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20O(d, p)21O transfer reactions are described using momentum-space Faddeev-type equations for 
transition operators and including the vibrational excitation of the 20O core. The available experimental 
cross section data at 10.5 MeV/nucleon beam energy for the 21O ground state 5

2
+

and excited state 
1
2

+
are quite well reproduced by our calculations including the core excitation. Its effect can be 

roughly simulated reducing the single-particle cross section by the corresponding spectroscopic factor. 
Consequently, the extraction of the spectroscopic factors taking the ratio of experimental data and single-
particle cross section at this energy is a reasonable procedure. However, at higher energies core-excitation 
effects are much more complicated and have no simple relation to spectroscopic factors. We found that 
core-excitation effects are qualitatively very different for reactions with the orbital angular momentum 
transfer � = 0 and � = 2, suppressing the cross sections for the former and enhancing for the latter, and 
changes the shape of the angular distribution in both cases. Furthermore, the core-excitation effect is a 
result of a complicated interplay between its contributions of the two- and three-body nature.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Interactions between nucleons (N) and composite nuclei (A) 
are usually modeled by two-body effective optical or binding po-
tentials acting between structureless particles. This scheme works 
quite well for stable tightly bound nuclei but may become a 
poor approximation for exotic nuclei that nowadays are extensively 
studied both experimentally and theoretically. An improvement of 
the structureless nucleus model, at a first step, consists in explicitly 
considering also its lowest excited states (A∗), thereby accounting 
for the compositeness of the nucleus A in an approximate way. 
This extension has been proposed long ago [1] and applied to 
numerous studies of elastic and inelastic N + A scattering. How-
ever, the application of interaction models including the excitation 
of the involved nucleus, also called the core excitation, to three-
body nuclear reactions, e.g., deuteron (d) stripping and pickup, is 
still a complicated task. First studies of (d, p) reactions demon-
strating the importance of the core excitation [2–5] were based on 
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two-body-like approaches such as the distorted-wave Born approx-
imation (DWBA) and coupled-channels Born approximation (CCBA) 
that relied on deuteron-nucleus optical potentials. Only quite re-
cently the three-body calculations have emerged that include the 
core excitation. Extensions of the DWBA [6,7] and continuum dis-
cretized coupled channels (CDCC) method [8,9] mostly focused on 
the breakup reactions, in particular, of 11Be. The calculations for 
neutron transfer reactions 10Be(d, p)11Be and 11Be(p, d)10Be were 
performed using rigorous Faddeev three-body scattering theory 
[10] in the form of Alt, Grassberger, and Sandhas (AGS) equations 
[11] for transition operators, solved in the extended Hilbert space 
[12–14]. The latter works demonstrated that in the deuteron strip-
ping and pickup the core excitation effect cannot be simply simu-
lated by the reduction of the cross section according to the respec-
tive spectroscopic factor (SF). It was found that extracting the SF 
from the ratio of experimental and theoretical transfer cross sec-
tions, as often used with the adiabatic distorted wave approxima-
tion (ADWA) calculations [15], may lead to a strong underestima-
tion of the SF. Calculations of Refs. [12–14] employed the rotational 
model [1] for the excitation of the 10Be core; the most prominent 
core-excitation effects have been observed for the 10Be(d, p)11Be
transfer to the ground state of 11Be( 1

2
+
) whose dominant compo-

nent corresponds to an S-wave neutron coupled to the 10Be(0+)

ground state, i.e., the orbital angular momentum transfer for this 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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reaction is � = 0. In contrast, for the � = 1 transfer leading to the 
excited state 11Be( 1

2
−
) the core-excitation effects have been less 

remarkable. It is therefore very important to clarify the systemat-
ics of the core-excitation effects in transfer reactions, investigating 
other types of excitation mechanisms and bound states. Further-
more, a deeper understanding may be gained by disentangling the 
effects of two- and three-body nature. The study of 20O(d, p)21O
transfer reactions intended in the present work leads to the de-
sired goal and is interesting for several reasons. First, the 21O( 5

2
+
)

ground state has a significant component of D-wave neutron cou-
pled to the 20O(0+) ground state, thereby allowing the extension 
of systematics from Refs. [12–14] to the D-wave neutron state and 
� = 2 transfer. Second, the lowest excitation of the 20O core 2+ has 
a vibrational character, giving opportunity to investigate the vibra-
tional model for the nucleon-core interaction [1] in the context of 
transfer reactions. Last but not least there are experimental data 
for 20O(d, p)21O transfer reactions at 10.5 MeV/nucleon beam en-
ergy [16] that have not yet been analyzed with rigorous Faddeev-
type calculations.

