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1 Insitute of Technical Physics, Riga Technical University, Paula Valdena 3/7, 1048 Riga, Latvia;
arturs.pludons@rtu.lv

2 Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3,
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Abstract: We elaborate a method for determining the 0D–1D nanostructure size by photoluminescence
(PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number
of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk
material, allowing for the calculation of their top dimensions of 2.0 nm. For the second structure
model, we used a sharp atomic force microscope (AFM) tip, which showed green emission localized
on its top, as determined by confocal microscopy. Using the PL spectrum, the calculation allowed us
to determine the tip size of 1.5 nm, which correlated well with the SEM measurements. The time-
resolved PL measurements shed light on the recombination process, providing stretched-exponent
decay with a τ0 = 1 ns lifetime, indicating a gradual decrease in exciton lifetime along the height of
the cone from the base to the top due to surface and radiative recombination. Therefore, the proposed
method provides a simple optical procedure for determining an AFM tip or other nanocone structure
sharpness without the need for sample preparation and special expensive equipment.
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1. Introduction

Nanostructures, such as quantum dots—0D, quantum wires—1D, and quantum wells—
2D, are the most prominent objects of research in solid-state physics due to the quantum–
dimensional effect. Thanks to this effect, new optoelectronic devices can be created. On
the other hand, the tendency to reduce the sizes of artificial light sources enabled the
use of such sources in microelectronics, medicine, and biology to study micro-objects
such as bacteria and viruses. At the same time, demands have increased to improve the
source intensity, the spectrum of radiation, and the uniformity and controllability of its
parameters. Spectroscopic micro-objects, such as microbes, molecules, and viruses, require
non-traditional research methods, such as an optical probe [1], since the dimensions of
such objects are smaller than the wavelength of visible light. Studying micro-objects such
as 0D quantum dots requires a light source much smaller than the object. The 2023 Nobel
Prize award in Chemistry to Mango J. Bawendi, Louis E. Bruce, and Oleksiy I. Yekimov
“for the discovery and synthesis of quantum dots” confirms that the quantum confinement
effect occupies the dominant place in the solid-state physics [2–4]. Opto-electronic devices
and technologies based on the quantum confinement effect in quantum dots or quantum
wires are the main tasks for scientific development [5]. We have shown the possibility of
forming quantum cones on the surface of Si, Ge, GaAs, CdTe, and diamond-like carbon
(DLC) [6–12]. A quantum cone consists of many quantum dots whose diameters gradually
increase from the top to the base of the cone, leading to a dispersive radiated spectrum.
Therefore, the diameter and energy change of the excitons in the cone [13] leads to their
lifetime dependence on the vertical position.
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The application of nanocones is very wide in science and industry; for example,
in an atomic force microscope (AFM), they are used in the probe tip. The aim of this
study is to visualize and estimate the diameter of an invisible nanocone tip, as shown in
Figures 1–3. This is an important task for the user and the manufacturer, for example, when
measuring the diameter of the AFM tip, as shown in Figure 2, when making it for AFM
and manipulating it. In situ studies of AFM probes by SEM are impossible because it is
necessary to use high vacuum and sensitive electron emitters and detectors.
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Figure 3. Confocal optical microscope image of Si tip No. 1 photoluminescence in the horizontal (a) 
and vertical (b) cross-sections at 405 nm excitation with 0.25 mW power. Cross-section intensities in 
horizontal (c) and vertical (d) scans for indicated directions; in A, B directions, Gauss fit provides 
FWHM 640 nm and 570 nm; in x, z directions, FWHM is 640 nm and 1430 nm, respectively. 

