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Abstract: In this study, chemical deposition was used to synthesize structures of Ga2O3 -NW/SiO2/Si
(NW—nanowire) at 348 K and SnO2-NW/SiO2/Si at 323 K in track templates SiO2/Si (either n-
or p-type). The resulting crystalline nanowires were δ-Ga2O3 and orthorhombic SnO2. Computer
modeling of the delta phase of gallium oxide yielded a lattice parameter of a = 9.287 Å, which
closely matched the experimental range of 9.83–10.03 Å. The bandgap is indirect with an Eg = 5.5 eV.
The photoluminescence spectra of both nanostructures exhibited a complex band when excited by
light with λ = 5.16 eV, dominated by luminescence from vacancy-type defects. The current–voltage
characteristics of δ-Ga2O3 NW/SiO2/Si-p showed one-way conductivity. This structure could be
advantageous in devices where a reverse current is undesirable. The p-n junction with a complex
structure was formed. This junction consists of a polycrystalline nanowire base exhibiting n-type
conductivity and a monocrystalline Si substrate with p-type conductivity. The I–V characteristics of
SnO2-NW/SiO2/Si suggested near-metallic conductivity due to the presence of metallic tin.

Keywords: nanoheterostructure; oxide semiconductors; track template SiO2/Si; δ-Ga2O3; orthorhombic
SnO2; photoluminescence; I–V characteristic

1. Introduction

One of the current trends in materials science is the development of new materi-
als and technologies for oxide photonics, sensors, and optoelectronics. In parallel, the
trend towards miniaturizing device sizes continues. Optoelectronic devices based on
one-dimensional nanowires (1D NWs) are being developed, including examples such as
emitters, detectors, and transistors. These research areas offer promising opportunities for
improving performance and reducing power consumption in the fields of nanotechnology
and microelectronics [1–7].

A notable representative of oxide semiconductors is gallium oxide (Ga2O3), which
has garnered significant attention due to its excellent chemical and thermal stability
(up to 1400 ◦C) [8]. It is a wide-bandgap semiconductor with an energy bandgap of
Eg = 4.9 eV at room temperature [9,10] and exhibits high transparency across a wavelength
range from ultraviolet to visible light. Due to these unique properties, Ga2O3 is widely
used in UV optical emitters [11,12], transparent conductors [13], and transparent electronic
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devices [14]. Its thermal stability enables applications in high-temperature gas sensors [15],
and Ga2O3 is also used in field-effect transistors [16,17] and solar photodetectors [18–20].
In recent years, the development of nano-functional devices based on low-dimensional
Ga2O3 nanostructures has been reported, such as nanowire field-effect transistors [21,22]
and nanophotonic switches [23].

Depending on the synthesis conditions, gallium oxide can form several different
crystalline structures, such as α-, β-, γ-, δ-, and ε-phases. The β-form is the most common
and well-studied polymorph of gallium oxide. Monoclinic β-Ga2O3 is considered the only
stable phase over the entire temperature range up to its melting point, while the other
phases are metastable and typically convert into β-Ga2O3 at high temperatures [24].

Various Ga2O3 nanostructures are synthesized through different methods such as
thermal evaporation, arc discharge, hydrothermal techniques, chemical vapor deposition
(CVD), and metal–organic chemical vapor deposition (MOCVD) [25–29]. Many researchers
have invested significant efforts into developing Ga2O3 NW devices for future applica-
tions [23,30,31]. However, the controlled synthesis of Ga2O3-NW with desired physical,
chemical, and optical properties remains a challenging task.

Tin dioxide (SnO2), an n-type oxide semiconductor, is widely studied due to its
valuable properties such as a large bandgap (Eg = 3.6 eV at room temperature), thermal and
chemical stability, environmental friendliness, and low cost. This material has been used to
create various active nanostructures and shows promising results across a broad range of
applications including gas sensors, lithium batteries, photocatalysis, photoluminescence,
and more.

An interesting aspect of SnO2 NW synthesis is the potential to “tune” its physical
properties by carefully controlling the morphology of the nanomaterial, enabling the
development of devices that meet specific technological challenges [32]. However, relatively
few studies have focused on the UV-sensing properties of SnO2 NWs [33–37], which
are important not only for understanding light detection mechanisms but also for the
development of high-performance nanodevices for future optoelectronic circuits, imaging
techniques, and communication systems.

