outcome derived from the right side of the equation, while n stands for the number of 
observations in training set of SOM. The number of rows and columns of SOM is ∼=

√
M

.
The network learning is introduced briefly below. The weight vectors are initially 

assigned random values. In each step, an input point Xi = (xi1, xi2, . . . , xim) is selected 
from the training data, and its Euclidean distance is computed with each of the neuron’s 
weight vector (Eq. 2).

where: dij is a distance between point Xi and weight vector Wj = (wj1,wj2, . . . ,wjm) of 
the j-th neuron.

The neuron that exhibits the smallest distance for a given input data point is identified 
as the best matching unit (BMU) for that data point. After identifying the best matching 
unit, the training process involves selecting the neighboring neurons of the BMU. These 
neighboring neurons are determined by a specific criterion, often based on their spatial 
proximity to the BMU within the neural network. Once the neighbors are established, 
the weight vectors associated with these neighboring neurons are updated using a neigh-
borhood function.

Classical manner to update weights of neuron is as follows:

(1)M ∼= 5
√
n,

(2)dij =

√

√

√

√

m
∑

k=1

(xik − wjk)
2,

(3)wjk(t + 1) = wjk(t)+ η(t)Tj∗j(t)(xik − wjk(t)),
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where t is a number of iteration,
wjk(t) is the k-th component of the weight vector of the j-th neuron at iteration t.
η(t) = η0 exp

(

−
t
�η

)

 is the learning rate at the iteration t . It decreases over time to grad-

ually reduce the influence of new input data on the weights.

Tj∗j(t) = exp

(

−�Wj∗−Wj�2

2σ(t)2

)

 is the neighborhood function value between j∗-th (the 

best matching unit (BMU)) and the j-th neuron at iteration t.
�Wj∗ −Wj� is the lateral distance between neurons j∗ and j, where Wj∗ is a BMU 

(winning neuron).

xik is the k-th component of the input point Xi.
σ(t) = σ0 exp

(

− t
�σ

)

 is neighborhood size.

Hyperparameters for SOM training are such:
η0 is learning rate,
�η is a constant that determines the rate of decay,
σ0 is neighborhood size,
�σ is a constant that determines the rate of decay for the neighborhood width.

The neighborhood function defines how much influence each neighbor should have 
on the BMU and its surrounding neurons. Typically, the influence decreases with dis-
tance from the BMU, effectively creating a decaying effect on the updates. In essence, 
the process of identifying the BMU and updating the weights of its neighbors through 
the neighborhood function forms the basis of a self-organizing map algorithm.

The example below could be employed to explain the SOM. Let us say we have a 
two-dimensional dataset which is visualized on the left side of Fig. 1. In the middle, 
we have SOM visualized on the grid/coordinate space. The graph on the right shows 
data points (grey dots) and neurons in weight space. The red dots are BMU, and the 
grey cross are neurons that never became BMU.

After collecting the weight vectors corresponding to the BMU, we obtain a data 
frame with dimensions of nBMU ×m , where nBMU represents the number of BMUs 
and m signifies the number of features or the length of each weight vector. Notably, 

Fig. 1 Example of SOM
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nBMU remains equal to or less than the total number of neurons, denoted as M since 
not every individual neuron is selected for the role of a BMU.

Subsequently, this data frame serves as a foundation for the feature selection process, a 
pivotal step in refining the most relevant features from the original dataset, i.e., we try to 
decrease the number of features m significantly.

We propose to select a subset of features based on SOM weight variation. By normal-
izing the BMU data and calculating the variance of each attribute, we determine the 
importance of each feature in capturing the data’s variability. The attributes are arranged 
in descending order according to their variance. This results in a list of features sorted by 
their significance. Subsequently, we can choose the desired number of features from the 
top of this ordered list.

