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ASYMPTOTICALLY PROVED NUMERICAL COUPLING OF A 2D
FLEXURAL POROUS PLATE WITH THE 3D STOKES FLUID\ast 

MAXIME KRIER\dagger , JULIA ORLIK\dagger , GRIGORY PANASENKO\ddagger , AND KONRAD STEINER\dagger 

Abstract. A numerical workflow for a linear multiscale fluid-structure interaction (FSI) problem
between 3D Stokes flow and an effective porous, homogenized 2D plate is presented. The underlying
effective FSI model is obtained from the method of two-scale convergence for thin perforated and
periodic filter structures, performed in earlier works. On the micro scale, the numerical workflow
comprises the computation of the filter structure's effective homogenized stiffness tensors utilizing
a beam finite element formulation, as well as the computation of the permeability tensor. On the
macro scale, a monolithic finite element formulation for the FSI problem with conforming elements
is derived. Numerical results and sensitivity studies demonstrating the influence of design variations
on the micro scale on the FSI solution are presented for woven filter structures.

Key words. 2D-3D-PDE coupling, fluid-structure interaction, dimension reduction, plate ho-
mogenization, Hermite elements, Bogner--Fox--Schmit elements

MSC codes. 35B27, 35J50, 47H05, 74B05, 74K10, 74K20

DOI. 10.1137/23M1627687

1. Introduction. This paper covers a numerical workflow for an effective 2D-3D
model for nonstationary Stokes flow, two-way coupled with a stiff elastic, perforated
and heterogeneous filter structure of both thickness and period \varepsilon . Here, stiff refers
to a certain contrast in the elastic properties of the structure to the fluid viscosity,
which is of order \varepsilon  - 3.

The mathematical model describes the flow-induced displacement of the structure
due to jump of fluid stresses across its interface. Such problems are, e.g., of interest
in medical modeling of fluid flow through or parallel to (biological) tissue (see, e.g.,
[43, 34, 16, 28]), as well as in filtration applications with woven and nonwoven filter
media (see, e.g., [27, 26, 44, 29]).

Especially in the latter application, state-of-the-art simulation methods typically
assume a rigid filter medium. Thereby information on changes of the filter's local
surface area and a resulting decreased flow resistance due to the flow-induced dis-
placement are neglected. This neglect may cause significant deviations between sim-
ulation results and experimental measurements, especially for flexural filters. Hence,
the incorporation of filter displacements into fluid-structure interaction (FSI) models
and efficient numerical approaches are of great interest.

Moreover, some of the presented methods are also applicable to the efficient mul-
tiscale simulation of textiles and textile-like materials outside of the FSI context.

The considered FSI problem has a multiscale character, with the length scales
of the filter structure being significantly smaller than the size of the fluid domain.
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COUPLING 2D PLATE AND 3D FLUID 1609

To enable efficient simulations without the need to resolve the microscopic structure
in the FSI system, a simultaneous homogenization and dimension reduction approach
is considered, replacing the filter by a homogeneous porous 2D plate on the macro
scale.

The rigorous asymptotic derivation was performed in [40, 18] for FSI with a
connected, permeable, and elastic structure, two-way coupled with Stokes flow. The
authors of both articles impose a linearized coupling condition at the fluid-structure in-
terface, namely the continuity of velocities as well as the continuity of normal stresses.
Both fluid and structure equations are formulated on fixed, time-independent domains,
thereby covering the case of small strains.

Exploiting the same tools as for periodic plates and shells (see, e.g., [39, 23, 25,
24, 38, 21]), the limit system is an immersed 2D plate coupled with 3D Stokes flow
in two simple bulk domains. The arising macroscopic model parameters are the three
fourth-order homogenized stiffness tensors attained from the same cell problems as in
the homogenization and dimension reduction of the elastic structure in [23] outside of
the FSI context. In [25] it was shown that these auxiliary cell problems for the linear
plate regime in fact coincide with the cell problems for the nonlinear von Karman
plate regime.

For the modeling of FSI with textile-like filters consisting of individual yarns,
the found cell problems were generalized in [30] to incorporate a linearized contact
condition of Robin type between individual yarns adopted from [39].

The derived coupling conditions for the macroscopic FSI problem are nonstan-
dard. The plate's vibration is proportional to the jump of fluid stresses across the
plate. The fluid velocity components tangential to the plate are vanishing, while the
fluid's velocity and the plate's velocity in normal direction coincide. On both micro
and macro scales, the system becomes one-way coupled in steady-state.

Unintuitively, in the macroscopic limit of both FSI systems [40, 18], the homoge-
nized structure is no longer permeable, such that in particular steady-state solutions
may no longer exist for commonly encountered simulation setups. For this reason,
a phenomenological extension with an interface flux term obeying Darcy's law was
proposed and analyzed in [30]. A new macroscopic model parameter, namely the
structure's second-order permeability tensor, is introduced. The entries of the perme-
ability tensor are attained from the cell problems of Darcy's law in the fluid part of
the periodic unit of the structure; see, e.g., [45].

In the steady-state, the Stokes-Stokes coupling in the proposed poroelastic model
resembles so-called Stokes-sieve problems, derived and analyzed, e.g., in [12, 1, 6]
and applied, e.g., to the simulation of blood flow through immersed stents in [16].
Moreover, in the nonstationary case, the model may be considered as a simplification
of the effective Biot--Kirchhoff-plate systems from [36, 32] and [37, 4], in which the
pore-pressure and velocity live in a thin, inflated 3D domain around the 2D plate.
Moreover, the authors would like to emphasize previous well-known and related works
on Neumann-sieve problems and effective models for the flow through porous layers,
such as [10, 2, 32, 35, 7, 33, 19].

The derived numerical approach for the FSI problem is split into two parts. In
the first part, the elasticity cell problems for the computation of the filter's stiffness
tensors are solved by the finite element (FE) method on the micro scale. Focusing
on textile-like filters consisting of slender yarns, a dimension reduction approach from
[20] is recalled, allowing the restriction of general elasticity problems on the filter
domain to 1D equations on the graph of the yarn centerlines. Utilizing 1D beam
FE, the numerical results attained in [39] for the homogenized extensional stiffness
tensor are extended to the computation of the homogenized coupling and bending

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

02
/2

1/
25

 to
 1

58
.1

29
.1

62
.1

94
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



1610 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

stiffness tensor. A sensitivity analysis for the influence of changing filter design pa-
rameters on the individual tensor entries is performed for a woven filter and the
plausibility of attained results is discussed also in regard to the fulfillment of derived
theoretical properties.

Furthermore, a numerical method for the computation of the permeability tensor
is presented that utilizes a preimplemented microscopic finite volume solver.

In the second phase, the macroscopic FSI system is solved with a monolithic FE
formulation, that is, fluid and structure equations are solved as a single system. Input
are the precomputed macroscopic tensors of the first phase. For the fluid variables,
a formulation with LBB stable FE is proposed. The immersed plate is treated as
an interior boundary with globally continuous velocity elements and discontinuous
pressure elements at the interface.

For the structure variables, conforming FE are employed. To ensure the H2-
conformity of the plate's deflection, the classical Bogner--Fox--Schmit (BFS) elements
[5] are chosen. A similar ansatz was recently formulated in [15] for the interpolation
and extension of the displacement of 1D lattice structures to 2D domains if the infor-
mation on the mixed second-order derivatives is missing. Numerical examples with
woven filters are presented and discussed.

2. Model description.

2.1. Multiscale problem. The first section covers a brief summary of the mi-
croscopic FSI problem considered in [18, 30], where the emphasis is on the description
of the microscopic textile-like filter structure. The interested reader is referred to the
cited articles for further details.

The nonstationary Stokes flow through a channel is considered. The latter is
separated in half along the x3-direction by a thin, flexural, textile-like filter, which
is fixed at its outer edges. The filter itself is of a deterministic nature and possesses
a small period \varepsilon in the in-plane direction \=x = (x1, x2), while its thickness in the x3-
direction is of the same order as \varepsilon . Here and in the following, the x3-direction is
referred to as the normal direction.

With these assumptions, the filter domain can be most efficiently described by
the periodic repetition of a reference cell Y s

\varepsilon = \varepsilon Y s \subset \BbbR 3 in the in-plane direction. The
set Y s

\varepsilon is contained within a reference cell \varepsilon Y , where Y = (0,1)2 \times ( - 1
2 ,

1
2 ) is referred

to as the unit cell. The spatial variable in the reference and unit cell is denoted by y,
respectively.

It is assumed that Y s
\varepsilon is the disjoint union of finitely many Lipschitz domains,

such that the interior of the closure of Y s
\varepsilon is a connected set. Here, each Lipschitz

domain is representing an individual yarn. The union of shared boundaries of the
Lipschitz domains is denoted by Sc

Y,\varepsilon = \varepsilon Sc
Y . It represents the contact surfaces between

individual yarns. Furthermore, the complement Y f
\varepsilon = \varepsilon Y f with Y f = Y\varepsilon \setminus Y s

\varepsilon is
assumed to be a connected Lipschitz domain. It is occupied with viscous fluid in
the microscopic FSI model. An illustration of the introduced domains is provided in
Figure 1.

By finite periodic repetition of Y s
\varepsilon , one attains a microscopic structure domain,

denoted by \Omega M,s
\varepsilon , which is fully contained within a membrane domain

\Omega M
\varepsilon = (0,L1)\times (0,L2)\times 

\Bigl( 
 - \varepsilon 

2
,
\varepsilon 

2

\Bigr) 
.

The spatial variable in \Omega M
\varepsilon is denoted by x.
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COUPLING 2D PLATE AND 3D FLUID 1611

Fig. 1. Example of a reference cell for a twill woven filter.

The contact surfaces, attained by periodic repetition of Sc
Y,\varepsilon , are denoted by Sc

\varepsilon .
Furthermore, it is assumed that the filter is fixed at its outer edges, given by the set

\partial fix\Omega M,s
\varepsilon = \partial \Omega M

\varepsilon \cap \partial \Omega M,s
\varepsilon ,

assumed to be of nonzero measure and disjoint from the planes \{ x3 = \pm \varepsilon 
2\} . The

remaining boundary of \Omega M,s
\varepsilon is given by

\partial fs\Omega M,s
\varepsilon = \partial \Omega M,s

\varepsilon \setminus (\partial fix\Omega M,s
\varepsilon \cup Sc

\varepsilon ).

The microscopic displacement \bfitu \varepsilon : (0, T ) \times \Omega M,s
\varepsilon \rightarrow \BbbR 3 of the filter structure is

governed by linear elasticity with Robin-type contact conditions; see [39, 30]. The
governing system reads

\rho s\partial tt\bfitu \varepsilon  - \nabla \cdot (\bfitA \varepsilon D(\bfitu \varepsilon )) = \bfitg \varepsilon in (0, T )\times \Omega M,s
\varepsilon ,

\bfitu \varepsilon = 0 on (0, T )\times \partial fix\Omega M,s
\varepsilon ,

J\bfitA \varepsilon D(\bfitu \varepsilon )K\bfiteta = 0 on (0, T )\times Sc
\varepsilon ,

(\bfitA \varepsilon D(\bfitu \varepsilon ))\bfiteta =
1

\varepsilon 
\bfitR \varepsilon J\bfitu \varepsilon K on (0, T )\times Sc

\varepsilon 

(2.1)

with solid density \rho s and initial conditions \bfitu \varepsilon (0) = 0, \partial t\bfitu \varepsilon (0) = 0.
Here, D(\bfitu ) = 1

2 (\nabla \bfitu + (\nabla \bfitu )T ) denotes the symmetric gradient, \bfitA \varepsilon = \bfitA (x/\varepsilon )
with \bfitA \in L\infty 

\# (Y s)3\times 3\times 3\times 3 denotes the fourth-order material stiffness tensor, and
\bfitR \varepsilon = \bfitR (x/\varepsilon ) with \bfitR \in L\infty 

\# (Sc
\varepsilon )

3\times 3 is a Robin matrix modeling contacts between
individual yarns.