In Sec. 2 we shortly recall the three-body scattering equa-
tions with core excitation, and in Sec. 3 describe the employed 
nucleon-20O potentials. Results are presented in Sec. 4, and a sum-
mary is given in Sec. 5.

2. Solution of three-body scattering equations with core 
excitation

The numerical technique for calculating deuteron-nucleus reac-
tions with the inclusion of the core excitation is taken over from 
Refs. [12–14] but further developments are needed to get insight 
into separate core-excitation contributions of the two- and three-
body nature. The method is based on the integral formulation of 
rigorous Faddeev-type three-body scattering theory for transition 
operators as proposed by Alt, Grassberger, and Sandhas [11], but 
extended for the Hilbert space Hg ⊕Hx whose sectors correspond 
to the core being in its ground (g) or excited (x) state. These 
sectors are coupled by the nucleon-core two-body potentials v ji

α

where the superscripts j and i, being either g or x, label the inter-
nal states of the core, and the subscript α, being A, p, or n, labels 
the spectator particle in the odd-man-out notation. Consequently, 
the respective two-body transition operators

T ki
α = vki

α +
∑

j=g,x

vkj
α G j

0T ji
α (1)

and three-body transition operators

Uki
βα = δ̄βα δki G

i
0
−1 +

∑

γ =A,p,n

∑

j=g,x

δ̄βγ T kj
γ G j

0U ji
γ α (2)

couple Hg and Hx as well. Here δ̄βα = 1 − δβα and G j
0 = (E +

i0 − δ jx�mA − K )−1 is the projection of the free resolvent into 
H j , with E , �mA , and K being the available energy in the center-
of-mass (c.m.) frame, core-excitation energy, and kinetic energy 
operator, respectively. The amplitudes for deuteron stripping reac-
tions A(d, p)B , B denoting the (An) bound state, are given by the 
on-shell matrix elements 〈�g

p |U gg
p A |�g

A〉 + 〈�x
p |U xg

p A |�g
A〉 since the 

final p + B channel state |�p〉 = |�g
p〉 + |�x

p〉 has components in 
both Hilbert sectors.

The core-excitation effects can be separated into contributions 
of two- and three-body nature. The former consists in modify-
ing T gg

α through intermediate core excitations, i.e., through the 
terms of type v gx

α Gx
0 vxg

α and so on in the iterated coupled-channel 
Lippmann–Schwinger equation (1). The contribution of the three-
body nature arises due to nondiagonal components T xg

α and T gx
α

Fig. 1. Diagrammatic representation of the lowest-order core-excitation contribu-
tions of (a) two-body and (b) three-body nature. Horizontal dashed lines stand for 
potentials while vertical solid lines stand for particles, the thick one being for the 
core in its excited state.

that are responsible for the coupling of the two Hilbert sec-
tors in Eq. (2), i.e., T gx

β δ̄βαGx
0T xg

α and so on, yielding, in fact, an 
energy-dependent effective three-body force (E3BF). Lowest-order 
diagrams for both types are depicted in Fig. 1. We note a formal 
similarity between these contributions and the so-called dispersive 
and three-nucleon force effects arising in the description of the 
three-nucleon system with the �-isobar excitation [17,18]. Since 
the full core-excitation effect will be extracted from the solution 
of Eq. (2), to get insight into the importance of separate two- and
three-body contributions it is enough to exclude one of them. It 
is most convenient to do so for the E3BF, whose exclusion can be 
achieved by setting T kj

γ = δkgδ jg T gg
γ in Eq. (2). This type of results 

will be labeled in the following as “no E3BF”.
Although the present work employs the potentials v ji

α derived 
from the vibrational model [1], calculations proceed in the same 
way as with rotational model potentials used in Refs. [12–14]. 
The AGS equations (2) are solved numerically in the momentum-
space partial-wave representation. Six sets of base functions 
|pαqα(lα{[Lα(si