Self-organizing-map is used for clustering tasks [27]. However, we employ the SOM’s 
generalization capabilities to solve the dimensionality reduction problems for sharply 
imbalanced datasets. These ideas make the core of a novel method, FID-SOM, for fea-
ture selection for imbalanced data using SOM. The algorithm of the proposed method is 
presented by pseudo-code in Algorithm 1

Algorithm 1 FID-SOM (feature selection for imbalanced data using SOM)

This method enables efficient feature selection for downstream analysis or visualiza-
tion. This method dynamically adapts to the inherent characteristics of the data, ensur-
ing an automatic and data-driven feature selection process. This attribute significantly 
enhances the method’s suitability for diverse scientific applications, where datasets often 
vary in dimensionality and complexity.

The weight vector is critical for mapping high-dimensional transactional data into a 
lower-dimensional space, preserving the topological relationships of the input data. 
In the context of fraud detection, this enables the SOM to cluster similar transactions 
together while highlighting outliers, which often correspond to fraudulent behavior. The 
SOM provides a structured framework for analyzing complex transactional patterns and 
identifying anomalous activities by associating each node with a weight vector.
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Classifiers and metrics for FID‑SOM evaluation

The performance of FID-SOM was compared with five feature selection methods: univari-
ate feature selection [28] utilizing the F-test, χ2 test and mutual information, recursive fea-
ture elimination [29], and the XGB Importance method [30]. The baseline for performance 
evaluation is the model performance without a special selection of features, i.e., using all 
features for modeling.

The purpose of feature selection is to increase the performance of machine learn-
ing algorithms. The efficacy of the feature selection methods was evaluated using the 
XGBoost [31], CatBoost [32], and Random Forest [33] machine learning algorithms. 
The main reason for choosing Random Forest is its good performance on data related 
to financial fraud detection [34, 35]. Meanwhile, XGBoost and CatBoost usage is gaining 
popularity and demonstrating strong performance [36, 37]. We are aware that Logistic 
Regression is often employed to solve fraud detection tasks. However, our decision was 
not to use this algorithm for further experiments as it showed weak performance in sce-
narios where hyperparameters were not being optimized, or data was not balanced [38]. 
We did not use parameter hypertuning or data sampling in order to find the pure effect 
of feature selection methods.

To evaluate the goodness of the method, we use five metrics suitable for imbalanced 
datasets, namely F1 score, MCC, G-Mean, AUC-PR, and AUC-ROC.

The F1 score can be defined as the harmonic mean of precision and recall, effectively 
encapsulating precision and recall within a single metric in a symmetrical manner.

where

TP is True Positives (correctly predicted positive instances), TN is True Negatives (cor-
rectly predicted negative instances), FP is False Positives (incorrectly predicted positive 
instances), FN is False Negatives (incorrectly predicted negative instances).

The Matthews Correlation Coefficient (MCC) is a measure commonly used to assess 
the quality of binary classification models, especially when dealing with imbalanced 
datasets. It takes into account true positives, true negatives, false positives, and false 
negatives and provides a value that ranges from – 1 to + 1, with + 1 indicating a perfect 
prediction, 0 indicating random prediction, and – 1 indicating complete disagreement 
between prediction and observation.

The G-Mean, also known as the geometric mean or balanced accuracy, is a statisti-
cal measure used to evaluate the performance of classification models, particularly 

(4)F1 = 2×
precision× recall

precision+ recall
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
.

(5)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

.
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in situations where class imbalance exists. It offers a balanced perspective by considering 
sensitivity (recall) and specificity. It is defined as:

where Sensitivity (True Positive Rate) = TP
TP+FN  and Specificity (True Negative Rate) = 

TN
TN+FP.

AUC-PR is a performance metric used to evaluate the effectiveness of classification 
models, especially in scenarios where class imbalance exists or when the focus is on 
positive instances. The Precision-Recall curve plots precision against recall as the clas-
sification threshold changes. Precision represents the proportion of correctly predicted 
positive instances among all instances predicted as positive, while recall is the propor-
tion of correctly predicted positive instances among all actual positive instances.