The term

J\bfitu \varepsilon K(x) = lim
\lambda \downarrow 0

(\bfitu \varepsilon (x+ \lambda \bfiteta ) - \bfitu \varepsilon (x - \lambda \bfiteta )) , x\in Sc
\varepsilon ,

for an arbitrary but fixed normal vector \bfiteta on the interior boundary Sc
\varepsilon is the jump

of displacements. Hence, in the case of glued yarns, that is, \bfitR \varepsilon \rightarrow \infty , problem (2.1)
coincides with a classical elasticity problem on a single connected domain.
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1612 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

In (2.1) and the following, the product between a fourth-order tensor \bfitA \in 
\BbbR n\times n\times n\times n and a square matrix \bfitB \in \BbbR n\times n is written as

\bfitA \bfitB =

\left(  n\sum 
k,l=1

aijklbkl

\right)  n

i,j=1

\in \BbbR n\times n.

In the microscopic setting, the membrane domain \Omega M
\varepsilon is extended by the two

bulk domains

(0,L1)\times (0,L2)\times 
\Bigl( 
 - L3  - 

\varepsilon 

2
, - \varepsilon 

2

\Bigr) 
,

(0,L1)\times (0,L2)\times 
\Bigl( \varepsilon 
2
,L3 +

\varepsilon 

2

\Bigr) 
,

in which the standard nonstationary Stokes flow is described. At the fluid-structure
interface \partial fs\Omega M,s

\varepsilon , linearized coupling conditions are prescribed, that is, continuity of
velocity and continuity of normal stresses; see [18, 30].

The following main assumptions on the stiffness tensor are standard for the mod-
eling with linear elasticity. They are required for the existence and uniqueness of a
weak solution to the microscopic problem under appropriate regularity of the initial
conditions and the right-hand sides; see [30] for a proof. Here and in what follows,
\bfitA :\bfitB denotes the standard Frobenius inner product between two square matrices.

Assumption 2.1. The tensor \bfitA = (aijkl)
3
i,j,k,l=1 is symmetric, i.e., aijkl = ajikl =

aklij almost everywhere in Y s, and coercive on the space of symmetric matrices, i.e.,
there exists a constant c > 0 such that for all symmetric matrices \bfitP \in \BbbR 3\times 3 one has
(\bfitA \bfitP ) :\bfitP \geq c(\bfitP :\bfitP ).

Furthermore, the Robin condition matrix \bfitR is symmetric and positive definite
almost everywhere.

Example 2.2. As an example, the contact condition can be modeled by the matrix

\bfitR = \bfiteta \otimes \bfiteta + \gamma friction(\bfitI  - \bfiteta \otimes \bfiteta )

with the normal vector \bfiteta , where \gamma friction > 0 is a penalization friction parameter for
jumps of tangential displacements.

2.2. Macroscopic model description. Based on the rigorously derived macro-
scopic FSI problems from [40, 18] by considering the scale limit \varepsilon \rightarrow 0 with simul-
taneous homogenization and dimension reduction, an extended, phenomenological
macroscopic model for the considered FSI problem was proposed and analyzed in
[30]. The extension comprises the inclusion of the linearized contact conditions be-
tween yarns from the previous section and an additional flow resistance term in the
macroscopic FSI setting. Note that a rigorous derivation of the permeable interface
condition by asymptotic methods is still ongoing research.

In the proposed macroscopic model, nonstationary Stokes flow is prescribed in
two disjoint fluid domains,

\Omega  - = (0,L1)\times (0,L2)\times ( - L3,0),

\Omega + = (0,L1)\times (0,L2)\times (0,L3),

that is

\rho f\partial t\bfitv 
\pm  - 2\mu \nabla \cdot D(\bfitv \pm ) +\nabla p\pm = \bfitf \pm in (0, T )\times \Omega \pm ,

\nabla \cdot \bfitv \pm = 0 in (0, T )\times \Omega \pm (2.2)
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COUPLING 2D PLATE AND 3D FLUID 1613

with fluid density \rho f , dynamic viscosity \mu , and some volume force density \bfitf \pm . More-
over, the entire model domain is denoted by

\Omega = (0,L1)\times (0,L2)\times ( - L3,L3).

The Stokes equations (2.2) are accompanied by Dirichlet and zero-stress boundary
conditions on the bottom, top, and lateral boundaries,

\partial in\Omega = (0,L1)\times (0,L2)\times \{  - L3\} ,
\partial out\Omega = (0,L1)\times (0,L2)\times \{ L3\} ,

\partial no-slip\Omega = \partial \Omega \setminus (\partial in\Omega \cup \partial out\Omega ).

The boundary conditions of choice read

\bfitv  - = 0 on (0, T )\times \partial in\Omega ,

(2\mu D(\bfitv +) - p\bfitI )\bfite 3 = 0 on (0, T )\times \partial out\Omega ,

\bfitv \pm = 0 on (0, T )\times \partial no-slip\Omega ,

(2.3)

where \bfitI is the 3 \times 3 unit matrix and \bfite i denotes the ith unit vector. The inflow
condition is chosen as zero for simplicity; otherwise additional regularity and extension
properties of the inflow condition are required that enable the lifting of the respective
solution space.

The two fluid domains are separated by the interior boundary

\Sigma = (0,L1)\times (0,L2)\times \{ 0\} ,

on which the fluid velocity is assumed to be continuous, that is, \bfitv  - | \Sigma = \bfitv +| \Sigma . The
in-plane variable on \Sigma is denoted by \=x= (x1, x2).

The interface represents the mean-plane of the filter structure, whose in-plane
displacement \=\bfitu and outer-plane deflection u3 are governed by the Kirchhoff plate
equations

 - \nabla \=x \cdot (\bfitA homD\=x(\=\bfitu ) +\bfitB hom\nabla 2
\=xu3) = 0 on (0, T )\times \Sigma ,

\^\rho s\partial ttu3+\nabla 2
\=x : (\bfitB 

homD\=x(\=\bfitu ) +\bfitC hom\nabla 2
\=xu3) = J2\mu D(\bfitv ) - p\bfitI K\bfite 3 \cdot \bfite 3 + g3 on (0, T )\times \Sigma 

(2.4)

with clamped boundary conditions

\=\bfitu = 0 on (0, T )\times \partial \Sigma ,

u3 =\nabla \=xu3 \cdot \bfiteta = 0 on (0, T )\times \partial \Sigma .
(2.5)

Here, the expression

J2\mu D(\bfitv ) - p\bfitI K= (2\mu D(\bfitv +) - p+\bfitI )| \Sigma  - (2\mu D(\bfitv  - ) - p - \bfitI )| \Sigma 

denotes the jump of fluid stresses. The operators \nabla \=x,D\=x,\nabla 2
\=x are the respective dif-

ferential operators with respect to the in-plane variables and g3 is some surface force
density.
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1614 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Furthermore, the entries of the homogenized fourth-order stiffness tensors \bfitA hom,
\bfitB hom,\bfitC hom \in \BbbR 2\times 2\times 2\times 2 are attained by averaging of elasticity cell solutions \bfitchi M

ij and
\bfitchi B

ij , i, j = 1,2, reading

ahomijkl =
1

| Y s| 

\Bigl[ \Bigl( 
\bfitA 

\bigl( 
D(\bfitchi M

ij ) +\bfitM ij
\bigr) 
,D(\bfitchi M

kl ) +\bfitM kl
\Bigr) 
Y s

+
\bigl( 
\bfitR J\bfitchi M

ij K, J\bfitchi M
kl K

\bigr) 
Sc

\Bigr] 
,

bhomijkl =
1

| Y s| 

\Bigl[ \Bigl( 
\bfitA 

\bigl( 
D(\bfitchi B

ij) - y3\bfitM 
ij
\bigr) 
,D(\bfitchi M

kl ) +\bfitM kl
\Bigr) 
Y s

+
\bigl( 
\bfitR J\bfitchi B

ijK, J\bfitchi 
M
kl K

\bigr) 
Sc

\Bigr] 
,

chomijkl =
1

| Y s| 

\Bigl[ \Bigl( 
\bfitA 

\bigl( 
D(\bfitchi B

ij) - y3\bfitM 
ij
\bigr) 
,D(\bfitchi B

kl) - y3\bfitM 
kl
\Bigr) 
Y s

+
\bigl( 
\bfitR J\bfitchi B

ijK, J\bfitchi 
B
klK

\bigr) 
Sc

\Bigr] 

(2.6)

for i, j, k, l \in \{ 1,2\} and \bfitM ij = 1
2 (\bfite i \otimes \bfite j + \bfite j \otimes \bfite i)\in \BbbR 3\times 3.

The cell solutions solve so-called membrane and bending cell problems. In varia-
tional formulation, these are to find \bfitchi M,B

ij \in H1
\#,0(Y

s)3 such that\bigl( 
\bfitA 

\bigl( 
D(\bfitchi M

ij ) +\bfitM ij
\bigr) 
,D(\bfitX )

\bigr) 
Y s +

\bigl( 
\bfitR J\bfitchi M

ij K, J\bfitX K
\bigr) 
Sc = 0,\bigl( 

\bfitA 
\bigl( 
D(\bfitchi B

ij) - y3\bfitM 
ij
\bigr) 
,D(\bfitX )

\bigr) 
Y s +

\bigl( 
\bfitR J\bfitchi B

ijK, J\bfitX K
\bigr) 
Sc = 0

(2.7)

for all \bfitX \in H1
\#,0(Y

s)3. Here, H1
\#,0(Y

s) is the broken Sobolev space of Y -periodic
functions, that is, functions whose restrictions to the individual Lipschitz domains,
that Y s is comprised of, are elements of the usual Sobolev space, and which are addi-
tionally 1-periodic in the in-plane direction, with vanishing mean-value in Y s. Since
\bfitM ij =\bfitM ji, one can verify that there are a total of six independent cell problems.

The tensors\bfitA hom,\bfitB hom,\bfitC hom are commonly referred to as extensional, coupling,
and bending stiffness tensors. Formally speaking, the entries of \bfitA hom determine the
resistance of the structure to in-plane loads, such as applied tension and shearing,
while the entries of \bfitC hom describe the resistance to bending and torsional loads.
Additional coupling between in-plane strain and outer-plane bending is introduced
by the entries of \bfitB hom.

Last, the macroscopic model parameter

\^\rho s =
\delta 

| Y\varepsilon | 

\int 
Y s
\varepsilon 

\rho s dy

is the averaged solid density \rho s, with \delta denoting the characteristic thickness of the
structure.