Solution-based deposition methods offer a highly efficient and viable approach for
synthesizing nanomaterials from semiconductor oxides. These methods often require
templates and additives to direct the material’s growth towards the desired morphology.
SiO2/Si templates, for instance, can be prepared by irradiating SiO2/Si structures with swift
heavy ions, followed by track etching in selective etchants to create nanopores. These pores
can then be filled with various materials. Template-assisted synthesis enables the formation
of unique compounds that typically require specific conditions to be produced [38–44].

This method has demonstrated great potential in creating novel structures and func-
tional materials for a wide range of applications, including photonics, sensors, and nano-
electronics [45–49].

The goal of our research is to synthesize gallium oxide (Ga2O3) and tin dioxide (SnO2)
nanowires using template-assisted synthesis, which is based on chemical deposition into
nanoporous SiO2/Si structures.

2. Materials and Methods
2.1. Formation and Characterization of a Track Template

The studies used Si (100) wafers in the form of disks with a diameter of 10 cm and a
thickness of 500 µm. For n-type Si, a phosphorus impurity with a concentration of 1 ppm
was used, and for p-type Si, a boron impurity of 1 ppm was used.

An oxide layer with a thickness of approximately 530 nm was thermally grown on a
silicon wafer (Si (100)) at 900 ◦C in a humid atmosphere.

The prepared a-SiO2/Si disks were irradiated with 200 MeV Xe ions at fluences of
107–108 ions/cm2 using the DC-60 accelerator (Astana, Kazakhstan). In the selected fluence
range, no track overlap was observed, allowing for a uniform distribution of tracks across
the surface and a low background of radiation-induced defects [50].
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Figure 1 illustrates the calculations of electronic energy loss (Se), nuclear energy
loss (Sn), and the ion range of 200 MeV xenon in a-SiO2/Si, obtained using the SRIM
code [51]. These parameters are crucial for understanding how energetic ions interact with
the material, affecting its structural and electronic properties during irradiation. The graph
provides insights into the deposition of energy into the material, which influences defect
formation and nanostructure synthesis processes.
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Figure 2. SEM image of surface of track template a-SiO2/Si. 

2.2. Methods for Filling Nanopores of Template 

Figure 1. Electronic and nuclear energy losses for the 200 MeV Xe ion in the SiO2/Si structure
calculated by the SRIM code.

According to the SRIM code, the electronic energy loss of Xe ions in the SiO2 layer
is approximately two orders of magnitude higher than the nuclear energy losses. The
electronic energy loss in the SiO2 layer remains nearly constant at ≈15.2 keV nm−1, which
significantly exceeds the threshold value (4 keV nm−1) required for the formation of latent
tracks in the SiO2 matrix [52]. When ionization energy losses surpass 4 keV nm−1, the
latent tracks can be etched to form pores with uniform shape and narrow size distribution,
achieving an etching efficiency of nearly 100%. This behavior is critical for applications
involving nanostructure fabrication through ion irradiation.

After oxidation, the wafers were cut into samples of 10 × 10 mm2. The samples
were treated with a 4% aqueous solution of hydrofluoric acid (HF) for 5–7 min at room
temperature to form nanopores (Figure 2). This etching process selectively removes the irra-
diated regions, creating pores with a controlled shape and size. HF treatment is commonly
used to etch SiO2 due to its ability to dissolve silica, and the duration of exposure allows
precise control over the pore structure. This method is essential for creating nanostructure
templates for further material deposition.
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2.2. Methods for Filling Nanopores of Template

The chemical deposition (CD) of Ga2O3 nanowires into n- and p-type templates was
carried out using a chloride solution for varying durations (from 15 to 30 min). The
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CD solution was prepared by dissolving pure Ga2O3 powder (10 g/L) in concentrated
hydrochloric acid (20 mL). Deionized water was then added in the required amount. The
solution was continuously stirred and heated to 75 ◦C using a magnetic stirrer until a
clear solution was obtained. To adjust the pH of the solution to a range of 2 to 6, a buffer
solution (15 mL of ammonia) was added. This process helps control the conditions for
Ga2O3 nanowire growth within the template pores.