2. Materials and Methods 
The DLC films with nanocones were formed by magnetron sputtering C on the Si 

substrate and subsequent thermal annealing at T = 1060 °C in the N atmosphere [12]. The 
thickness of the DLC layers was 400 nm. The annealing of such samples leads to the 
formation of 80 nm—high DLC nanocones on the DLC film, according to the Stranski–
Krastanow model. The nanocones are observed by AFM (see Figure 1a) and visualized by 
a fluorescent microscope (Olympus BX51 Fluorescence Microscope (Tokyo, Japan), 100×, 
NA = 1.4 objective, see Figure 1b) at UV excitation. The light points are shown in Figure 1. 
Estimation of the diameter of the nanocone tops on the surface of sample 3A, using the 
formula Eg = Eg0 + 1.42h2/(4µd2) from paper [14], gives d = 2.0 nm [12]. In this formula, Eg = 
3.3 eV is the blue-shifted bandgap due to the quantum confinement; Eg0 is the DLC 
material bandgap of 2.8 eV, and µ = 0.43 m0 is its reduced effective mass. 

In this work, we selected a single AFM tip to distinguish its properties from the 
substrate. The AFM probe was produced by Nanosensors, a model of SuperSharpSiliconTM 
SSS-NCL (NANOSENSORS™, Neuchatel, Switzerland) [15]. It features doped silicon to 
dissipate the static charge, half cone angle at 200 nm from apex: < 0°, and a typical top 
radius of less than 2 nm. Three probe pieces were analyzed: No. 1, No. 2 and No. 3. 

The confocal photoluminescence (PL) measurements of the AFM probe were 
performed using the WITec Alpha 300S microscope (Ulm, Germany) coupled with a UTS-
300 spectrophotometer (Andor, Belfast, UK) equipped with an air-cooled CCD camera. 
The excitation light was blocked with a long pass edge filter BLP01-405r (IDEX Health & 
Science, New York, NY, USA). Excitation was performed by a 405 nm waveguide Alphalas 

Figure 3. Confocal optical microscope image of Si tip No. 1 photoluminescence in the horizontal
(a) and vertical (b) cross-sections at 405 nm excitation with 0.25 mW power. Cross-section intensities
in horizontal (c) and vertical (d) scans for indicated directions; in A, B directions, Gauss fit provides
FWHM 640 nm and 570 nm; in x, z directions, FWHM is 640 nm and 1430 nm, respectively.

2. Materials and Methods

The DLC films with nanocones were formed by magnetron sputtering C on the Si
substrate and subsequent thermal annealing at T = 1060 ◦C in the N atmosphere [12]. The
thickness of the DLC layers was 400 nm. The annealing of such samples leads to the
formation of 80 nm—high DLC nanocones on the DLC film, according to the Stranski–
Krastanow model. The nanocones are observed by AFM (see Figure 1a) and visualized by
a fluorescent microscope (Olympus BX51 Fluorescence Microscope (Tokyo, Japan), 100×,
NA = 1.4 objective, see Figure 1b) at UV excitation. The light points are shown in Figure 1.
Estimation of the diameter of the nanocone tops on the surface of sample 3A, using the
formula Eg = Eg0 + 1.42h2/(4µd2) from paper [14], gives d = 2.0 nm [12]. In this formula,
Eg = 3.3 eV is the blue-shifted bandgap due to the quantum confinement; Eg0 is the DLC
material bandgap of 2.8 eV, and µ = 0.43 m0 is its reduced effective mass.

In this work, we selected a single AFM tip to distinguish its properties from the
substrate. The AFM probe was produced by Nanosensors, a model of SuperSharpSiliconTM

SSS-NCL (NANOSENSORS™, Neuchatel, Switzerland) [15]. It features doped silicon to
dissipate the static charge, half cone angle at 200 nm from apex: <0◦, and a typical top
radius of less than 2 nm. Three probe pieces were analyzed: No. 1, No. 2 and No. 3.