As an additional coupling condition between fluid equations (2.2) and structure
equations (2.4), flow-resistivity is modeled by a Darcy interface term

\mu \delta \bfitK  - 1(\bfitv +  - \partial tu3\bfite 3) = J2\mu D(\bfitv ) - p\bfitI K\bfite 3 on (0, T )\times \Sigma (2.8)

with resistivity tensor \bfitK  - 1 \in \BbbR 3\times 3, chosen as the inverse of the permeability tensor
\bfitK . The entries of \bfitK are given by

kij =
1

| Y f | 
(\nabla \bfitomega i,\nabla \bfitomega j)Y f ,(2.9)

where \bfitomega i, i \in \{ 1,2,3\} , are a solution to the Darcy fluid cell problems. In variational
formulation, these are to find

\bfitomega i \in H1
per,div(Y

f ) = \{ \bfitW \in H1(Y f )3 :\bfitW is periodic,\nabla \cdot \bfitW = 0,\bfitW = 0 on \partial Y s\} 
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COUPLING 2D PLATE AND 3D FLUID 1615

such that

(\nabla \bfitomega i,\nabla \bfitW )Y f = (\bfite i,\bfitW )Y f(2.10)

for all \bfitW \in H1
per,div(Y

f ); see, e.g., Chapter 7 of [45]. For the extreme case \bfitK \rightarrow 0, the
interface \Sigma becomes impermeable and the normal fluid velocity component coincides
with the normal velocity of the plate. The tangential fluid velocity components vanish.
One attains the FSI model derived in [18]. For the other case \bfitK \rightarrow \infty , the interface
is no longer seen by the fluid and the jump of fluid stresses vanishes. One attains
regular Stokes flow in the entire domain \Omega .

For easier notation, the variable \^\bfitK = \mu  - 1\delta  - 1\bfitK is introduced.
Summarizing, the macroscopic FSI problem reads

\rho f\partial t\bfitv 
\pm  - 2\mu \nabla \cdot D(\bfitv \pm ) +\nabla p\pm = \bfitf \pm in (0, T )\times \Omega \pm ,

\nabla \cdot \bfitv \pm = 0 in (0, T )\times \Omega \pm ,

\bfitv  - = 0 on (0, T )\times \partial in\Omega ,

(2\mu D(\bfitv +) - p\bfitI )\bfite 3 = 0 on (0, T )\times \partial out\Omega ,

\bfitv \pm = 0 on (0, T )\times \partial no-slip\Omega ,

\bfitv  - = \bfitv + on (0, T )\times \Sigma ,

 - \nabla \=x \cdot (\bfitA homD\=x(\=\bfitu ) +\bfitB hom\nabla 2
\=xu3) = 0 on (0, T )\times \Sigma ,

\^\rho s\partial ttu3 +\nabla 2
\=x : (\bfitB 

homD\=x(\=\bfitu ) +\bfitC hom\nabla 2
\=xu3)

= J2\mu D(\bfitv ) - p\bfitI K\bfite 3 \cdot \bfite 3 + g3 on (0, T )\times \Sigma ,

\^\bfitK 
 - 1

(\bfitv +  - \partial tu3\bfite 3) = J2\mu D(\bfitv ) - p\bfitI K\bfite 3 on (0, T )\times \Sigma ,

\=\bfitu = 0 on (0, T )\times \partial \Sigma ,

u3 =\nabla \=xu3 \cdot \bfiteta = 0 on (0, T )\times \partial \Sigma ,

(2.11)

accompanied with the initial conditions \bfitv \pm (0) = 0, u3(0) = \partial tu3(0) = 0.
The steady-state formulation of system (2.11) consists of the Stokes-Stokes cou-

pling

 - 2\mu \nabla \cdot D(\bfitv \pm ) +\nabla p\pm = \bfitf \pm in \Omega \pm ,

\nabla \cdot \bfitv \pm = 0 in \Omega \pm ,

\bfitv  - = \bfitv in on \partial in\Omega ,

(2\mu D(\bfitv +) - p\bfitI )\bfite 3 = 0 on \partial out\Omega ,

\bfitv \pm = 0 on \partial no-slip\Omega ,

\bfitv  - = \bfitv + on \Sigma ,

\^\bfitK 
 - 1

\bfitv + = J2\mu D(\bfitv ) - p\bfitI K\bfite 3 on \Sigma ,

(2.12)

one-way coupled to the Kirchhoff plate

 - \nabla \=x \cdot (\bfitA homD\=x(\=\bfitu ) +\bfitB hom\nabla 2
\=xu3) = 0 on \Sigma ,

\nabla 2
\=x : (\bfitB 

homD\=x(\=\bfitu ) +\bfitC hom\nabla 2
\=xu3) = J2\mu D(\bfitv ) - p\bfitI K\bfite 3 \cdot \bfite 3 + g3 on \Sigma ,

\=\bfitu = 0 on \partial \Sigma ,

u3 =\nabla \=xu3 \cdot \bfiteta = 0 on \partial \Sigma .

(2.13)

The Stokes-Stokes coupling (2.12) is actually reminiscent of the system presented in
[16] for the modeling of immersed, rigid stents in blood flow. The cited model is based
on classical Stokes-sieve problems analyzed, e.g., in [12].
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1616 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

For completeness, some fundamental results are recalled from the literature, that
suffice for the well-posedness of the system; see [30] and references therein. The
discussion starts with the homogenized structure.

Lemma 2.3. For each i, j \in \{ 1,2\} , there exists a unique cell solution \bfitchi M,B
ij \in 

H1
\#,0(Y

s)3 to the cell problems (2.7), respectively.

As a consequence, one can verify the following lemma; see also Theorem 2 in [23].

Lemma 2.4. The homogenized stiffness tensors given by the expressions (2.6) are
well-defined. The induced bilinear form

ahom((\=\bfitu , u3), ( \=\bfitU ,U3)) = (\bfitA homD\=x(\=\bfitu ),D\=x( \=\bfitU ))\Sigma + (\bfitB homD\=x(\=\bfitu ),\nabla 2
\=xU3)\Sigma 

+ (\bfitB hom\nabla 2
\=xu3,D\=x( \=\bfitU ))\Sigma + (\bfitC hom\nabla 2

\=xu3,\nabla 2
\=xU3)\Sigma 

is continuous and bounded on H1
0 (\Sigma )

2 \times H2
0 (\Sigma ). The induced norm

\| (\=\bfitu , u3)\| 2hom = ahom((\=\bfitu , u3), (\=\bfitu , u3))

is equivalent to the standard norm on H1
0 (\Sigma )

2\times H2
0 (\Sigma ). The tensors \bfitA hom and \bfitC hom

share the same symmetry properties as \bfitA and are coercive on the space of symmetric
matrices.

Additionally, one can find the proof of the following statement on the permeability
tensor, e.g., in Chapter 7 of [45].

Proposition 2.5. For each i \in \{ 1,2,3\} , the fluid cell problems (2.10) have a
unique solution \bfitomega i \in H1

per,div(Y
f ). The expressions (2.9) are well-defined and the

resulting permeability tensor \bfitK \in \BbbR 3\times 3 is symmetric and positive definite.

The statements are sufficient to verify the existence of solutions to the presented
FSI problem, e.g., by a standard Galerkin approach employing Rothe's method.
A detailed proof is given in [30] based on the framework from [37].

Proposition 2.6. Let \bfitf \pm \in L2((0, T ),L2(\Omega \pm )3), g3 \in L2((0, T ),L2(\Sigma )). Let fur-
ther the assumptions of Lemma 2.3 be satisfied. Then the system (2.11) has a unique
pressure-free solution (\bfitv , \=\bfitu , u3),\bfitv | \Omega \pm = \bfitv \pm with

\bfitv \in L2((0, T ),\scrV div)\cap L\infty ((0, T ),L2(\Omega  - \cup \Omega +)3),

\=\bfitu \in L2((0, T ),H1
0 (\Sigma )

2),

u3 \in L\infty ((0, T ),H2
0 (\Sigma )), with \partial tu3 \in L\infty ((0, T ),L2(\Sigma )),

where

\scrV div = \{ \bfitv \in \scrV :\nabla \cdot \bfitv = 0 in \Omega  - \cup \Omega +\} ,
\scrV = \{ \bfitv \in H1(\Omega  - \cup \Omega +)3 : \bfitv = 0 on \partial in\Omega \cup \partial no-slip\Omega \} .

One can additionally verify that the well-posedness of the FSI system is still
granted when one switches from constant stiffness and permeability tensors to the
natural choice of tensors with L\infty -regularity on \Sigma . For this purpose it is necessary
to assume that the coercivity and symmetry from Lemma 2.4 and Proposition 2.5
remain valid for the generalized tensors.

Last, by inspecting the plate equations (2.4), it is clear that \=\bfitu vanishes whenever
the coupling stiffness tensor \bfitB hom is zero. In fact, this latter condition is frequently
met under symmetry assumptions on the structure Y s and the model parameters \bfitA 
and \bfitR ; see Lemma 6.9 in [25]. Hence, the main displacement variable of interest is
the plate's deflection.
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COUPLING 2D PLATE AND 3D FLUID 1617

3. Numerical methods.

3.1. Computation of the homogenized stiffness tensors. In this section,
an overview on the numerical computation of the homogenized stiffness tensors \bfitA hom,
\bfitB hom, \bfitC hom is given. For the textile-like structures in mind, an efficient dimension
reduction approach with 1D beam FEs, generalized by the incorporation of contact
conditions, is presented in [39] for the computation of \bfitA hom. The extension to the
computation of \bfitB hom and \bfitC hom is presented here.

For implementation of the cell problems (2.7) with FEM, it proves to be beneficial
to introduce the perturbation functions \bfitS M,B

ij \in C\infty (Y )3 as

\bfitS M
11(y) =

\left(  y1
0
0

\right)  , \bfitS M
12(y) =

1

2

\left(  y2
y1
0

\right)  , \bfitS M
22(y) =

\left(  0
y2
0

\right)  ,

\bfitS B
11(y) =

1

2

\left(   - 2y1y3
0
y21

\right)  , \bfitS B
12(y) =

1

2

\left(   - y2y3
 - y1y3
y1y2

\right)  , \bfitS B
22(y) =

1

2

\left(  0
 - 2y2y3

y22

\right)  ,

(3.1)

which are chosen as analytical solutions of the differential equations

D(\bfitS M
ij ) =\bfitM ij , D(\bfitS B

ij) = - y3\bfitM 
ij in Y s, J\bfitS M,B

ij K= 0 on Sc(3.2)

for i, j = 1,2. The choice of \bfitS M,B
ij with the stated properties is not uniquely deter-

mined but every function satisfying (3.2) is suitable for what follows.
By defining the perturbated cell solutions \bfitm M,B

ij =\bfitchi M,B
ij +\bfitS M,B

ij \in H1(Y s)3, one
attains the equivalent cell problem formulations\Bigl( 

\bfitA D(\bfitm M,B
ij ),D(\bfitX )

\Bigr) 
Y s

+
\Bigl( 
\bfitR J\bfitm M,B

ij K, J\bfitX K
\Bigr) 
Sc

= 0(3.3)

for all \bfitX \in H1
\#(Y

s)3, with the perturbated periodicity condition that \bfitm M,B
ij  - \bfitS M,B

ij

are Y -periodic. The solution of the above formulation is unique up to an additive
constant, since the vanishing mean value in the solution space is dropped. It is
intuitive to interpret the perturbated cell solutions as actual displacement fields on
Y s.