The prepared SiO2/Si-n matrices were immersed in the solution, and the chemical
deposition process was carried out at 348 K for a specified period. For the synthesis of tin
dioxide (SnO2) nanowires via chemical deposition, a solution consisting of 0.67 g SnSO4,
4 g CH4N2S, and 2 mL H2SO4 was used. CH4N2S was dissolved in deionized water, while
SnSO4 was dissolved in a minimal amount of concentrated sulfuric acid. The two solutions
were then combined, and the pH was adjusted to a range of 2 to 4. The chemical deposition
of SnO2 nanowires was carried out at 323 K.

2.3. Study of Structural, Optical, Electrophysical Properties

A scanning electron microscope (SEM) was used to monitor the surface condition of
the samples. To determine the crystallographic structure of the material, X-ray diffraction
(XRD) analysis was performed. The structure of the precipitates was examined using a D8
ADVANCE ECO X-ray diffractometer equipped with a Cu-anode X-ray tube. Data were
collected in the 2θ angular range of 30◦ to 110◦ with a step size of 0.01◦. The phases and crys-
talline structures were identified using Bruker AXS DIFFRAC software DiffracEVA v.4.2.

For studying the electrical properties of the nanowire arrays, a setup was used
(Figure 3), consisting of an HP 66312A current source and an Agilent 34401A multimeter,
Keysight, Santa Rosa, CA, USA The current–voltage characteristics (CVCs) were measured
from an array of filled nanowires with a total surface area of 0.3 cm2. The schematic of the
experimental setup is shown in Figure 3.
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Figure 3. Current–voltage characteristic (CVC) measurement circuit.

The photoluminescence (PL) spectra of the samples were measured using a CM2203
fluorescent spectrophotometer (Solar, Belarus). The samples were excited by light with a
wavelength of 240 nm, emitted from a xenon lamp. The PL spectra were recorded over the
wavelength range of 300 nm to 800 nm at room temperature.

3. Results and Discussion
3.1. Experimental and Theoretical Study of Ga2O3-NW/SiO2/Si and SnO2-NW/SiO2/Si Structures
3.1.1. Ga2O3-NW/SiO2/Si

In Figure 4, the SEM images display the surface of the samples after etching and
deposition with gallium oxide. The SEM images allow for detailed visualization of the
nanostructures formed on the SiO2/Si template.

Analysis of the SEM images revealed that the nanopores in the investigated samples
had a filling degree of 32%, with an average nanopore diameter of 215 nm. The results of
the X-ray structural analysis are presented in Figures 5 and 6, as well as in Tables 1 and 2,
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for samples after chemical deposition, which differ based on the conductivity type of the
Si substrate.
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(75 ◦C) were obtained for two different deposition durations: (N3) for a deposition time of 15 min;
(N4) for a deposition time of 30 min.
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Table 1. Crystallographic characteristics of Ga2O3-NW/SiO2/Si (p-type) based on X-ray diffrac-
tion analysis.

Phase
Name

Structure
Type

Space
Group (hkl) 2θ d, Å

Cell
Parameters, Å Volume, Å3 Size of

Crystallite, Å
Density,

g/cm3

N1

Ga2O3 Cubic 206: Ia-3 (622) 61.271
(6)

1.51165
(13)

a = 10.027141;
α = β = γ = 90 1008.164311 100.0 4.940

N2

Ga2O3 Cubic 206: Ia-3 (622) 61.33
(3) 1.6377 a = 10.018919;

α = β = γ = 90 1005.686444 100.0 4.952

Table 2. Crystallographic characteristics of Ga2O3-NW/SiO2/Si substrates (n-type) based on X-ray
diffraction analysis.