β si
γ )Si

α] ji
αsi

α}S i
α) J M〉 are employed with (αβγ ) =

(Apn), (pnA), or (nAp), and i = g or x. Here pα and qα are mag-
nitudes of Jacobi momenta for the configuration α(βγ ) while Lα

and lα are the associated orbital angular momenta. Furthermore, 
si

A and si
p = si

n = 1
2 are spins of the corresponding particles, among 

them only si
A depends on the Hilbert sector i, i.e., sg

A = 0 and 
sx

A = 2 in the considered case of the 20O nucleus with the ground 
and first excited states 0+ and 2+ , respectively. All discrete an-
gular momentum quantum numbers, via the intermediate angular 
momenta Si

α , ji
α , and S i

α , are coupled to the total angular mo-
mentum J with the projection M . We note that the spin sx

A = 2
implies roughly five times more basis states in Hx as compared 
to Hg , thereby increasing the demand on computer memory and 
time by a factor of 20 to 40. Including more states of the core, e.g., 
the second excited state 4+ would be even significantly more de-
manding, and for this reason we restrict our present calculations 
to the inclusion of 0+ and 2+ states of 20O. Well-converged re-
sults for 20O(d, p)21O transfer reactions are obtained by including 
J ≤ 25 states with L A ≤ 3, Lp ≤ 5, and Ln ≤ 10. Higher value for Ln

is needed due to the Coulomb force present within the A + p pair 
which is included via the screening and renormalization method 
[19–21].

3. Potentials

We consider the system of a proton, a neutron, and a 20O
core with masses mp = 0.99931 mN , mn = 1.00069 mN , and mA =
19.84153 mN given in units of mN = (mn + mp)/2 = 938.919 MeV; 
the core excitation energy is �mA = 1.684 MeV. To the best of 
our knowledge, potentials specifically designed for the N + 20O
interaction including the core excitation are not available. The cor-
responding experimental data are scarce, we are aware of only 
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Fig. 2. (Color online.) Differential cross sections dσ/d
 for elastic (top) and inelastic 
(bottom) p + 20O scattering at 30 (left) and 43 (right) MeV/nucleon beam energies 
as functions of the c.m. scattering angle �c.m. . Results including the core excitation 
based on KD and CH potential models with β2 = 0.5 and 0.55 are compared with 
the experimental data from Ref. [22] (30 MeV) and Ref. [23] (43 MeV).

two p + 20O elastic and inelastic scattering measurements at 30 
[22] and 43 [23] MeV/nucleon beam energies. In these works the 
data have been analyzed using DWBA or coupled-channel calcula-
tions with global optical potentials, e.g., [24]. Extracted values of 
the quadrupole vibrational coupling parameter β2 are 0.50 ± 0.04
[22] and 0.55 ± 0.06 [23]. We also base our calculations on global 
optical potentials but use more modern parametrizations, namely, 
those of Koning–Delaroche (KD) [25] and Chapel Hill 89 (CH) [26]. 
These potentials were designed for A ≥ 24 and A ≥ 40 nuclei, re-
spectively, but one may expect a reasonable extrapolation also to 
A = 20, especially for the KD potential. To include the core excita-
tion, we extend these potentials for quadrupole vibrations [1] and 
modify by the subtraction method of Ref. [13] adding a nonlocal 
contribution. The terms up to the second order in β2 as given in 
Ref. [1] are taken into account in our calculations. It turns out that 
such an approach reproduces the experimental data for elastic and 
inelastic differential cross sections of Refs. [22,23] reasonably well 
using the same value β2 = 0.5 as shown in Fig. 2, especially for 
the KD potential. To study the sensitivity to β2, we also show CH 
predictions with β2 = 0.55, that yield a better description of the 
inelastic cross section. The observed agreement encourages the ap-
plication of these potentials for 20O(d, p)21O transfer reactions, not 
only for p + 20O but also for n + 20O pair where no experimental 
scattering data are available. An exception is the n + 20O poten-
tial in the 5

2
+

and 1
2

+
partial waves that must be real to support 

bound states with the binding energies of 3.806 and 2.586 MeV, 
respectively. In addition, predictions of various shell models [27,
28] for SF’s of these states are available, being around 0.33 to 0.34 
for 5

2
+

and 0.81 to 0.83 for 1
2

+
[16]. We include this information in 

constraining the n + 20O potentials. We start with the undeformed 
coordinate-space potential

vα(r) = − V c f (r, R,a) + L2 V L f (r, R,a)

+ σ · L V so
2

r

d

dr
f (r, R,a),

(3)

where f (r, R, a) = [1 +exp((r − R)/a)]−1 is Woods–Saxon form fac-
tor, a = 0.65 fm, V so = 6.0 MeV · fm2, and R is taken from the real 
Table 1
Quadrupole vibration parameter β2, Woods–Saxon radius R , potential strengths Vc

and V L , and the resulting SF for the 21O ground state 5
2

+
with the binding energy 

of 3.806 MeV.