The computation of the homogenized tensor entries (2.6) with the perturbated
cell solutions in the continuous setting becomes

ahomijkl =
1

| Y s| 

\Bigl[ \bigl( 
\bfitA D(\bfitm M

ij ),D(\bfitm M
kl )

\bigr) 
Y s +

\bigl( 
\bfitR J\bfitm M

ij K, J\bfitm M
kl K

\bigr) 
Sc

\Bigr] 
,

bhomijkl =
1

| Y s| 

\Bigl[ \bigl( 
\bfitA D(\bfitm B

ij),D(\bfitm M
kl )

\bigr) 
Y s +

\bigl( 
\bfitR J\bfitm B

ijK, J\bfitm 
M
kl K

\bigr) 
Sc

\Bigr] 
,

chomijkl =
1

| Y s| 

\Bigl[ \bigl( 
\bfitA D(\bfitm B

ij),D(\bfitm B
kl)

\bigr) 
Y s +

\bigl( 
\bfitR J\bfitm B

ijK, J\bfitm 
B
klK

\bigr) 
Sc

\Bigr] 
.

(3.4)

As can be seen, the uniqueness of \bfitm M,B
ij up to an additive constant is sufficient in

(3.4), since the functions only appear in gradient and jump terms.
For completeness, sufficient conditions for a vanishing coupling stiffness tensor

are recalled from Lemma 6.9 in [25]. In [3], the same proof strategy was used to
prove orthotropy, transversal symmetry, and isotropy for 3D periodic and symmetric
elastic structures. The stated conditions are met for typical woven filters made out
of a homogeneous, isotropic material.
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1618 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 2. Illustration of the structure domain \Omega M,s
\varepsilon (left), solid part of unit cell Y s (center), and

quarter of the unit cell \~Y s (right) for a plain woven filter.

Proposition 3.1. Let Y s be symmetric w.r.t. the planes \{ y1 = 1
2\} and \{ y2 = 1

2\} 
in the sense that the transformations

T1 : Y
s \rightarrow Y s, y \mapsto \rightarrow (1 - y1)\bfite 1 + y2\bfite 2 + y3\bfite 3,

T2 : Y
s \rightarrow Y s, y \mapsto \rightarrow y1\bfite 1 + (1 - y2)\bfite 2 + y3\bfite 3

are well-defined.
Let \~Y s denote the restriction of Y s to a quarter of the unit cell (0, 12 )

2\times ( - 1
2 ,

1
2 ).

Assume that \~Y s is rotational-symmetric w.r.t. the diagonal axis \{ y1 = y2, y3 = 0\} and
\{ y1 = y2 =

1
4\} in the sense that the transformations

T3 : \~Y s \rightarrow \~Y s, y \mapsto \rightarrow y2\bfite 1 + y1\bfite 2  - y3\bfite 3,

T4 : \~Y s \rightarrow \~Y s, y \mapsto \rightarrow 
\biggl( 
1

2
 - y2

\biggr) 
\bfite 1 + y1\bfite 2 + y3\bfite 3

are well-defined.
Then one has \bfitB hom = 0, as well as the additional symmetry

ahom1111 = ahom2222, chom1111 = chom2222.

Example 3.2. As the most frequently encountered example in filtration, a plain
woven filter is considered. The domains of Proposition 3.1 are illustrated in Figure 2.

For the discrete formulation with 1D beam elements, it is assumed that each
Lipschitz domain \Omega in Y s can be described as a curved rod of length L with constant
cross-section of characteristic size r > 0. That is, there exists a smooth curve

\bfitgamma : [0,L]\rightarrow \BbbR 3, s1 \mapsto \rightarrow \bfitgamma (s1),

\int L

0

| \bfitgamma \prime (s1)| ds1 =L

parameterized by its arc-length with well-defined Frenet--Serret frame

\bfitt (s1) = \bfitgamma \prime (s1), \bfitn (s1) =
\bfitt \prime (s1)

| \bfitt \prime (s1)| 
, \bfitb (s1) = \bfitt (s1)\times \bfitn (s1)

such that

\Omega = \{ \Phi (s) = \bfitgamma (s1) + s2\bfitn (s1) + s3\bfitb (s1) : s= (s1, s2, s3)\in (0,L)\times \omega r\} ,

where \omega r = r\omega \subset \BbbR 2 is a Lipschitz domain centered around 0.
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COUPLING 2D PLATE AND 3D FLUID 1619

Under the above assumption, the dimension reduction approach from section 3
of [20] allows the restriction of displacement fields on \Omega to a so-called elementary
displacement along the curve \bfitgamma , i.e., the centerline of the yarn.

Definition 3.3. Let \bfitu \in L1(\Omega )3 be given, which (with slight abuse of notation)
is interpreted as a function of s = (s1, s2, s3) \in (0,L)\times \omega r by considering \bfitu \circ \Phi . Its
elementary displacement is defined as

\bfitu e(s) =\bfitU (s1) +\bfitR (s1)\times (s2\bfitn (s1) + s3\bfitb (s1)),(3.5)

where

\bfitU (s1) =
1

r2| \omega | 

\int 
\omega r

\bfitu (s1, s2, s3) d(s2, s3),

\bfitR (s1) \cdot \bfitt (s1) =
1

(I2 + I3)r4

\int 
\omega r

((s2\bfitn (s1) + s3\bfitb (s1))\times \bfitu (s)) \cdot \bfitt (s1) d(s2, s3),

\bfitR (s1) \cdot \bfitn (s1) =
1

I3r4

\int 
\omega r

((s2\bfitn (s1) + s3\bfitb (s1))\times \bfitu (s)) \cdot \bfitn (s1) d(s2, s3),

\bfitR (s1) \cdot \bfitb (s1) =
1

I2r4

\int 
\omega r

((s2\bfitn (s1) + s3\bfitb (s1))\times \bfitu (s)) \cdot \bfitb (s1) d(s2, s3)

(3.6)

and Ik =
\int 
\omega 
sk d(s2, s3), k= 2,3, are moments of area.

Here, \bfita \times \bfitb denotes the standard cross-product in \BbbR 3. The representation (3.5)
can be understood as a displacement of the yarn centerline with an additional rotation
of the yarn cross-section along the centerline. The remainder term

\bfitu w =\bfitu  - \bfitu e

is commonly referred to as the warping term and can be interpreted as the deformation
of the cross-section. In practical application, it is assumed to be small in comparison
to the elementary displacement for slender structures. In fact, one has the following
a priori estimate from Theorem 3.1 in [20].

Proposition 3.4. Let \bfitu \in H1(\Omega )3 and let \bfitu e,\bfitu w denote its elementary displace-
ment and the corresponding warping term, respectively. There exists r > 0, solely
dependent on \omega and \bfitgamma , such that there exist a uniform constant c > 0 with

\| \nabla \bfitu w\| L2(\Omega ) \leq c\| D(\bfitu )\| L2(\Omega ),

\| \bfitu w\| L2(\Omega ) \leq cr\| D(\bfitu )\| L2(\Omega ),

r\| \bfitR \prime \| L2((0,L)) + \| \bfitU \prime  - \bfitR \times \bfitt \| L2((0,L)) \leq 
c

r
\| D(\bfitu )\| L2(\Omega )

for all r < r. Here, \bfitR \prime ,\bfitU \prime denote the first-order derivatives with respect to s1.

By discretizing each yarn centerline \bfitgamma by a finite sequence of piecewise linear
segments, one attains a 1D frame structure with a sequence of nodes denoted by
(\bfitn 1, . . . ,\bfitn m). The frame structure serves as a 1D FE mesh with the associated
nodal DOF corresponding to the three centerline displacements \bfitU and the three
rotations \bfitR from (3.6), respectively. The interpolation method of choice is stan-
dard 1D beam elements in 3D space with 12 DOF per element; see, e.g., Chapter 5
of [31].

The method is extended in [39] by the introduction of contact node pairs (\bfitn i,\bfitn j)
in between two yarns, serving as an approximation of the Robin-type interface condi-
tion. For an extensive discussion of the assembly of the stiffness matrix and numerical
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1620 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 3. Perturbated cell solutions \bfitm M
11 ,\bfitm 

B
11 (top) and \bfitm M

12 ,\bfitm 
B
12 (bottom) interpreted as dis-

placement fields of a twill woven filter. Colors indicate local stresses.

analysis of the method for general linear elasticity problems, the reader is referred to
[39].

For the incorporation of the perturbated Y -periodic boundary conditions, an
augmented master-slave approach is employed. It requires the evaluation of the FE
interpolation of the perturbation functions \bfitS M,B

ij in each periodic node pair (\bfitn 1,\bfitn 2)
on the lateral boundaries of Y s, respectively.

The resulting numerical solving routine of the cell problems and the computation
of the stiffness tensor entries is implemented in the FiberFEM solver of the textile
simulation software TexMath [17].

Example 3.5. As commonly encountered examples in real-world filtration appli-
cation, the perturbated cell solutions for a twill woven filter are presented in Fig-
ure 3. The remaining two solutions are given by rotational symmetry of the filter.
For illustration purposes, the periodic unit was repeated five times in each in-plane
direction.

3.2. Computation of the permeability tensor. The computation of the per-
meability tensor \bfitK is performed by standard means, utilizing a voxel discretization of
the filter structure attained from TexMath. The common approach is actually not to
solve the provided cell problems (2.10), but to perform an approximation procedure
based on Darcy's law. The computational effort for both approaches is expected to
be comparable.

The methodology starts by performing three (stationary) Stokes flow simulations
in a fully resolved reference cell with a prescribed constant pressure drop JpiK\in \BbbR , i=
1,2,3, along the main axes, respectively. For the remaining boundaries, periodic
boundary conditions are applied.

In a next step, from the attained solutions (\bfitv i, pi), the average velocities \^\bfitv i \in 
\BbbR 3, i = 1,2,3, are computed. Afterward, by approximating the pressure gradient by
the finite difference

\nabla pi \approx 
JpiK
Li

\bfite i \in \BbbR 3
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COUPLING 2D PLATE AND 3D FLUID 1621

Fig. 4. Flow solutions (\bfitv 2, p2) (top) and (\bfitv 3, p3) (bottom) for a twill woven filter. The remain-
ing flow solution is of a similar nature due to symmetry of the structure.

with Li denoting the respective physical length of the structure in the xi-direction,
one can approximate \bfitK by the solution of the system of linear equations

\^\bfitv i = - JpiK
Li\mu 

\bfitK \bfite i, i= 1,2,3,

under the assumption that Darcy's law applies. In the considered case, L3 = \delta is
the characteristic thickness of the filter and the remaining lengths are given by the
period \varepsilon .

By linearity, the computed tensor \bfitK is independent of the choice of JpiK, as well
as \mu . Exemplary flow solutions (\bfitv i, pi) for a twill woven filter with JpiK = 1 Pa and
\mu = 1\times 10 - 3Pa s are presented in Figure 4. They are attained utilizing the LIR-Stokes
solver of the software GeoDict.

3.3. Monolithic FSI solver. The numerical method to solve the FSI system
(2.11) consists of two phases. In the first phase, the macroscopic model parameters
\bfitA hom,\bfitB hom,\bfitC hom, as well as \bfitK , are computed utilizing the microscopic routines
from the previous two sections. Afterward, a monolithic FE discretization of (2.11) is
employed, that is, fluid and structure equations are solved as a single discrete system.

For the derivation of the FE system, the auxiliary variable w3 = \partial tu3 for the plate's
normal velocity is introduced. Furthermore, the required space-variable-dependent
function space is denoted by

\scrY = \scrV \times L2(\Omega  - \cup \Omega +)\times H0(\Sigma )
2 \times H2

0 (\Sigma )\times L2(\Sigma ).