Phase
Name

Structure
Type

Space
Group (hkl) 2θ d, Å

Cell
Parameters, Å Volume, Å3 Size of

Crystallite, Å
Density,

g/cm3

N3

Ga2O3 Cubic 206: Ia-3 (444) 65.76
(9)

1.4190
(17)

a = 9.830884;
α = β = γ = 90 950.118314 5.242

Ga2O3 Hexagonal 167: R-3c (116) 55.98
(8) 1.641 (2)

a = 4.933100;
b = 4.933100;
c = 13.422600
α = β = 90;
γ = 120

282.883201 100.0 6.602

N4

Ga2O3 Cubic 206: Ia-3 (622) 61.226
(10)

1.5126
(2)

a = 10.033777;
α = β = γ = 90 1010.167374 100.0 4.930

Increasing the deposition time in SiO2/Si-p leads to a decrease in the XRD signal,
which is most likely due to a decrease in the number of crystallites created, caused by
solution evaporation because the synthesis proceeds at a sufficiently high temperature
at T = 348 K (75 ◦C). This forms delta gallium oxide with smaller lattice parameters of
10.018919 Å, and with decreases in density and volume. The same effect of reducing
the intensity of the XRD signal is also observed in Figure 6. The bands with 2θ = 68 are
associated with silicon.

As the deposition time increases, the hexagonal phase of Ga2O3 disappears, indicating
a transformation into a more stable structure. Gallium oxide, which is classified as a
transparent conducting oxide (TCO), can exist in multiple polymorphic forms, each with its
unique crystallographic structure and gallium ion coordination environment. The known
polymorphs include α-, β-, γ-, δ-, and ε-Ga2O3, with a transitional ζ-Ga2O3 phase also
reported in the literature. These polymorphs differ not only in their crystal space groups
but also in the coordination numbers of gallium ions.

In our research, we obtained the δ-Ga2O3 structure, which was first studied in the
work of [53] and computationally analyzed in reference [54]. This phase represents one of
the less common polymorphs, and our findings contribute to a better understanding of its
formation and properties under different synthesis conditions.

The crystalline structure of δ-Ga2O3 belongs to the 206: Ia-3 space group and has a
body-centered cubic structure with a lattice parameter of a = 10.00 Å according to experi-
mental data [53], and a = 9.401 Å based on theoretical calculations [54]. This structure was
obtained for four samples synthesized through chemical deposition at a constant tempera-
ture of 75 ◦C, using the same solution but with variations in the Si substrate conductivity
type and deposition time (Tables 1 and 2).

For samples N1 and N2, which used a p-type Si substrate, the cubic phase of Ga2O3
formed in both cases. As the deposition time increased from 15 to 30 min, the lattice param-



Crystals 2024, 14, 1087 7 of 17

eter slightly decreased from 10.027141 Å to 10.018919 Å, with crystallite sizes remaining
consistent at 100 Å.

In contrast, for samples N3 and N4, which used an n-type Si substrate, the same cubic
Ga2O3 phase formed after 15 min of deposition. However, extending the deposition time
to 30 min (sample N4) led to the emergence of a hexagonal phase (ε-Ga2O3) alongside the
cubic phase. The lattice parameter of the cubic phase decreased to 9.830884 Å, while in the
purely cubic phase of sample N3, it was 10.033777 Å.

The similarity between our chemical deposition method and the hydrothermal process
used in the study by [53] may lie in the formation of a “Gallia–water complex”, which
contributes to the growth of δ-Ga2O3. In the hydrothermal process, gallium gel prepared
from an aqueous nitrate solution was subjected to specific pressure and temperature
conditions (0–50 ◦C) to form this complex, which facilitated the crystallization of δ-Ga2O3.
Similarly, in our CD method, a comparable “Gallia–water complex” likely forms at 75 ◦C,
leading to the growth of the δ-Ga2O3-NW/SiO2/Si structure.

3.1.2. Computer Modeling of the Crystalline and Electronic Structure of δ-Ga2O3

Computational modeling of the delta phase of gallium oxide was performed using
an ab initio CRYSTAL23 [55] code within the approximation of Linear Combination of
Atomic Orbitals (LCAO), using hybrid PBE0 exchange–correlation functional [56,57] and
POB-TZVP-rev2 basis sets [58].