AUC-ROC is another widely used performance metric for binary classification mod-
els. The ROC curve plots the true positive rate (recall) against the false positive rate as 
the classification threshold changes. The true positive rate is the proportion of correctly 
predicted positive instances among all actual positive instances, and the false positive 
rate is the proportion of incorrectly predicted positive instances among all actual nega-
tive instances.

Experimental results
In this section, we present the results obtained from our experimental study. Our experi-
ments were designed to test the proposed method FID-SOM described in Section 3. We 
provide a detailed description of used datasets and decisions made in data preparation 
and data splitting, supported by quantitative and qualitative assessments, along with vis-
ual aids such as tables and figures.

Data used for experiments

For our experimental analysis, we employed three datasets. Among these, two datasets 
were derived from synthetic transactional payments data, while the third dataset repre-
sents a read transactional dataset.

Numerous real-world legal regulations govern the usage of private data, including 
prominent ones like the GDPR (General Data Protection Regulation), CCPA (Califor-
nia Consumer Privacy Act), and the “Act On Payment Services And Electronic Money.” 
In this context, synthetic data emerges as a promising technological solution to address 
concerns related to privacy, fairness, data augmentation, and various other relevant 
issues.

Payment fraud represents a domain characterized by restricted access to data. Syn-
thetic datasets like [39, 40] help overcome the abovementioned issues. Dataset [39] ena-
bles researchers and developers to study the purchasing habits of U.S. citizens within 
a virtual world featuring customers, merchants, and fraudsters. The data was meticu-
lously designed to maintain key statistics, such as mean and standard deviation, resem-
bling those of the actual population. Dataset developers employed stochastic sampling, 

(6)G-Mean =
√

sensitivity× specificity,
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generally from a Gaussian distribution, to select individual characteristic values. Unlike 
other synthetic datasets, this unique dataset ensures the interconnectedness of individu-
als’ activities. For instance, spending behavior varies when individuals are in travel mode 
or during weekdays and weekends. The dataset also encompasses actual banking events, 
including the creation of chip-enabled cards, which were widely introduced in the U.S. 
in 2014, making “card-present” fraud more challenging for fraudsters.

Although the dataset includes transactions dating back to 1991, we exclusively utilize 
data from 2018 and 2019 for modeling purposes. The reason is that older transactions 
lack relevance in identifying contemporary fraud patterns.

The second data source employed in the experiments is also synthetic and was gen-
erated using the Sparkov Data Generation tool [40]. This dataset was published by its 
authors in two files—train and test. We merged the files so that we could do a proper 
split based on the timeline.

The third dataset contains credit card transactions conducted by European cardhold-
ers in September 2013. It encapsulates two-day transactions, revealing 492 instances of 
fraud out of 284 807 transactions. Notably, the dataset exhibits a substantial imbalance, 
with the positive class (frauds) constituting a mere 0.172% of all transactions. The data-
set exclusively comprises numerical input variables resulting from a Principal Compo-
nent Analysis (PCA) transformation. Regrettably, disclosure of the original features and 
additional contextual information is hidden due to confidentiality constraints. Principal 
components V1 through V28 are derived from PCA, while ’Time’ and “Amount” are 
the only features unaffected by the transformation. “Time” denotes the seconds elapsed 
between each transaction and the initial transaction in the dataset, while ’Amount’ rep-
resents the transaction amount. The “Time” feature is used for splitting purposes.

For the rest of the paper, Synthetic Credit Card data will be called DataSet-A, 
Sparkov-generated dataset will be called DataSet-B, Real Credit Card data will be called 
DataSet-C.