With this notation, Rothe's method is employed for the semidiscretization of system
(2.11) in time. For this purpose, let [\Delta tn+1] = tn+1  - tn with discrete time steps
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1622 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

0 = t0 < t1 < \cdot \cdot \cdot < tN = T for some N \geq 1. The approximation of partial derivatives
in time is performed via backward difference quotients

\partial tu(t
n+1)\approx un+1  - un

[\Delta tn+1]

for purely space-dependent functions \bfity n = (\bfitv n, pn, \=\bfitu n, un
3 ,w

n
3 ) \in \scrY , approximating

the solution at time tn. For n= 0, the approximation is given by the initial data.
For the right-hand-side functions, the semidiscretization in time reads

\bfitf n+1 =
1

[\Delta tn+1]

\int tn+1

tn
\bfitf (\tau ) d\tau , gn+1

3 =
1

[\Delta tn+1]

\int tn+1

tn
g3(\tau ) d\tau .

Standard procedure delivers the variational formulation. For step n + 1, the
semidiscretized formulation of system (2.11) is to find \bfity n+1 = (\bfitv n+1, pn+1, \=\bfitu n+1, un+1

3 ,
wn+1

3 )\in \scrY such that

\rho f
[\Delta tn+1]

(\bfitv n+1,\bfitV )\Omega  - \cup \Omega + + 2\mu (D(\bfitv n+1),D(\bfitV ))\Omega  - \cup \Omega +  - (pn+1,\nabla \cdot \bfitV )\Omega  - \cup \Omega +

+ ( \^\bfitK 
 - 1

\bfitv n+1,\bfitV )\Sigma  - 1

[\Delta tn+1]
( \^\bfitK 

 - 1
un+1
3 \bfite 3,\bfitV )\Sigma 

= (\bfitf n+1,\bfitV )\Omega  - \cup \Omega + +
\rho f

[\Delta tn+1]
(\bfitv n,\bfitV )\Omega  - \cup \Omega +  - 1

[\Delta tn+1]
( \^\bfitK 

 - 1
un
3\bfite 3,\bfitV )\Sigma ,

 - (\nabla \cdot \bfitv n+1, P )\Omega  - \cup \Omega + = 0,

\^\rho s
[\Delta tn+1]

(wn+1
3 ,U3)\Sigma + ahom((\=\bfitu n+1, un+1

3 ), ( \=\bfitU ,U3)) - ( \^\bfitK 
 - 1

\bfitv n+1,U3\bfite 3)\Sigma 

+
1

[\Delta tn+1]
( \^\bfitK 

 - 1
un+1
3 \bfite 3,U3\bfite 3)\Sigma 

= (gn+1
3 ,U3)\Sigma +

\^\rho s
[\Delta tn+1]

(wn
3 ,U3)\Sigma +

1

[\Delta tn+1]
( \^\bfitK 

 - 1
un
3\bfite 3,U3\bfite 3)\Sigma ,

\^\rho s(w
n+1
3 ,W3)\Sigma  - \^\rho s

[\Delta tn+1]
(un+1

3 ,W3)\Sigma = - \^\rho s
[\Delta tn+1]

(un
3 ,W3)\Sigma 

(3.7)

for all (\bfitV , P, \=\bfitU ,U3,W3)\in \scrY .
Utilizing Lemma 2.4 and Proposition 2.5, the well-posedness of (3.7) follows with

the classical LBB theorem.

Theorem 3.6. For all n= 0, . . . ,N - 1, the semidiscrete system (3.7) has a unique
solution \bfity n+1.

Proof. For easier notation, it is assumed that all arising scalar constants, apart
from [\Delta tn+1], are equal to 1. Furthermore, the superscript n+1 is omitted whenever
it is clear from context.

The proof is performed by induction. Let n be given. With the assumptions
above and after introducing the scaled test functions [\Delta t]\bfitV and [\Delta t]P , system (3.7)
can be abstracted to

a(\bfitphi ,\Phi ) + b(\Phi , p) =L[\Phi ],

b(\bfitphi , P ) = 0,
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COUPLING 2D PLATE AND 3D FLUID 1623

where \bfitphi = (\bfitv , \=\bfitu , u3,w3),\Phi = (\bfitV , \=\bfitU ,U3,W3), L is the bounded linear functional

L[\Phi ] = (\bfitf n+1,\bfitV )\Omega  - \cup \Omega + +
\rho f
[\Delta t]

(\bfitv n,\bfitV )\Omega  - \cup \Omega +  - 1

[\Delta t]
( \^\bfitK 

 - 1
un
3\bfite 3,\bfitV )\Sigma 

+ (gn+1
3 ,U3)\Sigma +

\^\rho s
[\Delta t]

(wn
3 ,U3)\Sigma +

1

[\Delta t]
( \^\bfitK 

 - 1
un
3\bfite 3,U3\bfite 3)\Sigma 

 - \^\rho s
[\Delta t]

(un
3 ,W3)\Sigma 

with solutions from previous time steps treated as given data, and

a(\bfitphi ,\Phi ) = (\bfitv ,\bfitV )\Omega  - \cup \Omega + + [\Delta t](D(\bfitv ),D(\bfitV ))\Omega  - \cup \Omega + + [\Delta t]( \^\bfitK 
 - 1

\bfitv ,\bfitV )\Sigma 

 - ( \^\bfitK 
 - 1

u3\bfite 3,\bfitV )\Sigma + [\Delta t] - 1(w3,U3)\Sigma + ahom((\=\bfitu , u3), ( \=\bfitU ,U3))

 - ( \^\bfitK 
 - 1

\bfitv ,U3\bfite 3)\Sigma + [\Delta t] - 1( \^\bfitK 
 - 1

u3\bfite 3,U3\bfite 3)\Sigma + (w3,W3)\Sigma 

 - [\Delta t] - 1(u3,W3)\Sigma ,

b(\bfitphi , P ) = - [\Delta t](\nabla \cdot \bfitv , P )\Omega  - \cup \Omega + .

Similar to classical Stokes theory, the coercivity of the bilinear form a can be en-
sured on the entirety of \scrV \times H1

0 (\Sigma )
2\times H2

0 (\Sigma )\times L2(\Sigma ) with Lemma 2.4 and Proposition
2.5, since

a(\bfitphi ,\bfitphi ) = \| \bfitv \| 2L2(\Omega  - \cup \Omega +) + [\Delta t]\| D(\bfitv )\| 2L2(\Omega  - \cup \Omega +)

+ \| \^\bfitK 
 - 1

2 ([\Delta t]
1
2 v3  - [\Delta t] - 

1
2u3\bfite 3)\| 2L2(\Sigma )

+ \| (\=\bfitu , u3)\| 2hom + \| w3\| 2L2(\Sigma ),

where \^\bfitK 
 - 1

2 denotes the unique square root of \^\bfitK 
 - 1

. In particular, a is coercive on
the kernel of b.

Again from classical Stokes theory, one can further deduce that independent of
the choice of (\=\bfitu , u3,w3), there exists a constant c > 0 such that for all p| \Omega \pm with p\in \scrP 
the LBB condition

sup
\bfitv \in \scrV 

\bfitv | \Omega \pm \not =0

(\nabla \cdot \bfitv | \Omega \pm , p| \Omega \pm )\Omega \pm 

\| \bfitv \| H1(\Omega \pm )
\geq c\| p\| L2(\Omega \pm )(3.8)

for each subdomain \Omega \pm is fulfilled. The statement then follows by inductive applica-
tion of the LBB theorem.

With the established existence of solutions in the semidiscrete setting, the sys-
tem (3.7) is further discretized with respect to the space variable. For this purpose,
conforming FE are chosen, i.e., one chooses finite dimensional approximation spaces

\scrV h \subset \scrV , \scrP h \subset L2(\Omega  - \cup \Omega +), \=\scrU h \subset H1
0 (\Sigma )

2, \scrU h
3 \subset H2

0 (\Sigma ), \scrW h
3 \subset L2(\Sigma )

and sets \scrY h = \scrV h \times \scrP h \times \=\scrU h \times \scrU h
3 \times \scrW h

3 . Here and in the following, h denotes a
characteristic element size for spatial decomposition of the computational domain \Omega .

In what follows, let

(\{ \bfitV h
k\} ,\{ Ph

k \} ,\{ \=\bfitU 
h
k\} ,\{ Uh

3 k\} ,\{ W
h
3 k\} )
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1624 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

form a basis of \scrY h and let further

\bfity n,h = (\bfitv n,h, pn,h, \=\bfitu n,h, un,h
3 ,wn,h

3 )T \in \scrY h

be an approximation of \bfity n \in \scrY . The semidiscrete solution variable \bfity n,h is associated
with its DOF vector, also denoted by \bfity n,h.

With this notation, \bfity n+1,h is the solution to\biggl( 
1

[\Delta tn+1]
\bfitS 1 +\bfitS 2

\biggr) 
\bfity n+1,h =

1

[\Delta tn+1]
\bfitS 1\bfity 

n,h +\bfitL (tn+1)(3.9)

with the system matrices

\bfitS 1 :=

\left(      
\bfitM V V 0 0  - \bfitR V U 0

0 0 0 0 0
0 0 0 0 0
0 0 0 \bfitR UU \bfitM UW

0 0 0  - \bfitM T
UW 0

\right)      ,

\bfitS 2 :=

\left(      
\bfitA +\bfitR V V  - \bfitB T 0 0 0

 - \bfitB 0 0 0 0
0 0 \bfitP A \bfitP B1 0

 - \bfitR T
V U 0 \bfitP B2

\bfitP C 0
0 0 0 0 \bfitM WW

\right)      
consisting of the constant block matrices

\bfitM V V =
\Bigl( 
\rho f (\bfitV 

h
k ,\bfitV 

h
l )\Omega  - \cup \Omega +

\Bigr) 
kl
, \bfitM UW =

\Bigl( 
\^\rho s(U3

h
k ,W3

h
l )\Sigma 

\Bigr) 
kl
,

\bfitM WW =
\Bigl( 
\^\rho s(W3

h
k ,W3

h
l )\Sigma 

\Bigr) 
kl
, \bfitR V V =

\Bigl( 
( \^\bfitK 

 - 1
\bfitV h

k ,\bfitV 
h
l )\Sigma 

\Bigr) 
kl
,

\bfitR V U =
\Bigl( 
( \^\bfitK 

 - 1
\bfitV h

k ,U3
h
l \bfite 3)\Sigma 

\Bigr) 
kl
, \bfitR UU =

\Bigl( 
( \^\bfitK 

 - 1
U3

h
k\bfite 3,U3

h
l \bfite 3)\Sigma 

\Bigr) 
kl
,

\bfitA =
\Bigl( 
2\mu (D(\bfitV h

k),D(\bfitV h
l ))\Omega  - \cup \Omega +

\Bigr) 
kl
, \bfitB =

\Bigl( 
(Ph

k ,\nabla \cdot \bfitV h
l )\Omega  - \cup \Omega +

\Bigr) 
kl
,

\bfitP A =
\Bigl( 
(\bfitA homD\=x( \=\bfitU 

h
l ),D\=x( \=\bfitU 

h
k))\Sigma 

\Bigr) 
kl
,

\bfitP C =
\Bigl( 
(\bfitC hom\nabla 2

\=x(U
h
3 l),\nabla 2

\=x(U
h
3 k))\Sigma 

\Bigr) 
kl
,

\bfitP B1
=
\Bigl( 
(\bfitB hom\nabla 2

\=x(U
h
3 l),D\=x( \=\bfitU 

h
k))\Sigma 

\Bigr) 
kl
,

\bfitP B2
=
\Bigl( 
(\bfitB homD\=x( \=\bfitU 

h
l ),\nabla 2

\=x(U
h
3 k))\Sigma 

\Bigr) 
kl

and time-dependent right-hand side \bfitL (t) = (\bfitF (t),0,0,\bfitG 3(t),0)
T with blocks

\bfitF (t) =
\Bigl( 
(\bfitf (t),\bfitV h

k)\Omega  - \cup \Omega +

\Bigr) 
k
, \bfitG 3(t) =

\bigl( 
 - (g3(t),U

h
3 k)\Sigma 

\bigr) 
k
.