The delta phase of Ga2O3 has a cubic bixbyite structure (space group 206), with
two inequivalent gallium ions occupying 8d and 24d Wyckoff positions, and oxygens
occupying 48e positions. This results in 40 atoms in the primitive cell, and 80 atoms in the
conventional crystallographic cell (Figure 7). The optimized cell parameter is 9.29 Å with
Ga-O bond lengths ranging from 1.99 to 2.04 Å. The calculated value is a = 9.287 Å, which
is close to our experimental data lying in the range of 9.83–10.03 Å.
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The electronic structure of δ-Ga2O3 is shown in Figure 8. Similar to other Ga2O3
phases, the calculated bandgap is indirect and is about 5.5 eV. However, the difference
between direct and indirect transitions is less than 0.1 eV and the top of the valence band is
relatively flat. While the bottom of the conduction band is in the Gamma point, all other
high-symmetry points of the Brillouin zone are higher by ~2 eV.



Crystals 2024, 14, 1087 8 of 17

Crystals 2024, 14, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 7. Crystallographic cell of δ-Ga2O3 consisting of 80 atoms. Gallium atoms are shown in 
brown, and oxygen is shown in red. 

The electronic structure of δ-Ga2O3 is shown in Figure 8. Similar to other Ga2O3 
phases, the calculated bandgap is indirect and is about 5.5 eV. However, the difference 
between direct and indirect transitions is less than 0.1 eV and the top of the valence band 
is relatively flat. While the bottom of the conduction band is in the Gamma point, all other 
high-symmetry points of the Brillouin zone are higher by ~2 eV. 

 
Figure 8. Band structure and density of states of δ-Ga2O3. 

3.1.3. SnO2-NW/SiO2/Si 
Figure 9 shows the SEM image of the template surface after chemical deposition 

(CD). 

Figure 8. Band structure and density of states of δ-Ga2O3.

3.1.3. SnO2-NW/SiO2/Si

Figure 9 shows the SEM image of the template surface after chemical deposition (CD).
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of 323 K.

As seen in Figure 9, the nanowires clearly filled the nanopores after 20 min of chemical
deposition. Analysis of the SEM images revealed that the diameter of the nanopores varied
between 350 nm and 430 nm, with an overall filling degree of 80%.

According to the X-ray diffraction analysis (XRD) shown in Figure 10, the CD process
led to the formation of SnO2 nanowires with an orthorhombic structure belonging to the
symmetry space group Pnnm (58). Additionally, a phase of tin (Sn) with a tetragonal
structure and symmetry space group I4/mmm (139) was identified. The detailed results
of the X-ray structural analysis for this sample are provided in Table 3, indicating the
crystalline phases and structural parameters, confirming the successful synthesis of SnO2
nanowires and the presence of metallic tin within the template.

The X-ray diffraction analysis indicates that the ratio of the Sn phase to the SnO2
phase is approximately 22% to 78%, respectively. It is noteworthy that in our previous
study [59], orthorhombic SnO2 (O) was obtained via electrochemical deposition, and the
lattice parameters differed significantly. This discrepancy is likely due to the formation of
metallic tin (Sn) in the current study. It appears there might be a deficiency of oxygen ions
in the nanopores, which is further supported by the photoluminescence (PL) results, where
a dominance of defect-related luminescence was observed. This suggests that oxygen
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deficiency plays a crucial role in influencing the structural and optical properties of the
synthesized SnO2 nanowires.
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Table 3. Crystallographic parameters of SnO2-NW/SiO2/Si-n track template based on XRD analysis.

Phase
Name

Structure
Type

Space
Group (hkl) 2θ d, Å

Cell
Parameters, Å Volume, Å3

Size of
Crystallite,

Å

Density,
g/cm3

Sn Tetragonal 139:
I4/mmm (002) 54.271 1.6889

A = 3.674736;
b = 3.674736;
c = 3.377628

45.610417 58.0 8.644

SnO2 Orthorhombic 58: Pnnm (220) 56.113 1.6377
a = 4.655800;
b = 4.599800;
c = 3.151400

67.489592 58.71 7.416

3.2. Photoluminescence of δ-Ga2O3-NW/SiO2/Si and SnO2-NW/SiO2/Si

Figure 11 shows the photoluminescence (PL) spectra at room temperature (RT) of
δ-Ga2O3-NW/SiO2/Si. The PL spectra were plotted considering the luminescence of the
samples before deposition. The optical properties were studied in the spectral range from
3.8 eV to 2 eV with excitation light at λ = 5.16 eV. This excitation corresponds to the exciton
band, considering the calculated bandgap of δ-Ga2O3 as Eg = 5.5 eV from Section 3.1.2.