β2 R (fm) V c (MeV) V L/V c SF

0.50 3.13 53.564 0.0389 0.34
0.50 3.17 52.580 0.0396 0.34
0.55 3.17 51.907 0.0419 0.34

0.0 3.19 50.425 0.0 1.0
0.0 3.23 49.347 0.0 1.0

Table 2
Quadrupole vibration parameter β2, Woods–Saxon radius R , potential strengths Vc

and V L , and the resulting SF for the 21O excited state 1
2

+
with the binding energy 

of 2.586 MeV.

β2 R (fm) V c (MeV) V L/V c SF

0.50 3.13 45.531 0.0252 0.82
0.50 3.17 44.639 0.0260 0.82
0.55 3.17 44.038 0.0308 0.82

0.0 3.19 49.743 0.0 1.0
0.0 3.23 48.813 0.0 1.0

part of the optical potential acting in other waves, i.e., R = 3.13 fm
(3.17 fm) for KD (CH) potentials. In addition to standard central 
and spin-orbit terms a phenomenological L2 term is taken over 
from Ref. [29]. The core excitation is included by quadrupole vibra-
tions of the central part in (3) with β2 = 0.5 or 0.55 as described 
by Tamura [1]. Potential strength parameters V c and V L are ad-
justed to reproduce the desired binding energies and SF’s. The 
latter are chosen to be the middle values of several shell model 
predictions [16], i.e., 0.34 for 5

2
+

and 0.82 for 1
2

+
. Deeply-bound 

Pauli forbidden states are projected out. The resulting potential 
parameters are collected in Tables 1 and 2; parameter sets with 
β2 = 0.0 correspond to single-particle models without core excita-
tion that are used to isolate its effect.

4. Results

Taking p + 20O and n + 20O potentials from previous section to-
gether with the high-precision charge-dependent (CD) Bonn n + p
potential [30] as the dynamic input, we solve the AGS equations 
(2) and calculate 20O(d, p)21O differential cross sections dσ/d


as functions of the c.m. scattering angle �c.m. . We start with 
10.5 MeV/nucleon beam energy, corresponding to the deuteron 
beam energy Ed = 21 MeV, where the experimental data [16] are 
available. The results obtained without (β2 = 0) and with (β2 =
0.5) core excitation based on KD and CH potentials are presented 
in Fig. 3. The core excitation effect for the transfer to the 21O
ground state 5

2
+

is very large. It strongly reduces the differential 
cross section bringing it in a good agreement with the experimen-
tal data. The sensitivity to the potential model is visible except 
at very small angles but remains smaller than experimental er-
ror bars. To study the sensitivity to β2 we include also CH-based 
predictions with β2 = 0.55; they are almost indistinguishable from 
the corresponding β2 = 0.5 results, indicating that the value of β2
is not critical for transfer observables provided that other proper-
ties are fixed. Same conclusions regarding the sensitivity to β2 and 
potential apply also for the transfer to the 21O excited state 1

2
+

. 
However, in this case the core excitation effect is smaller, although 
it also reduces the differential cross section bringing it closer to 
the data, except for few points at larger angles. There is also some 
mismatch between predicted and measured positions of the min-
imum. We note that for both reactions KD predictions are slightly 
higher, possibly due to a larger elastic N + 20O cross section.
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Fig. 3. (Color online.) Differential cross section for 20O(d, p)21O transfer reactions 
at Ed = 21 MeV leading to 21O ground 5

2
+

(top) and excited 1
2

+
(bottom) states. 

Predictions obtained with and without the vibrational core excitation based on KD 
and CH potential models are compared with the experimental data from Ref. [16].