Note that in general one has \bfitP B1 \not =\bfitP T
B2

.
For the stationary case, the fully discrete formulation consists of the two linear

systems\biggl( 
\bfitA +\bfitR V V  - \bfitB T

 - \bfitB 0

\biggr) \biggl( 
\bfitv h

ph

\biggr) 
=

\biggl( 
\bfitF 
0

\biggr) 
,

\biggl( 
\bfitP A \bfitP B1

\bfitP B2
\bfitP C

\biggr) \biggl( 
\=\bfitu h

uh
3

\biggr) 
=

\biggl( 
0

\bfitG 3 +\bfitR T
V U\bfitv 

h

\biggr) 
,

which can be solved in sequential order.
For the choice of specific FE spaces, a spatial decomposition of \Omega using a regular

hexahedral mesh is proposed. The mesh is chosen as \Sigma -conforming in the sense that
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COUPLING 2D PLATE AND 3D FLUID 1625

its restriction to the interface \Sigma is a quadrilateral 2D mesh given by the element
facets. A reformulation with a tetrahedral decomposition is straightforward.

In what follows, the hexahedral elements are denoted by T \in \scrT h, while the facets
of \Sigma are denoted by F \in \scrF h.

For the velocity variables, the classical \scrQ 2/\scrQ 1 Taylor--Hood pairing is chosen.
Since \bfitv is continuous on \Sigma , while p has a jump discontinuity on \Sigma , the respective FE
spaces read

\scrV h = \{ \bfitv h \in C0(\Omega )3 : vhi | T \in \scrQ k+1 for all T \in \scrT h, i= 1,2,3\} \cap \scrV ,
\scrP h = \{ ph : ph| \Omega \pm \in C0(\Omega \pm ), ph| T \in \scrQ k for all T \in \scrT h\} .

The resulting pressure mesh has a fissure on \Sigma , with each mesh node on \Sigma being associ-
ated with two pressure DOF, respectively. The authors in [16] performed comparative
studies for a similar stationary Stokes-Stokes problem with globally continuous pres-
sure space. Unsurprisingly, this choice leads to poor results unless the discretization
size is sufficiently small around \Sigma . Furthermore, for the stationary case, the authors
in [16] derived an applicable stabilization approach based on the classical pressure-
Poisson method for the unstable \scrQ 1/\scrQ 1 pairing.

For the plate's in-plane displacement, \scrQ 1 interpolation in 2D is employed. The
H2-conformity of the deflection u3 requires continuous first-order derivatives of the FE
across edges in the mesh, i.e., C1-elements. For quadrilateral meshes, the employment
of BFS elements (see [5, 8]) is proposed, which are bicubic polynomials that are
comparatively easy to self-implement.

The corresponding FE spaces are

\=\scrU h = \{ \=\bfitu h \in C0(\Sigma )2 : \=uh
i | F \in \scrQ 1 for all F \in \scrF h, i= 1,2\} \cap \=\scrU ,

\scrU h
3 = \{ uh

3 \in C1(\Sigma ) : uh
3 | F \in \scrQ 3 for all F \in \scrF h\} \cap \scrU 3.

A standard basis of the BFS elements in \BbbR n is attained from tensor products of
classical 1D Hermite splines. On the unit interval [0,1], the latter read

\^H00(x) = (2x+ 1)(x - 1)2, \^H10(x) = x(x - 1)2,

\^H01(x) = x2(3 - 2x), \^H11(x) = x2(x - 1),

which generalizes to arbitrary intervals [x0, x1] with length L= x1  - x0 by the affine
change of variables

H00(x) = \^H00

\biggl( 
x - x0

L

\biggr) 
, H10(x) =L \^H10

\biggl( 
x - x0

L

\biggr) 
,

H01(x) = \^H01

\biggl( 
x - x0

L

\biggr) 
, H11(x) =L \^H11

\biggl( 
x - x0

L

\biggr) 
.

A sketch of the 1D splines on the unit interval is shown in Figure 5. The corresponding
1D FE are commonly referred to as Hermite elements; see [9].

The BFS basis polynomials are attained by computing tensor products of the
Hermite splines. Let [x0

1, x
1
1] \times \cdot \cdot \cdot \times [x0

n, x
1
n] denote an arbitrary cuboid in \BbbR n with

edge lengths Li = x1
i  - x0

i . One defines the 4n basis polynomials as
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1626 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 5. Hermite splines on unit interval.

B\bfitalpha ,\bfitbeta (x) :=
n\prod 

i=1

L\alpha i
i

\^H\alpha i\beta i

\biggl( 
xi  - x0

i

Li

\biggr) 
, \bfitalpha ,\bfitbeta \in \{ 0,1\} n,

which for the unit cube [0,1]n results in the reference functions

\^B\bfitalpha ,\bfitbeta (x1, x2) :=

n\prod 
i=1

\^H\alpha i\beta i(xi), \bfitalpha ,\bfitbeta \in \{ 0,1\} n.

One can derive that the interpolant of w \in C1([x0
1, x

1
1]\times \cdot \cdot \cdot \times [x0

n, x
1
n]) by the BFS

polynomials reads

\Pi BFS[w](x) =
\sum 

\bfitalpha ,\bfitbeta \in \{ 0,1\} n

\partial \alpha 1
x1

\cdot \cdot \cdot \partial \alpha n
xn

w(x\beta 1

1 , . . . , x\beta n
n )B\bfitalpha ,\bfitbeta (x).

Therefore, one can associate the 4n nodal DOF \partial \alpha 1
x1

\cdot \cdot \cdot \partial \alpha n
xn

w(x\beta 1

1 , . . . , x\beta n
n ) per

element.
Hence, for the specific choice of n = 2, for each mesh node on \Sigma , one attains

the deflection's value, the value of its two first-order derivatives, as well as the value
of the mixed second-order derivative. It is noted that for unstable lattice struc-
tures (see [22]), the mixed derivatives are unknown. For these types of structures,
the recent work [15] offers even more effective bicubic interpolation, avoiding mixed
derivatives.

In Figure 6, 4 of the 16 derived shape functions for n = 2 are plotted that are
associated with the point (1,0). The remaining functions are of a similar nature.

As an alternative to the H2-conforming elements, penalty methods such as the
continuous-discontinuous Galerkin approach [14] are applicable. The interested reader
is referred, e.g., to [11] for a recent application in the FSI context for the simulation
of thin floating structures, modeled by Kirchhoff plates.

As a summary, the resulting amount of DOF per respective element for the chosen
spatial discretization is listed in Table 1.

4. Simulation results.

4.1. Qualitative description of stiffness tensors. In the following section,
the influence of entries in the homogenized stiffness tensors on the overall behav-
ior of the homogenized filter structure under different loading scenarios is described
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COUPLING 2D PLATE AND 3D FLUID 1627

Fig. 6. The four BFS shape functions \^B(0,0),(1,0), \^B(1,0),(1,0), \^B(0,1),(1,0), \^B(1,1),(1,0) on the
unit square.

Table 1
Summary of employed FE.

Function \bfitv h ph \=\bfitu h uh
3

FE type \scrQ 2 \scrQ 1 \scrQ 1 BFS

DOF per element 27 8 4 16

qualitatively. The discussion enables the quantitative analysis of the entries in the
subsequent section.

Remark 4.1. With the knowledge about symmetry of the homogenized stiffness
tensors \bfitA hom,\bfitC hom from Lemma 2.4, one deduces that there are at most six inde-
pendent entries per tensor, which are represented in a symmetric 3\times 3 matrix of the
form

\bfitA hom =

\left(  ahom1111 ahom1122 ahom1112

\ast ahom2222 ahom2212

\ast \ast ahom1212

\right)  , \bfitC hom =

\left(  chom1111 chom1122 chom1112

\ast chom2222 chom2212

\ast \ast chom1212

\right)  .

The reduced symmetry of the coupling stiffness tensor enables a representation of the
form

\bfitB hom =

\left(  bhom1111 bhom1122 bhom1112

bhom2211 bhom2222 bhom2212

bhom1211 bhom1222 bhom1212

\right)  .

The qualitative description starts with a result from [42] that describes the effec-
tive properties of orthotropic plates.

Lemma 4.2. Assume that the microscopic structure is given by an orthotropic 3D
plate with Young's moduli E1,E2, Poisson's ratios \nu 12, \nu 21, shear modulus G, as well
as a constant thickness denoted by \delta . Then the homogenized tensors are given by
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1628 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 7. Displacement of homogenized textile under applied tension in the x2-direction for a
zero (left) and a large, nonzero value of ahom2211 (right). Free lateral boundary left and right. Colors
indicate displacement in the x1-direction.

Fig. 8. Comparison of transverse contraction under applied tension in x2-direction in micro-
scopic simulation. Yarn orientation along the Cartesian coordinates (left) and rotated by 45\circ (right).
Free lateral boundary left and right with colors indicating local stresses.

\bfitA hom =
\delta 

12(1 - \nu 12\nu 21)

\left(  E1 \nu 21E1 0
\ast E2 0
\ast \ast 12(1 - \nu 12\nu 21)G

\right)  ,

\bfitC hom =
\delta 3

12(1 - \nu 12\nu 21)

\left(  E1 \nu 21E1 0
\ast E2 0
\ast \ast (1 - \nu 12\nu 21)G

\right)  
and \bfitB hom vanishes.

Remark 4.3. It is noted that due to the orthotropy constraint E2

E1
= \nu 21

\nu 12
, one

can alternatively write \nu 12E2 in the second entries in \bfitA hom,\bfitC hom in Lemma 4.2,
respectively.

The relations in Lemma 4.2, as well as the appearance of the respective entries
in the governing macroscopic plate equations, provide an intuitive understanding of
\bfitA hom and \bfitC hom. The entries ahom1111 and ahom2222 determine the resistance to applied

normal tensional loads, while the ratios
a\mathrm{h}\mathrm{o}\mathrm{m}
1122

a\mathrm{h}\mathrm{o}\mathrm{m}
1111

and
a\mathrm{h}\mathrm{o}\mathrm{m}
2211

a\mathrm{h}\mathrm{o}\mathrm{m}
2222

determine the transverse

contraction under normal tensional loads.
A simulation scenario exemplarily showing the influence of ahom2211 on this Poisson

effect is presented in Figure 7 and a corresponding microscopic simulation is shown
in Figure 8.
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COUPLING 2D PLATE AND 3D FLUID 1629

Fig. 9. Displacement of homogenized textile under applied tension in the x2-direction for a
zero (left) and a large, nonzero value of ahom1222 (right). Free lateral boundary left and right. Colors
indicate displacement in x1-direction.