Due to its wide bandgap nature, β-Ga2O3 can emit light from defect states over a broad
spectral range from infrared (IR) to ultraviolet (UV) [9]. Previous studies have concluded
that the fundamental bandgap of β-Ga2O3 is indirect with an Eg = 4.84 eV, while the direct
bandgap at the Γ-point is only 0.04 eV higher, at 4.88 eV. This small energy difference
and the weak nature of indirect transitions make β-Ga2O3 behave like a direct bandgap
material, consistent with experimental sharp absorption starting at 4.9 eV [60–62].

Similarly, δ-Ga2O3 can also be considered a direct bandgap oxide semiconductor,
justifying the comparison of the PL results of δ-Ga2O3 with the luminescence characteristics
of β-Ga2O3. This direct bandgap property of δ-Ga2O3 makes it suitable for optoelectronic
applications like β-Ga2O3.

The photoluminescence (PL) spectrum of β-Ga2O3 includes up to three distinct emis-
sion bands: an ultraviolet (UV) band (3.2–3.6 eV), a blue band (2.8–3.0 eV), and a green
band (2.4 eV) [63–69].

The PL spectrum of δ-Ga2O3 (Figure 4 (N1)) reveals peaks at 2.2 eV, 2.5 eV, 2.78 eV, 3 eV,
and 3.37 eV when decomposed into Gaussian components. The origin of the UV emission
band, like that in β-Ga2O3, is likely associated with the recombination of self-trapped



Crystals 2024, 14, 1087 10 of 17

excitons, meaning the recombination of electrons and holes from the lower level of oxygen
vacancies to the valence band [70].
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Figure 11. The PL spectrum of δ-Ga2O3-NW/SiO2/Si obtained by (CD) at T = 348 K (75 ◦C) with a
deposition time of 15 min. The excitation was carried out using light with a wavelength of λ = 5.16 eV.
The hollow circle line represents the experimental curve, while the red line indicates the set of
Gauss components.

The blue PL peaks at 2.5 eV and 2.78 eV, much like in β-Ga2O3, are probably due
to transitions from donor levels formed by oxygen vacancies to acceptor levels formed
by gallium vacancies and defect clusters, such as a pair of gallium and oxygen vacancies
vGa − vO ([9,67]. The PL band with a maximum peak at 2.2 eV may result from the
presence of silicon impurities [65]. Additionally, according to some sources [71,72], green
luminescence can occur when excitons are self-trapped due to electron–lattice interactions
or when they interact with impurities, defects, or vacancies.

The dominant defects in the δ-Ga2O3 structure are vacancy-type defects. It should be
noted that the PL was very weak for samples N2, N3, and N4. For sample N2, this might
be due to the formation of an additional hexagonal phase, while for samples N3 and N4,
the weak PL could be attributed to the low filling of nanopores, which was observed for
templates with a p-type Si substrate.

The PL spectrum of SnO2-NW/SiO2/Si was measured in the spectral range from
300 to 600 nm with excitation light at a wavelength of λ = 240 nm (5.17 eV). Figure 12 shows
the decomposition of the PL spectrum into Gaussian components.
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The photoluminescence (PL) spectra of SnO2-NW/SiO2/Si synthesized through CD
show differences when compared to those of SnO2-NW/SiO2/Si obtained via the electro-
chemical method (ECD). The observed PL maxima were found at 2.9 eV (427 nm), 2.8 eV
(442 nm), 2.58 eV (480 nm), 2.39 eV (518 nm), 2.23 eV (555 nm), and 2.1 eV (590 nm).

The luminescence centers responsible for the violet emission peak at 2.9 eV (427 nm)
can be attributed to interstitial tin (Sn) or tin atoms with damaged bonds [73–77].