The confocal photoluminescence (PL) measurements of the AFM probe were per-
formed using the WITec Alpha 300S microscope (Ulm, Germany) coupled with a UTS-300
spectrophotometer (Andor, Belfast, UK) equipped with an air-cooled CCD camera. The
excitation light was blocked with a long pass edge filter BLP01-405r (IDEX Health & Science,
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New York, NY, USA). Excitation was performed by a 405 nm waveguide Alphalas laser
(Alphalas, Goettingen, Germany). A 100× microscope objective with NA = 0.9 was used
for both the excitation and emitted PL light collection.

The time-resolved PL measurements were performed by a Hamamatsu streak camera
C10627 (Hamamatsu, Japan) connected to an Acton monochromator with 300 cm focal
length (Princeton Instruiments, Acton, MA, USA). Data were collected in a photon-counting
regime in a 20 ns time window. Excitation was performed by 350 nm and 200 fs duration
laser pulses generated by ORPHEUS parametric generator pumped by PHAROS laser
(Light Conversion, Vilniaus, Lithuania) at a 10-kHz frequency. The excitation intensity was
controlled by a continuous neutral density filter. The scattered excitation light was blocked
by a long-pass filter.

3. Results and Discussion

The sharp SSS-NCL AFM probe is shown in Figure 2 by SEM and in Figure 3 by confo-
cal photoluminescence microscopy. The confocal image shows green emission localized at
the AFM probe top with few emitting points. Due to the microscope resolution of ~500 nm,
the image is blurred and cannot be used to determine the AFM tip dimensions. The confocal
vertical cross-section confirms that the PL emission is observed only from the tip’s top. The
confocal microscopy PL spectra of the studied tip are provided in Figure 4a. The nanotip
PL intensity cross sections observed with a confocal microscope are provided in Figure 3c,d.
The full width at half maximum (FWHM) of the x cross-section is 640 nm for the confocal
microscope, which exceeds the theoretical one of 0.51 × λPL/NA = 300 nm, calculated
for λPL = 500 nm at the peak PL emission wavelength and NA = 0.9. This is because the
microscope employs a waveguide with a large aperture to collect light. The luminescing
nanotip size of a few nm is much smaller; thus, the diffraction limits the image size. In the
y direction, the image is prolonged into 1200 nm (which is close to the vertical cross-section
resolution of 1430 nm—z direction), which can be plausibly caused by the emitted light
waveguiding to the bottom of the nanotip and scattering there from surface defects, thus
leading to the peak red-shifts (points B, C) as the shorter wavelengths are more absorbed
in the silicon tip. Therefore, point A, at the top, with the most blue-shifted spectrum, was
selected for the tip diameter analysis. For practical use, simply green photoluminescence
can be detected by using a built-in blue laser (focused on the tip) and a camera in the AFM
microscope providing the in situ measurements, which is much simpler than SEM analysis.

In the case when it is necessary to estimate the diameter of the nanocone at any height
of the tip, the quantum confinement ∆EG = EQC formula from paper [16] for nanowires
can be used. The bandgap energy Eg in the direction of the height z of the cone gradually
decreases from the top of the cone to its base as a function of the diameter of a nanowire [16].
Including the approximated exciton binding energy for Si nanowires from [17,18] into the
formula from paper [16], we obtain the following:

Eg(z) = Eg0 + EQC(z)− Eex(z),
EQC = 2ℏ2ζ2

m∗d2(z) ; Eex = 2e2

πε0εsd(z) ,
(1)