Obviously, the reduction of the differential cross section due to 
the core excitation correlates with the reduction of the SF from 
unity to 0.34 and 0.82 for ground and excited states, respectively. 
In naive reaction methods like DWBA or ADWA the dynamic core 
excitation is usually neglected, i.e., it is assumed that the bound 
state component |�x

p〉 takes no part in the reaction, and the core 
excitation effect is a reduction of the single-particle differential 
cross section by the SF. However, this conjecture on factorization 
may be wrong as it was demonstrated by rigorous Faddeev-type 
calculations using the 10Be(d, p)11Be transfer to the ground state 
of 11Be( 1

2
+
) as example [12–14]. We therefore investigate in Figs. 4

and 5 the validity of factorization conjecture for 20O(d, p)21O re-
actions over a broader energy range. Having no more experimental 
data, we simply take additional energy value larger by a factor of 3, 
i.e., Ed = 63 MeV. As the core excitation effects for KD and CH turn 
out to be quite similar, we show only KD results that in general are 
closer to the experimental two- and three-body data. We multiply 
KD single-particle β2 = 0 differential cross sections by the respec-
tive SF of the model with the core excitation and compare with the 
KD(β2 = 0.5) results fully including the core excitation. The differ-
ence between these two results, or the deviation of the ratio

Rx = dσ/d
(β2 = 0.5)

SF · dσ/d
(β2 = 0)
(4)

from unity indicates violation of the factorization conjecture. We 
start with the excited state 1

2
+

analysis in Fig. 4 where we expect 
some similarities with the 11Be( 1

2
+
) case [12–14]. At Ed = 21 MeV

the two curves are close but, at least below the first minimum, 
Fig. 4. (Color online.) Differential cross section for 20O(d, p)21O transfer reactions 
at Ed = 21 and 63 MeV leading to 21O excited 1

2
+

state. Single-particle predictions 
scaled by SF = 0.82 (dotted curves) are compared with results including the core 
excitation in full (solid curves) and excluding the E3BF contribution (dash-dotted 
curves). The experimental data at Ed = 21 MeV are from Ref. [16].

differ by a roughly constant factor, i.e., the core excitation effect 
is slightly, by about 6%, stronger than predicted by the factoriza-
tion conjecture. Having the SF of 0.82 the core excitation reduces 
the differential cross section at forward angles by a factor of 0.77 
which is exactly the value of the SF extracted in Ref. [16] relying 
on the factorization conjecture. Thus, the dynamical core excita-
tion model well explains a stronger reduction of the cross section 
observed in Ref. [16] as compared to the factorization conjecture. 
The deviation between the two curves in Fig. 4 increases with in-
creasing energy, and their ratio becomes angle-dependent, thereby 
indicating that the factorization conjecture fails at higher energies. 
The reduction of the cross section at forward angles is significantly 
stronger than SF, e.g., Rx = 0.59 at Ed = 63 MeV and �c.m. = 0◦ . 
Such a behavior is indeed qualitatively consistent with findings of 
Refs. [12–14] for 11Be( 1

2
+
) within the rotational model.

A similar study of the 20O(d, p)21O transfer to the 21O ground 
state 5

2
+

is presented in Fig. 5. At Ed = 21 MeV the two curves 
are again close, especially at forward angles. Thus, despite that SF 
= 0.34 significantly deviates from unity, the differential cross sec-
tion including the core excitation scales well with SF, and at this 
energy the factorization conjecture is valid. However, the situation 
changes dramatically at higher energy where the two curves de-
viate from each other in an angle-dependent way. We emphasize 
that at forward angles this deviation is in opposite direction as 
compared to the excited state 1

2
+

, e.g., Rx = 1.83 at Ed = 63 MeV
and �c.m. = 0◦ . Thus, at higher energies the factorization conjec-
ture fails for the 21O ground state 5

2
+

as well, but quantitatively 
the core excitation effect is very different as compared to the one 
for the excited state 1

2
+

.
In Figs. 4 and 5 we also isolate the E3BF core-excitation ef-

fect, given as the difference between the solid and dash-dotted 
curves. Quite surprisingly, even at Ed = 21 MeV it turns out to 
be significant. Consequently, the core-excitation effect of the two-
body nature must be significant as well to cancel the E3BF to a 
large extent, especially at Ed = 21 MeV, such that their sum re-
produces the full core-excitation effect. We note that substantial 
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Fig. 5. (Color online.) Same as Fig. 4 but for 21O ground state 5
2

+
with SF = 0.34.

cancellation of the corresponding two- and three-body effects due 
to the �-isobar excitation was often observed also in the nucleon–
deuteron scattering [18].