The blue light emission with a peak at 2.8 eV (442 nm) is likely caused by the transition
from a triplet state to the ground state for oxygen vacancies v0

O [78]. Most oxygen vacancies
are in a paramagnetic state v+O , corresponding to the peak at 2.58 eV (480 nm) [75,79], while
the peak at 2.39 eV (518 nm) is associated with a surface donor defect v0

0 [80].
The peak at 2.23 eV (555 nm) might result from oxygen vacancies formed during

the deposition process, as indicated in studies [81,82]. The emission at 2.1 eV (590 nm)
corresponds to defect levels within the bandgap related to oxygen vacancies or interstitial
Sn, like what has been observed in SnO2 nanobelts synthesized by laser ablation [83] and
SnO2 nanorods grown using a solution-phase method [84].

It is well known that oxygen vacancies are the most common defect type and fre-
quently act as luminescent centers. Indeed, the analysis of the PL spectrum indicates that
the primary defects responsible for emission are oxygen vacancies rather than tin-related de-
fects. A similar observation was made for δ-Ga2O3-NW/SiO2/Si, where oxygen vacancies
also play a dominant role in luminescence properties.

3.3. Current–Voltage (I–V) Characteristics of δ-Ga2O3-NW/SiO2/Si and SnO2-NW/SiO2/Si

The current–voltage characteristics (I–V or CVCs) were measured for δ-Ga2O3-NW/
SiO2/Si–p and SnO2-NW/SiO2/Si-n samples, including the original untreated sample.

For the first sample (N1), a clear diode-like I–V characteristic (Figure 13) was observed,
indicating n-type conductivity of δ-Ga2O3 NWs. In contrast, the current values for the
second sample (N2) were about seven times lower than those of the first sample. This
decrease in current is probably due to the increase in the deposition time, which led to
the solution’s evaporation and a reduction in the number of crystallites. A decrease in the
unit cell size was also observed. As a result, the boundary regions between crystallites
increased, leading to the capture of more free charge carriers by the defects.
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Figure 13. Current–voltage (I–V) characteristics of δ-Ga2O3-NW/SiO2/Si-p. The dashed curve
represents the original, untreated sample. The red curve corresponds to the sample with δ-Ga2O3

deposited for 15 min, a p-type Si substrate. The blue curve corresponds to the sample with δ-Ga2O3

deposited for 30 min, a p-type Si substrate.

For sample N1, the δ-Ga2O3-NW/SiO2/Si-p structure exhibits pronounced one-way
conductivity. This structure is potentially feasible for use in devices where the reverse
current is unacceptable or should be negligible. It should also be noted that a p-n junction
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with a complex structure is created. It is the junction of a polycrystalline nanowire base
with n-type conductivity and a single-crystalline Si substrate with p-type conductivity.

In polycrystalline nanowires, there are crystallites and intercrystallite boundaries.
The presence of intercrystallite boundaries, the density of which is less than the electron
density of the crystallite, leads to the formation of spatial volume charge on the boundary
and, as a consequence, to the formation of multilayer potential barriers. The conductiv-
ity of polycrystalline nanowires depends on the size of potential barriers and the size
of crystallites.

For the explanation of the conductivity of polycrystalline samples, diffusion and
thermoemission models are used. The diffusion theory is applicable if the potential barrier
width W is much larger than the free path length of carriers I. The thermoelectron emission
model is applicable in the case where I > W. According to this model, only those carriers
whose kinetic energy is greater than the barrier height can cross the boundary.

If we assume that, to each barrier (we believe that we have barriers of the same type),
the average voltage V/m is applied (m is the number of obstacles between electrodes; V is
the interelectrode voltage), then for the current–voltage characteristic, we can write the
relation [85]

I = I0 exp [(−e (φ − V/m)]/kT

which determines the height of the potential barrier φ and the number of barriers m. This
relation was used to analyze current transfer in polycrystalline gallium phosphite [86].

The value of I0 is taken from the value of the conduction threshold voltage, which is
2 V. The number of barriers can be estimated from the formula m = H/hk where H = 530 nm
is the height of the nanopore, and hk is the linear size of the nanocrystallite, as we took the
average value of crystal lattice parameters from Table 1 (10.03 Å). The barrier height was
obtained as being equal to 0.06 eV.