Table  1 represents the distribution between fraudulent and legitimate instances in 
each dataset. For the experiment, we used sharply imbalanced datasets. In size, those 
datasets are very different. In DataSet-A, which contains 3,445,553 cases and 25 attrib-
utes, the class distribution is 99.86% “non-fraud” and 0.14% “fraud”. In DataSet-B, which 
contains 1,852,394 cases and 11 attributes, the level of fraud is slightly higher at 0.52%. 
DataSet-C, while maintaining a high majority of 99.83% “non-fraud,” differs with a fraud 
rate of 0.17%, covering 284,807 cases and 30 attributes. These statistics reveal the imbal-
ances and differences in attributes between each dataset, providing valuable insights for 
designing and evaluating robust fraud detection models.

Table 1 Description of the datasets

Category DataSet‑A DataSet‑B DataSet‑C

Not fraud (Percentage) 99.86% 99.48% 99.83%

Fraud (Percentage) 0.14% 0.52% 0.17%

# of instances 3,445,553 1,852,394 284,807

# of features 25 11 29
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Data preprocessing

In our comparison of feature selection methods, it is essential to train machine learning 
models. To facilitate this, we employ both training and testing datasets. Subsequently, 
we outline an appropriate approach for splitting the data into training and testing sets 
specifically tailored for fraud detection tasks.

Fraudulent data is inherently temporal, meaning that observations are dependent on 
previous observations in a sequential manner. This temporal dependence leads to cor-
relations between data points that are close in time. The model might risk introducing 
temporal leaks if a standard train-test split is used on time series data, where data is 
randomly shuffled and partitioned. This can result in unrealistic correlations between 
the training and testing sets, leading to overly optimistic estimates of the model’s perfor-
mance [41].

Credit card, investment, or any other type of fraud data - has a concept drift property 
[42–44]. Concept drift refers to the phenomenon where the underlying statistical prop-
erties of the data distribution change over time. This can happen due to various reasons, 
such as changes in user behavior, fraud patterns, or market conditions.

The classical train-test split assumption of independent and identically distributed 
samples does not hold well for time series data, especially when dealing with concept 
drift in domains like fraud detection [45, 46]. When concept drift occurs, the assump-
tion that the training and testing data are drawn from the same distribution is violated. 
To address this issue and create a more realistic evaluation setup for fraud detection, we 
suggest using TimeSeriesSplit. Instead of random shuffling, we suggest splitting the data 
chronologically, where the training data Xtrain comes from earlier periods, and the test-
ing data Xtest comes from later periods. This simulates the real-world scenario where the 
model is trained on historical data and tested on more recent data. FID-SOM and other 
feature selection methods used Xtrain to define the proper set of features.

Each dataset is split using a time-based approach. The dataset is divided so that the 
earliest 80% of instances would be for training, and the rest of the data, which has times-
tamps later than the training set, is left for testing (see Fig. 2). So, we are not setting up 
the split date, but instead, we are dynamically determining the split based on the chron-
ological order of the data entries. This time-based approach ensures that the model is 
trained on historical data and then evaluated on more recent data, simulating a real-
world scenario where the model makes predictions on new, unseen observations.

Fig. 2 Dataset split based on time
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We have used the categorical feature encoding method, James-Stein encoder, dis-
covered as comparatively best for imbalanced data in the paper [38], where six feature 
encoders were compared.

Encoded data are scaled before training a Self-Organizing Map. This is essential 
because it ensures that all features contribute equally to the training process, regard-
less of their original units or magnitude. SOMs rely on the calculation of distances to 
map high-dimensional data onto a lower-dimensional grid. If features have vastly dif-
ferent ranges or units, for example, “Transaction amount” and “Age”, those with larger 
magnitudes can dominate the distance calculation, effectively overshadowing features 
with smaller scales. This imbalance can lead to a biased SOM, where the map primarily 
reflects variations in high-magnitude features, neglecting meaningful patterns in others. 
By scaling the data, usually through standardization (z-score scaling) or normalization 
(min-max scaling), we ensure that all features are on a comparable scale, allowing the 
SOM to identify and represent the intrinsic structure of the data more accurately. In our 
case, we use normalization which brings all features into the same range [0, 1], ensuring 
equal importance during training (see Fig. 3).