where Eg0 = 1.16 eV is the Si bandgap, and εs = 11.9 is the Si dielectric constant. EQC and
Eex are the quantum confinement and exciton binding energies, respectively, depending
on the nanowire diameter d. Here, the inverse effective mass is described as 1/m* =
1/me* + 1/mh* (me* = 0.26 m0 and mh* = 0.47 m0 are silicon electron and hole effective-
masses, respectively; m* = 0.167 m0). For quantum wires, ζ = 2.4048 [16]. Equation (1)
correctly fits the experimental change in the Si nanowire bandgap data from [19] and can
be approximated by a simplified relation of excitonic bandgap Egapprox(d) = 1.1 eV + 4 ×
10−18 eVnm2 × 1/d2, which is also shown in Figure 4b. In our case, the diameter of the
nanowires is a function of the height d(z). Thus, it is a semiconductor structure with a
graded band gap. Calculation of the cone tip size using Equation (1) in the highest point A
and the largest Eg emission from the PL blue cutoff at Egmax = 2.8 eV in Figure 4a gives the
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top point A diameter of d = 1.5 nm. The peak PL emission at 2.45 eV provides the diameter
of d = 1.72 nm, where the emission is the most efficient. The tips No. 2 and No. 3 show
fitted top point diameters of d = 1.9 nm and d = 1.6 nm, respectively. Much smaller PL
intensity in the latter tips may indicate larger surface defect density. The diameter roughly
agrees with the sharp AFM tip dimensions observed with SEM (Figure 2). Nevertheless,
SEM measurements show larger dimensions due to the natural oxide covering the nanotip.
At room temperature, oxidized nanowire has external dimensions of ~3 nm, as found by
calculation [20], and the internal Si nanowire diameter is minimally about 1.2 nm, which
considerably agrees with our results.

To explain the broad PL spectra observed in Figure 4, the following equation can
be used:

IPL(E) = A ×
∞∫

0

(
E − Eg(d(z)) + ETO

)2

1 + exp
((

E − Eg(d(z))
)
/kT

) dz
τrad(d(z))

. (2)

Here, A is an arbitrary fitting amplitude; T is the temperature. Integration is stopped
at z = dmin, corresponding to Egmax as the maximum excitonic bandgap at the cone top.
Here, ETO = 58 meV is the transverse optical phonon energy of Si, which dominates
the PL emission [21]; in nanowires, optical phonon spectra and energies do not change
significantly [22]. The exciton emission has a strongly diameter-dependent lifetime, which
is described by an approximate relation [23]: τrad(d) = 1/(0.05 × (1 + cos(1010nm−1 ×
d(z))) × exp(−0.5 × 1010nm−1 × d(z)) + 1.2 × 10−8) × 10−11 s. The lifetime reduces with
d many orders of magnitude due to the exciton confinement. That was already observed
on variable diameters of nanowires where the lifetime was reduced from milliseconds to
nanoseconds [24]. The first term in the integral of Equation (2) consists of the thermal
broadening function [21] smearing cutoff of the spectrum.
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Figure 4. (a) PL spectra of Si tip No. 1 in A, B, and C areas exited by UV laser at λex = 405 nm and 
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Figure 4. (a) PL spectra of Si tip No. 1 in A, B, and C areas exited by UV laser at λex = 405 nm and
0.25 mW power; PL spectra of tips No. 2, No. 3 magnified by 100 times. The dashed line shows a fit
by Equation (2). (b) Nanowire bandgap dependence on its diameter [19] and fitted contributions of
quantum confinement and exciton binding energies. Red curve shows a total fit by Equation (1).