Fig. 10. Displacement of homogenized textile under applied bending along the x2-direction for
zero (left) and a large, nonzero value of chom2211 (right). Free lateral boundary left and right. Colors
indicate deflection.

The tensor entry ahom1212 gives a measure of resistance to shearing loads, while the
remaining off-diagonal entries ahom1112, a

hom
2212 introduce a coupling of normal tension and

shearing of the textile. An illustrative example is presented in Figure 9.
The off-diagonal entries of \bfitA hom may as well be negative. In case of ahom1122 being

negative, one speaks of auxetic structures, that expand in the transverse direction
under normal tensional loads. Changing the sign of ahom1222 in Figure 9 causes a mirroring
of the displacement along the x2-axis.

Similar effective outer-plane bending properties can be formulated for the entries
of \bfitC hom. Qualitatively, the values chom1111 and chom2222 determine the stiffness w.r.t.
normal bending loads, commonly referred to as flexural rigidity.

The ratios
c\mathrm{h}\mathrm{o}\mathrm{m}
1122

c\mathrm{h}\mathrm{o}\mathrm{m}
1111

and
c\mathrm{h}\mathrm{o}\mathrm{m}
2211

c\mathrm{h}\mathrm{o}\mathrm{m}
2222

determine the tendency of transverse bending under

normal bending loads, effectively leading to saddle-point formations, i.e., hyperbolic
paraboloids.

The effect is depicted in Figure 10 and for a microscopic simulation in Figure 11.
Further, the entry chom1212 is a measure for torsional stiffness, while the remaining

off-diagonal entries chom1112, c
hom
2212 introduce an additional coupling between bending and

torsion. The coupling effect is demonstrated in Figure 12.
Similar to \bfitA hom, changing the sign of the off-diagonal entries in \bfitC hom results in

the inverted transverse bending for chom2211, as well as a mirroring of the displacement
in Figure 12 for chom2212.

From the governing plate equations, one can derive that each entry of \bfitB hom

couples an in-plane strain to a bending moment and vice versa. For illustration,
the influence of bhom2211 and bhom2222 is presented: Consider the case of tension applied in
the x2-direction which translates to the displacement only in the in-plane direction
for the case bhom2211 = bhom2222 = 0. On the other hand, additional coupling with the
bending along the x1-direction is observed in case of a nonzero value bhom2211, leading
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1630 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 11. Example for a hyperbolic paraboloid forming under bending of a spacer fabric due to
nonzero chom2212. Colors indicate local stresses.

Fig. 12. Displacement of homogenized textile under applied bending along the x2-direction for
zero (left) and a large, nonzero value of chom2212 (right). Free lateral boundary left and right. Colors
indicate deflection.

to a buckling or wrinkling effect. If bhom2222 is nonzero, the applied strain translates
into an additional bending along the x2-direction. All displacements are presented in
Figure 13.

A microscopic simulation with a similar behavior under applied tension in the
x2-direction is shown in Figure 14.

4.2. Quantitative description of stiffness tensors. Using the derived quali-
tative descriptions from the previous section, attained quantitative simulation results
are discussed in the following examples. Here and in the following, the results are at-
tained for a woven structure with parameterization depicted in Figure 15, and values
corresponding to a filter made out of PET are listed in Table 2. The contact matrix
is chosen as in Example 2.2 with \gamma friction chosen as 2\times 10 - 1. This comparatively high
value is based on qualitative comparison of shearing simulations with the real-life filter
behavior.

Utilizing the numerical methods of the previous sections, the following homoge-
nized tensors are attained with symmetry up to machine precision:

\bfitA hom =

\left(  4.898\times 105 2.881\times 102  - 9.978\times 10 - 1

\ast 4.898\times 105  - 9.978\times 10 - 1

\ast \ast 3.258\times 104

\right)  N m - 1,

\bfitB hom =

\left(  1.105\times 10 - 16 2.284\times 10 - 16 1.613\times 10 - 15

2.224\times 10 - 17  - 3.845\times 10 - 16  - 1.631\times 10 - 15

7.391\times 10 - 17  - 2.481\times 10 - 17 4.473\times 10 - 17

\right)  N,

\bfitC hom =

\left(  3.707\times 10 - 4  - 1.004\times 10 - 8  - 8.268\times 10 - 9

\ast 3.707\times 10 - 4  - 8.268\times 10 - 9

\ast \ast 1.296\times 10 - 4

\right)  N m.
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COUPLING 2D PLATE AND 3D FLUID 1631

Fig. 13. Displacement of homogenized textile under tension in the x2-direction for zero (left)
and a large, nonzero value of bhom2211 (center), as well as bhom2222 (right). Free lateral boundary left and
right. Colors indicate deflection.

Fig. 14. Bending along x2-direction under applied tension in the x2-direction of a weft-knitted
filter with alternating yarn material properties in the x2-direction. Initial filter (left) and displaced
textile (right). Periodic boundary conditions at the lateral boundary. Colors indicate local stresses.

Qualitatively, these tensor entries are reasonable: The additional symmetry

ahom1111 = ahom2222, ahom1112 = ahom2212,

chom1111 = chom2222, chom1112 = chom2212

is observed, which stems from the rotational symmetry of the weave unit itself. More-
over, the \bfitB hom entries are vanishing up to machine precision in accordance to Propo-
sition 3.1.

As to be expected for wovens, the in-plane stiffness is dominant with the largest
entries given by the tensional stiffness ahomiiii . The shearing resistance is significantly
lower. The entry ahom1122 is small, resulting in an effective Poisson's ratio close to zero.

By doubling the yarn distance \Delta 1 with remaining parameters being kept the
same, one attains

\bfitA hom =

\left(  2.448\times 105 1.407\times 102  - 1.161\times 100

\ast 4.900\times 105 3.586\times 10 - 1

\ast \ast 1.090\times 104

\right)  N m - 1,

\bfitB hom =

\left(  4.512\times 10 - 17  - 6.467\times 10 - 16 5.309\times 10 - 16

8.081\times 10 - 18 2.281\times 10 - 16  - 2.705\times 10 - 16

3.511\times 10 - 17 3.285\times 10 - 18 7.555\times 10 - 18

\right)  N,

\bfitC hom =

\left(  1.853\times 10 - 4  - 4.767\times 10 - 9  - 1.575\times 10 - 9

\ast 3.707\times 10 - 4  - 6.919\times 10 - 9

\ast \ast 9.720\times 10 - 5

\right)  N m.

As to be expected, due to the halved yarn density in the x1-direction, the overall
stiffness for tensional and bending loads in the x1-direction is reduced by roughly
50\%, while the stiffness in the x2-direction is only slightly affected.

In the following plots, further sensitivities are investigated. The focus is laid on
the dominant entries of the tensors \bfitA hom and \bfitC hom, respectively. In Figure 16, the
influence of varying yarn diameters is presented. For this purpose, the diameters d1, d2
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1632 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 15. Illustration of geometric and elastic parameters for the periodic unit of a twill woven
filter.

Table 2
Parameterization of twill woven filter.

Parameter Unit Value

\rho s g cm - 3 1.375
E1 =E2 GPa 2.95

\nu 1 = \nu 2 1 0.43
\Delta 1 =\Delta 2 \mu m 260

d1 = d2 \mu m 110

\varepsilon \mu m 1040

are kept the same on the left-hand-side plots, while only d2 is varied on the right-hand-
side plots. An expected general monotonic dependency on the increasing structure
volume density is observed for the first case, while the behavior for the second case is
already nontrivial and a quantitative estimate in terms of design parameters proves
to be involved even for this relatively simple example.

In Figure 17, the sensitivity on the Young's modulus of the yarn material is shown.
As with the diameters, both moduli E1,E2 are parameterized the same on the left-
hand side, while only E2 is varied on the right-hand side. Intuitively, the dependence
for the first case is almost perfectly linear for both extensional and bending stiffness,
while nonlinear dependence arises for the shearing/torsion and off-diagonal entries in
the second case.

Last, in Figure 18, the influence of a changing contact parameter \gamma friction is dis-
played. Intuitively, the only effected entry of this parameter is the shearing resistance
ahom1212. It is observed that the latter is monotonically dependent on the friction, while
the remaining tensor entries remain constant. In particular, the bending stiffness is
not influenced by the parameter. The small decrease of ahom1122 is unexplained at the
moment. Moreover, it is observed that ahom1212 reaches a steady-state after the threshold
of \gamma friction \approx 1\times 10 - 1. This regime corresponds to the case of fully glued yarns in which
rotation at contact points is prohibited. This locking effect can also be qualitatively
observed in the respective perturbated cell solutions; see Figure 19.

As a final example, a filter sample with a nonvanishing coupling stiffness tensor
\bfitB hom is constructed. First, a 3x3 grid is constructed by repeating the periodic unit
of Figure 15 three times in each direction, respectively. Afterward, the yarn diameter
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COUPLING 2D PLATE AND 3D FLUID 1633

Fig. 16. Sensitivity of \bfitA hom (top) and \bfitC hom (bottom) to varying yarn diameters.

Fig. 17. Sensitivity of \bfitA hom (bottom) and \bfitC hom (top) to varying Young's moduli of the yarn
material.
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1634 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 18. Sensitivity of \bfitA hom (left) and \bfitC hom (right) to varying friction parameter.

Fig. 19. Qualitative comparison of perturbated shearing cell solutions \bfitm M
12 for a small (left)

and a large (right) friction coefficient. Colors indicate local stresses. The periodic unit was repeated
two times in each in-plane direction for visualization purposes.

d1 is varied only for yarns in the second row of the grid; see Figure 20. Thereby, the
asymmetry of the periodic unit can be controlled.

For a value of d1 = 200\mu m, one exemplarily attains

\bfitA hom =

\left(  5.541\times 105 8.308\times 102  - 1.818\times 100

\ast 4.737\times 105 2.038\times 10 - 1

\ast \ast 4.134\times 104

\right)  N m - 1,

\bfitB hom =

\left(  5.388\times 10 - 2 3.098\times 10 - 5  - 6.733\times 10 - 7

3.006\times 10 - 5 5.388\times 10 - 2  - 2.273\times 10 - 6

 - 3.582\times 10 - 7 7.436\times 10 - 8 4.226\times 10 - 3

\right)  N,

\bfitC hom =

\left(  4.686\times 10 - 4  - 3.628\times 10 - 9  - 4.755\times 10 - 9

\ast 3.878\times 10 - 4  - 7.670\times 10 - 9

\ast \ast 1.509\times 10 - 4

\right)  N m.

The influence of the choice of d1 on the entries of \bfitB hom is investigated in Figure 21,
restricted to the dominant diagonal entries, as well as the entries bhom1122, b

hom
2211. For

all entries, a minimal value of 0 (up to machine precision) is observed for the fully
symmetric case d1 = 110\mu m as expected. Even for small deviations around this value,
the coupling stiffness tensor attains noticeably larger values. Moreover, the attained
curves are nonsymmetric w.r.t. the axis d1 = 110\mu m with, e.g., the values bhom1111, b

hom
2222

being very close to each other for larger d1, while there is a clear difference for smaller
d1. Nevertheless, a general monotonic dependence of the entries on the deviation
from the fully symmetric case can be observed at least for the investigated parameter
range.