We studied also sensitivity of the transfer cross sections to 
the neutron–proton tensor force and D-state component in the 
deuteron. Replacing the CD Bonn potential in the 3 S1–3 D1 partial 
wave by a central one reproducing deuteron binding and, roughly, 
n–p3 S1 and 3 D1 phase shifts, leads to small but visible changes 
(smaller than KD–CH difference) in the cross sections. However, 
we do not consider such a n–p potential as realistic and there-
fore performed another test calculation with the realistic Argonne 
V18 potential [31] that has a stronger tensor force and a larger 
deuteron D-state probability as compared to CD Bonn. In this case 
the differences were minor, so we conclude that uncertainties in 
a realistic n–p force do not affect the 20O(d, p)21O transfer cross 
sections.

Finally we consider the deuteron pickup reaction 21O(p, d)20O. 
For the d + 20O(0+) final state it is exactly the time-reverse re-
action of 20O(d, p)21O with the cross sections (at the same c.m. 
energy) related by the time reversal symmetry. In contrast, with 
the d + 20O(2+) final state it presents a new case that we study in 
Fig. 6 at 60.36 MeV/nucleon beam energy. The initial excited state 
21O( 1

2
+
) this time corresponds to the � = 2 transfer as the 20O(2+)

component is coupled with a D-wave neutron. The core-excitation 
effect turns out to be qualitatively similar to another � = 2 case, 
i.e., 20O(d, p)21O( 5

2
+
) shown in the bottom part of Fig. 5.

5. Summary and conclusions

We analyzed 20O(d, p)21O transfer reactions taking into account 
the vibrational excitation of the 20O core. Calculations were per-
formed using Faddeev-type equations for transition operators that 
were solved in the momentum-space partial-wave representation. 
Well converged results were obtained for several interaction mod-
els based on the vibrational extension of KD and CH potentials.

The only available experimental differential cross section data 
for the transfer to the 21O ground state 5

2
+

and excited state 1
2

+

at 10.5 MeV/nucleon beam energy are quite well described by 
our calculations including the core excitation. Some sensitivity to 
Fig. 6. (Color online.) Differential cross section for 21O∗(p, d)20O(2+) transfer re-
action at E p = 60.36 MeV. Results including the core excitation (solid curve) are 
compared with single-particle predictions scaled by SF(2+) = 0.18 (dotted curve).

the underlying potential was observed, but the core-excitation ef-
fects turn out to be almost independent of it. The precise value of 
the quadrupole vibrational coupling β2 also turns out to be irrel-
evant provided that spectroscopic factors are fixed that we take 
from shell-model calculations. At this lowest considered energy 
we found that the core-excitation effect can be approximated to 
a good accuracy (6% for the 1

2
+

state and even better for the 5
2

+

state) by a simple reduction of the single-particle cross section ac-
cording to the respective SF. Thus, the extraction of the SF through 
the ratio of experimental data and single-particle cross section as 
performed in Ref. [16] is a reasonable procedure. Nevertheless, our 
prediction for a slightly stronger reduction of the 1

2
+

cross section 
leads to an even better agreement between the shell model SF and 
experimental data.

The situation changes dramatically at higher energy where the 
core-excitation effects are much more complicated than just a re-
duction of the cross section according to the respective SF. Thus, in 
this regime one really needs to perform full calculations with the 
core excitation and should not rely on a single-particle cross sec-
tion to extract the SF. For example, we found that at 31.5 MeV/nu-
cleon beam energy the SF extracted in this naive way would be 
about 70% too small for the 1

2
+

state but 80% too large for the 5
2

+

state. This also demonstrates that core excitation acts very differ-
ently in the S and D-wave neutron states. In the S-wave case the 
results are qualitatively consistent with previous findings for reac-
tions involving the 11Be( 1

2
+
) but based on the rotational model.

Taking into account also the study of the 21O∗(p, d)20O(2+) re-
action, we are able to make an important conclusion on a system-
atic effect of the quadrupole core excitation at higher energies: it 
substantially suppresses reactions with � = 0 transfer but enhances 
those with � = 2. The shape of the angular distribution of the 
differential cross section is changed in both cases. Of course, the 
quantitative size of these effects depends on the collision, binding, 
and excitation energies. Furthermore, the core-excitation effect is a 
result of a complicated interplay between its contributions of the 
two- and three-body nature; including only the two-body effect 
through the modification of the potential is computationally sim-
pler but not justified.
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