It should be noted that internal defects do not significantly affect conductivity under
ordinary conditions and begin to do so only with increasing temperature.

Figure 14 shows the I–V characteristics of the samples before and after SnO2 deposition.
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the original, untreated sample. The dashed curve represents the sample after CD with a deposition
time of 20 min.

It is evident that prior to deposition, conductivity was almost absent in both forward
and reverse directions. After CD, the I–V characteristics exhibit a nonlinear but nearly
symmetrical shape in both directions, which is clearly related to the presence of metallic
Sn. This behavior differs from the I–V characteristics of SnO2-NW/SiO2/Si-n obtained by
electrochemical deposition, as reported in [59], where the nanowires contained only the
orthorhombic phase of SnO2.
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4. Conclusions

In this study, crystalline nanowires of δ-Ga2O3 with the space group symmetry Ia-3
were synthesized in track templates SiO2/Si (n- or p-type). The lattice parameters of the
unit cell changed slightly depending on the deposition time, and the formation of an
additional hexagonal phase of Ga2O3 was observed.

Computational modeling of the delta phase of gallium oxide was performed using the
ab initio CRYSTAL23 [55] code, within the Linear Combination of Atomic Orbitals (LCAO)
approximation, and utilizing the hybrid PBE0 exchange–correlation functional [57,58] and
POB-TZVP-rev2 basis sets [58]. The calculated lattice parameter was a = 9.287 Å, which
closely matches our experimental values, ranging between 9.83 Å and 10.03 Å.

The chemical deposition technique used in this research is quite similar to the hy-
drothermal method described in [53], suggesting the possible formation of a Gallia–water
complex at 75 ◦C, which participates in the growth of δ-Ga2O3-NW/SiO2/Si nanowires.
This insight provides a better understanding of the synthesis process and the structural
characteristics of the resulting nanowires.

The PL of δ-Ga2O3-NW/SiO2/Si was excited with light at λ = 5.16 eV, resulting in a
broad and complex PL band observed in the range from 3.8 eV to 2 eV. Decomposition into
Gaussian components revealed the following PL peaks: 2.2 eV, 2.5 eV, 2.78 eV, 3 eV, and
3.37 eV. Comparing these with the PL spectra of β-Ga2O3, it was suggested that the UV
emission band might be associated with the recombination of self-trapped excitons. The
dominant defects are vacancy-type defects. Notably, samples N2, N3, and N4 exhibited
very weak PL. For sample N2, this is likely due to the formation of an additional hexagonal
phase, while for samples N3 and N4, the weak PL can be attributed to the low filling of
nanopores, a common observation for templates with p-type substrates.

The investigation of the I–V characteristics showed that the N1 sample (the δ-Ga2O3-
NW/SiO2/Si-p structure) demonstrates significant one-way conductivity. This structure
could be advantageous in devices where the reverse current is undesirable or should remain
minimal. Additionally, it is important to note that a p-n junction with a complex structure
has been formed. This junction consists of a polycrystalline nanowire base exhibiting n-type
conductivity and a monocrystalline Si substrate with p-type conductivity.

The synthesis of SnO2-NW/SiO2/Si through chemical deposition into the track tem-
plate at T = 323 K resulted in the formation of an orthorhombic SnO2 phase, complemented
by metallic tin (Sn). The PL spectrum of this structure also exhibited a complex shape. It is
worth noting that the PL spectra of both SnO2-NW/SiO2/Si and δ-Ga2O3-NW/SiO2/Si
showed similarities, with vacancy-type defects being dominant in both cases. The I–V
characteristics of SnO2-NW/SiO2/Si-n indicated near-metallic conductivity due to the
presence of metallic tin. It should be noted that the deposition in SiO2/Si-p templates
was weak. This indicates that the filling efficiency or the density of the deposited material
in the SiO2/Si-p type templates was lower than expected, which might affect the quality
and uniformity of the synthesized nanostructures. This observation suggests that further
optimization of the deposition process may be required to achieve better filling and growth
within these templates.
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