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

02
/2

1/
25

 to
 1

58
.1

29
.1

62
.1

94
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



COUPLING 2D PLATE AND 3D FLUID 1635

Fig. 20. Construction of asymmetric filter sample.

Fig. 21. Entries of \bfitB hom for the asymmetric filter sample as functions of the yarn diameter d1.

4.3. FSI simulations. For the upcoming FSI simulations, the parameters listed
in Table 3 are utilized. The microscopic filter structure is chosen as in the previous
subsection. The computed permeability tensor for this structure reads

\bfitK =

\left(  4.93\times 10 - 8  - 1.14\times 10 - 10  - 5.05\times 10 - 14

\ast 4.93\times 10 - 8 2.70\times 10 - 15

\ast \ast 5.01\times 10 - 10

\right)  m2.

As a first example, a steady-state solution for the parabolic profile

\bfitv in(\=x) = vmax 16

L2
1L

2
2

x1(L1  - x1)x2(L2  - x2)\bfite 3

on the inflow boundary is considered, where vmax is chosen as 1\times 102mm s - 1. The
resulting flow profiles in the respective subdomains \Omega \pm are depicted in Figure 22. Far
from the interface region, the velocity profile is parabolic. Close to the interface, it
becomes almost constant and normal to \Sigma . This observation is in accordance with
the behavior of flow through rigid Stokes-sieves theoretically proven in and numeri-
cally investigated, e.g., in [13, 16]. Individual velocity components are illustrated in
Figure 23. The fluid pressure in each subdomain is almost constant with a noticeable
jump of 20 Pa at the interface.

To illustrate the flow-induced deflection profile on \Sigma and its dependence on the fil-
ter parameterization on the micro scale, the yarn diameter d2 is varied as in Figure 16,
while the diameter d1 remains constant. The attained profiles are shown in Figure 24.
Note that due to the vanishing coupling stiffness tensor, the in-plane displacements
are zero.
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1636 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Table 3
Values of phyiscal parameters in macroscopic FSI simulations.

Parameter Value Unit

\rho f 0.997 g cm - 3

\mu 1.0016 mPa s

L1 =L2 1\times 102 mm

L3 2\times 102 mm

Fig. 22. Fluid velocity and pressure in cross-sections of individual subdomains \Omega  - (left) and
\Omega + (right).

In accordance to the observed change from a dominating entry chom1111 to a domi-
nating entry chom2222 in Figure 16, a morphing from a vertically to a horizontally oriented
paraboloid is attained for increasing d2.

Since the yarn diameter not only influences the filter's stiffness, but also monoton-
ically decreases its permeability, the absolute deflection values are actually increasing
for an increased yarn diameter. To further investigate the counteracting effect of in-
creasing stiffness versus decreasing permeability, the maximal flow-induced deflections
for varying design parameters are depicted in Figure 25. Especially the variation of
the yarn diameters results in nontrivial curves that would have not been predictable
without the simulation.

To investigate the influence of the coupling stiffness tensor, an FSI simulation
for the same setup but with the microstructure in Figure 20 is performed. The
attained nonvanishing in-plane displacement \=\bfitu is presented in Figure 26. As can be
seen, the value of both components u1, u2 is significantly smaller than the deflection.
Moreover, the absolute value of displacement in the x1-direction is roughly half of
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COUPLING 2D PLATE AND 3D FLUID 1637

Fig. 23. Components of the fluid velocity in cross-section of the model domain \Omega .

Fig. 24. Deflection profiles of effective filter for yarn diameters d1 = 110\mu m and d2 chosen as
70, 110, 160, and 200 \mu m.
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1638 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 25. Maximal flow-induced deflection of the effective filter for varying design parameters.

Fig. 26. Flow-induced in-plane displacement \=\bfitu and deflection for the asymmetric filter sample.

the displacement in the x2-direction, which is intuitive since the extensional stiffness
entry ahom1111 is larger than the entry ahom2222 as a consequence of the added support yarns.

As an example for a nonstationary simulation, the flow through a so-called spacer
fabric is investigated. The spacer fabric is modeled as the periodic repetition of
the woven sample from Figure 15 in the x3-direction. The resulting model domain
is a sequence of fluid domains, separated by parallel filter fences. A substructure
containing 10 of these fences is considered.

The height of the fabric in the x1-direction is L1 = 8\times 101mm, while the distance
in between two filter fences is 2\times 101mm. Periodic boundary conditions are applied
in the x2-direction.
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COUPLING 2D PLATE AND 3D FLUID 1639

Fig. 27. Fluid velocity components v1 and v3 in cross-section of spacer fabric at time
t= 1,2,3,4 s.

The inflow condition at \{ x3 = 0\} is chosen as

\bfitv in(t, x1) = vmax\phi (t)
4

L2
1

x1(L1  - x1)\bfite 3, t\in (0,4),

where \phi (t) is the ramp function

\phi (t) =

\Biggl\{ 
exp(1) exp

\Bigl( 
4

(t - 2)2 - 4

\Bigr) 
if 0\leq t < 2,

1 if t\geq 2

and vmax = 2 \times 101mms - 1. The boundary conditions for each fence are slightly
modified from a clamped to a simply supported plate.

The attained simulation results at different time steps are presented in Figures 27,
28, and 29. As can be seen, the fluid velocity is identical in each bulk fluid domain
apart from the in- and outflow domain. The jump of pressure at each interface is
homogeneous as in the stationary case with the same value at each interface. The
step-like pressure profile is in accordance with stationary flow simulations performed
in a micro resolved spacer fabric in [41]. As a direct consequence, the displacement
of each fence is identical. Hence, one may restrict simulations to only two parallel
fences.

4.4. Extension with anisotropic model parameters. As discussed at the
end of section 2.2, the macroscopic FSI model remains well-posed if one switches from
constant macroscopic model parameters to ones which possess L\infty -regularity on \Sigma . To
ensure existence of solutions, one additionally requires coercivity of the permeability
tensor almost everywhere on \Sigma , as well as coercivity of the bilinear form associated
to the homogenized stiffness tensors.
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1640 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 28. Fluid pressure in cross-section of spacer fabric at time t= 4 s.

Such formulations are expected to arise, e.g., if one loosens the periodicity as-
sumption of the microscopic structure to domains with sufficiently regular changing
structure; see, e.g., [3, section 5 of Chapter 3] for so-called quasi-periodic structures
in homogenization of linear elasticity.

For these types of structures, one expects the same form of the cell problems
and averaging of the cell solution, however, with an additional dependence on the
in-plane variable \=x, which results in potentially infinitely many cell problems to solve.
For numerical methods, one circumvents this difficulty by considering a spatial dis-
cretization of \Sigma , solving the cell problems for each grid-point and performing spatial
interpolation afterward.

Application examples in mind cover, e.g., multilayered structures composed of
different textile-like filters, as well as patchwork-like fabrics with alternating weaving
patterns. For illustration, the flow through a twill woven filter with alternating pattern
is considered. One can imagine the structure as a woven filter with equally spaced,
parallel, densely woven stripes along the x2-direction, serving as additional support
structures. The distances \Delta 1 = \Delta 2 = 2.6 \times 102 \mu m as well as the diameter d1 =
1.6\times 102 \mu m are chosen. The diameter d2 is alternating: 24 adjacent yarns have the
diameter 4\times 101 \mu m, followed by 24 yarns with diameter 1.1\times 102 \mu m and again 24
yarns with diameter 4 \times 101 \mu m. The resulting periodic unit thereby consists of 18
twill weave units and is illustrated in Figure 30. It is periodically repeated 10 times
in the x1-direction and 180 times in the x2-direction, such that the attained filter is
quadratic with edge lengths L1 =L2 = 1.872\times 102mm. The channel length is chosen
as L3 =L1.

Since the filter is periodic, one may perform the presented homogenization of the
entire unit, analogously to the last example in section 4.2. In the context of quasi-
periodic structures, each 4\times 4 yarn substructure is homogenized to attain piecewise
constant homogenized stiffness tensors. The computation of a piecewise constant
permeability tensor is performed analogously.

For the FSI simulation, the stationary case with parabolic profile

\bfitv in(\=x) = vmax 16

L2
1L

2
2

x1(L1  - x1)x2(L2  - x2)\bfite 3

on the inflow boundary is considered, where vmax is chosen as 5\times 101mms - 1.
The attained fluid velocity field, as well as the pressure, are presented in Figures 31

and 32. Due to the smaller permeability in the stripes with larger yarn diameter, the
flow mainly passes through the stripes with small yarn diameter. Consequently, on \Sigma ,
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COUPLING 2D PLATE AND 3D FLUID 1641

Fig. 29. Absolute value of structure displacement for spacer fabric at time t= 1,2,3,4 s.

Fig. 30. Periodic unit of considered filter with alternating yarn diameter d2.
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1642 M. KRIER, J. ORLIK, G. PANASENKO, AND K. STEINER

Fig. 31. Fluid velocity in cross-section of channel for piecewise constant permeability tensor.

Fig. 32. Fluid velocity (left) and pressure (right) in cross-section of left subdomain \Omega  - for
piecewise constant permeability tensor.

both velocity and pressure are oscillating along the x1-direction and remain almost
constant along the x2-direction.

For the structure, the flow-induced displacement profile is shown in Figure 33.
One attains a terraced profile along the x1-direction, while the profile is similar to
the previous examples along the x2-direction. Since the jump of fluid stresses is
still relatively homogeneous, as can be seen in the small oscillations of the pressure
profile in Figure 32, one can deduce that the terrace effect mainly stems from the
alternating bending stiffness. The deduction is confirmed by pure structure simulations
with constant right-hand-side functions.

5. Conclusions. A complete numerical workflow for the efficient simulation of
flow through thin, periodic, flexural filters was presented. The considered multiscale
FSI model coupled Stokes flow with a homogenized porous plate, whose effective
stiffness tensors and permeability tensor are attained by solving cell solutions on the
microresolved periodic unit of the filter.

For the computation of the stiffness tensors, a dimension reduction approach was
employed to textile-like filters consisting of individual yarns. The approach allowed
the usage of 1D beam FEs to efficiently determine extensional, coupling, and bending
stiffness tensors of the structure. The presented method not only is applicable in the
FSI context, but is also of interest for general multiscale simulations with textiles and
textile-like structures. The computation of the permeability tensor on the micro scale
was performed by standard means with a finite volume solver.
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COUPLING 2D PLATE AND 3D FLUID 1643

Fig. 33. Displacement profile for piecewise constant homogenized stiffness tensors.

A monolithic, conforming FE formulation was presented for the macroscopic FSI
system and exemplified for different stationary and nonstationary simulation scenar-
ios. For the fluid variables, the LBB stable Taylor--Hood pairing was chosen. To
ensure H2-conformity of the deflection variable, bicubic Bogner--Fox--Schmit elements
were employed.

Concerning the asymptotic analysis, future research should be focused on the
rigorous derivation of the proposed permeable interface condition and associated cell
problems. Moreover, for application in more general filtration applications, the model
should be extended to Navier--Stokes flow to cover higher flow-velocity regimes. For
this purpose, the phenomological Darcy interface condition could be generalized, e.g.,
to a Darcy--Forchheimer-like interface condition. Furthermore, for larger flow-induced
filter displacements, a formulation with displacement-dependent domains needs to be
derived. Future research may additionally be focused on a generalization with a
displacement-dependent permeability tensor, accounting for reduced flow resistance
due to larger pore sizes in the displaced filter state.
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