Results

The comprehensive overview of specifications of the SOM properties is presented in 
the Table 2. For DataSet-A, the SOM is characterized by a 90 × 90 grid structure, with 
an extensive training process involving 4,048,216 iterations. DataSet-B’s SOM, slightly 
smaller with a 78 × 78 grid, underwent 3,043,349 iterations during training. Meanwhile, 
DataSet-C features a more compact 49 × 49 grid, with 1,193,330 iterations.

The upper part of Fig.  4 presents SOM in the grid space, where the dots represent 
BMUs and the size of the dots represents how many instances each BMU has. The lower 
part of Fig.  4 shows the dependency of a number of instances covered by a minimal 
number of BMU. The dashed horizontal line marks 95% of instances, and the dashed 
vertical line shows how many BMUs are required to cover these 95% of instances.

Fig. 3 Data preprocessing steps which include data splitting, encoding, and normalization

Table 2 SOM properties

Property DataSet‑A DataSet‑B DataSet‑C

Size 90 × 90 78 × 78 49 × 49

Iterations 4,048,216 3,043,349 1,193,330
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We observe that the SOM of each dataset is quite different. DataSet-A has many clus-
ters, while DataSet-B is separated into two parts. The BMUs of SOM of DataSet-C have 
an almost uniform distribution with one very massive neuron.

The methods were evaluated 165 times, as there were three datasets with five metrics 
and three machine learning algorithms with different numbers of features selected. Each 
time, one or several feature selection methods were marked as the winning methods if 
they had the highest score of a particular metric.

An example of how to identify the winning (best performing) feature selection meth-
ods is shown in Table 3. The highest values in the result tables (Tables 3–8) for each met-
ric are highlighted in bold.

The data in a Table 3 is a snapshot of our experiments. Here, the evaluation is per-
formed by selecting the winning method for DataSet-A using the XGB classifier with 
20 selected features for F1, MCC, and Geometric Mean. We mark that our proposed 
method, FID-SOM, became the best five times, and other methods became the best one 
time. The complete set of results is presented in Tables 5, 6 and 7.

Fig. 4 Visualisation of the trained self-organized map for each dataset. The curves show the dependency of 
the number of instances covered by the number of Best-Matching-Units. The dashed horizontal line marks 
95% of instances, and the dashed vertical line shows how many BMUs are required to cover these 95% of 
instances

Table 3 An example of how to identify the winning (best performing) feature selection methods

Method F1 ROC PR MCC G_MEAN

Baseline 0.82 1.00 0.95 0.83 0.85

FID-SOM 0.95 1.00 0.98 0.95 1.00
Uni_Chi2 0.82 1.00 0.94 0.83 0.85

Uni_F 0.83 1.00 0.95 0.84 0.85

Uni_MI 0.79 1.00 0.95 0.80 0.81

RFE 0.82 1.00 0.94 0.83 0.85

XGB_Imp 0.82 1.00 0.94 0.82 0.85
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Table  4 presents a comparative analysis of various feature selection methods. The 
“Winning” column shows how often the particular method was selected as the best-per-
forming method.

We calculated the average performance results of each method for five different ran-
dom seed values to get a robust evaluation. In this case, results of FID-SOM are still 
outstanding (Table 4).

The proposed method FID-SOM is distinctive in its efficiency due to the utilization of 
a novel feature selection technique introduced in this study. It achieved a success rate of 
44.24%, the highest among all methods considered. It almost outperforms the second-
best method, Univariate_MI, which achieved a success rate of 26.67%, almost twice.

Different methods can have different optimal number of features. Considering this, 
we selected the best result for each metric/model/method from all compared feature 
sets. Results are shown in the Tables 5, 6 and 7. Each result represents the mean of five 
experiments conducted with different random seeds, along with the number of fea-
tures that yielded the highest performance and the standard deviation across these five 
experiments.