The kinetics of PL are provided in Figure 5. They possess nonlinear behavior, which
was fitted by a stretched exponent function with an average lifetime of τo = 1.0 ns. The
decays at different emission wavelengths were rather similar, with slight variation in the
initial decay time in the 0.7–1.2 ± 0.1 ns range. The decays were also excitation-independent,
indicating that nonlinear recombination processes did not impact the exciton transport, as
excitation was relatively low. The dispersion parameter β = 0.58 value is rather close to the
observed in DLC nanocones, with β = 0.55. Therefore, the nonexponentiality of the decay
could be explained by the drift of the excitons from the cone top to the base of the cone
due to the built-in electric field caused by the bandgap gradient as in [25]. However, the
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DLC cones showed very strong decay time dependence on the emission wavelength [25];
therefore, in the case of the Si AFM tip, another mechanism could come into play. Due
to the small diameter of the tip and small cone angle, surface recombination can have
a considerable impact. Using the surface recombination lifetime equation for a cylinder
with a d diameter, the surface lifetime can be described as τS = 0.282d/S [26]. According
to the determined 1 ns initial lifetime, we can evaluate the surface recombination velocity
of S = 1.1 cm/s (in tips No. 2 and No. 3, the PL signal intensities are 1700 and 400 times
smaller, plausibly indicating much larger S values of 1700 cm/s and 400 cm/s, respectively).
Low S values (<1 cm/s) are typical for high-quality SiOx passivation [27]. At shorter
wavelengths, emission appears from the smaller diameter part of the needle. The emission
decay at 1.9 eV is 1.7 times slower than at 2.8 eV (Figure 5), which correlates with the larger
diameter of d = 2.4 nm on the base vs. 1.5 nm on the tip, therefore confirming the weak τS ~
τnonrad dependence on d. The radiative lifetime of excitons has a much steeper dependence,
as mentioned before. The radiative efficiency (Φ = 1/(1 + τrad/τnonrad) = τ0/τrad, τnonrad, and
τrad are the nonradiative and radiative lifetimes, respectively) of the tip was determined to
be around 15%, confirming this hypothesis and 1/τ0 = 1/τrad + 1/τnonrad ~1/τnonrad. From
this relation, we can evaluate the average radiative lifetime of ~ 6 ns, which is similar to
~12 ns in highly luminescent Si nanocrystals with ~2 nm size [28]. Notably, the decay tail
lifetime in Figure 5 reaches 4 ns, being close to the radiative lifetime, which can indicate
saturation of the surface defects.
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ent PL kinetics averaged over emission spectrum; solid lines show that stretched exponent fits with 
β = 0.58 and τ0 = 1.0 ns and relative amplitudes IPL0 = 1:0.1:0.01. 

The PL linear slope on excitation (Figure 6) is possible as the silicon cone is n-type-
doped and PL is measured at relatively low excitations; thus, PL ~ Nexc ~ ndop × Nehp [29], 
where Nexc and Nehp are the densities of emitting excitons and generated electron-hole pairs, 

Figure 5. (a) Kinetics of PL for selected emission energies Eem for tip No. 1. Red-colored curves
show stretched exponent fit by equation IPL = IPL0 exp (−(t/τ0)β), where β = 0.58, and τ0 is the initial
lifetime of excitons at I0 = 44 µJ/cm2 excitation; curves are vertically shifted for clarity. (b) Excitation-
dependent PL kinetics averaged over emission spectrum; solid lines show that stretched exponent
fits with β = 0.58 and τ0 = 1.0 ns and relative amplitudes IPL0 = 1:0.1:0.01.

The PL linear slope on excitation (Figure 6) is possible as the silicon cone is n-type-
doped and PL is measured at relatively low excitations; thus, PL ~ Nexc ~ ndop × Nehp [29],
where Nexc and Nehp are the densities of emitting excitons and generated electron-hole
pairs, respectively. Excitons have high binding energy on the top (Figure 4b); thus, they
are the dominant species in PL emission. According to the resistivity of the AFM probe,
0.01–0.025 Ω·cm [15], by using calculations from [30], we determine a high electron density
of ndop = ~1019 cm−3 in the sample.
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4. Conclusions

We propose a new method for a 0D–1D nanostructure visualization and estimation
of its top diameter. For example, AFM tip dimensions are studied when making it for
AFM and manipulating it to check its sharpness. This method is based on the PL emission
spectrum of the sharp Si nanoconic AFM probe, inducing exciton localization on its top.
The wideband green emission of a super-sharp AFM probe verifies its top dimension of
1.5 nm. Complimentary time-resolved PL measurements provided stretched exponent
decay related to the emitting exciton species decay due to their radiative and surface
recombination in the AFM tip. The developed method is also well-suited for determining
the sharpness of the semiconductor nanocone arrays, e.g., DLC nanocones.
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