In DataSet-A, using the CatBoostClassifier, the FID-SOM approach stands out with an 
impressive F1 score of 0.591, compared to the baseline’s 0.40. Similarly, in DataSet-B with 
the RandomForestClassifier, FID-SOM excels with an F1 score of 0.835, outperforming 
the baseline’s 0.622. Moving to DataSet-C, utilizing the XGBClassifier, FID-SOM main-
tains its robust performance with a notable F1 score of 0.801, surpassing the baseline’s 
0.796. Across all three datasets, FID-SOM consistently achieves superior results in vari-
ous metrics, including ROC, PR, MCC, and G-MEAN, demonstrating its effectiveness as 
a classification method. These findings underscore the potential of FID-SOM in enhanc-
ing predictive capabilities and model performance across diverse datasets.

In these detailed tables, our proposed method, FID-SOM, has been marked 32 times 
as giving the best values for the selected metric.

The experimental results demonstrate the effectiveness of our proposed method. 
Notably, our proposed method works significantly better on the dataset structures when 
SOM can identify many homogeneous clusters and fewer neurons cover more data 
points. To get better results, one can vary the SOM architecture based on the dataset. In 
this study, the goal was to set up the same experimental environment rather than aiming 
for the highest performance metric for each dataset.

Table 4 Comparison of feature selection methods

Method # of winnings Total Percentage (%)

Baseline 33 165 20

FID-SOM 73 165 44.24
Uni_Chi2 33 165 20.00

Uni_F 18 165 10.91

Uni_MI 44 165 26.67

RFE 16 165 9.7

XGB_Imp 19 165 11.52
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Graphical visualizations of the results are presented in Figs. 5, 6, 7, 8 and Fig. 9. Each 
figure shows the results for each measure: F1 (Fig. 5), MCC (Fig. 6), G-Mean (Fig. 7), 
AUCPR (Fig.  8), and AUCROC (Fig.  9). Visualization contains dependencies of crite-
rion on a number of features. We can observe that the success of the feature selection 
strongly depends on data. Additionally, the selected machine learning algorithm has an 
impact on the feature selection performance as well.

FID-SOM method overcomes other feature selection methods. Figures 5, 6, 7, 8 and 
Fig. 9 visually show that FID-SOM outperforms other methods in many cases.

Discussions
Even though Dataset-C is very popular among researchers, it is difficult to compare our 
work with other papers. The primary challenges arise because some papers do not spec-
ify the splitting ratio or the type of split-random or time-based. In many cases, studies 
addressing the fraud-detection problem in credit card transactions unrealistically evalu-
ate the performance of the proposed method by splitting the dataset into train and test 
using random split (see [47, 48]). This assumes that the data is independently and iden-
tically distributed over time. However, in real-world scenarios, credit card transaction 
data often exhibits temporal dependencies and non-stationarity, making this assumption 
flawed. As a result, models trained on one time period may not perform well on data 
from another due to shifts in transaction patterns, fraudulent activities, or changes in 
user behavior. This is important because in time-series data, observations are typically 
dependent on previous observations, and shuffling the data randomly could lead to data 
leakage. Comparison of the results when the data is split using time-based approach can 
be found in Table 9. 

However, in order to compare FIDSOM performance against other published work, 
we did a split using stratified random split, selecting 80% of data points for the train-
ing set and 20% for testing on DataSet-C. For the comparison, we selected only those 
papers that clearly specified the splitting share (see Table 10). We did not include papers 
that use data balancing methods like oversampling or undersampling before splitting the 
data into training and testing datasets, e.g., in this way, technically removing imbalance 
problems, which is not possible in real-life scenarios. Applying sampling methods before 
splitting the dataset into train and test sets leads to deceptively high results.

The baseline performance of four widely recognized ensemble learning models, spe-
cifically focusing on their F1 scores, is presented in the paper [49]. The models evaluated 

Table 8 Performance comparison

Method Number of times method performs the best Percentage (%)

Baseline 2/45 4.44

FID‑SOM 32/45 71.11
Uni_Chi2 8/45 17.78

Uni_F 6/45 13.33

Uni_MI 8/45 17.78

RFE 5/45 11.11

XGB_Imp 6/45 13.33



Page 19 of 24Breskuvienė and Dzemyda  Journal of Big Data          (2024) 11:182  

include Random Forest, XGBoost, LightGBM, and CatBoost. No additional feature engi-
neering or optimization steps were implemented for this baseline assessment, ensuring 
that the F1 scores reflect the models’ classification abilities. The F1 scores are as follows:

• Random Forest achieved an F1 score of 0.846.
• XGBoost obtained a slightly lower score of 0.840.
• LightGBM trailed with a score of 0.749.
• CatBoost led the group with an F1 score of 0.853.

These results provide an initial benchmark for further model refinement.

Conclusions and future research
In this paper, we suggest a novel feature selection method called FID-SOM (feature 
selection for imbalanced data using SOM). The uniqueness of the proposed method is in 
forming a new dataset containing the best matching units of the trained SOM as vectors 
of attributes corresponding to the initial features. These attributes are sorted based on 
variance in descending order. By keeping the desired number of attributes holding the 

Fig. 5 Results with F1

Fig. 6 Results with MCC
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Fig. 7 Results with G-Mean

Fig. 8 Results with AUCPR

Fig. 9 Results with AUCROC
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highest variability, we select a smaller number of features corresponding to those attrib-
utes for further analysis.

FID-SOM was compared with univariate feature selection methods utilizing the F-test, 
χ2 test and mutual information, the recursive feature elimination method, and the XGB 
Importance method. The goodness of the feature selection methods was evaluated using 
F1 score, MCC, G-Mean, AUC-PR, and AUC-ROC metrics when performing XGBoost, 
CatBoost, and Random algorithms on three datasets.

The success of the method was evaluated by counting how many times the method 
was selected as the best-performing method. The proposed FID-SOM method has 
demonstrated noteworthy achievement by reaching a success rate of 71.11% (Table 8). 
This accomplishment is not only meaningful because of its ability to perform on par 
with, if not surpass, existing methodologies but also shows its innovative potential. 
Notably, the FID-SOM method is highlighted when compared with the performance 
of the second-best method, which yielded a success rate of 17.78% (Table 8).

FID-SOM is designed to address the challenge of dimensionality reduction in sce-
narios characterized by highly imbalanced data. Due to its discovered effectiveness, a 
novel FID-SOM method will become one of the often-used feature selection methods 
that allow fraud detection practitioners to solve complex classification problems suc-
cessfully (Tables 9 and 10).

For future research, we are going to analyze the optimization algorithms of FID-
SOM. While the current study applies the standard competitive learning mechanism 
for weight vector adaptation, future work could explore advanced optimization tech-
niques, such as incorporating class-specific learning rates or integrating additional 
constraints on weight updates to further improve the SOM’s performance on imbal-
anced datasets. These extensions could enhance the model’s ability to detect fraud 
while maintaining computational efficiency.

Table 9 Comparison with other papers splitting data in a time-based manner with a share of 70/30 
for training and testing

*FIDSOM with XGB classifier selecting 23 features. Data split is done by selecting 70% of the first data points for training and 
30% remaining data points for testing

Paper Year F1‑Score Recall Precision

[50] 2019 0.82 0.73 0.93

[51] 2023 0.84 0.74 0.97

FIDSOM* 2024 0.85 0.76 0.97

Table 10 Comparison with other papers splitting data randomly with a share of 80/20 for training 
and testing

** FIDSOM with RF selecting 23 features. Data split is done by randomly selecting 80% of the data points for training and 
20% of data points for testing

Paper Year F1‑Score Recall Precision

[52] 2024 0.85 0.84 0.86

[53] 2023 0.85 0.76 0.98

FIDSOM** 2024 0.88 0.82 0.95
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